Long-standing Small-scale Reconnection Processes at Saturn Revealed by Cassini

Guo, R.L. and Yao, Z.H. and Sergis, N. and Wei, Y. and Xu, X.J. and Coates, A.J. and Delamere, P.A. and Roussos, E. and Arridge, C.S. and Waite, J.H. and Krupp, N. and Mitchell, D. and Burch, J. and Dougherty, M.K. and Wan, W.X. (2019) Long-standing Small-scale Reconnection Processes at Saturn Revealed by Cassini. Astrophysical Journal Letters, 884 (1). ISSN 2041-8205

Full text not available from this repository.

Abstract

The internal mass source from the icy moon Enceladus in Saturn?s rapidly rotating magnetosphere drives electromagnetic dynamics in multiple spatial and temporal scales. The distribution and circulation of the internal plasma and associated energy are thus crucial in understanding Saturn?s magnetospheric environment. Magnetic reconnection is one of the key processes in driving plasma and energy transport in the magnetosphere, and also a fundamental plasma process in energizing charged particles. Recent works suggested that reconnection driven by Saturn?s rapid rotation might appear as a chain of microscale structures, named drizzle-like reconnection. The drizzle-like reconnection could exist not only in the nightside magnetodisk, but also in the dayside magnetodisk. Here, using in situ measurements from the Cassini spacecraft, we report multiple reconnection sites that were successively detected during a time interval longer than one rotation period. The time separation between two adjacently detected reconnection sites can be much less than one rotation period, implying that the reconnection processes are likely small-scale, or frequently repetitive. The spatial distribution of the identified long-standing multiple small reconnection site sequences shows no significant preference on local times. We propose that the small reconnection sites discussed in this Letter are rotationally driven and rotate with the magnetosphere. Since the reconnection process on Saturn can be long-durational, the rotational regime can cause these small-scale reconnection sites to spread to all local times, resulting in global release of energy and mass from the magnetosphere.

Item Type:
Journal Article
Journal or Publication Title:
Astrophysical Journal Letters
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100/3103
Subjects:
ID Code:
138809
Deposited By:
Deposited On:
13 Nov 2019 14:20
Refereed?:
Yes
Published?:
Published
Last Modified:
29 Mar 2020 06:51