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Highlights: 18 

• PM2.5 increased by 75% during Diwali in Delhi, causing 20 extra daily mortality 19 

• A weekend effect is found in Mumbai and Chennai but not in Delhi and Hyderabad 20 

• Distinct differences in diurnal pattern of PM2.5 in different seasons and cities   21 
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Abstract: 22 

Public health in India is gravely threatened by severe PM2.5 exposure. This study presents an 23 

analysis of long-term PM2.5 exposure in four Indian megacities (Delhi, Chennai, Hyderabad 24 

and Mumbai) based on in-situ observations during 2015-2018, and quantifies the health risks 25 

of short-term exposure during Diwali Fest (usually lasting for ~5 days in October or November 26 

and celebrating with lots of fireworks) in Delhi for the first time. The population-weighted 27 

annual-mean PM2.5 across the four cities was 72 µg/m3, ~3.5 times the global level of 20 µg/m3 28 

and 1.8 times the annual criterion defined in the Indian National Ambient Air Quality Standards 29 

(NAAQS). Delhi suffers the worst air quality among the four cities, with citizens exposed to 30 

‘severely polluted’ air for 10% of the time and to unhealthy conditions for 70% of the time. 31 

Across the four cities, long-term PM2.5 exposure caused about 28,000 (95% confidence interval: 32 

17,200–39,400) premature mortality and 670,000 (428,900–935,200) years of life lost each 33 

year. During Diwali Fest in Delhi, average PM2.5 increased by ~75% and hourly concentrations 34 

reached 1676 µg/m3. These high pollutant levels led to an additional 20 (13–25) daily 35 

premature mortality in Delhi, an increase of 56% compared to the average over October-36 

November. Distinct seasonal and diurnal variations in PM2.5 were found in all cities. PM2.5 37 

mass concentrations peak during the morning rush hour in all cities. This indicates local traffic 38 

could be an important source of PM2.5, the control of which would be essential to improve air 39 

quality. We report an interesting seasonal variation in the diurnal pattern of PM2.5 40 

concentrations, which suggests a 1-2 hours shift in the morning rush hour from 8 a.m. in pre-41 

monsoon/summer to 9-10 a.m. in winter. The difference between PM2.5 concentrations on 42 

weekdays and weekend, namely weekend effect, is negligible in Delhi and Hyderabad, but 43 

noticeable in Mumbai and Chennai where ~10% higher PM2.5 concentrations were observed in 44 

morning rush hour on weekdays. These local characteristics provide essential information for 45 
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air quality modelling studies and are critical for tailoring the design of effective mitigation 46 

strategies for each city.  47 

Keywords:  PM2.5; Health effect; Diwali festival effect; Weekend effect; Long-term; Short-48 

term 49 

 50 

1. Introduction 51 

Exposure to fine particulate matter (particles with an aerodynamic diameter less than 2.5 52 

µm, PM2.5) can pose a major threat to human health (Chowdhury and Dey, 2016; Gao et al., 53 

2018a; Gao et al., 2017; Huang et al., 2018; Pope et al., 2009; Wang et al., 2017). As a rapidly 54 

developing country with an expanding population, India is suffering severe PM2.5 pollution, 55 

with nine cities among the top ten most polluted cities in the world as reported by the World 56 

Health Organization (WHO, 2016). Exposure to high levels of PM2.5 causes ~1 million 57 

premature mortality per year across India (Conibear et al., 2018a). In order to tackle this PM2.5 58 

pollution, the Central Pollution Control Board (CPCB) of India set revised National Ambient 59 

Air Quality Standards (NAAQS) in 2009 that included PM2.5 regulations (CPCB, 2009). Some 60 

mitigation policies have been implemented in major Indian cities (Chowdhury et al., 2017; 61 

Sharma and Dixit, 2016), but limited improvement in air quality (~10% reduction in PM2.5) has 62 

been seen (Chowdhury et al., 2017). PM2.5 pollution is expected to further deteriorate in the 63 

coming decades (Chowdhury et al., 2018; Conibear et al., 2018b), due to rapid ongoing 64 

urbanization. This surface pollution over India also has important global implications through 65 

effective transport by the Asian summer monsoon to the upper troposphere and lower 66 

stratosphere, where pollutants can be re-distributed on a global scale and thus affect global 67 

climate forcing and air quality (Lelieveld et al., 2018; Liu et al., 2015; Yu et al., 2017). 68 
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Previous studies estimated health risks in India of exposure to PM2.5 based on model 69 

analysis or satellite retrieves and mainly focused on long-term exposure (e.g., Chowdhury and 70 

Dey, 2016; Conibear et al., 2018a, b; Gao et al., 2018b; Lelieveld et al., 2015; van Donkelaar 71 

et al., 2015). In addition, intensive emissions and unfavourable meteorological condition for 72 

dispersion can significantly increase PM2.5 and lead to hazardous short-term exposure with high 73 

health risks (Atkinson et al., 2014; Héroux et al., 2015). In-situ observations at high temporal 74 

resolution are valuable for more firmly grounded estimates of health risks. Furthermore, 75 

characterizing the seasonal and diurnal variations of urban PM2.5 concentrations and their 76 

relationships to meteorology is the key to understanding the drivers of air pollution and 77 

devising effective mitigation strategies in Indian megacities (Schnell et al., 2018). Long-term 78 

in-situ monitoring studies are critical for a better understanding of these factors. However, only 79 

a few studies providing long-term observations of PM2.5 have been undertaken, and most of 80 

these have focused on Delhi only (Sahu and Kota, 2017; Sharma et al., 2018). Information on 81 

local characteristics such as the diurnal variation in pollutant emissions is also critical for 82 

modelling studies. This information is scarce in India and models typically use a constant 83 

diurnal profile of emissions (e.g., Mohan and Gupta, 2018) or standard profiles from American 84 

or European cities to represent conditions in India (e.g., Marrapu et al., 2014). Long-term 85 

observations of the diurnal variation of pollutants would provide essential information for 86 

improving model performance.  87 

This study presents a comprehensive summary of the seasonal and diurnal variation of 88 

urban PM2.5 in four Indian megacities (Delhi, Chennai, Hyderabad and Mumbai), based on 89 

ground observations from 2015 to 2018. This analysis reveals the observation-based patterns 90 

of human activity and local temporal characteristics of emissions in each city, and hence 91 

provides valuable input for modelling studies. In addition, for the first time, we report the 92 

influences of weekend effect on the diurnal variations and quantify the health risks of short-93 
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term exposure during Diwali Fest. Finally, the cumulative exposure of urban residents to PM2.5 94 

and the corresponding health burdens are estimated for each city. The results of this study are 95 

valuable for the designation and implementation of mitigation policies on a city level aimed at 96 

improving air quality to meet the Indian NAAQS standards.  97 

 98 

2. Materials and Methods 99 

2.1 Data 100 

Datasets of pollutants measured between 1 March 2015 and 31 December 2018 are 101 

analysed in this study. An overview of the data is given in Table S1. Hourly PM2.5 observations 102 

in Delhi, Chennai, Mumbai and Hyderabad (Fig. S1) are rountinely made at U.S. Embassy and 103 

consulates using a beta attenuation monitor (San Martini et al., 2015). These records are 104 

available from the AirNow website (https://www.airnow.gov/). The instruments are maintained 105 

and calibrated following the regulations of the U.S. Environmental Protection Agency (EPA, 106 

2009, 2015). PM2.5 observations from the U.S. Embassy are widely used in previous studies in 107 

India (Wang and Chen, 2019) and China (Lv et al., 2017; Lv et al., 2015; San Martini et al., 108 

2015), and have been shown to be of good quality and in good agreement with other 109 

observations (Jiang et al., 2015; Mukherjee and Toohey, 2016).  110 

We use hourly meteorological observations at the airport in each city (VIDP-Delhi, 111 

VOMM-Chennai, VABB-Mumbar and VOHY-Hyderabad). The flat topography surrounding 112 

these airports suggests that the observations are broadly representative of the dominant 113 

meteorological conditions in these cities. Historical records are archived by the National 114 

Oceanic and Atmospheric Administration, and are available from the National Climatic Data 115 

Center (https://www.ncdc.noaa.gov/data-access/). The height of the planetary boundary 116 

layer (PBL) is obtained from the European Centre for Medium-Range Weather Forecasts 117 
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(ECMWF) ERA-interim reanalysis at a 3-hour interval and 0.125° × 0.125° spatial resolution 118 

(https://www.ecmwf.int/).  119 

2.2 Method 120 

We estimate the long-term health impacts from exposure to ambient PM2.5 concentrations, 121 

as these account for the majority of the health effects through capturing both acute and chronic 122 

responses. Following our previous works (Conibear et al., 2018a, b), we use integrated 123 

exposure-response (IER) functions (Burnett Richard et al., 2014), updated for the Global 124 

Burden of Disease GBD2016 (GBD, 2016) to estimate the relative risk (RR) of premature 125 

mortality due to exposure to PM2.5 concentrations. There are IER functions with age-specific 126 

modifiers for chronic obstructive pulmonary disease (COPD), lower respiratory infection (LRI), 127 

ischaemic heart disease (IHD), cerebrovascular disease (CEV), and lung cancer (LC). We use 128 

the parameter distributions from the GBD2016 for 1,000 simulations to derive the mean IER 129 

with 95% uncertainty intervals. The IER functions have uniform theoretical minimum risk 130 

exposure levels for PM2.5 between 2.4–5.9 µg/m3. 131 

We use multi-year average annual-mean PM2.5 concentrations from measurements made 132 

at U.S. diplomatic missions in Delhi (110 µg/m3), Chennai (33 µg/m3), Hyderabad (56 µg/m3), 133 

and Mumbai (60 µg/m3). Baseline mortality data are taken from the GBD2016 for India (GBD, 134 

2018). Population size was taken from the lastest Indian Census data for 2011. Population age 135 

composition was taken from the GBD2016 population estimates for 2015 for India (GBD, 136 

2017a). 137 

Annual premature mortality (M) for each age and disease were estimated as a function of 138 

population (P), baseline mortality rates (I), and the attributable fraction (AF) for a specific 139 

relative risk (RR) (Equation 1). The disease burden from LRI, IHD, CEV, COPD, and LC was 140 

estimated between 0 and 95 years upwards in 5 year groupings. 141 

                                                       142 
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Annual years of life lost (YLL) for each age and disease were estimated as a function of 144 

premature mortality and age-specific life expectancy (LE) from the standard reference life table 145 

from the GBD2016 (Equation 2) (GBD, 2017b). 146 

LEMYLL =                                                                  (2) 147 

 148 

We estimate the short-term health impacts during Diwali Fest in Delhi from exposure to 149 

ambient PM2.5 concentrations as all-cause premature mortality. The short-term health impacts 150 

are accounted for within the long-term health impacts, and are used to indicate the variation in 151 

the daily burden from acute responses (Héroux et al., 2015). We use the summary risk estimates 152 

(γ) from Atkinson et al. (2014) of 1.04% (0.52–1.56) per 10 µg/m3 change in daily mean PM2.5 153 

concentrations (Cd), with respect to a reference PM2.5 concentration (Cr) of 0 µg/m3. We assume 154 

no upper concentration cutoff. India-specific risk functions for ambient PM2.5 exposure do not 155 

currently exist, however, the use of the summary risk estimate of 1.04% is conservative when 156 

compared with the summary risk estimate of 1.2% from Levy et al. (2012) and 1.23% from 157 

WHO (2013). Baseline mortality data are taken from the GBD2016 for India for all ages for 158 

both genders combined (GBD, 2018). We convert these annual rates to daily rates (Id) by 159 

dividing by 365.25, consistent with previous work due to the lack of daily data (West et al., 160 

2007). We use first-three-day of Diwali Fest (320 µg/m3) and October-November two-month 161 

(183 µg/m3) averaged daily-mean PM2.5 concentrations during 2015-2018 from the U.S. 162 

Embassy measurements for Delhi.  163 

𝑅𝑅𝑑 = 1 + [γ × (𝐶𝑑 − 𝐶𝑟) × 0.1]                                        (3) 164 
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We use a linear exposure-response function with no cap on daily relative risk (RRd), 166 

similar to a previous work (van Donkelaar et al., 2011), estimating daily relative risks following 167 

Equation 3. Daily premature mortality (Md) is then estimated using Equation 4.  168 

Using a logarithmic exposure-response function as in previous work (Crippa et al., 2016), 169 

our estimates of short-term premature mortality are about 10% larger than with a linear 170 

exposure-response function. To be conservative, we use the linear exposure-response function 171 

in this study.  172 

 173 

3. Results 174 

3.1 Overview of PM2.5 in Four Megacities 175 

The locations of Delhi, Chennai, Hyderabad and Mumbai are shown in Fig. 1, together 176 

with annual mean surface concentrations of PM2.5 of anthropogenic origin over India in 2015 177 

(van Donkelaar et al., 2015; van Donkelaar et al., 2011). Fig. 2 shows a calendar-view of daily 178 

average PM2.5 concentrations in the four cities during 2015-2018, and monthly statistics are 179 

shown in Fig. S1. There is no clear inter-annual trend in PM2.5 observed in these cities during 180 

2015-2018. The Indian NAAQS classifies six different levels of air quality based on daily 24-181 

hour averaged PM2.5 concentrations (Fig. 2). The two cleanest air quality levels, ‘good’ and 182 

‘satisfactory’, are defined as healthy, and the others (PM2.5 > 60 µg/m3) are defined as 183 

unhealthy (CPCB, 2014). Delhi suffers the worst air quality among these cities, and the air 184 

quality levels are categorized as ‘poor’, ‘very poor’ or ‘severe’ for ~50% of the time. These 185 

hazy days mostly occur during October-February. The air quality in Chennai and Hyderabad 186 

is much better than Delhi, with few ‘poor’ air-quality days; and ‘healthy’ days counted up to 187 
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50% of the time in Hyderabad and most of the time in Chennai. Mumbai has better air quality 188 

than Delhi. This may be due to its coastal climate, where surface PM2.5 is often diluted by clean 189 

air from the ocean. However, Mumbai still experiences about four months per year with air 190 

quality of ‘poor’ standard or worse. The Diwali Fest and New Year festivals make the air 191 

quality substantially worse in Delhi, as shown by the ‘severe’ days at the beginning of 192 

November and January (Fig. 2a). This suggests that the fireworks during the festivals contribute 193 

to an increase of PM2.5 loading in Delhi significantly. However, there is no clear festival effect 194 

observed in the other three cities. It is unclear why no festival effect is observed in these other 195 

cities, although it may reflect lower firework use and more favourable meteorological 196 

conditions for dispersion in coastal cities. 197 

All cities suffered severe episodes of poor air quality, with maximum hourly PM2.5 198 

concentrations of 1676 µg/m3, 1334 µg/m3, 1107 µg/m3 and 758 µg/m3 in Delhi, Chennai, 199 

Hyderabad and Mumbai, respectively. In Delhi, the maximum hourly PM2.5, observed during 200 

the Diwali Fest nights in 2016 and 2018, is ~70% higher than the highest level recorded in 201 

Beijing (980 µg/m3), China (San Martini et al., 2015; Wang et al., 2014; Zheng et al., 2015). 202 

This strongly suggests that control of fireworks during the Diwali Fest would efficiently 203 

mitigate short-term PM2.5 exposure in Delhi. This is also implied by a previous study (Singh et 204 

al., 2010), where a significant increase in particle loading by a factor of 2-6 compared with the 205 

period before and after Diwali Fest was found in Delhi during 2002-2007. Extreme episodes in 206 

other cities were observed at night-time (10 p.m.-2 a.m.) from the end of October to the 207 

beginning of December. The shallow planetary boundary layer (PBL) at night and intensive 208 

crop burning in this season are the likely reasons for these extremely high concentrations 209 

(Tiwari et al., 2013). Fig. S2 shows that there is a clear decrease in the frequency of high PM2.5 210 

concentrations in all cities as the PBL height increases. We also observe an anti-correlation 211 

between wind speed and PM2.5 loading. With the same PBL height, PM2.5 loading generally 212 
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decreases as wind speed increases, and PM2.5 is generally less than 100 µg/m3 when the wind 213 

speed is greater than 4 m/s in all cities (Fig. S2). This is because the higher PBL and larger 214 

wind speed dilute the surface PM2.5 (Chen et al., 2009; Mohan and Gupta, 2018).  215 

In order to investigate the possible source regions of PM2.5 for each city, we analyse the 216 

relationship between PM2.5 concentration and wind direction (Fig. 3). Delhi is influenced by 217 

easterly and westerly/northwesterly winds, with high PM2.5 concentrations (>150 µg/m3) from 218 

both directions. The westerly and northwesterly winds have the highest frequency (~33%) and 219 

are associated with the most polluted episodes in Delhi. About 30% of the time PM2.5 220 

concentration in Delhi are higher than 150 µg/m3, ~50% of which is associated with a westerly 221 

or northwestly wind. This indicates that crop biomass burning and desert dust could be major 222 

sources of PM2.5 in Delhi. Punjab and Haryana are located to the northwest of Delhi, and are 223 

major sources of particles and gaseous precursors from crop burning during October-November 224 

(Cusworth et al., 2018; Jethva et al., 2018; Rastogi et al., 2014), when the worst air quality is 225 

observed in Delhi. Furthermore, previous modelling studies show significant increases (> 50%) 226 

in aerosol loading when the westerly and northwesterly wind transports dust from the Thar 227 

Desert to Delhi during April-June (Kumar et al., 2014a; Kumar et al., 2014b). In Hyderabad, 228 

another inland city, the easterly/westerly wind pattern is also dominant. The easterly wind 229 

brings a substantial amount of PM2.5 to Hyderabad, but the conditions are better than in Delhi, 230 

with limited episodes of PM2.5 concentration higher than 150 µg/m3. Chennai and Mumbai are 231 

coastal cities with a prevailing onshore wind for 70-80% of the time which brings relatively 232 

clean marine air masses. The PM2.5 concentrations are generally lower than 75 µg/m3 when an 233 

onshore wind is present. The offshore wind brings pollutants from inland regions to the cities, 234 

but this occurs much less frequently (20-30%). These results indicate that there is a strong 235 

interaction between meteorology and PM2.5 pollution, and strong local characteristics are found 236 
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in each city. Detailed investigation of these local characteristics would be helpful in tailoring 237 

an effective mitigation policy for each city.   238 

3.2 Seasonal and Diurnal Patterns of PM2.5  239 

A distinct seasonal variation in the diurnal patterns is found, and this has different 240 

characteristics in each city (Fig. 4). Generally, the climate in India is characterised by four 241 

seasons: pre-monsoon/summer (March-May), monsoon (June-August), post-monsoon 242 

(September-November) and winter (December-February). Notable inter-seasonal changes in 243 

meteorology lead to significant differences in PM2.5 loading. Benefitting from the cleansing 244 

effect of precipitation in the monsoon season (Ghosh et al., 2015), the hourly PM2.5 is generally 245 

less than 50 µg/m3 in the inland cities (Delhi and Hyderabad) and less than 30 µg/m3 in the 246 

coastal cities (Chennai and Mumbai). Apart from cleansing by precipitation, frequent deep 247 

convection during summer monsoon in India can lift air pollutants near the surface to free 248 

troposphere or even upper troposphere, as reported by previous modelling and observational 249 

studies (Fadnavis et al., 2011; Kumar et al., 2015; Lelieveld et al., 2018). This transport process 250 

dilutes air pollutants near the surface and could be one of the reasons that surface PM2.5 251 

concentration is the lowest during the monsoon season. Future works, with aircraft 252 

observations and modelling, are needed to quantify the relative importance of wash out and 253 

vertical transport in reducing concentrations of surface pollutants. Chennai benefits from 254 

prevailing onshore winds, with low PM2.5 loadings in both the pre-monsoon and monsoon 255 

seasons (< 30 µg/m3). As a result of unfavourable meteorological conditions for dispersion and 256 

an increase in emissions from heating (Guttikunda and Calori, 2013; Guttikunda and Gurjar, 257 

2012), winter is the most polluted season in all cities. The slow wind speeds and shallow PBL 258 

(Fig. S2) can trap PM2.5 in the surface layer and increase its concentration (Hu et al., 2019; 259 

Zheng et al., 2015). The post-monsoon is the second most polluted season, with PM2.5 higher 260 
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than the annual averages. This inter-seasonal variation is consistent with the observations 261 

during 2013-2016 (Sreekanth et al., 2018) despite the rapid increase of anthropogenic 262 

emissions in India over the past decade (Li et al., 2017), indicating the importance of 263 

meteorology on the seasonal variation.  264 

A clear diurnal pattern is found in all cities during winter, post-monsoon and pre-monsoon 265 

seasons (Fig. 4). However, no clear diurnal pattern is found during the monsoon season due to 266 

the influence of precipitation. The minimum PM2.5 concentration during a day is generally 267 

found at 3-4 p.m. local time, possibly resulting from the dilution effect of the fully developed 268 

PBL in the afternoon (Fig. S3). PM2.5 concentrations peak during the morning rush hour in all 269 

cities, the peaks approach 280 µg/m3 (Delhi), 90 µg/m3 (Chennai), 115 µg/m3 (Hyderabad) and 270 

140 µg/m3 (Mumbai) in winter, respectively. It is interesting that the morning rush hour 271 

consistently shifts 1-2 hours later from around 8 a.m. (pre-monsoon) to 10 a.m. (winter) in 272 

Delhi and Mumbai, and to 9 a.m. (winter) in Chennai and Hyderabad. A remarkably strong 273 

PM2.5 peak is found during morning rush hour in Chennai and Hyderabad, with hourly PM2.5 274 

increased by ~50% and ~30% in two hours, respectively. However, only a slight increase in 275 

PM2.5 concentration is observed in Delhi and Mumbai, with an increase of ~10% in winter. 276 

These characteristics of PM2.5 variation during morning rush hour may be related to the size of 277 

the population of each city. According to the latest census of India, there are around 4.6 and 278 

7.0 million citizens in Chennai and Hyderabad, respectively; but more than 10 million citizens 279 

in Delhi and Mumbai (India Office of the Registrar General and Census Commissioner, 2011). 280 

Our results suggest that there is much greater human activity and emissions during the night in 281 

these two larger megacities leading to higher night-time PM2.5 concentration but less variation 282 

during the morning. The morning rush hour lasts longer until 10 a.m. in winter in these 283 

megacities, in contrast to 9 a.m. in Chennai and Hyderabad. This is possibly because the busy 284 

traffic, also alarger city size would prevent a smooth commute and lead to longer commuting 285 
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times (Alam and Ahmed, 2013; Srinivas, 2018). In addition, traffic is a major local source of 286 

PM2.5 (~45%) in Delhi (Sahu et al., 2011). These results suggest that developing a more 287 

convenient and efficient public transport system and encouraging the usage could be a key to 288 

mitigate PM2.5 pollution, especially in the biggest cities. More work on source apportionment 289 

is needed for each city to inform better targeted mitigation strategies.     290 

 291 

3.3 Weekend Effect in Four Cities  292 

We report the influence of a weekend effect on the diurnal patterns of PM2.5 in these cities, 293 

as shown in Fig. 5. No noticeable weekend effect is found in Delhi and Hyderabad. This is 294 

similar to Beijing and Chengdu in China (San Martini et al., 2015), with the diurnal patterns of 295 

PM2.5 similar during weekdays and at the weekend. However, a notable weekend effect can be 296 

found in Chennai and Mumbai. The difference in the diurnal pattern of PM2.5 between weekday 297 

and weekend is greatest before 10 a.m. A stronger morning rush hour is found in Chennai and 298 

Mumbai on weekdays, with ~10% higher PM2.5 than at the weekend. This indicates that the 299 

decrease of traffic emissions in Mumbai and Chennai during weekend is probably the reason 300 

of weekend effect, and control of traffic emissions could be an efficient measure for improving 301 

air quality. In Chennai, PM2.5 concentrations are about 5 µg/m3 higher during night (12-5 a.m.) 302 

at the weekend than on weekdays; in contrast, PM2.5 concentration is about 5 µg/m3 lower at 303 

the weekend in Mumbai. These different weekend effects possibly indicate different life styles 304 

and PM2.5 sources in each city. Further modelling and emission flux studies are needed to better 305 

understand the sources of PM2.5 in each city.  306 

3.4 Exposure to PM2.5 and Health Impacts 307 
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We use these long-term in-situ observations to estimate the exposure of the population to 308 

PM2.5 in Delhi, Chennai, Hyderabad and Mumbai. The annual averaged PM2.5 loading in these 309 

cities is 110 µg/m3, 33 µg/m3, 56 µg/m3 and 60 µg/m3, respectively. The population-weighted 310 

annual mean PM2.5 loading is 72 µg/m3 across the four cities, which is about 3.5 times higher 311 

than the global population-weighted value (20 µg/m3, van Donkelaar et al., 2010) and ~22% 312 

higher than average Chinese city-level value (Zhang and Cao, 2015). The annual averaged 313 

PM2.5 loading in Delhi is much higher than all Chinese major cities in the last five years (Wang 314 

et al., 2019). Fig. 6 shows the time integrated exposure, which indicates the proportion of time 315 

that a citizen is exposed to PM2.5 concentrations over a given level over the four years 316 

measurement period. Citizens are exposed to unhealthy air quality (PM2.5 > 60 µg/m3) for about 317 

70% (Delhi), 15% (Chennai), 50% (Hyderabad) and 45% (Mumbai) of the time. The air quality 318 

is especially unhealthy in Delhi where citizens are exposed to ‘severe’ PM2.5 pollution (>250 319 

µg/m3) for about 10% of the time. It is noteworthy that citizens of all four cities are exposed to 320 

air quality exceeding the 10 µg/m3 WHO guideline nearly 100% of the time. PM2.5 in all the 321 

cities except Chennai severely exceeds the revised Indian NAAQS standards of an annual 322 

average of 40 µg/m3.  323 

These continuous in-situ measurements give us an opportunity to make a robust 324 

assessment of long-term health impacts on a city scale in India (Fig. 7). We estimate that long-325 

term ambient PM2.5 exposure causes 10,200 (95% confidence interval: 6,800–14,300), 2,800 326 

(1,500–4,100), 5,200 (3,100–7,400), and 9,500 (5,800–13,600) premature mortality each year 327 

in Delhi, Chennai, Hyderabad, and Mumbai, respectively. Our premature mortality estimate 328 

for Delhi is reasonably agreed (~10% negative bias) with a previous estimate from the 329 

GBD2016 (GBD, 2016). We estimate that about 248,000 (168,000–340,700), 66,000 (37,400–330 

96,800), 125,000 (78,300–176,100), and 230,000 (145,200–321,700) years of life are lost each 331 

year in Delhi, Chennai, Hyderabad, and Mumbai, respectively. The annual mortality rate per 332 
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100,000 population, which is independent of population size, is 93 (62–130), 60 (33–89), 74 333 

(45–106), 76 (46–108) in Delhi, Chennai, Hyderabad, and Mumbai, respectively. 334 

Cardiovascular disease dominates the disease burden, with ischaemic heart disease (IHD) 335 

contributing ~40% and cerebrovascular disease (CEV) contributing ~30% in each city. 336 

We estimate the health risks of short-term exposure during the New Year and Diwali Fest 337 

in Delhi and provide quantitative evidence to support control of fireworks. The fireworks 338 

during New Year enhance the PM2.5 pollution in Delhi to some extent. The averaged PM2.5 339 

concentration during 1-3 January (276 µg/m3) was about 20% higher than the monthly average 340 

of January (227 µg/m3). This makes the daily premature mortality in Delhi slightly increase 341 

from January average of 43 (24-59) person per day to 50 (28-67) person per day during the 342 

New Year. The fireworks during Diwali Fest contribute substantially to the extremely high 343 

hourly concentration of PM2.5 in Delhi (up to 1676 µg/m3), leading to hazardous short-term 344 

exposure. Crop burning in Punjab and Haryana makes a large contribution to PM2.5 loading in 345 

Delhi during October-November (Cusworth et al., 2018; Jethva et al., 2018), while fireworks 346 

in Diwali Fest can greatly worsen PM2.5 pollution over the period of a few days (Singh et al., 347 

2010). We find that the PM2.5 concentration during Diwali Fest (including the festival start day 348 

and the following two days) is 75% higher (~320 µg/m3) than the two-month average (~183 349 

µg/m3 in October-November) in Delhi over this four-year period. We estimate the short-term 350 

health impacts from ambient PM2.5 concentrations during Diwali Fest at 56 (32-75) premature 351 

mortality per day in Delhi. This is an additional 20 (13-25) daily premature mortality, an 352 

increase of 56% compared with the October-November average of 36 (19–50) daily premature 353 

mortality. This highlights the importance of reducing firework emissions during Diwali Fest to 354 

improve public health.  355 

3.5 Spatial Representativeness and Uncertainty 356 



16 
 

In order to analyse the spatial representativeness of observations in U.S. diplomatic 357 

missions in each city and the corresponding uncertainty, we extract surface PM2.5 358 

concentrations from a global high spatial resolution satellite-retrieved dataset (van Donkelaar 359 

et al., 2015, http://fizz.phys.dal.ca/~atmos/martin/?page_id=140). The extracted dataset 360 

includes the annual averaged (2015-2016) PM2.5 concentration at locations of U.S. diplomatic 361 

missions and their surrounding regions within a distance of 20-100 km. This satellite-retrieved 362 

dataset is of high horizontal-resolution of 0.01 deg. × 0.01 deg. (lat-lon, about 1km × 1km). 363 

The retrieved data has been validated and widely adopted for global health effect analysis in 364 

previous studies (van Donkelaar et al., 2010; van Donkelaar et al., 2015). The standard 365 

deviation and ratios of PM2.5 concentrations between U.S. diplomatic missions’ locations and 366 

averages of surrounding regions are given in Fig. 8. 367 

As shown in Fig. 8, the uncertainty in Chennai and Hyderabad is negligible, with 368 

difference between U.S. diplomatic missions and surrounding regions less than 5%, and the 369 

standard deviations increase slowly with the increase of distance from U.S. diplomatic missions 370 

but always less than 5%. This indicates a relatively homogeneous spatial distribution of PM2.5 371 

concentrations in Chennai and Hyderabad. In Mumbai, the standard deviation varies between 372 

5-7%, with the minimum at a distance of ~60 km. This may be due to the influence of nearby 373 

large cities, such as Pune which is about 100 km away from Mumbai. The difference between 374 

U.S. diplomatic mission in Mumbai and the surrounding regional average is less than 6% in 375 

general, with the maximum underestimation of ~6% when the distance is about 40 km. This 376 

indicates that the observations of U.S. diplomatic mission in Mumbai well represent the nearby 377 

region, at least the region within 100 km. The representativeness of observations in the U.S. 378 

Embassy of Delhi decreases as the distance increases. The U.S. Embassy’s observations may 379 

overestimate the PM2.5 concentrations in Delhi compared with the regional average, but this 380 

overestimation is less than 5% and with standard deviations less than 6% when the distance (or 381 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
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region radius) is less than 60 km. However, the overestimation increases to ~10% with a 382 

standard deviation of ~10% when the distance is 100 km. This indicates a good 383 

representativeness of U.S. Embassy’s observation for Delhi and its surrounding region within 384 

60 km, but may overestimate the PM2.5 concentration and the corresponding human exposure 385 

by ~10% if using U.S. Embassy’s observations to estimate the PM2.5 human exposure in a 386 

larger region of Delhi, such as with a radius of 100 km. This could be due to the higher 387 

urbanization level of Delhi, leading to a higher pollution level in/near the city center.   388 

 389 

4. Conclusions and Discussion  390 

This study has estimated the health risks of long-term exposure to PM2.5 based on in-situ 391 

observations in four Indian megacities (Delhi, Hyderabad, Chennai and Mumbai) during 2015-392 

2018, and quantified the health risks of short-term exposure during Diwali Fest in Delhi for the 393 

first time. We also summarized the local characteristics of seasonal and diurnal variations of 394 

PM2.5, and report the influence of a weekend effect on diurnal patterns. The results from this 395 

study are valuable for modelling studies and helpful in tailoring city-specific mitigation 396 

strategies.  397 

Generally, substantial inter-seasonal variations in PM2.5 are observed in the four cities, 398 

with the highest concentration during winter and the lowest during the monsoon season, when 399 

intensive wet scavenging lowers pollutant concentrations (Naja et al., 2014; Ojha et al., 2012). 400 

Winter is the most polluted season as a consequence of the shallow PBL and increased 401 

emissions from heating (Guttikunda and Calori, 2013; Guttikunda and Gurjar, 2012). Solid fuel 402 

burning is a common form of household heating in winter over India (Dumka et al., 2019; 403 

Jagadish and Dwivedi, 2018). To increase the efficiency of energy use and reduce PM2.5 404 

emissions in cities, we would suggest reduction in use of solid fuels (e.g., replace wood and 405 
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coal with liquid petroleum gas or compressed natural gas) and implementation of 406 

central/electric heating systems with heating centres located in non-upwind regions (e.g., north 407 

or south of Delhi). The megacities of Delhi and Mumbai show a weak morning rush hour effect, 408 

but there is a strong one in Hyderabad and Chennai. For the first time, we report an interesting 409 

and consistent shift of about two hours in the timing of the morning rush hour from pre-410 

monsoon/summer (8 a.m.) to winter (9-10 a.m.), and analyse the influence of a weekend effect 411 

on the diurnal patterns of PM2.5 in Indian megacities. The coastal cities of Chennai and Mumbai 412 

show a clear difference in morning PM2.5 concentrations between weekdays and the weekend, 413 

but no noticeable difference was observed in the inland cities of Delhi and Hyderabad. These 414 

results indicate traffic emissions could be important sources of PM2.5 and highlight the distinct 415 

local characteristics of human activity in each city, which is critical information for modelling 416 

studies. The four cities show significant differences in wind patterns and transport of PM2.5, 417 

suggesting that different control strategies are needed for each city that take into account its 418 

local emission characteristics and meteorological conditions. 419 

In this study, we report the high health risks of exposure to PM2.5pollution in Indian cities 420 

and highlight hazardous short-term exposure during Diwali Fest in Delhi. Across the four cities, 421 

long-term exposure to PM2.5 causes about 28,000 (95% confidence interval: 17,200–39,400) 422 

premature mortality and 670,000 (428,900–935,200) years of life lost each year. Fireworks 423 

during the Diwali Fest lead to severe air pollution in Delhi, and this is responsible for 56 (32-424 

75) premature mortality per day, a 56% increase over the monthly average. More effective 425 

control policies are urgently required to mitigate the health burden and achieve sustainable 426 

development. Previous studies have shown that the dominant emission sources contributing to 427 

the disease burden from ambient PM2.5 exposure are land transport in Delhi, residential solid 428 

fuel burning in Chennai and Hyderabad, and industrial coal burning in Mumbai (Conibear et 429 

al., 2018a). The disease burden is likely to increase substantially in future due to population 430 
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ageing and growth, which enhance the susceptibility to disease, unless stringent emission 431 

control policies are implemented (Conibear et al., 2018b).  432 

We have estimated the PM2.5 exposure in the four cities with continuous observations, but 433 

it is noteworthy that some other Indian cities experience more severe air pollution (WHO, 434 

2016). Continuous, widespread pollutant measurements across India would provide more 435 

complete information on regional pollutant characteristics and overall pollutant levels. More 436 

detailed measurements of the physicochemical properties of PM2.5 in major cities, e.g., their 437 

composition and size distribution, would permit better characterisation of urban sources, and 438 

provide the information needed to design appropriate mitigation strategies. 439 
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Figure 1. Map of Delhi, Chennai, Hyderabad and Mumbai. Surface annual (2015) average of 

PM2.5 is retrieved from satellite observations with sea-salt and dust excluded and at a relative 

humidity of 35% (van Donkelaar et al., 2015).  

 

  



 

  

  
Figure 2. Calendar-view of daily PM2.5 air quality levels averaged over 2015-2018. (a) Delhi, 

(b) Chennai, (c) Hyderabad, and (d) Mumbai. The air quality levels are categorized following the 

Indian national air quality index definitions (https://app.cpcbccr.com/AQI_India). 

 

 

 
Figure 3. Frequency distributions of PM2.5 concentration as a function of wind direction. (a) 

Delhi, (b) Chennai, (c) Hyderabad, and (d) Mumbai. 
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Figure 4. Average diurnal variation of PM2.5 concentrations for each season. (a) Delhi, (b) 

Chennai, (c) Hyderabad, and (d) Mumbai. The statistical values for each city in each season, 

including average, median, 75% percentile, 25% percentile, 95% percentile and 5% percentile, are 

given in Fig. S4-S8. 

 

 

 

 
Figure 5. Average diurnal variation of PM2.5 concentrations on weekdays and at the weekend. 

(a) Delhi, (b) Chennai, (c) Hyderabad, and (d) Mumbai. 
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Figure 6. Proportion of integrated exposure duration to PM2.5 pollution at different levels in 

four cities.  

 

  



 

 

Figure 7. Annual city-specific disease burden from long-term ambient PM2.5 exposure. (a) 

Mortality rate per 100,000 population. (b) Premature mortality per disease of chronic obstructive 

pulmonary disease (COPD), lower respiratory infection (LRI), ischaemic heart disease (IHD), 

cerebrovascular disease (CEV), and lung cancer (LC). (c) Years of life lost.  
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Fig. 8. Spatial representativeness of U.S. diplomatic mission observations in each city. (a) 

Standard deviation of PM2.5 mass concentrations in surrounding region as a function of region 

radius. (b) The ratio between U.S. diplomatic mission observation and regional average as a 

function of region radius.   
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Table S1. Overview of PM2.5 observations in four cities. 

City Lat. / Long. 

[oN / oE] 

Population* 

[million] 

Climate Description Annual 

PM2.5 

[µg/m3] 

Unhealth/Valid# 

[days] 

 

Delhi 28.60 / 77.19 11.0 Subtropical/continental 110 837/1373  

Chennai 13.05 / 80.22 4.6 Tropical/coastal 33 133/1274  

Hyderabad 17.44 / 78.47 7.0 Tropical/continental 56 528/1335  

Mumbai 19.06 / 72.87 12.5 Tropical/coastal 60 565/1293  

*source from census of India 2011 (India Office of the Registrar General and Census Commissioner, 2011) 

#Valid days show how many days with valid data during March 2015 to December 2018. The unhealth-day is counted 

the days with daily-averaged PM2.5 > 60 µg/m3, following the definition of Indian NAAQS (CPCB, 2009). 

 

 

 

 

 
Figure S1. Monthly statistical overview of PM2.5 hourly concentrations. (a) Delhi, (b) Chennai, 

(c) Hyderabad, and (d) Mumbai. The dots indicate the average value; short-scores in the middle 

indicate the median value; the boxes indicate the 25% and 75% percentage values; and the error 

bars indicate the 5% and 95% percentage values. 
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Figure S2. Hourly PM2.5 concentration as a function of PBL height and wind speed. (a) Delhi, 

(b) Chennai, (c) Hyderabad, and (d) Mumbai. 

 

 

 

 
Figure S3. The averaged diurnal pattern of the height of PBL (PBLH) for each season. (a) 

Delhi, (b) Chennai, (c) Hyderabad, and (d) Mumbai.  
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Figure S4. Annual averaged diurnal pattern of PM2.5 hourly concentration. (a) Delhi, (b) 

Chennai, (c) Hyderabad, and (d) Mumbai. The dots indicate the average value; short-scores in the 

middle indicate the median value; the boxes indicate the 25% and 75% percentage values; and the 

error bars indicate the 5% and 95% percentage values. 

 

 
Figure S5. Same as Fig. S4, but during the winter season.  
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Figure S6. Same as Fig. S4, but during the pre-monsoon season.  

 

 
Figure S7. Same as Fig. S4, but during the post-monsoon season.  
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Figure S8. Same as Fig. S4, but during the monsoon season.  
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