
An aggregation-based approximate dynamic
programming approach for the periodic review model

with random yield

Michael A. Voelkel
Department of Supply Chain Management and Management Science, University of Cologne, D-50923 Cologne, Germany

Anna-Lena Sachs*
Department of Management Science, Lancaster University, Lancaster, United Kingdom

Ulrich W. Thonemann
Department of Supply Chain Management and Management Science, University of Cologne, D-50923 Cologne, Germany

A manufacturer places orders periodically for products that are shipped from a supplier. During transit,

orders get damaged with some probability, that is, the order is subject to random yield. The manufacturer

has the option to track orders to receive information on damages and to potentially place additional orders.

Without tracking, the manufacturer identifies potential damages after the order has arrived. With tracking,

the manufacturer is informed about the damage when it occurs and can respond to this information. We

model the problem as a dynamic program with stochastic demand, tracking cost, and random yield. For

small problem sizes, we provide an adjusted value iteration algorithm that finds the optimal solution. For

moderate problem sizes, we propose a novel aggregation-based approximate dynamic programming (ADP)

algorithm and provide solutions for instances for which it is not possible to obtain optimal solutions. For

large problem sizes, we develop a heuristic that takes tracking costs into account. In a computational study,

we analyze the performance of our approaches. We observe that our ADP algorithm achieves savings of up to

16% compared to existing heuristics. Our heuristic outperforms existing ones by up to 8.1%. We show that

dynamic tracking reduces costs compared to tracking always or never and identify savings of up to 3.2%.

Key words : Inventory, Approximate dynamic programming, Random yield, Tracking, Value of information

* Corresponding author: a.sachs@lancaster.ac.uk

1

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
2

1. Introduction

Many companies operate large sourcing and distribution networks. They operate production facil-

ities in different countries, receive orders from global suppliers, and serve customers globally. Such

companies must take transportation risks into account when determining order or production quan-

tities. A European pharmaceutical company that we work with, for example, sources drugs from

Asia. The drugs are delivered via sea freight with a transportation time of about four weeks. The

drugs must be kept within a certain temperature range during the entire journey. If the temper-

ature leaves the range during transport, the drugs must be discarded. If the ordering process is

not managed properly and does not take such supply risks into account, it is difficult to control

inventory efficiently.

Temperature risks are not the only supply risks that companies face. Other risks include product

handling, packaging, air flow within container, and many more (Ketzenberg et al. 2018, Sleptchenko

and Johnson 2015, White and Cheong 2012).

For modeling purposes, the risks are often aggregated into yield rates, which are the ratios of

usable items to items ordered, and which can be substantially below 100%. For perishable food,

they range between 70%−80% (Dobbs et al. 2011, Gustavsson et al. 2011) and for vaccines, they are

about 75% (White and Cheong 2012). Random yield is also encountered in production. Samsung’s

curved glass production for cell phones, for example, has a yield rate of less than 50% (Sonntag and

Kiesmüller 2017) and semiconductor device production processes exhibit yield rates of 50%− 70%

(Gavirneni 2004). We focus on analyzing random yield in supply chains, but the approaches can

also be applied to analyzing random yield in production environments.

We analyze a setting where the yield of a product is estimated using information such as time

and temperature history (TTH) that can be measured and recorded throughout the voyage. For

example, in shelf life models, the measured and recorded information on TTH is used to update

an estimate of the expected remaining life time of a product (e.g., Gaukler et al. 2017, Ketzenberg

et al. 2018). Then, a decision can be made up to which remaining lifetime a product might be sold.

A similar approach would be to consider a product unsalable if the TTH shows that a predefined

acceptable range has been left at least once during the voyage.

We assume in our analysis that acceptable ranges for measured characteristics are given for each

product because they are either defined by the company or induced by regulatory constraints.

This means that the company or (inter)national legislation specifies a policy according to which

perishable products such as food, medical products, etc. are salable. These policy decisions are

based on estimates at which point a product has spoiled and has to be discarded. As soon as the

company finds out that a measured characteristic leaves the acceptable range, the products are

considered as unsalable and the company may place a new order to satisfy demand.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
3

If standard containers are used, the history of the measurements is accessed upon arrival of an

order. Alternatively, the company may decide to use new technology that allows companies to track

characteristics of an order during shipment. Smart containers provide information on measurements

of temperature, humidity etc. on a regular basis or in near-real time. For example, DHL offers a

service called Ocean Secure that guarantees near-real time tracking of conditions and locations of

products (DHL 2013). We consider a periodic review model where companies can decide in each

period whether they want to pay for the tracking service to track the order, that is, to receive time

and temperature information.

If orders are untracked, the history can be observed at arrival and the salability is determined

based on this history. If orders are tracked, companies can evaluate the salability earlier. They

can then issue replenishment orders immediately if the order is considered unsalable. Thus, order

tracking allows companies to manage their inventory more efficiently. Previous research has shown

that additional information about uncertain parameters can significantly improve order decisions

(e.g., Choi et al. 2008, Ketzenberg et al. 2007, 2006).

In this paper, our objective is to provide a model that allows companies to quantify the monetary

savings that can be achieved by either tracking all, tracking only selected orders or not tracking

at all. Companies can then use this information to weight these savings against the cost for using

tracking services. This comparison requires a good understanding of all the costs involved when

using and investing in a new technology. However, we do not focus on the analysis of new technology

investments, but on providing a model for determining when orders should be tracked and which

cost savings can potentially be achieved.

Our contribution is threefold: Firstly, we model the problem as a periodic review model with

dynamic tracking and backorders under random yield and derive new structural properties of the

model. Secondly, we develop three new solution approaches for the problem: We use dynamic

programming to solve this problem to optimality for small problem instances. To overcome the

curse of dimensionality, we propose a novel approximate dynamic programming approach that uses

multiple levels of aggregation for moderate problem instances. For large problem instances, we

develop a new heuristic that takes tracking decisions into account. Thirdly, we quantify the benefits

of tracking random yield.

2. Literature review

Two streams of literature are relevant for our reseach, the literature on random yield and solution

approaches for Markov decision processes.

An extensive overview of random yield models is provided by Yano and Lee (1995). They discuss

the models that have been provided for various kinds of random yield and different kinds of supply

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
4

chains. One of the earliest research on inventory models with random yield can be attributed to

Karlin (1958). He considers a single period inventory system with binary order decisions, where

the order yield is a random variable with a known distribution. Henig and Gerchak (1990) derive

structural properties and show that there exists an upper bound for the order decision that depends

on the current inventory position. Only few multi-stage models with positive lead times exist

(Yano and Lee 1995). Related to our model are the models by Choi et al. (2008) and Dettenbach

and Thonemann (2015). Choi et al. (2008) consider a finite horizon model with a lead time of

three periods and real-time yield information. They state that simple order-up-to policies do not

deliver optimal results and provide a heuristic solution which illustrates that sharing information

is beneficial. Dettenbach and Thonemann (2015) consider a model with arbitrary lead times, where

the yield of all or none of the orders is tracked. Tracking is often accomplished via RFID. For a

literature review on RFID, we refer to Choi et al. (2008), Ngai et al. (2008) and Sarac et al. (2010).

The application of RFID leads to shared information and can be utilized to generate substantial

benefits (e.g., Gaukler et al. 2007, Ketzenberg et al. 2015, Lee and Özer 2007).

We extend the literature on inventory models with random yield by providing the option to track

orders dynamically. Existing models assume that all or none of the orders are tracked and either

solve simplified models optimally or realistic models heuristically. We consider a model in which

all, none or some of the orders are tracked. We design our model as a Markov decision process.

Dettenbach (2015) models this problem similarly, but within his solution approach, he considers

random yield for a single fixed lead time period and assumes that demand is deterministic. We allow

for random yield and stochastic demand in any lead time period, which makes classical solution

approaches computationally intractable. We derive new structural properties for this problem and

provide novel solution approaches that are optimal for small to moderate problem sizes and that

solve large problem sizes better than existing heuristics.

One area of solution approaches for our model comprises myopic policies that optimize decisions

based on costs that are a direct consequence of the decisions. They do not memorize costs or

decisions per state and therefore do not learn over time. In the inventory management literature

with random yield, linear inflation policies, a sub-class of myopic policies, are common (Huh and

Nagarajan 2010). If the inventory position falls below a certain threshold, an order is triggered. The

order size is an inflation factor multiplied with the difference between the inventory position and

the threshold (e.g., Zipkin 2000, p. 393). These heuristics have proven to perform better than other

heuristics for a range of problems similar to the one that we consider (e.g., Bollapragada and Morton

1999, Inderfurth and Kiesmüller 2015, Kiesmüller and Inderfurth 2018, Li et al. 2008). Ehrhardt

and Taube (1987) provide one of the first linear inflation rule policies for a single period problem

with random yield. They focus on the average level of replenishment but ignore its variability.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
5

Bollapragada and Morton (1999) develop multi-period heuristics that are based on newsvendor

solutions. Huh and Nagarajan (2010) show how the order threshold can be optimized for a given

inflation factor. Dettenbach and Thonemann (2015) provide heuristic solution approaches that are

adaptations of the heuristics by Ehrhardt and Taube (1987) and Huh and Nagarajan (2010). We

contribute to this area by developing a heuristic that not only decides on the order size but also

on the tracking decision depending on the order size. In contrast, while linear inflation policies are

easy to apply, they are not optimal due to their myopic nature (Inderfurth and Kiesmüller 2015).

Solution approaches for Markov decision processes that obtain optimal or close-to-optimal solu-

tions are commonly based on dynamic programming or approximate dynamic programming. Both

approaches consider multiple lead time periods and are therefore not myopic. Dynamic program-

ming yields optimal results but suffers from the curse of dimensionality, and is therefore only

applicable to small problem instances. Approximate dynamic programming mainly comprises value

function approximations, which are considered as the most powerful method for solving complex

dynamic programs (Powell 2011, p. 235). Within the realm of value function approximations, there

are different subcategories to consider. A common distinction can be made between parametric and

non-parametric representations of a state and lookup tables (Powell 2011, ch. 6). Parametric mod-

els need to estimate a value function by designing a set of features that represent the value function

accurately. Linear parametric models are most popular (Powell 2016). For example, Kleywegt et al.

(1998) use a parametric approximation of the value function for inventory routing problems. How-

ever, the state variables of our model (inventory level and open orders) have non-linear effects on

our cost function. Within non-parametric models, neural networks have received a lot of attention

(Hastie et al. 2009, pp. 347-369). They are able to approximate functions of arbitrary shape. For

example, Van Roy et al. (1997) apply a multi-layer neural network to two-echelon retailer inven-

tory systems. In our problem, we found that neural networks only delivered good estimates after

learning from millions of exact cost values. Further, the learning could not be transferred from

one parameter setting to another. Due to that, neural networks are not suitable for solving the

practical problem that we consider.

Lookup tables exhibit the greatest level of detail because they do not use feature-based functional

approximations. However, they suffer from the curse of dimensionality if not used with aggregation.

Lookup tables can be combined with approximate value iteration which is described in general in

Bertsekas and Tsitsiklis (1996) and Powell (2011). Singh et al. (1995) discuss soft-state aggregation

where states are assigned to multiple clusters with certain probabilities. Lambert et al. (2004)

provide so-called macro states, which can overlap and include individual states. Actions in these

macro states are not limited to macro states, but also include actions in individual states. Bertsekas

and Castañon (1989) introduce an adaptive method that changes the level of aggregation during

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
6

the course of the algorithm. They change the membership of a state to particular groups adaptively

based on cost changes but their method still suffers from the curse of dimensionality. George

et al. (2008) propose a method where multiple aggregation levels are used for which weights are

solved optimally. A detailed overview of approximate dynamic programming approaches, including

hierarchical ones, is given by Gosavi (2009).

We contribute to the approximate dynamic programming literature by developing a novel hier-

archical state aggregation on multiple levels. Our approach assigns each state to exactly one aggre-

gation level. Unlike existing multi-level aggregation approaches, we explore more granular levels

of aggregation only for a subset of states based on information gained on a coarse aggregation

level. States that are ultimately assigned to a coarse aggregation level are not explored on a more

granular aggregation level, which significantly reduces the number of states.

3. Model formulation

We next formulate our model and derive important characteristics. In Section 3.1, we describe

the general setting and the sequence of events. In Section 3.2, we formulate our problem as a

Markov decision process and devise central theorems about this process. In Section 3.3, we derive

equivalence for certain classes of states. In Section 3.4, we develop bounds for costs and optimal

order quantities.

3.1. Setting

We consider a single manufacturer who places orders with a single supplier. The demand per period,

D, of the product is stochastic and i.i.d. across periods. We denote the quantity of an order placed

t time periods ago by Ot. Orders arrive after a deterministic lead time of λ periods. In each lead

time period, orders are subject to stochastically proportional random yield. The yield rate of lead

time period t (t= 1, . . . , λ) is Yt with expected value ut. Order Oλ placed λ periods ago experiences

λ random yields and we denote the number of items that arrive after these lead time periods as

Qλ. The yield rates Yt are i.i.d. over time and can be arbitrarily distributed. This yield model is

frequently used to analyze the random yield inventory problem (Choi et al. 2008, Ehrhardt and

Taube 1987, Gerchak et al. 1988).

For each order, we must decide whether to track. If an order is not tracked, we receive yield

information after the order has been delivered, that is, λ periods after it has been placed. When

placing an order, we must decide on the order quantity and whether or not to track. While we

might decide to track orders in some periods, we might decide not to track in others. In settings

where it is optimal to track some but not all orders, there is no simple policy of when to decide to

track. The trade-off between additional information and paying tracking cost has to be made for

each state individually.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
7

Our problem is a discrete-time stochastic control problem that employs a state space S . We

define the current state of the inventory system x ∈S as (I,O1, . . . ,Oλ,ψ1, . . . ,ψλ). A state con-

sists of the inventory level I, the open orders Ot and the tracking decisions ψt ∈ {0,1}, where

positive values for I denote the on-hand inventory and negative values describe the backorders.

The interpretation of Ot depends on ψt. If ψt = 1, the order is tracked and Ot denotes the number

of usable items in the order that have passed through t lead time periods with random yield. If

ψt = 0, the order is not tracked and Ot denotes the number of items ordered. The number of items

that arrive in the current period after λ lead time periods, that is, Qλ, can then be determined as

follows: If ψλ = 1, Oλ denotes the number of usable items, so that Qλ =Oλ. If ψλ = 0, Oλ denotes

the number of ordered items and the number of items that arrive is Qλ =Oλ
∏λ

t=1 Yt with expected

value E[Qλ] =Oλ
∏λ

t=1 ut. All notation is summarized in Appendix EC.1.

The sequence of events is as follows: At the beginning of a period, the manufacturer observes the

current state of the inventory system. She decides on the number of items to order and whether or

not to track this order at fixed tracking cost of τ . The order is shipped and arrives after a lead time

of λ periods. Then, the order placed λ periods before the current period arrives and is stored in

inventory. Demand occurs and potential backorders from previous periods as well as the demand

of the current period are filled. Finally, backorder or inventory holding costs are charged.

3.2. Markov decision process formulation

Given state x, we denote the space of possible actions as Ax. The action a ∈Ax consists of the

order quantity and tracking decision which we henceforth denote as Ô and ψ̂. The expected cost

for one lead time period, c(x,a), consists of holding and penalty costs as well as tracking cost if we

decide to track. We write

c(x,a) = cinv(x) + τψ̂, (1)

where cinv(x) = E
[
h[I −D+Qλ]+− p[I −D+Qλ]−

]
is the inventory cost and h and p are the

inventory holding and penalty cost factors, respectively. The objective is to minimize expected cost

for the infinite horizon model. This expected cost is the result of the minimization of the one-stage

cost, c(x,a), and the costs of all possible transition states of x that we denote as x̃.

The possible transition states x̃∈S are defined as x̃= (Ĩ , Õ1, . . . , Õλ, ψ̃1, . . . , ψ̃λ). The inventory

level of the transition state is Ĩ = I−D+Qλ. The open order Õ1 in the transition state is computed

as Õ1 = I[ψ̂ = 1](Y1Ô) + I[ψ̂ = 0](Ô), where I is the indicator function that is one if we track the

order and zero otherwise. The first part of the term holds if we track the order that we place and

receive yield information; the second term holds if we do not track the order that we place and

do not receive yield information. Similarly, we compute the open orders in the transition state

for orders placed i ≥ 2 periods ago as Õi = I[ψi−1 = 1](YiOi−1) + I[ψi−1 = 0](Oi−1). The tracking

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
8

decisions are carried over from the current state to the transition state, that is ψ̃1 = ψ̂ and ψ̃i =ψi−1

for λ≥ i≥ 2.

The costs of the transition states are discounted by a factor 0 < γ < 1 and weighted by the

transition probability, pa(x, x̃), that depends on the action a and external events like demand

and yield. We formulate the model as a discounted Markov decision process (Bellman 1957). The

optimal infinite horizon cost, J(x), can then be written as

J(x) = mina∈Axc(x,a) + γ
∑
x̃∈S

pa(x, x̃)J(x̃). (2)

The transition probability pa(x, x̃) is 0 for states x̃ that are no transition states of x. It consists

of the transition probabilities of the inventory level pinva (x, x̃) and open orders porda (x, x̃) as well as

the transition function of tracking decisions ptraa (x, x̃).

These three terms are independent of one another. pinva denotes the probability for transferring

inventory from the current state x to transition state x̃. It only depends on the inventory level of

the current state x and transition state x̃, demand of the current period, the order that we placed

λ periods ago and its tracking status, that is, pinva depends on I, Ĩ, D, Oλ and ψλ. porda is the

transition probability of open orders and depends on the open orders Oi of states x and x̃ with

1≤ i < λ. The reason that porda does not depend on Oλ is that this state variable does not result in

a change of open orders in the transition state but only influences its inventory level Ĩ. Since pinva

and porda use different state variables and as state variables are independent of one another, these

two probabilities are independent of each other as well. ptraa is deterministic and returns 1 if x̃ is a

possible transition state of x with respect to the tracking decisions and 0 otherwise. We therefore

write pa(x, x̃) as

pa(x, x̃) = pinva (x, x̃) · porda (x, x̃) · ptraa (x, x̃).

The inventory level transition probability is defined as

pinva (x, x̃) = P(Ĩ = I−D+Qλ). (3)

This is to say, it equals the probability that the increase in inventory, Ĩ−I, is equal to the difference

between the delivery quantity and the demand, Qλ −D. The term Qλ −D is stochastic and its

distribution is given by the convolution of Qλ and −D. Note that for ψλ = 1, Qλ is deterministic

and the distribution of Qλ−D reduces to the distribution of −D shifted by Qλ.

To evaluate the order quantity transition probability, its tracking status needs to be considered.

If an order is not tracked, no new information about its yield is revealed and the order quantity

transfers to the transition state without change. If an order is tracked, we have information on its

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
9

yield and the updated order quantity is transferred to the transition state. We compute the order

quantity transition probability as

porda (x, x̃) =
λ−1∏
i=0

(1−ψi)pord,unta (x, x̃, i) +ψip
ord,tra
a (x, x̃, i), (4)

where O0 := Ô,ψ0 := ψ̂. The term consists of the transition probabilities of untracked open orders

pord,unta (x, x̃, i) and tracked open orders pord,traa (x, x̃, i). Note that this distinction is important since

we only receive information on yield if an order is tracked. The probabilities for untracked and

tracked open orders are defined as

pord,unta (x, x̃, i) = I[Õi+1 =Oi]

and

pord,traa (x, x̃, i) = P(Yi+1 ·Oi = Õi+1).

Each open order is either tracked (ψi = 1) or untracked (ψi = 0). In case that the order is untracked,

pord,unta is evaluated. pord,unta returns 1 if the open order quantity is equal to the open order quantity

of the transition state because without tracking, we receive no information on the quality of the

order. In case that the order is tracked, pord,traa is evaluated. Recall that Yi is a random variable that

describes the realized yield rate between 0 and 1 of one lead time period with expected value ui.

The transition of inventory is stochastic because tracking allows to update the order quantity. The

probability that the order quantity transfers to the transition state equals the probability that the

yield Yi corresponds to the change of the order quantity. For example, if Yi is Bernoulli-distributed,

its value is either 1 or 0 and Oi either spoils so that Õi+1= 0 or not so that Õi+1 =Oi. Since an

order is either tracked or untracked, it is never the case that both pord,unta and pord,traa are greater

than 0 at the same time.

The transition function for tracking decisions is given by

ptraa (x, x̃) =
λ−1∏
i=0

I[ψ̃i+1 =ψi]. (5)

ptraa returns 1 if the tracking decisions for all orders are the same in the transition state shifted

by one period. If one tracking decision is not the same, ptraa returns 0 because then x̃ cannot be a

transition state of x.

In the following, we denote Jt(x) as the finite horizon version of the infinite horizon cost function

J(x). It is defined as Jt(x) = mina∈Ax c(x,a)+γ
∑

x̃∈S pa(x, x̃)Jt+1(x̃). It corresponds to J(x) except

that it is time-dependent and that there is a terminal cost function JT (x) = 0 after T periods. Jt(x)

is useful to prove convergence properties of J(x). Lemma 1 shows that A is a compact set. This

lemma is necessary to prove uniform convergence of Jt(x) to J(x). All proofs are included in the

appendix.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
10

Lemma 1. Ax is a compact set for each x∈S .

Lemma 2 states that Jt(x) converges uniformly to J(x). This means that the finite horizon costs

converge to the infinite horizon costs when the time horizon goes to infinity.

Lemma 2. Jt(x) converges uniformly (and absolutely) to J(x) in S .

This observation is crucial to prove Theorem 1, which states that the limit function satisfies the

Bellman Equation and that for each state x∈S , the minimum is obtained by some a∈Ax.

Theorem 1. limT→∞ Jt(x) satisfies Equation (2) for each x∈S .

Finally we establish in Theorem 2 that a stationary policy exists. This shows that our policies

do not need to regard the time period of the state space in the infinite horizon model.

Theorem 2. For each x∈S , there exists a stationary optimal policy with cost function J(x).

These findings are mandatory for designing optimal and approximate solution algorithms. We

continue by analyzing structural properties of this Markov decision process.

3.3. Equivalent states

The state space includes some equivalent states, that is, states with identical one-period costs and

identical follow-up states. We can aggregate such states to reduce the state space, which saves

memory and reduces runtime. In the following, we present two classes of equivalent states.

If a tracked order placed i periods ago spoils, Oi becomes 0 while ψi remains 1. There is no

difference between a state with such a spoiled order and a state with an untracked order with

quantity 0 that is otherwise equal. The tracking fee τ is charged when the order is placed and

tracking an empty order has no effect on future inventory levels. When a tracked order Oi is spoiled,

we can set ψi to 0 and treat this order as if it had never been tracked. This finding is formulated

in Proposition 1.

Proposition 1. Let state x1 be defined as (I,O1, . . . ,Oλ,ψ
1
1, . . . ,ψ

1
λ) and let state x2 be defined

as (I,O1, . . . ,Oλ,ψ
2
1, . . . ,ψ

2
λ), so that they share the same inventory/backorder level and open order

quantities. x1 and x2 are equivalent with respect to one-period costs, optimal decisions and the

distribution of follow-up states if for all 1 ≤ i ≤ λ, it holds that ψ2
i = ψ1

i for Oi > 0 and ψ2
i ∈

{0,1} for Oi = 0.

Proposition 1 is particularly useful for situations in which order quantities are frequently equal to

0. It is also beneficial for settings with low yield rates, which lead to frequently spoiled orders. When

yield rates are high and orders are placed in most or all periods, the benefits of the aggregation

are small.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
11

We can also aggregate states of tracked orders that arrive at the end of the current period, Oλ. If

the order has been tracked, there is no uncertainty and we add the order quantity to our inventory

level. We describe this characteristic in Proposition 2.

Proposition 2. Let state x1 be defined as (I1,O1, . . . ,Oλ−1,O
1
λ,ψ1, . . . ,ψλ) and let state x2 be

defined as (I2,O1, . . . ,Oλ−1,O
2
λ,ψ1, . . . ,ψλ), so that they share the same tracking decisions for 1≤

i≤ λ and open order quantities for 1≤ i≤ λ− 1. States x1 and x2 are equivalent with respect to

one-period costs, optimal decisions and the distribution of follow-up states for any O1
λ if ψλ = 1,

O2
λ = 0 and I2 = I1 +O1

λ.

Proposition 2 effectively reduces the state space by one dimension if the order placed λ periods

ago is tracked. In this case, the arriving quantity Qλ is equal to Oλ and we can add it to the current

inventory level. This aggregation is not feasible if the order is not tracked.

3.4. Bounds

In the following, we refer to the solution of the Bellman Equation J(x) defined in Equation (2) as

cost of a state x under the optimal policy. For our solution approaches presented in Section 4, it is

useful to specify lower bounds on the cost of a state under the optimal policy, and lower bounds

on the optimal order quantity in a state. Lower bounds on the cost of a state under the optimal

policy are useful because they serve as starting cost-to-go for our solution approaches. The solution

approaches are based on value iteration, where the optimal costs are reached from below. We can

always use 0 as initial cost-to-go, but higher initial values shorten the runtimes.

Lower bounds on the optimal order quantity reduce the action space and therefore limit the

realm of states visited within a learning algorithm. This limitation serves two purposes: Firstly, it

reduces the runtimes. Secondly, it is necessary for convergence proofs of simulation-based learning

algorithms, which we present in Section 4.

In this section, we first derive two lower bounds on the optimal cost of a state, where for each

state we choose the larger one as initial cost-to-go for our algorithms. We then continue with

describing a lower bound on the optimal order quantity of a state.

3.4.1. Lower bounds on optimal cost of a state

Let (xt)t∈N be a sequence of states and let (at)t∈N be a sequence of actions made in these states,

where t denotes the time period. According to Theorem 1, we can write J(x1) for an arbitrary

state x1 also as limT→∞ Jt(x1). We can also write Jt(x1) as a minimization of a sum of costs. It

follows that

J(x1) = lim
T→∞

Jt(x1) = lim
T→∞

min
a1,...,aT

E
[T∑
t=1

γt−1c(xt, at)

]
.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
12

The order decision in period 1 affects inventory levels of periods 1 + λ and later. In periods

1, . . . , λ, inventory levels depend on the order pipeline that is entirely stored in our state. Based on

this observation, we can formulate a first lower bound, J(x1), on our cost function that does not

depend on the order decision in period 1:

Proposition 3. For any state x1 ∈S ,

J(x1) =E
[λ−1∑
t=1

γt−1cinv(xt)

]
≤ lim

T→∞
Jt(x1) = J(x1).

This bound consists of the expected inventory costs of the first λ periods. In scenarios with high

penalty cost factors and low yield rates, it provides a close lower bound on the cost of a state under

the optimal policy.

The periodic review model with deterministic demand and perfect yield provides costs for each

state that are a second possible lower bound to the costs in our dynamic tracking model. It follows

that for each state x∈S , J(x)≤ J(x), where J(x) describes the optimal costs in the deterministic

periodic review model with perfect yield. The optimal decision as well as the optimal costs for this

setting can be calculated using a recursive function that is shown in Appendix EC.9.

The idea of this function is that there is an absorbing state in the deterministic case. When

we reach this state, the infinite horizon discounted costs can be calculated with a closed-form

expression.

Since it is not predetermined whether J(x) or J(x) is lower for a specific state x, we calculate

both values and choose the larger one whenever we need to find a starting cost-to-go value for a

state.

3.4.2. Lower bound on order quantity

The optimal order decision of the stochastic periodic review model with perfect yield is a lower

bound for the optimal order decision of our dynamic tracking program if we decide not to track.

This finding is shown in general by Henig and Gerchak (1990) in Theorem 7. For all states x∈S

and if we decide not to track, the optimal order decision, Ô∗, is greater than or equal to the

optimal order decision, Ô, in the stochastic demand, perfect yield scenario. Ô can be calculated

as F−1
Dλ+1

(
p

p+h

)
− I −

∑λ

i=1Oi, where F−1
Dλ+1

is the inverse cumulative distribution function of the

demand over the order lead time plus one period.

In the case that we decide to track, Ô is not always a lower bound on the order quantity because

tracking cost occurs, so that the cost function is only convex for Ô > 0. It follows that an order

quantity of 0 might be more profitable than Ô. Thus, for a tracked order, Ô∗(x)∈ {0}∪ [Ô,∞).

However, we can define a condition for which Ô is a lower bound on the order quantity if we

decide to track because ordering at least one tracked item is profitable:

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
13

Proposition 4. For any state x= (I,O1, . . . ,Oλ,ψ1, . . . ,ψλ), if we decide to track, the optimal

order quantity Ô∗ is greater than or equal to Ô if τ < p
∏λ

i=1 ui and I1 +O1 + · · ·+Oλ + 1≤ 0.

Intuitively, Proposition 4 shows that if our backorder level is so high that increasing our order

quantity from 0 to 1 almost surely does not lead to overage, our expected cost reduction after λ

periods is well-defined by the constant expression p
∏λ

i=1 ui. As long as this cost reduction exceeds

the tracking cost rate, it is worthwhile to order a positive quantity and we can apply the lower

bound on the order quantity Ô.

4. Solution approaches

In Section 4.1, we present the value iteration approach for the problem formulated in the last section

and show that it is provably optimal. Since runtime and memory requirements grow exponentially

in λ with this method, it only works for small problem instances. In Section 4.2, we present a novel

approximate dynamic programming approach that is capable of solving moderate instances of our

problem setting. In Section 4.3, we illustrate a heuristical solution that works for large instances.

In the following, we assume that the demand, order quantities and therefore the state space are

discrete.

4.1. Optimal solution approach

Our optimal solution approach is an enhanced synchronous value iteration algorithm that works

with a finite and discrete state space and converges to the optimum (Bertsekas and Tsitsiklis 1996,

pp. 25-26). In Proposition 5, we show that there is a unique essential class of states in which all

states communicate. When applying the stationary optimal policy, no state outside this essential

class is visited.

Proposition 5. For any discrete distribution of the demand D with P(D = i) > 0 for ∀i > 0

and i.i.d. yield rates Yj with P(Yj = 1) > 0, 1 ≤ j ≤ λ, the state space S has a unique essential

class and therefore a unique stationary distribution.

Without loss of generality, we set bounds for the state space that are not binding for the essential

class of states, so that we can apply synchronous value iteration. Let Csyn be the cost-to-go vector

covering all states and let Csyn(x) be the costs-to-go for state x that are currently stored in the

vector. We introduce the operator R that chooses the optimal action for one state and updates its

cost such that it is minimized given the current cost vector:

(RCsyn)(x) = min
a∈Ax

c(x,a) + γ
∑
x̃∈S

pa(x, x̃)Csyn(x̃),∀x∈S . (6)

We can then write the system of equations that belong to our setting as RCsyn =Csyn. Bertsekas

and Tsitsiklis (1996, pp. 37-41) show that R is a contraction. It follows that choosing some starting

solution for Csyn and applying R infinitely often leads to optimal cost J(x) for each state.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
14

We ensure that the algorithm terminates in finite time by combining this operator with Mac-

Queen extrapolation (MacQueen 1966). The algorithm computes upper and lower bounds on the

cost for each state in each iteration. When the largest distance between the bounds is beneath

some small value ε, the algorithm stops. Knowing that there exists an optimal stationary policy

from Theorem 2, we conclude Corollary 1:

Corollary 1. The value iteration algorithm combined with MacQueen extrapolation yields the

optimal stationary policy for a sufficiently small ε.

Since we know from Proposition 5 that a unique stationary distribution exists, we can determine

steady state probabilities p(x), x∈S , for example, by using power iteration. We can then determine

the weighted average costs of the state space under the optimal policy by
∑

x∈S p(x)J(x).

Synchronous value iteration visits all states of the state space. In case of a finite state space and

a limitation of the range of inventory levels to I ∈I , the number of states is |I | · |A |λ, when we

assume that the action space, A , is the same for each state. This exponential growth of the state

space in λ is commonly referred to as the curse of dimensionality. Due to the necessity to iterate

the entire state space, it is computationally intractable to solve large instances of our setting.

4.2. Approximate dynamic programming solution approach

We develop a novel approximate dynamic programming approach to solve larger problem instances

based on the asynchronous value iteration algorithm (Bertsekas and Tsitsiklis 1996). We introduce

an aggregation technique where states with similar costs are aggregated on multiple levels. These

levels are organized according to an aggregation hierarchy. Aggregations on higher levels cover

more states than aggregations on lower levels but exhibit a higher cost estimation error. We assign

each state to exactly one level to trade off cost estimation errors against the size of the state space.

In Section 4.2.1, we present the asynchronous value iteration algorithm without aggregation

that serves as the basis of our hierarchical approximate dynamic programming approach. In Sec-

tion 4.2.2, we delineate the aggregation functions. In Section 4.2.3, we demonstrate how we can

use these aggregation functions to adapt asynchronous value iteration to solve exactly one aggre-

gation level. In Section 4.2.4, we relax the number of aggregation levels and develop rules to assign

aggregation levels to particular states and present our complete hierarchical approximate dynamic

programming algorithm.

4.2.1. Asynchronous value iteration

The asynchronous value iteration algorithm updates only one state per iteration according to a

greedy policy (Bertsekas and Tsitsiklis 1996, pp. 237-245). Let Casy be the cost-to-go vector for

our entire state space under asynchronous value iteration and let Casy(x) be the cost-to-go of state

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
15

x that are currently stored in the vector. Starting at an arbitrary state xk∈S at iteration k, we

perform a greedy policy to obtain the best decision given our current cost information of the state

space. We update our state space after each iteration according to

Casy(xk)← min
a∈Axk

c(xk, a) + γ
∑
x̃k∈S

pa(xk, x̃k)C
asy(x̃k),

where the right hand-side corresponds to Equation (6). We then move to the follow-up state xk+1. It

depends on the decision made and external events like demand and yields for the particular orders.

We choose the optimal decision made in the minimization step and then choose xk+1 randomly as

follow-up state x̃k according to the probabilities pa(xk, x̃k). Then, the next iteration begins and

the process repeats.

We must initialize Casy such that Casy(x)≤ J(x) for each x∈S . A simple starting point would

be 0. Since the rate of convergence depends on how close the initial cost of a state is to the optimal

cost, an increased initial cost can reduce the runtime of our algorithm. Therefore, we initially set

Casy(x) to the maximum of the lower bound of Proposition 3, J(x), and the optimal cost from

the periodic review model with deterministic demand, J(x). The state trajectory resulting from

our algorithm starts with many potential states and converges to states belonging to the optimal

decisions. During the learning process, the cost-to-go vector Casy converges to the optimal costs

given by J(x) for all states resulting from the optimal decision (Bertsekas and Tsitsiklis 1996, pp.

237-245). Without loss of precision, we apply the order quantity bounds from Theorem 7 of Henig

and Gerchak (1990) and our Proposition 4 to further reduce runtimes.

The asynchronous value iteration algorithm with bounds is depicted in Appendix EC.12. It has

a finite search space and converges as stated in Corollary 2.

Corollary 2. The asynchronous value iteration algorithm with bounds leads to a finite optimal

solution after an infinite number of iterations that is obtained using a stationary optimal policy.

We use policy evaluation to find a termination criterion by measuring the average cost associated

with the current policy. We then observe the trend of average costs over time and find a reasonable

number of iterations after which to terminate.

4.2.2. Aggregation functions

Figure 1 shows an example of an aggregation pyramid for three hierarchical levels. Level 0 contains

only fully disaggregated states. Level 1 is built by aggregating similar states of level 0. Level 2 is

coarser and is created by aggregating states of level 1. We denote the state spaces consisting of

states from levels 0, 1 and 2 as S (0), S (1) and S (2), respectively. In this example, function r(1)

transforms a disaggregated state of level 0 into an aggregated state of level 1, and function r(2)

transforms a state of level 1 into an even more aggregated state of level 2.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
16

Figure 1 Example with three aggregation levels, aggregation functions r(·) and associated state spaces S (·)

where higher levels are coarser

coarse aggregation
with state space

more granular aggregation
with state space

disaggregated states
with state space

Level 2

Level 1

Level 0

Formally, for each level of the aggregation hierarchy, we define aggregated state spaces S (g),

where we denote their states as x(g) ∈S (g) with x(g) = (g, I,O1, · · · ,Oλ,ψ1, · · · ,ψλ), g ∈ G . G is the

index set of aggregation levels with |S (k)|< |S (l)| for k > l, k ∈ G , l ∈ G . For notational convenience,

we denote the disaggregated state space as S (0) and a state of this state space as x(0) ∈S (0). S (0)

is equivalent to S that we have utilized so far and only differs in the additional constant g= 0 as

the first state variable. We generalize aggregation functions r(g) : S (f)→S (g) with f, g ∈ G , f < g

for a fixed f per r(g). Setting f allows us to choose the aggregation level from which we take states

that we aggregate into level g. Choosing a smaller f increases the precision of the aggregation

while it increases the complexity of the calculation. The example in Figure 1 corresponds to f =

max{g− 1,0}.
Since the total number of disaggregated states grows exponentially in λ according to |I | · |A |λ,

we develop aggregation functions that counteract the growth by an exponential state reduction in

λ. We eliminate one dimension of open orders per aggregation level by setting the corresponding

open order state variable to 0. This is a common aggregation technique (e.g., George et al. 2008,

Mes et al. 2011, Simão et al. 2009). As this changes the cost of the state, we adjust the value of

Oλ such that the change in cost is minimized. The result is an aggregated state with minimal cost

difference compared to the original, disaggregated state.

For example, we denote disaggregated state x(0) as (0, I(0),O
(0)
1 ,O

(0)
2 , · · · ,O(0)

λ ,ψ
(0)
1 ,ψ

(0)
2 , · · · ,ψ(0)

λ)

and x(1), the aggregated state of level 1, as (1, I(1),O
(1)
1 ,O

(1)
2 , · · · ,O(1)

λ ,ψ
(1)
1 ,ψ

(1)
2 , · · · ,ψ(1)

λ). By aggre-

gating, we set one open order state variable to 0, that is, O
(1)
λ−1 = 0. We set O

(1)
λ to ζ(1) which is a

value that we choose to minimize the cost difference between x(0) and x(1). All other state variables

stay the same, that is, I(1) = I(0), O
(1)
i =O

(0)
i for i < λ− 1 and ψ

(1)
i = ψ

(0)
i for 1≤ i≤ λ. While we

could also set different state variables to 0 and ζ(1), our computational studies revealed that the

choice of O
(1)
λ and O

(1)
λ−1 yields the best results.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
17

Table 1 Source and target aggregation states for f = max{g− 2,0}

Source aggregation state, x(f) ∈S (f) Target aggregation state, x(g) ∈S (g)

(0, I,O1, · · · ,Oλ,ψ1, · · · ,ψλ) (1, I,O1, · · · ,Oλ−2,0, ζ
(1),ψ1, · · · ,ψλ)

(0, I,O1, · · · ,Oλ,ψ1, · · · ,ψλ) (2, I,O1, · · · ,Oλ−3,0,0, ζ
(2),ψ1, · · · ,ψλ)

(1, I,O1, · · · ,Oλ−2,0, ζ
(1),ψ1, · · · ,ψλ) (3, I,O1, · · · ,Oλ−4,0,0,0, ζ

(3),ψ1, · · · ,ψλ)

(2, I,O1, · · · ,Oλ−3,0,0, ζ
(2),ψ1, · · · ,ψλ) (4, I,O1, · · · ,Oλ−5,0,0,0,0, ζ

(4),ψ1, · · · ,ψλ)

(3, I,O1, · · · ,Oλ−4,0,0,0, ζ
(3),ψ1, · · · ,ψλ) (5, I,O1, · · · ,Oλ−6,0,0,0,0,0, ζ

(5),ψ1, · · · ,ψλ)

Aggregated states of higher levels can be found in the same way. We denote x(g) as

(g, I(g),O
(g)
1 ,O

(g)
2 , · · · ,O(g)

λ ,ψ
(g)
1 ,ψ

(g)
2 , · · · ,ψ(g)

λ). By aggregating, we set g state variables of open

orders to zero, that is, O
(g)
i = 0 for λ− g ≤ i≤ λ− 1. We set O

(g)
λ to ζ(g), which again is a value

that we choose to minimize the cost difference. All other state variables stay the same.

For any target aggregation level g, we may choose a source aggregation level that we denote as f

with 0≤ f < g. We then seek to minimize the cost difference between x(g) and x(f) by setting ζ(g).

For example, if we choose f as the maximum of g− 2 and 0, we come up with source and target

aggregation states as depicted in Table 1, where we have left out the upper indices for unreplaced

state variables that do not change from source to target aggregation state.

To optimize ζ(g), we need to estimate the cost difference between x(g) and x(f). The exact cost

difference is given by |J(x(g))− J(x(f))|. During our value iteration algorithm, the optimal costs

resulting from J are unknown. However, we know from Proposition 3 that up to λ states do not

depend on the action except for the tracking decision. We approximate the cost difference by

estimating J(x(g)) and J(x(f)) similarly to Proposition 3: J consists of an infinite sum of one-stage

costs where all summands correspond to lead time periods. For target aggregation level g, we only

regard the inventory costs of g+ 1 lead time periods because aggregation level g can be applied for

λ≥ g+1. In this way, we approximate the cost difference myopically. Myopic policies that are based

on cost estimates of few periods are frequently used in the approximate dynamic programming

literature (e.g., Abdulwahab and Wahab 2014, Fang et al. 2013, Sauré et al. 2015). We use cost

estimates not for a myopic policy itself, but for estimating the cost difference.

We define the inventory cost for end of period inventory z as cein(z) = h[z]+− p[z]−. We denote

the approximated cost of the source aggregation state x(f) as Z(f),(g)
src and write it as

Z(f),(g)
src =

g+1∑
k=1

γk−1E[cein(I(f)−
k∑
l=1

Dl +
k∑
l=1

I[ψ(f)
λ−l+1 = 0](O

(f)
λ−l+1

λ∑
m=1

Ym,l)

+I[ψ(f)
λ−l+1 = 1](O

(f)
λ−l+1

λ∑
m=λ−l+2

Ym,l)].

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
18

Figure 2 Conceptual example of Z(g)
tar(ζ) and two possible Z(f),(g)

src locations

0 1 2 3 4 5 6

co
st

(a) Z
(f),(g)
src below Z

(g)
tar for any ζ

0 1 2 3 4 5 6

co
st

(b) Z
(f),(g)
src above minimum of Z

(g)
tar

Dl are i.i.d. random variables, which all exhibit the same distribution as demand D. Ym,l are i.i.d.

random variables that all exhibit the same distribution as random yield rate Ym, that is, for the

random yield rate of lead time period m.

We denote the approximated cost of the target aggregation state x(g) as Z
(g)
tar and write it as

Z
(g)
tar(ζ) =

g+1∑
k=1

γk−1E[cein(I(g)−
k∑
l=1

Dl + I[ψ(g)
λ = 0](ζ

λ∑
n=1

Yn) + I[ψ(g)
λ = 1]ζ)].

Note that we have replaced O
(g)
λ with parameter ζ. Given these cost approximations, we can find

the optimal value ζ(g) by solving

ζ(g) = arg min
ζ

|Z(f),(g)
src −Z(g)

tar(ζ)|. (7)

Proposition 6 states that Z
(g)
tar(ζ) is convex in ζ. We can utilize this property to solve Equation (7)

for ζ efficiently.

Proposition 6. Z
(g)
tar(ζ) is convex in ζ.

Figure 2 depicts the potential values of Z
(g)
tar relative to Z(f),(g)

src . Figure 2a shows the case where

Z(f),(g)
src is smaller than Z

(g)
tar(ζ) for any ζ. In the example, we obtain the minimal difference for ζ = 3.

Figure 2b shows the case that Z(f),(g)
src (ζ) lies above the minimum of Z

(g)
tar. In this case, there are up

to four ζ candidates with minimal distance because ζ(g) needs to be integer. In this example, the

candidates are 1, 2, 5, and 6. We choose the one with the minimal difference.

In case of multiple optimal solutions, we select the one with the lowest ζ, so that we minimize

the number of resulting states in the first aggregation level.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
19

We denote the aggregation function that takes x(f) as input and yields the aggregated state x(g)

by solving Equation 7 as r(g) with x(g) = r(g)(x(f)).

4.2.3. Learning process for one aggregation level

We start by describing the learning process for the case that each disaggregated state is assigned to

exactly one aggregation level g ∈ G +, where we define G + = G \{0}. The structure of the algorithm

corresponds to that of Section 4.2.1. In each iteration k, we move from one disaggregated state

x
(0)
k ∈ S (0) to another by sampling random yields and random demand. Since we utilize state

aggregations, we do not store costs and decisions of x
(0)
k , but the average costs and aggregated

decision of the aggregated state obtained by r(g)(x
(0)
k), to which multiple disaggregated states

contribute. Let Cag1 be the cost-to-go vector for the learning process and let Cag1(r(g)(x
(0)
k)) be

the cost-to-go for state x
(0)
k aggregated on level g. We learn the optimal decision with

a∗k(r
(g)(x

(0)
k))← arg min

ak

c(x
(0)
k , ak) + γ

∑
x̃
(0)
k
∈S (0)

pak(x
(0)
k , x̃

(0)
k)Cag1(r(g)(x̃

(0)
k)), (8)

where ak ∈ A
x
(0)
k

. We update the weighted cost average for the aggregated state obtained via

r(g)(x
(0)
k) by smoothing according to

Cag1(r(g)(x
(0)
k))←α

[
c(x

(0)
k , a∗k(r

(g)(x
(0)
k))) + γ

∑
x̃
(0)
k
∈S (0)

p
a∗
k

(r(g)(x
(0)
k

))
(x

(0)
k , x̃

(0)
k)Cag1(r(g)(x̃

(0)
k))

]
+

(1−α)Cag1(r(g)(x
(0)
k)),

(9)

where α is referred to as the step size (Powell 2011, p. 245).

Next, we demonstrate how we use multiple aggregation levels to assign seldom visited states to

coarse aggregation levels and frequently visited states to more granular aggregation levels.

4.2.4. Learning process for hierarchy of aggregation levels

We define ĝ as |G +|, that is, the highest possible aggregation level under lead time λ. A state on

this level can be described as x(ĝ) = (ĝ, I,0, · · · ,0, ζ(ĝ),ψ1, · · · ,ψλ), that is, a state where all but one

original open order state variables are set to 0 and the one open order state variable is replaced by

the value ζ(ĝ). Only considering the highest aggregation level leads to fast convergence, albeit only

on a coarse level. To trade off convergence time with precision, we introduce fixed weights w(g)

that define how many probablity-weighted states we keep at each aggregation level. For example,

for λ= 3, let w(1) =w(2) = 30%. Then, we have two aggregation levels with associated state spaces

S (1) and S (2). The states with the smallest visit frequencies that account for 30% of the total

probability mass of all states are assigned to aggregation level 2. Of the remaining 70%, the states

with the smallest visit frequencies that account for 30% of the remaining probability mass are

assigned to aggregation level 1. We keep 70% · 70% =49% of all states at a disaggregated level.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
20

Let e
(g)
k : S (g) → {0,1} for all g ∈ G + and for all k ∈ N be the family of functions that yield

whether a specific aggregated state is utilized or not in iteration k, that is, whether the corre-

sponding aggregated state is enabled. If an aggregated state is disabled, we utilize a lower, more

granular aggregation level.

At the beginning of our algorithm, we assign all states to the highest possible aggregation level

and conduct a learning according to the modified algorithm described in Section 4.2.3. That is,

e
(g)
0 (x) = I[g= ĝ],∀g ∈ G +,∀x∈S (g).

Starting at i= ĝ, after a number of iterations, M (i), we enable the states of state space i with the

least visits, such that their probability mass is w(g). We disable all other states on this aggregation

level. We achieve this efficiently with the following technique.

For all 1≤ i≤ ĝ, at iteration k=M (i), we determine a visit frequency threshold, β̄
(i)
k . The states

that have a visit frequency below this threshold have a total state probability mass of at most w(i).

We formally define the threshold as

β̄
(i)
k = maxβ, s.t.

∑
x∈S (i)

I[qk(x)≤ β]qk(x)∑
y∈S (i) qk(y)

≤w(i),

where qk(x) is the frequency of visiting some state x after k iterations. We collect the corresponding

states in the set S
(i)
k = {x∈S (i) | qk(x)≤ β̄(i)

k } and set e
(g)
k (x) = I[x∈ S(i)

k] for all x∈S (i).

Next, we utilize e
(g)
k to choose a specific aggregation level. For a state x

(0)
k ∈S (0) in iteration k,

we choose the highest aggregation level for which e
(g)
k is 1. We denote the corresponding aggregation

state by x
(g∗)
k . We recursively define

r(x
(0)
k , g) =

{
r(g)(x

(0)
k), for e

(g)
k (r(g)(x

(0)
k)) = 1

r(x
(0)
k , g− 1), else

(10)

for g ∈ G + and r(x
(0)
k ,0) = x

(0)
k , so that x

(g∗)
k = r(x

(0)
k , ĝ). We henceforth write r(x

(0)
k , ĝ) as r(x

(0)
k).

Equation (10) uses the aggregation functions defined in Section 4.2.2 to obtain the aggregated state

for e
(g)
k (r(g)(x

(0)
k)) = 1. If e

(g)
k (r(g)(x

(0)
k)) is 0 for all g ∈ G +, then r(x

(0)
k) yields the disaggregated state

x
(0)
k . We obtain the new cost and updating equations by replacing r(g)(·) with r(·) in Equations (8)

and (9).

Let Cagr be the cost-to-go vector for the learning process and let Cagr(r(x
(0)
k)) be the cost-to-go

for state x
(0)
k aggregated on the highest enabled level g∗. We learn the optimal decision with

a∗k(r(x
(0)
k))←min

ak
c(x

(0)
k , ak) + γ

∑
x̃
(0)
k
∈S (0)

pak(x
(0)
k , x̃

(0)
k)Cagr(r(x̃

(0)
k)),

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
21

where ak ∈A
x
(0)
k

. We update the weighted cost average for the aggregated state obtained via r(x
(0)
k)

by smoothing according to

Cagr(r(x
(0)
k))←α

[
c(x

(0)
k , a∗k(r(x

(0)
k))) + γ

∑
x̃
(0)
k
∈S (0)

pa∗
k

(r(x(0)))(x
(0)
k , x̃

(0)
k)Cagr(r(x̃

(0)
k))

]
+

(1−α)Cagr(r(x
(0)
k)).

This concludes the hierarchical approximate dynamic programming algorithm. It is fully depicted

in Appendix EC.14.

Without aggregation, our approach converges to the optimal solution according to the asyn-

chronous value iteration algorithm as formulated in Corollary 2.

4.3. Heuristic solution approaches

A well-known class of heuristics for periodic review settings with random yield is based on modified

base-stock policies where the order size is inflated by a factor based on the yield rate. These policies

are called linear inflation policies. The general idea behind these heuristics is to order more than

under the standard base-stock policy because fewer ordered items arrive. The order quantity is

ι(θ − E[IP]) for E[IP] < θ or 0 otherwise, where E[IP] is the expected inventory position, θ is

the order threshold value and ι is the inflation factor. The expected inventory position can be

calculated as

E[IP] = I +
λ∑
i=1

I[ψi = 0](Oi

λ∏
j=1

uj) + I[ψi = 1](Oi

λ∏
j=i+1

uj).

For untracked orders, we expect the yield of the orders to be equal to the ordered items multiplied

by the average yield rate over all lead time periods. For tracked orders, each order quantity has

already passed a number of lead time periods and we only need to apply the average yield rate for

the remaining number of lead time periods.

The choice of θ and ι depends on the heuristic. Bollapragada and Morton (1999) introduce the

MULT heuristic, where θ is calculated as F−1
λ+1(p/(p+h)) and ι as

∏λ

i=1 u
−1
i . The idea is to inflate

the order size by the expected relative loss through random yield during the lead time.

For the case of λ = 0, Huh and Nagarajan (2010) develop an improved heuristic, where θ is

optimized for a given ι. Dettenbach and Thonemann (2015) adjust it for a case with positive lead

time. They propose an inflation factor of

ι=
1

2

(
1∏λ

i=1 ui
+ sup

{
n :E

[
I

[
1

n
≤

λ∏
i=1

Yi

]
·
λ∏
i=1

Yi

]
≤ p

p+h
·
λ∏
i=1

ui

})
that takes the yield rate distribution into account. Note that it simplifies to the inflation factor of

the MULT heuristic if the yield rate is deterministic. They set

θ= inf

{
θ̂ :

1

T

T∑
t=1

P
(
I

(0,ι)
t+1 + θ̂≤ 0

)
≤ p

p+h

}
,

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
22

where I
(0,ι)
t+1 denote the simulated inventory levels for θ= 0. θ can be determined by simulation as

described by Huh and Nagarajan (2010).

These existing heuristics only optimize the order decision and can handle the cases when we

track always or never. We present a heuristic that chooses the order quantity according to the

heuristic of Huh and Nagarajan (2010), extends it to the positive lead time setting and allows for

dynamic tracking based on a threshold.

We define ψ̂ by ψ̂= I
[
ξE[IP]< ξµ]. The parameter µ is a threshold value. The parameter ξ can

be −1 or 1 and therefore determines whether an order is tracked for a positive lead time above

or below the threshold. For fixed values of ξ and µ, we apply the heuristic of Huh and Nagarajan

(2010) and determine the cost. We consider a range of values for ξ and µ and choose the solution

with the minimal cost. Thus, our heuristic is always at least as good as tracking always or never.

5. Computational results

We evaluate the performance of our approaches numerically. We implement all approaches with

C++ and conduct our numerical studies on hardware with 24 GB memory and CPUs with six 2.66

GHz cores (Xeon X5650).

In Section 5.1, we present optimal and approximate dynamic programming solutions for the cases

of tracking never and always and λ ≤ 4. In Section 5.2, we analyze the value of tracking always

and the value of tracking dynamically for λ ≤ 4. In Section 5.3, we compare the performance of

our approximate dynamic programming approach to heuristical solutions for λ= 5 and λ= 6. We

conclude in Section 5.4 by presenting the values of tracking always and dynamically for instances

of λ≥ 5.

5.1. ADP versus optimal results

According to a European pharmaceutical company that we work with, yield rates between 0.9 and

0.98 per period are common in practice. We choose the same value u for all expected yield rates

ui of lead time periods i with 1≤ i≤ λ. We examine settings with u values of 0.9, 0.94 and 0.98.

For D, we choose a Poisson distribution with parameter value 2 that is truncated at D = 6, and

allocate the excess probability mass to D= 6, that is, we set P (D= 6)← P (D≥ 6). The truncation

reduces the computational effort significantly and without truncation P (D ≤ 6) entails 99.5% of

all demand values. We normalize the holding cost factor at 1 and use critical ratios of 0.9, 0.95 and

0.99 with corresponding penalty cost factors. For the tracking cost parameter τ , we consider values

such that we can observe the area that contains the intersection of the costs of tracking always and

never. For tracking costs smaller than the tracking cost corresponding to the intersection, tracking

always yields the lowest total cost. For higher tracking costs, the optimal decision is to track never

and the total cost is constant. Note that these values must be interpreted relative to the normalized

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
23

Figure 3 Cost development of ADP over time relative to optimal solutions for λ= 3 and λ= 4

90

95

100

105

110

115

120

20% 40% 60% 80% 100%
runtime of ADP compared to DP

ADP track always ADP track never optimal solution

80

85

90

95

100

105

110

20% 40% 60% 80% 100%

ab
so

lu
te

 co
st

 a
ve

ra
ge

runtime of ADP compared to DP

! = 3 ! = 4

holding cost factor rather than the absolute cost values. The discount factor γ is 0.9, which is a

reasonable trade-off between convergence speed and sufficient future state coverage.

For the optimal result calculation, we use the loss-free synchronous value iteration algorithm as

described in Section 4.1. It exploits our structural findings. We choose ε as 10−9.

For our hierarchical approximate dynamic programming approach, we use f = max{g − 2,0}.

Choosing a smaller f leads to computational effort that slows down our algorithm. Choosing a

higher f results in a loss in precision. We choose the same weights wi for all aggregation levels

i and set a value M , so that M (i) = (λ− i)M . For λ = 2 and λ = 3, we select M = 2 · 106 with

wi = 0.0005 for tracking never and wi = 0.001 for tracking always. For λ = 4, we set M = 1 · 108

and wi = 0.001 for all tracking policies.

All results are evaluated using policy evaluation with 80 runs and 107 iterations per run, where

we skip the first 1000 iterations per run. The 95% confidence interval for these runs has a spread

of ±0.2% on average over all ADP scenarios.

The total costs of the optimal and approximate solutions are shown in Table EC.1 in Sec-

tion EC.15 of the online appendix. Over all 162 scenarios, we observe an average error of the

approximate solutions of 0.21 %. The runtimes for λ= 2 are below one CPU minute. For λ= 3,

the optimal solutions take 69 CPU minutes on average. For λ= 4, the optimal solutions need 64

CPU hours on average.

The approximate dynamic programming approach leads to faster results while barely losing

precision. This is illustrated in Figure 3 where the curves represent the interim results over time of

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
24

the approximate dynamic programming approach for λ= 3 and λ= 4. Note that we omitted the

case of λ= 2 due to the short and similar runtime of both the optimal and approximate dynamic

programming approach. The optimal solutions for the scenarios of tracking never and always are

marked with the “x” symbols that are closest to the curves. The time axes are scaled as CPU

minutes of the approximate dynamic program divided by the CPU minutes of the optimal dynamic

program. After approximately 44%, average costs have a difference of below 2% towards the optimal

solution. Note that we could reduce the disaggregation iteration numbers M (i) or increase the

aggregation level weights wi to achieve much faster convergence with a higher error. The opposite

changes would increase convergence time and increase precision of the results.

It is also wortwhile to note that the total number of states in the approximate dynamic pro-

gramming approach is considerably lower than in the optimal dynamic programming approach.

The ratio of used states including aggregated states and the number of states necessary for the

optimal dynamic programming approach amount to 17.6% and 2.0% on average for tracking never

and always, respectively. Tracking never has a lower state reduction benefit due to structural prop-

erties for tracked orders presented in Sections 3.3 and 3.4. The ratio decreases with increasing λ.

Averaging over tracking methods, the ratio ranges from 5.2% at λ= 2 to 2.2% at λ= 4.

5.2. Value of tracking and dynamic tracking for small instances

For lead times λ of 3 and 4, the optimal costs for tracking never, always and dynamically are

shown in Figure EC.1 in Section EC.16 of the online appendix with tracking costs on the x-axis.

We average all values over critical ratios of 0.9, 0.95 and 0.99.

We define the value of tracking as the cost difference between always and never tracking, or 0 if

negative. The value increases with decreasing tracking costs and yield rate. For λ= 2, the average

value of tracking amounts to 1.2%, with the maximum being 10.9%. For λ= 3, the average value of

tracking amounts to 1.5% with the maximum being 12.6%. For λ= 4, the average value of tracking

amounts to 1.7%. The largest value is 13.9%.

We measure the value of dynamic tracking as the difference between tracking dynamically and the

better of tracking always or never for the same parameters. It is apparent that tracking dynamically

exhibits higher values for lower yield rates. The lead time has only a small effect. In all of our

computations, the value of dynamic tracking is highest when the cost curves of always and never

tracking coincide. We then obtain cost savings of up to 3.0% for λ= 2, up to 3.2% for λ= 3 and

up to 2.8% for λ= 4.

5.3. ADP versus heuristics

For λ= 5 and λ= 6, the benefit of the ADP for the cases of tracking never and always is shown

in Figure EC.2 in the online appendix. For λ= 5, we choose M = 3 · 108 and wi = 0.01. For λ= 6,

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
25

we set M = 3 · 108 and wi = 0.01 for tracking never and wi = 0.001 for tracking always. Compared

to the heuristic of Huh and Nagarajan (2010), the ADP achieves average cost savings of 9.2% and

maximum cost savings of 16.0% for λ= 5. The maximum cost savings are reached for τ = 0, p= 19

and u= 0.9. For λ= 6, the ADP achieves average cost savings of 1.5% and maximum cost savings

of 6.6%. The maximum cost savings occur at τ = 1.5, u= 0.94 and p= 19. Like for λ= 3 or λ= 4,

the maximum cost savings occur when the costs of tracking always and never are closest to each

other. The ADP is superior to the heuristics for almost all cases. Only for u= 0.98 and tracking

always, the heuristic shows some benefits compared to the ADP.

For λ= 5, the runtimes of the ADP amount to 37.8 CPU days on average. For λ= 6, the runtimes

of the ADP are 47.5 CPU days on average.

5.4. Value of tracking and dynamic tracking for moderate and large instances

For instances of λ= 5, we compare our approximate dynamic programming solutions for tracking

always, never and dynamically. We set M = 3 · 108 and wi = 0.001. The average value of tracking

amounts to 3.4%. The largest value is 15.3%, which is achieved for u= 0.9, CR= 0.9 and tracking

cost of τ = 0. The value of tracking dynamically is 0.4% on average, the largest value is 1.7%. The

results are shown in Figure EC.3 in the online appendix. For λ= 5, the ADP for dynamic tracking

has an average run time of 69.3 CPU days.

For instances of λ≥ 6, we compare the heuristic of Huh and Nagarajan (2010) with our improved

dynamic heuristic. The results are shown in Figure EC.4 in the online appendix. As for smaller

instances, the benefit of tracking dynamically is largest when the costs for tracking always and

never coincide. We tested 9 combinations of critical ratios and penalty costs. Taking the tracking

costs where the costs of tracking always and never are closest to each other, we get an average of

6.0% cost savings for each λ= 6, λ= 7 and λ= 8. The nine cost saving values spread from 3.5%

to 7.8% for λ= 6, from 3.9% to 7.8% for λ= 7 and from 4.6% to 8.1% for λ= 8.

It is interesting to see that the value of tracking dynamically is lower for ADP instances than for

the heuristics. This implies that tracking dynamically leads to even more substantial cost savings

when order decisions are not optimal.

5.5. Summary of results

We compare the resulting average costs for all the methods we discussed, namely, optimal solution,

ADP and heuristics, and for all the tracking possibilities which are: always, dynamic and never

tracking. To provide an overview of the cost savings for all the methods, we compare them at the

example of lead times λ= 3 and λ= 4 because it is possible to compute an optimal solution as a

base case for these lead times. We give an overview of the cost savings in Figure 4. We denote the

heuristic of Huh and Nagarajan (2010) for tracking always and never by HA and HN, respectively.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
26

Figure 4 Average costs for best of always/never track heuristic, dynamic heuristic, best of ADP for always/never

track, best of optimal DP for always/never track and ADP/DP for dynamic tracking

ADT

88,7

91,4

Best of
HA/HN

HD Best of
AAT/ANT

Best of
OAT/ONT

ODT

85,785,8

85,1
84,8

-3.0%

-3.4%

-0.1%

-0.7%

-0.4%

(a) λ= 3

Best of HA/HN

109.6

ODTADTBest of AAT/ANT

106.5

HD Best of
OAT/ONT

101.1
100.7

100.0
99.7

-2.9%

-5.3%

-0.4%
-0.7%

-0.3%

(b) λ= 4

We label our novel dynamic heuristic HD. We abbreviate the costs for tracking always, never and

dynamically under the ADP approach with AAT, ANT, and ADT, respectively. We name the costs

for tracking always, never and dynamically under the optimal solution approach as OAT, ONT,

and ODT, respectively.

The results show that we can achieve a solution that is very close to optimality (less than 0.4%)

with ADP with dynamic tracking. The ADP solutions for tracking always or never are also close to

the optimal solutions for tracking always or never, with a difference of less than 0.4% on average.

Using existing heuristics results in much faster computation times, but also leads to inventory

policies that are on average between 6.7% to 8.8% more costly than optimal ones that track always

or never. Our novel heuristic is able to capture parts of the cost advantage by achieving a solution

that incurs up to 3% less costs on average than existing heuristics.

6. Conclusion

In this paper, we analyze a stochastic demand periodic review model with backordering, positive

lead times, random yield and the possibility to track always, never or dynamically under fixed

tracking cost per order. We prove that the cost function satisfies the Bellman Equation and create

an optimal solution algorithm based on value iteration combined with MacQueen extrapolation

for small to medium sized instances. We further show the equivalence of certain states and derive

lower bounds on the optimal order quantity and on the optimal cost of a state. For larger instances,

we construct an approximate dynamic programming algorithm that makes extensive use of state

aggregation and disaggregation. For yet larger instances, we provide a novel heuristic that makes

a tracking decision based on comparing a threshold with the expected inventory position.

Companies can use one of our solution approaches to determine optimal or close-to-optimal

ordering and tracking policies and to determine inventory cost savings for their particular setting.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
27

If they currently do not track at all, they can determine what the cost savings of tracking might be

and whether investing in tracking technologies like smart containers is worthwhile. If they currently

track all orders, they can identify the cost savings that are associated with tracking only particular

orders, for example, by using near-real time tracking services only for a subset of their orders.

In our models, we assume that time and temperature history is used to determine whether an

order is salable. We assume a Bernoulli distributed yield rate per period where all or none of the

ordered items spoil. Models with binomially distributed yield, where a subset of ordered items

could spoil, have yet to be solved for medium to large instances. Our hierarchical approximate

dynamic programming approach utilizes bounds on order sizes and the cost of a state. Developing

potential bounds and adapting our approach to binomially distributed yield might be a promising

subject to forthcoming studies.

Our approach uses aggregations of open orders based on the proximity of costs for a myopic

time horizon. It might be interesting to investigate other metrics. Our disaggregation logic fixes the

aggregated states of one aggregation level once during the whole algorithm. For future research,

it might be worthwhile to check whether a feedback mechanism to disaggregate further states of

already established aggregation levels could improve results.

References

Abdulwahab U, Wahab M (2014) Approximate dynamic programming modeling for a typical blood platelet

bank. Computers & Industrial Engineering 78:259–270.

Bellman R (1957) Dynamic Programming (Princeton University Press).

Bertsekas DP, Castañon DA (1989) Adaptive aggregation methods for infinite horizon dynamic programming.

IEEE Transactions on Aut. Control (34) 34(6):589–598.

Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic programming (Athena Scientific).

Bollapragada S, Morton TE (1999) Myopic heuristics for the random yield problem. Operations Research

47(5):713–722.

Choi HcP, Blocher JD, Gavirneni S (2008) Value of sharing production yield information in a serial supply

chain. Production and Operations Management 17(6):614–625.

Dettenbach M (2015) The value of supply chain visibility when yield is random (Logos Verlag Berlin GmbH).

Dettenbach M, Thonemann UW (2015) The value of real time yield information in multi-stage inventory

systems - Exact and heuristic approaches. European Journal of Operational Research 240(1):72–83.

DHL (2013) DHL ocean secure: Increasing your visibility and control. URL https://www.dhl.com/content/

dam/downloads/g0/logistics/brochures/ocean_freight/dhl_ocean_secure_nov_2013.pdf,

accessed at 03.05.2019.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
28

Dobbs R, Oppenheim J, Thompson F, Brinkman M, Zornes M (2011) Resource revolution: Meeting the

world’s energy, materials, food, and water needs. McKinsey Global Institute, McKinsey & Company .

Ehrhardt R, Taube L (1987) An inventory model with random replenishment quantities. International Jour-

nal of Production Research 25(12):1795–1803.

Fang J, Zhao L, Fransoo JC, Woensel TV (2013) Sourcing strategies in supply risk management: An approx-

imate dynamic programming approach. Computers & Operations Research 40(5):1371–1382.

Gaukler G, Ketzenberg M, Salin V (2017) Establishing dynamic expiration dates for perishables: An appli-

cation of rfid and sensor technology. International Journal of Production Economics 193:617–632.

Gaukler GM, Seifert RW, Hausman WH (2007) Item-level RFID in the retail supply chain. Production and

Operations Management 16(1):65–76.

Gavirneni S (2004) Supply chain management at a chip tester manufacturer. The Practice of Supply Chain

Management: Where Theory and Application Converge, volume 62 of International Series in Operations

Research & Management Science, 277–291 (Springer US).

George A, Powell WB, Kulkarni SR (2008) Value function approximation using multiple aggregation for

multiattribute resource management. Journal of Machine Learning Research 9:2079–2111.

Gerchak Y, Vickson RG, Parlar M (1988) Periodic review production models with variable yield and uncertain

demand. IIE Transactions 20(2):144–150.

Gosavi A (2009) Reinforcement learning: A tutorial survey and recent advances. INFORMS Journal on

Computing 21(2):178–192.

Gustavsson J, Cederberg C, Sonesson U, Van Otterdijk R, Meybeck A (2011) Global food losses and food

waste (FAO Rome).

Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning: Data Mining, Inference,

and Prediction. Springer series in statistics (Springer).

Henig M, Gerchak Y (1990) The structure of periodic review policies in the presence of random yield.

Operations Research 38(4):634–643.

Heyman DP, Sobel MJ (1982) Stochastic models in operations research: Stochastic optimization, volume 2

(Courier Corporation).

Huh WT, Nagarajan M (2010) Technical note – Linear inflation rules for the random yield problem: Analysis

and computations. Operations Research 58(1):244–251.

Inderfurth K, Kiesmüller GP (2015) Exact and heuristic linear-inflation policies for an inventory model with

random yield and arbitrary lead times. European Journal of Operational Research 245(1):109–120.

Karlin S (1958) One stage inventory models with uncertainty. K Arrow SK, Scarf H, eds., Studies in the Math-

ematical Theory of Inventory and Production, chapter 8, 109–134 (Stanford, CA: Stanford University

Press).

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
29

Ketzenberg M, Bloemhof J, Gaukler G (2015) Managing perishables with time and temperature history.

Production and Operations Management 24(1):54–70.

Ketzenberg M, Gaukler G, Salin V (2018) Expiration dates and order quantities for perishables. European

Journal of Operational Research 266(2):569–584.

Ketzenberg ME, Rosenzweig ED, Marucheck AE, Metters RD (2007) A framework for the value of informa-

tion in inventory replenishment. European Journal of Operational Research 182(3):1230–1250.

Ketzenberg ME, Van Der Laan E, Teunter RH (2006) Value of information in closed loop supply chains.

Production and Operations Management 15(3):393–406.

Kiesmüller G, Inderfurth K (2018) Approaches for periodic inventory control under random production yield

and fixed setup cost. OR Spectrum 40(2):449–477.

Kleywegt AJ, Nori VS, Savelsbergh MW (1998) A computational approach for the inventory routing problem.

Proc. Triennial Sympos. Transportation Anal.(Tristan III), San Juan, Puerto Rico .

Lambert TJ, Epelman MA, Smith RL (2004) Aggregation in stochastic dynamic programming. Technical

report, Department of Industrial and Operations Engineering, Ann Arbor, MI.

Lee H, Özer Ö (2007) Unlocking the value of RFID. Production and Operations Management 16(1):40–64.

Li Q, Xu H, Zheng S (2008) Periodic-review inventory systems with random yield and demand: Bounds and

heuristics. IIE Transactions 40(4):434–444.

MacQueen J (1966) A modifed dynamic programming method for Markovian decision problems. Journal of

Mathematical Analysis and Applications 14(I):38–43.

Mes MRK, Powell WB, Frazier PI (2011) Hierarchical knowledge gradient for sequential sampling. Journal

of Machine Learning Research 12:2931–2974.

Ngai EWT, Moon KKL, Riggins FJ, Yi CY (2008) RFID research: An academic literature review (1995-2005)

and future research directions. International Journal of Production Economics 112(2):510–520.

Powell WB (2011) Approximate dynamic programming: Solving the curses of dimensionality, volume 842 of

Wiley Series in Probability and Statistics (John Wiley & Sons), 2nd edition.

Powell WB (2016) Perspectives of approximate dynamic programming. Annals of Operations Research 241(1-

2):319–356.

Sarac A, Absi N, Dauzère-Pérès S (2010) A literature review on the impact of RFID technologies on supply

chain management. International Journal of Production Economics 128(1):77–95.

Sauré A, Patrick J, Puterman ML (2015) Simulation-based approximate policy iteration with generalized

logistic functions. INFORMS Journal on Computing 27(3):579–595.

Simão HP, Day J, George AP, Gifford T, Nienow J, Powell WB (2009) An approximate dynamic programming

algorithm for large-scale fleet management: A case application. Transportation Science 43(2):178–197.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield
30

Singh SP, Jaakkola T, Jordan MI (1995) Reinforcement learning with soft state aggregation. Advances in

neural information processing systems, 361–368.

Sleptchenko A, Johnson ME (2015) Maintaining secure and reliable distributed control systems. INFORMS

Journal on Computing 27(1):103–117.

Sonntag D, Kiesmüller GP (2017) The influence of quality inspections on the optimal safety stock level.

Production and Operations Management 26(7):1284–1298.

Van Roy B, Bertsekas DP, Lee Y, Tsitsiklis JN (1997) A neuro-dynamic programming approach to retailer

inventory management. Proceedings of the 36th IEEE Conference on Decision and Control, volume 4,

4052–4057 (IEEE).

White CC, Cheong T (2012) In-transit perishable product inspection. Transportation Research Part E:

Logistics and Transportation Review 48(1):310–330.

Yano CA, Lee HA (1995) Lot sizing with random yield: A review. Operations Research 43(2):311–334.

Zipkin PH (2000) Foundations of inventory management (Boston: McGraw-Hill).

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield ec1

Electronic Companion

EC.1. List of symbols

ax action in state x defined as pair (Ôx, ψ̂x)

α step size for asynchronous value iteration

A action space of all possible actions if action space is independent of the state

Ax action space of all possible actions available in state x

β̄(i) maximum visit frequency threshold for state aggregation of level i to be used

c(x,a) one-stage cost for state x given action a

cein(z) one-stage holding/penalty cost given end of period inventory level z

cinv(x) one-stage holding/penalty cost given state x

Casy costs-to-go of asynchronous value iteration algorithm

Csyn costs-to-go of synchronous value iteration algorithm

Cag1 costs-to-go for optimal action of learning process with one aggregation level

Cagr costs-to-go for optimal action of learning process with multiple aggregation levels

D demand distribution

∆(g) cost difference of state on aggregation level g towards less aggregated state

e
(g)
k (xk) enablement of state xk in aggregation level g in iteration k

ε small threshold value used to determine convergence

f source aggregation level to use for aggregation functions

F−1
D inverse cumulative distribution function of demand distribution D

γ discount factor within interval (0,1)

G index set of aggregation levels

G + index set of aggregation levels greater 0

h holding cost factor

I inventory level if positive, backorder level if negative

IP inventory position

ι inflation factor for linear inflation policies

I space of possible inventory / backorder levels

I[·] indicator function that returns 1 if expression in brackets is true and 0 else

J(x) minimal expected cost for state x in infinite horizon setting

Jt(x) minimal expected cost starting from state x from period t to T

J(x) lower bound on optimal cost for state x based on myopic cost estimate

J(x) lower bound on optimal cost for state x based on perfect yield problem

ec2 Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield

λ lead time

M (g) iterations for aggregation level g after which aggregations are enabled/disabled

µ threshold value to determine tracking decision in dynamic heuristic

Ô order decision in current period

Ô∗ optimal order decision in current period

Ô lower bound on optimal order size for untracked orders

Ot order quantity placed t time periods ago

p penalty cost factor

p(x) steady state probability for state x

pa(x, x̃) transition probability from state x to transition state x̃ under action a

pinva (x, x̃) transition probability of inventory from state x to transition state x̃

ptraa (x, x̃) transition probability of tracking decisions from state x to transition state x̃

porda (x, x̃) transition probability of order quantity placed i periods ago to transition state x̃

pord,unta (x, x̃, i) transition probability of order quantity placed i periods ago if untracked

pord,traa (x, x̃, i) transition probability of order quantity placed i periods ago if tracked

ψ̂ tracking decision in current period

ψt tracking decision for order placed t time periods ago

q(x) frequency of visiting state x within asynchronous value iteration algorithm

Qt (random) yield of order placed t time periods ago

r(x) aggregated state of highest enabled level for state x

r(g)(x) aggregated state of level g for state x

R operator that chooses optimal action and updates costs accordingly

S state space defined as (I,O1, · · · ,Oλ,ψ1, · · · ,ψλ)

S (g) state space of aggregation level g defined as (g, I,O1, · · · ,Oλ,ψ1, · · · ,ψλ)

T number of periods regarded for the finite horizon cost function

τ tracking cost

θ order threshold value for linear inflation policies

ut expected value of random yield rate Yt

w(g) probability mass of states to aggregate on aggregation level g

x state with lower indices for time or iteration, upper indices for equivalent

states and upper indices in parentheses for aggregated states

ξ 1 or -1 for tracking if IP is above or below threshold in dynamic heuristic

Yt random yield rate for lead time period t

Z(f),(g)
src myopic state cost of state on aggregation level f < g

Z
(g)
tar myopic state cost of state on aggregation level g

ζ(g) State variable replacing Oλ in aggregation level g

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield ec3

EC.2. Proof of Lemma 1

Say we have a stationary policy with Ô= 0 for each x∈S . We start at some arbitrary state with

inventory level I0 and we let Dt be the cumulative demand from period 1 to t. We then have one-

period cost for period t of E
[
h[I0−Dt]

+−p[I0−Dt]
−
]
≤E

[
(h+p)|I0−Dt|

]
≤(h+p)E

[
|I0|+Dt

]
=

(h+ p)(|I0|+µt) with µ being the mean of the one-period demand. Therefore, the infinite horizon

cost for this policy is bounded by
∑∞

t=1 γ
t−1(h+ p)(|I0|+µt) = (h+ p)

(
|I0|
1−γ + µ

(1−γ)2

)
<∞.

Vt(x) is convex (Dettenbach 2015, Theorem 4-1) for ψ̂ = 0 and ψ̂ = 1 while we do not track in

the case that we do not order. With Ô going to infinity, the period cost and therefore the total

cost will go to infinity. As a consequence, the search space of Ô is restricted to values with costs

smaller than or equal to the cost associated with Ô= 0 which holds both for ψ̂= 0 and ψ̂= 1. �

EC.3. Proof of Lemma 2

Jt(x),∀x∈S converges uniformly to J(x) when a) |γnmina∈Axn
c(xn, a)| ≤ c̄n and b)

∑∞
n=0 c̄n <∞

for each n∈ [t, T] (Heyman and Sobel 1982, Proposition A-5).

Condition (a) means that there exists an upper bound c̄n for each period n from t to T that the

one-period cost never exceeds. We have shown that a policy with this property exists with Ô = 0

for each x ∈ S in Lemma 1. Since we seek the optimal decision, policies with higher costs are

discarded. It follows that the costs associated with the policy from Lemma 1 are satisfactory for

c̄n.

Condition (b) is satisfied because, according to Lemma 1, there exists an undiscounted upper

bound for each period n that the undiscounted one-period cost function never exceeds. It follows

that we can discount both the one-period cost function and the upper bound by γn. The upper

bound c̄n then contains γn as a factor. limn→∞ γ
n = 0 because γ < 1. As a consequence, condition

b) follows. �

EC.4. Proof of Theorem 1

limT→∞ Jt(x) satisfies Equation (2) if Theorem 8-14 of Heyman and Sobel (1982) is fulfilled.

According to condition (a), there exists a limit function for each x, which is the case (Dettenbach

2015, Theorem 4-2).

Condition (b) requires the reward function to be strictly non-negative, which is the case for

c(x,a).

Conditions (c) and (d) are merely necessary to show that Jt(x) converges uniformly to J(x)

(Heyman and Sobel 1982, p. 419). We have shown the uniform convergence by Lemma 2 which

completes the proof. �

ec4 Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield

EC.5. Proof of Theorem 2

An optimal stationary policy exists both for ψ̂= 0 and ψ̂= 1 if the conditions of Theorem 8-15 of

Heyman and Sobel (1982) are met. The right hand side of Equation (2), c(x,a)+γ
∑

x̃ pa(x, x̃)J(x̃),

is convex in x and a. It is convex in I,O1, · · · ,Oλ,ψ1, · · · ,ψλ and the order quantity Ô for a fixed ψ̂

(Dettenbach 2015, Theorem 4-1). We have shown that the conditions for Theorem 8-14 for a fixed

ψ̂ are met in the proof of Theorem 1. Convexity together with the conditions of Theorem 8-14

meet the conditions of Theorem 8-15 for a fixed ψ̂. Therefore, for each state, there exist stationary

optimal policies for ψ̂= 0 and ψ̂= 1 and the minimization merely selects the better one. It follows

that an optimal stationary policy for our dynamic tracking problem exists as well and J(x) is its

cost function. �

EC.6. Proof of Proposition 1

Two states can be viewed as one state without loss of precision if and only if they exhibit the same

one-stage costs and lead to the same set of follow-up states with equal probabilities for the same

order and tracking decisions. Let x1 = (I,O1, . . . ,Oλ,ψ
1
1, . . . ,ψ

1
λ) and x2 = (I,O1, . . . ,Oλ,ψ

2
1, . . . ,ψ

2
λ),

where ψ1
1 =ψ2

1 forOi > 0 but ψ1
1 and ψ2

1 might differ forOi = 0. Clearly, for a fixed order and tracking

decision, the tracking costs for x1 and x2 are the same and cinv(x
1) = cinv(x

2). The equivalence of

follow-up states can be shown for each Ok and ψk. Let k= λ, then pinva (·) is the same for ψλ = 0 and

ψλ = 1 according to Equation (3). ptraa and porda are unaffected by ψλ after Equations (4) and (5).

Since neither one-period costs nor transition probabilities change with ψλ, the proposition follows

for k= λ.

For k < λ, ψk has no effect on pinva by Equation (3). Equation (5) states that ψk is merely

transferred to the follow-up state. It follows that if state equivalence applies to k = λ, it also

applies to k < λ with respect to ptraa . According to Equation (4), the order decisions transfer

deterministically to the follow-up state if Ok = 0 for both ψk = 0 and ψk = 1. This completes the

proof. �

EC.7. Proof of Proposition 2

As per Equations (4) and (5), transition probabilities of the order and tracking decisions do not

depend on Oλ. Our definition of Oλ says that the order arrives with certainty if tracked. As a

consequence, if ψλ = 1, we can write I∗ = I +Oλ as deterministic variable and replace I with I∗

and Oλ with 0 in Equations (1) and (3) without loss of generality and Proposition 2 follows. �

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield ec5

EC.8. Proof of Proposition 3

If we observe only λ terms of J(xt), it follows that

J(xt) = min
at∈Axt

c(xt, at) + γ
∑

xt+1∈S

pat(xt, xt+1)J(xt+1)

≤ min
at∈Axt

c(xt, at) + γ
∑

xt+1∈S

pat(xt, xt+1) min
at+1∈Axt+1

c(xt+1, at+1)

+ . . .+ γλ−1
∑

xt+λ−1∈S

pat(xt, xt+1) . . . pat+λ−2
(xt+λ−2, xt+λ−1) min

at+λ−1

c(xt+λ−1, at+λ−1)

≤ cinv(xt) + γ
∑

xt+1∈S

pinv(xt, xt+1)cinv(xt+1)

+ . . .+ γλ−1
∑

xt+λ−1∈S

pinv(xt, xt+1) . . . pinv(xt+λ−2, xt+λ−1)cinv(xt+λ−1).

The first inequality follows from the fact that we only view λ periods on the right-hand-side. The

second inequality applies because we only view inventory costs and remove tracking costs. Since

inventory costs only depend on the inventory level, we only focus on the inventory level transition

probability pinv, where we omit a in the notation because pinva is for these instances independent of

any action. States xt+1, . . . , xt+λ−1 are therefore only known with respect to their inventory level,

which suffices to calculate inventory costs. As actions placed in some period n only affect inventory

costs in period n+λ, we can eliminate the minimizations in periods t to t+λ−1. The cost bound

follows. �

EC.9. Deterministic period review cost

Require: deterministic demand d

1: fix convergence rate ε

2: function J(x= (I,O1, . . . ,Oλ,ψ1, . . . ,ψλ)∈S , n= 1)

3: Ô← (λ+ 1)d− I −
∑

iOi

4: Ô← [min{Ô,Omax}]+

5: I← I +Oλ− d

6: ∆c← γ(h[I]+ + p[−I]+)

7: if ∆c < ε and n> λ+ 1 then

8: return c+ ∆c

9: for i= λ− 1 to 0 do

10: Oi←Oi−1

11: O1← Ô

12: return J(x,n+ 1)

ec6 Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield

EC.10. Proof of Proposition 4

Let Iλ be the the inventory level after λ periods, that is the inventory level that is affected by the

order that we place now. If P(Iλ+1> 0) = 0, we know that one additional item ordered will reduce

the expected underage cost for period λ by the expected arrival of this additional item because there

is no chance that inventory holding costs apply. Thus, the expected inventory cost will be decreased

by ∆c= p
∏λ

i=1 ui. As long as ∆c exceeds τ , it will be beneficial to change the order quantity from 0

to 1. Since Iλ+1≤ I1 +O1 + . . .+Oλ+Ô+1, P(Iλ+1> 0) = 0 holds for Ô≤−I1−O1− . . .−Oλ−1.

In particular, for Ô = 0, P(Iλ + 1> 0) = 0 holds for I1 +O1 + . . .+Oλ + 1≤ 0. If this condition is

met, so that it is beneficial to order one instead of no items, the order decision is within the convex

area of the cost function. Then, Theorem 7 of Henig and Gerchak (1990) applies and we should

order according to Ô≥ Ô(x). �

EC.11. Proof of Proposition 5

Applying the optimal stationary policy, I has a certain range. If I is sufficiently small, an optimal

policy will lead to a positive order quantity according to Theorem 7 of Henig and Gerchak (1990)

or Proposition 4. This order quantity will arrive after λ periods with probability greater zero due

to P(Ô
∏λ

i=1 ui > 0)> 0, so that it is possible to increase the inventory level no matter how low I is.

On the other hand, there clearly exists an inventory level that is high enough so that the optimal

policy is to order nothing. Since P(D> 0)> 0, it is also possible to reach states with lower inventory

levels. Thus, we have shown that states within a range of inventory levels communicate with one

another and that it is not possible to split this range up to create more than two communicating

classes.

There could still exist more than one essential class with respect to order decision and tracking

decision state variables. We disprove this option by showing next that for any two essential states

with the same inventory level x1 = (I,O1
1, . . . ,O

1
λ,ψ

1
1, . . . ,ψ

1
λ), x2 = (I,O2

1, . . . ,O
2
λ,ψ

2
1, . . . ,ψ

2
λ), it is

always possible to find a trajectory connecting these two states.

We evince that x1 and x2 communicate with each other starting with ψ1 = . . . = ψλ = 0 by

induction on λ. We start with λ= 1. Let x1 = (I,O1
1,0) and x2 = (I,O2

1,0). Then, with probability

greater zero, x3 = (I − d1,O
1
0,0) is a direct follow-up state of x1 and x4 = (I − d2,O

2
0,0) is a direct

follow-up state of x2 because yields might be 0 and d1 and d2 are arbitrary demand values. It is

now easy to see that there exists at least one combination of d1 and d2 such that the same order

decision, Ô, will be made. Then, with possibility greater zero x5 = (I−n, Ô,0) is a common direct

follow-up state of both x3 and x4 for some n. Since x1 and x2 are essential by definition and lead

to x5, x5 is also essential and, thus, x5 communicates both with x1 and x2. As communication is

transitive, x1 and x2 communicate, too.

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield ec7

For λ = 2, let x1 = (I,O1
1,O

1
2,0,0) and x2 = (I,O2

1,O
2
2,0,0). Applying the same logic as in the

last paragraph, the follow-up states of x1 and x2 could be x3 = (I − d1,O
1
0,O

1
1,0,0) and x4 =

(I − d2,O
2
0,O

2
1,0,0), respectively, that lead to the same decision Ô. Then, the follow-up states of

x3 and x4 could be x5 = (I−d1−d3, Ô,O
1
0,0,0) and x6 = (I−d2−d4, Ô,O

2
0,0,0). Since the second

state variable is the same for both x5 and x6, we can now apply the same logic as for λ= 1 and

find a common follow-up state. For λ> 2, we can apply the same process and always find for two

essential states x1 and x2 common follow-up states, so that communication is shown.

For tracked orders, we utilize a similar process: If Oλ is tracked, Proposition 2 says that the

order can directly be added to the inventory level. Then, our reasoning for communicating states

with respect to inventory levels applies.

If an earlier order is tracked, we can apply the same logic as for untracked orders. The only

difference is that orders may spoil, leading to 0 for the order quantity state variable in the follow-up

state. Then, it follows straightforwardly that a common follow-up state exists because, no matter

the order quantity, a tracked order of any size can spoil. This completes the proof and Proposition 5

follows. �

EC.12. Approximate value iteration enhanced by structural findings

The following function describes the algorithm with parameter ψ̄ that describes the possible track-

ing options (track always, track never, track dynamically). C∗ describes the optimal average costs-

to-go for the entire state space and is updated each E iterations if a better policy via policy

evaluation is found. P describes the function for policy evaluation. It yields the average costs C

given the actions Ô(xk), ψ̂(xk) for all states xk. We denote the policies for all states as Ô and ψ̂.

The optimal policy is called (O∗,ψ∗) and returned.

1: function ADP(ψ̄ ∈ {{0},{1},{0,1}})

2: Casy(x)←max{J(x), J(x)},∀x∈S

3: Set k= 1, x1 = (0, · · · ,0), C∗ = +∞

4: do

5: Set Omin(ψ) = Ô(xk) for ψ= 0 and for ψ= 1 with τ > p
∏λ

i=1 ui and with I+
∑λ

i=1Oi +

1≤ 0, or 0 else

6:

(Ô(xk), ψ̂(xk))← min
ψ̂∈ψ̄,Ô≥Omin(ψ̂)

τψ̂+ γ
∑
xk+1

pÔ,ψ̂(xk, xk+1)Casy(xk+1)

7:

Casy(xk)← cinv(xk) + τψ̂+ γ
∑
xk+1

pÔ,ψ̂(xk, xk+1)Casy(xk+1)

8: if k mod E = 0 then

ec8 Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield

9: C← P ((Ô, ψ̂))

10: if C <C∗ then

11: C∗←C

12: (O∗,ψ∗)← (Ô, ψ̂)

13: Sample d̃ from D

14: O0← Ô,ψ0← ψ̂

15: for i= 0 to λ− 1 do

16: if ψi = 1 then

17: Sample Õi+1 with E[Õi+1] = uiOi

18: else

19: Õi+1←Oi

20: if ψλ = 1 then

21: Õλ+1←Oλ

22: else

23: Sample Õλ+1 with E[Õλ+1] =Oλ
∏λ

i=1 ui

24: xk+1← (I − d̃+ Õλ+1, Õ1, . . . , Õλ,ψ0, . . . ,ψλ−1)

25: k← k+ 1

26: while k≤K

27: if ψ̄= {0,1} and min{P (ADP ({0})), P (ADP ({1}))}<P ((O∗,ψ∗)) then

28: return arg minADP (·){P (ADP ({0})), P (ADP ({1}))}

29: else

30: return (O∗,ψ∗)

EC.13. Proof of Proposition 6

cein(ζ) is convex in ζ because it is linearly decreasing for ζ ≤ 0 and linearly increasing for ζ ≥ 0.

Then, E[cein(I(g)−
∑k

l=1Dl+I[ψ(g)
λ = 0](ζ

∑λ

n=1 Yn) + I[ψ(g)
λ = 1]ζ)] is also convex in ζ (Heyman and

Sobel 1982, Proposition B-2). Since γn is positive for all n∈R and the sum of convex functions is

convex, Z
(g)
tar is convex. �

EC.14. Hierarchical approximate dynamic programming algorithm

Variables for the following algorithm have the same meaning as in Appendix EC.12 if not stated

otherwise.

1: function HADP(ψ̄ ∈ {{0},{1},{0,1}})

2: Cagr(x)←max{J(x), J(x)},∀x∈S (0)

3: βx← 0,∀g ∈ G +, x∈S (g)

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield ec9

4: Set k= 1, x1 = (0, · · · ,0), C∗ = +∞

5: e
(g)
0 (x)← I[g= |G | − 1],∀g ∈ G +,∀x∈S (g)

6: do

7: Set Omin(ψ) = Ô(xk) for ψ= 0 and for ψ= 1 with τ > p
∏λ

i=1 ui and with I+
∑λ

i=1Oi +

1≤ 0, or 0 else

8:

(Ô, ψ̂)← min
ψ̂∈ψ̄,Ô≥Omin(ψ̂)

τψ̂+ γ
∑
x̃k

pÔ,ψ̂(xk, x̃k)C
agr(r(x̃k))

9: ak = (Ô, ψ̂)

10: Cagr(r(xk))← α
[
cinv(xk) + τψ̂+ γ

∑
x̃k
pÔ,ψ̂(xk, x̃k)C

agr(r(x̃k))
]

+ (1−α)Cagr(r(xk))

11: if k mod E = 0 then

12: C← P ((Ô, ψ̂))

13: if C <C∗ then

14: C∗←C

15: (O∗,ψ∗)← (Ô, ψ̂)

16: for i= 1 to |G +| do

17: if k=M (i) then

18: β̄(i)←maxβ, s.t.
∑

x∈S (i) I[q(x)≤ β]q(x)/(
∑

y∈S (i) q(y))≤w(i)

19: S(i)←{x∈S (i) | q(x)≤ β̄(i) }

20: e(i)(x)← I[x∈ S(i)],∀x∈S (i)

21: Sample d̃ from D

22: O0← Ô,ψ0← ψ̂

23: for i= 0 to λ− 1 do

24: if ψi = 1 then

25: Sample Õi+1 with E[Õi+1] = uiOi

26: else

27: Õi+1←Oi

28: if ψλ = 1 then

29: Õλ+1←Oλ

30: else

31: Sample Õλ+1 with E[Õλ+1] =Oλ
∏λ

i=1 ui

32: xk+1← (I − d̃+ Õλ+1, Õ1, . . . , Õλ,ψ0, . . . ,ψλ−1)

33: k← k+ 1

34: while k≤K

ec10 Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield

35: if ψ̄= {0,1} and min{P (HADP ({0})), P (HADP ({1}))}<P ((O∗,ψ∗)) then

36: return arg minHADP (·){P (HADP ({0})), P (HADP ({1}))}

37: else

38: return (O∗,ψ∗)

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield ec11

EC.15. Tables

Table EC.1 Optimal costs, costs from ADP approach and error for never/always tracking

λ= 2 λ= 3 λ= 4

Never Track Always Track Never Track Always Track Never Track Always Track

u τ CR ADP DP Error (%) ADP DP Error (%) ADP DP Error (%) ADP DP Error (%) ADP DP Error (%) ADP DP Error (%)

0.9

0
0.9 62.1 62.1 0.0 56.0 56.0 0.0 79.2 79.1 0.1 70.3 70.3 0.1 96.8 96.5 0.3 85.0 84.8 0.2

0.95 75.5 75.5 0.1 68.6 68.5 0.1 96.0 95.8 0.1 85.8 85.7 0.1 117.2 116.9 0.3 103.7 103.3 0.3

0.99 104.2 104.1 0.1 95.7 95.5 0.2 132.1 131.5 0.4 119.6 119.4 0.2 161.8 159.8 1.2 144.2 143.8 0.3

1
0.9 62.1 62.1 0.0 63.9 63.9 0.0 79.2 79.1 0.1 78.5 78.5 0.1 96.8 96.5 0.3 93.8 93.6 0.2

0.95 75.5 75.5 0.1 76.3 76.3 0.0 96.0 95.8 0.1 94.0 94.0 0.1 117.2 116.9 0.3 112.2 112.1 0.1

0.99 104.2 104.1 0.1 103.5 103.4 0.1 132.1 131.5 0.4 128.1 128.0 0.1 161.8 159.8 1.2 152.7 152.5 0.2

2
0.9 62.1 62.1 0.0 70.7 70.6 0.0 79.2 79.1 0.1 85.6 85.5 0.1 96.8 96.5 0.3 101.2 101.0 0.2

0.95 75.5 75.5 0.1 82.7 82.6 0.1 96.0 95.8 0.1 100.8 100.7 0.1 117.2 116.9 0.3 119.9 119.9 0.0

0.99 104.2 104.1 0.1 110.7 110.6 0.1 132.1 131.5 0.4 134.7 134.6 0.1 161.8 159.8 1.2 160.4 160.4 0.0

0.94

0
0.9 55.5 55.4 0.1 51.1 51.1 0.0 68.2 68.1 0.1 62.0 62.0 0.1 80.7 80.5 0.3 72.6 72.4 0.2

0.95 67.1 67.1 0.1 61.9 61.9 0.0 82.3 82.2 0.1 75.0 75.0 0.0 97.3 97.0 0.3 87.7 87.5 0.2

0.99 91.8 91.6 0.2 85.2 85.1 0.0 112.0 111.7 0.2 102.7 102.6 0.1 132.1 131.6 0.4 119.8 119.5 0.2

1
0.9 55.5 55.4 0.1 58.8 58.7 0.0 68.2 68.1 0.1 70.2 70.1 0.0 80.7 80.5 0.3 81.1 80.9 0.2

0.95 67.1 67.1 0.1 69.8 69.8 0.0 82.3 82.2 0.1 83.1 83.1 0.0 97.3 97.0 0.3 96.2 96.1 0.1

0.99 91.8 91.6 0.2 93.2 93.1 0.1 112.0 111.7 0.2 111.0 110.9 0.1 132.1 131.6 0.4 128.3 128.0 0.2

2
0.9 55.5 55.4 0.1 64.8 64.8 0.0 68.2 68.1 0.1 76.4 76.4 0.0 80.7 80.5 0.3 88.0 88.0 0.1

0.95 67.1 67.1 0.1 76.4 76.4 0.0 82.3 82.2 0.1 89.9 89.9 0.0 97.3 97.0 0.3 103.4 103.3 0.1

0.99 91.8 91.6 0.2 99.6 99.5 0.1 112.0 111.7 0.2 118.0 117.9 0.1 132.1 131.6 0.4 135.5 135.4 0.1

0.98

0
0.9 48.8 48.8 0.0 47.2 47.1 0.0 57.5 57.5 0.1 54.8 54.7 0.1 66.1 65.6 0.7 62.4 62.1 0.4

0.95 58.5 58.5 0.0 56.6 56.6 0.0 69.2 69.0 0.4 65.8 65.8 0.1 79.3 78.6 0.8 74.6 74.3 0.4

0.99 78.6 78.5 0.1 75.8 75.7 0.0 92.9 92.5 0.4 88.2 88.1 0.1 106.9 105.3 1.6 99.8 99.5 0.3

1
0.9 48.8 48.8 0.0 54.5 54.5 0.0 57.5 57.5 0.1 62.4 62.4 0.0 66.1 65.6 0.7 70.3 70.1 0.2

0.95 58.5 58.5 0.0 64.0 64.0 0.0 69.2 69.0 0.4 73.7 73.7 0.0 79.3 78.6 0.8 82.5 82.4 0.1

0.99 78.6 78.5 0.1 83.0 83.0 0.0 92.9 92.5 0.4 96.0 95.9 0.1 106.9 105.3 1.6 107.8 107.7 0.1

2
0.9 48.8 48.8 0.0 59.7 59.7 0.0 57.5 57.5 0.1 68.4 68.3 0.1 66.1 65.6 0.7 76.1 76.0 0.1

0.95 58.5 58.5 0.0 69.8 69.8 0.0 69.2 69.0 0.4 79.5 79.4 0.1 79.3 78.6 0.8 89.1 89.0 0.1

0.99 78.6 78.5 0.1 89.9 89.9 0.1 92.9 92.5 0.4 103.0 103.0 0.0 106.9 105.3 1.6 114.8 114.8 0.1

Average 0.1 0.0 0.2 0.1 0.7 0.2

ec12 Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield

EC.16. Figures

Figure EC.1 Optimal cost developments for rising tracking costs for λ= 3 and λ= 4

85

90

95

100

105

110

115

0.0 0.5 1.0 1.5 2.0 2.5

76

78

80

82

84

86

88

90

92

94

96

98

0.0 0.5 1.0 1.5 2.0 2.5

68

70

72

74

76

78

80

82

84

86

88

0.0 0.5 1.0 1.5 2.0 2.5

100

105

110

115

120

125

130

135

0.0 0.5 1.0 1.5 2.0 2.5

85

90

95

100

105

110

115

0.0 0.5 1.0 1.5 2.0 2.5

70

75

80

85

90

95

100

0.0 0.5 1.0 1.5 2.0 2.5

track always track never track dynamically

𝜆
=
3

𝜆
=
4

𝑢 = 0.9 𝑢 = 0.94 𝑢 = 0.98

𝑐𝑜
𝑠𝑡

𝑐𝑜
𝑠𝑡

𝜏 𝜏 𝜏

Figure EC.2 Benefit of ADP always/never track compared to Huh & Nagaran heuristic with always/never track

90

95

100

105

110

115

120

125

130

0.0 0.5 1.0 1.5 2.0 2.5

ADP track always

heuristic track always

𝑢 = 0.9 𝑢 = 0.94 𝑢 = 0.98

𝜆
=
5

170

175

180

185

190

195

200

205

210

0.0 0.5 1.0 1.5 2.0 2.5

120

125

130

135

140

145

150

155

160

0.0 0.5 1.0 1.5 2.0 2.5

𝜆
=
6

ADP track never

heuristic track never

80

85

90

95

100

105

110

115

120

0.0 0.5 1.0 1.5 2.0 2.5

100

105

110

115

120

125

130

135

140

0.0 0.5 1.0 1.5 2.0 2.5

110

120

130

140

150

160

170

180

190

0.0 0.5 1.0 1.5 2.0 2.5

𝑐𝑜
𝑠𝑡

𝑐𝑜
𝑠𝑡

𝜏 𝜏 𝜏

Voelkel, Sachs, Thonemann: Aggregation-based ADP approach for the periodic review model with random yield ec13

Figure EC.3 ADP cost developments for rising tracking costs for λ= 5

120

125

130

135

140

145

150

155

160

0.0 0.5 1.0 1.5 2.0 2.5

90

95

100

105

110

115

120

125

130

0.0 0.5 1.0 1.5 2.0 2.5

80

83

85

88

90

93

95

98

100

0.0 0.5 1.0 1.5 2.0 2.5

track never (ADP)track always (ADP) track dynamically (ADP)

𝜆
=
5

𝑢 = 0.9 𝑢 = 0.94 𝑢 = 0.98

𝜏 𝜏 𝜏

𝑐𝑜
𝑠𝑡

Figure EC.4 Cost developments of dynamic heuristic compared to Huh & Nagaran’s heuristic for rising tracking

costs for λ= 6, λ= 7 and λ= 8 averaged over critical ratios

200

210

220

230

240

250

260

0 1 2 3 4 5 6 7

150

160

170

180

190

200

210

0 1 2 3 4 5

100

110

120

130

140

150

160

0.0 0.5 1.0 1.5 2.0 2.5

220

230

240

250

260

270

280

0 1 2 3 4 5 6 7

160

170

180

190

200

210

220

0 1 2 3 4 5

100

110

120

130

140

150

160

0.0 0.5 1.0 1.5 2.0 2.5

track never (Huh heuristic)track always (Huh heuristic) track dynamically (dynamic heuristic)

𝜆
=
7

𝜆
=
8

𝑢 = 0.9 𝑢 = 0.94 𝑢 = 0.98

170

175

180

185

190

195

200

205

210

0 1 2 3 4 5 6 7

125

130

135

140

145

150

155

160

165

0 1 2 3 4 5

75

80

85

90

95

100

105

110

115

0.0 0.5 1.0 1.5 2.0 2.5

𝜏

𝜆
=
6

𝜏 𝜏

𝑐𝑜
𝑠𝑡

𝑐𝑜
𝑠𝑡

𝑐𝑜
𝑠𝑡

