
Cloud Instance Selection Using Parallel K-Means and AHP
Taiyang Guo, Rami Bahsoon

guotycn@163.com
r.bahsoon@cs.bham.ac.uk
School of Computer Science
University of Birmingham, UK

Tao Chen
t.t.chen@lboro.ac.uk

Department of Computer Science
Loughborough University, UK

Abdessalam Elhabbash,
Faiza Samreen, Yehia Elkhatib

i.lastname@lancaster.ac.uk
School of Computing and Comm.

Lancaster University, UK

ABSTRACT
Managing cloud spend and qualities when selecting cloud instances
is cited as one of the timely research challenges in cloud computing.
Cloud service consumers are often confronted by too many options
and selection is challenging. This is because instance provision can
be difficult to comprehend for an average technical user and tactics
of cloud provider are far frombeing transparent biasing the selection.
This paper proposes a novel cloud instance selection framework for
finding the optimal IaaS purchase strategy for a VARD application
in Amazon EC2. Analytical Hierarchy Process (AHP) and parallel
K-Means Clustering algorithm are used and combined in Cloud
Instance Selection environments. It allows cloud users to get the rec-
ommendation about cloud instance types and job submissionperiods
based on requirements such as CPU, RAM, and resource utilisation.
The system leverages AHP to select cloud instance type. Besides,
AHP results are used by the parallel K-Means clustering model to
find the best execution time for a given day according to the user’s
requirements. Finally, we provide an example to demonstrate the ap-
plicability of the approach. Experiments indicate that our approach
achieves better results than ad-hoc and cost-driven approaches.

CCS CONCEPTS
•Computer systemsorganization→Cloudcomputing; •Soft-
ware and its engineering→Domain specific languages.

KEYWORDS
Cloud Service Selection, Analytical Hierarchy Process, Parallel K-
means, Clustering, Hadoop, MapReduce
ACMReference Format:
Taiyang Guo, Rami Bahsoon, Tao Chen, and Abdessalam Elhabbash, Faiza
Samreen, Yehia Elkhatib. 2019. Cloud Instance Selection Using Parallel K-
Means and AHP. In IEEE/ACM 12th International Conference on Utility and
Cloud Computing Companion (UCC ’19 Companion), December 2–5, 2019,
Auckland, New Zealand.ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3368235.3368845

1 INTRODUCTION
In contemporary society, cloud computing has attained considerable
attentionandpopularity as a computingparadigm.Asa result of such
success, thenumberof available public cloud services is continuously
growing, including the variety of Infrastructure as a Service (IaaS)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
UCC ’19 Companion, December 2–5, 2019, Auckland, New Zealand
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7044-8/19/12. . . $15.00
https://doi.org/10.1145/3368235.3368845

Figure 1: The number of on-demand Linux cloud instance
types frommajor CSPs in August 2015 and July 2017.

instance types. However, cloud instances offered by a number of
cloud service vendors differ fromone another in specification, perfor-
mance, pricing policies and several other attributes. Figure 1 depicts
thequantityandpurposeof instance typesofferedby themajorCloud
providers in 2015 and 2017. As can be seen in the figure, Amazon EC2
provided 57 different types of cloud instances in 2017. The figure also
shows the increase of the offers in the market from 2017 compared
to 2015. With such scale, the decision of selecting the optimal or
near-optimal instance is a challenge for cloud customers [5, 6].

RightScale conducted its sixth annual ‘State of the Cloud Survey’
in January 2017 [19], detailing the latest trends in the use of cloud in-
frastructure by users. Among other things, the survey asked 1,002 IT
professionals about their adoptionof cloud infrastructure and related
technologies. According to the reported results, central IT teams
have expressed a stake in selecting public clouds (65%) and private
clouds (63%). It is thus evident that selecting the right cloud instance
should strike a balance in meeting the needs of both customers and
professional IT teams. Importantly, though, the problem is not trivial
due to the diversity of candidate solutions and vast variations in pro-
vision. This calls for a systematic method to assist cloud customers
in making the right decision when selecting cloud instances.
The problem of cloud service selection has been addressed in

the relevant literature [9, 15, 17]. The majority of research leverage
multi-criteria decision-makingmethod (MCDM) or the optimisation
method to measure quality and prioritise cloud services. Meanwhile,
some of thework focuses on usingmachine learning to predict cloud
service performance. Despite the progress made to assist customers
decision making, there is still a lack of support for dynamic decision
making that can effectively optimise deployment on a time-aware ba-
sis. Specifically, ‘which resource type ismost cost effective and atwhich
time interval?’ remains an unsolved question. This is the potential
domain for combining machine learning and MCDM methods to
develop a framework of a comprehensive recommendation of both
cloud service types and predicted performance. Therefore, this paper

https://doi.org/10.1145/3368235.3368845
https://doi.org/10.1145/3368235.3368845
https://doi.org/10.1145/3368235.3368845

presents an attempt to tackle this problem by combining data clus-
tering technique with a MCDM technique to systematically assist in
addressing the problem of selecting cloud instances and saving costs.

The core contributions of this paper are:

• Analytical Hierarchy Process and parallel K-means [13] cluster-
ing algorithm are used and combined for solving Cloud Instance
Selection problem (see Section 3).

• ACloud Instance Selection framework for helping customers in
the selection process, where Amazon EC2 cloud instance type
and job submission period was taken as an example. The selection
aims to provide an optimalmatch between customer requirements
and the available Cloud service products (see Section 4).

2 RELATEDWORK
Aside frommanual and arbitrary methods, cloud service selection
methods can be divided into two categories, MCDM-based and
optimisation-based methods.
For MCDM, Saaty [16] proposed the analytic hierarchy process

(AHP) to determine the best choice, which establishes a hierarchic
model using special rating and comparison method to describe the
relationship between decision alternatives, decision criteria, and
goals. Garg et al. [7] propose a framework and an AHP-based rank-
ing mechanism to measure the quality and prioritise cloud services.
In addition, there are some studies which are conducted on specific
types of cloud services like IaaS, PaaS and SaaS. For example, Godse
and Mulik [8] present an approach that makes use of the AHP tech-
nique for prioritising SaaS product features and scoring products.
Menzel et al. [14] propose Multi-Criteria Comparison Method for
Cloud Computing, a framework based on Analytic Network Process
(ANP), offering mechanisms to differentiate IaaS not only by costs
but also bybenefits, opportunities and risks. LimamandBoutaba [12]
describe a framework for reputation-aware software service selec-
tion and rating using multi-attribute utility theory (MAUT). Zhao et
al. [21], inspired by themode of aWeb search engine, propose how to
use Simple AdditiveWeighting to find the appropriate services that
satisfy the users’ multiple Quality of Service (QoS) requirements,
such as service response time, trust level and monetary cost.
The second category consists of optimisation-based methods.

These aim to find a service that maximises or minimises one or
more criteria whilst constraints are satisfied. They use techniques
such as dynamic programming, greedy algorithms and integer pro-
gramming. Chang CW et al. [3] design algorithms based on dynamic
programming to select cloud service providers in order to maximise
the benefits with a given budget. Sundareswaran et al. [18] design
a B+-tree like indexing technique for managing the information of a
large number of cloud service providers, and then leverage a greedy
algorithm to rank and aggregate potential service providers.
Table 1:The specificationsof the sixEC2 instances covered in
the dataset. (GP: General Purpose, CO: Compute Optimised)

Series Instance vCPU ECU RAM Storage Price
type (GB) (GB) $/h

T2 t2.small 1 variable 2 20 0.026
(GP) t2.medium 2 variable 4 20 0.052
M3 m3.medium 1 3 3.75 (SSD) 4 0.070
(GP) m3.large 2 6.5 7.5 (SSD) 32 0.140
C4 c4.large 2 8 3.75 20 0.116
(CO) c4.xlarge 4 16 7.5 20 0.232

Cloud service performance prediction for QoS by using machine
learning has been explored in various aspects in cloud service selec-
tion. Chen and Bahsoon [4] propose a self-adaptive and online QoS
modelling approach, to predict the QoS value as output over time by
using the information on environmental conditions, control knobs
and interference as inputs. Samreen et al. [17] employmachine learn-
ing techniques to develop an adaptive deployment policy, providing
an optimal match between the customer demands and the available
cloud service offerings. Bankole and Ajila [1], used three machine
learning techniques: Support Vector Machine, Neural Networks and
Linear Regression. However, all of the work has not considered pre-
dictingoptimal jobsubmission time, andmore importantly, theyhave
not provided systematic guide to select the optimal cloud service that
better comply one’s requirements. Thus, combing AHP and cluster-
ing algorithm can assist cloud service selection by partitioning cloud
service data into groups, each of which contains different aspects
of information, and taking appropriate decisions to cater customer
requirements as well as predicting optimal job submission time.

3 METHODOLOGY
We now present our approach. We start by discussing the dataset
uponwhich ourwork is based, then present our architectural design,
and finally detail the algorithms that underpin our work.

3.1 Data preprocessing
This work utilises the dataset of Samreen et al. [17], which aims at
exploring the potential use of machine learning in cloud instance
selection. The dataset includes fine-grained snapshots of instance
performance over all times of the day and days of the week for six
different AmazonWeb Services (AWS) instances.
We report on an experiment, which was conducted on Amazon

Elastic Cloud Compute (EC2) due to its wide variety of instance
types and highmarket share. In total, there are six types of instances
with different configurations for the experiment, which used 64-bit
Ubuntu Linux operating system. The detail can be seen in Table 1.
‘vCPU’ refers to the number of virtual cores, The number of ‘ECU’
relates to the amount of EC2 Compute Unit, ‘RAM’ and ‘Storage’ in-
dicate the size of memory and hard disk, ‘Price’ indicates the hourly
charge for using corresponding instance type. Ourwork also focuses
on these six types of instances. The use case application executing
on different instances is VARD [2], a tool designed to detect and
tag spelling variations in historical texts. The output is aimed at
improving the accuracy of other corpus analysis solutions. VARD
is a single threaded and highly memory intensive application. It
holds in memory a representation of the full text, as well as various
dictionaries that are used for normalising spelling variations.
Data collection was continuously repeated using a fixed set of

input texts over a period of seven days with a delay of ten minutes
between each pair of runs. The Linux toolsvmstat and sysstatwere
used to continuously monitor resource utilisation. The dataset con-
sists of three parts. The first part contains the actual output of VARD
running on different EC2 instances. This information is related to
the configuration specification of AWS virtual machine along with
the submission and completion time of VARD. The second part is
related to vmstat monitoring information of the EC2 instances to
capture the resource utilisation every three secondswhilst theVARD
application is running. The final part is the sysstat output, which
is a collection of performance tools. It logs the resource utilisation
details at a fine grain level with a 60 seconds interval between each

successive log entries. The logs of each experimental day are con-
tained in a separate file. We extract CPU and memory utilisation
from the last two partial datasets.

After standardisation and normalisation, we created labels refer-
ring to time in a day. We use the 1 to represent 24 hours, so 0.25 will
represent 6 hours, which will help us to better divide the day into
a time period. It can be noticed that the data were split into four
equally groups according to the time of a day, the first one forth of
samples were assigned the label “early morning” the second forth
were assigned the label “morning”, and then, the next forth were
assigned the label “afternoon”, the last forth were assigned the label
“night”. Detailed information can be seen in Table 1.

Table 2: Labels for the time of day.

Label Portion of time Portion of value Value
Early morning 0:00:00 – 5:59:59 0 ≤ p < 0.25 1
Morning 6:00:00 – 11:59:59 0.25 ≤ p < 0.5 2
Afternoon 12:00:00 – 17:59:59 0.5 ≤ p < 0.75 3
Night 18:00:00 – 23:59:59 0.75 ≤ p < 1 4

3.2 Architecture
Our Cloud Instance Selection framework consists of three main
modules (depicted in Figure 2): Constraints, Decision Support, and
Recommendation Outcome. The most crucial part of the architecture
is the Decision Support module which consists of two phases: In-
stance Type Selection Phase and Execution Period Selection Phase. The
Instance Type Selection phase realises the AHP-based method. The
system sends the result of the first phase as the input of Execution Pe-
riod Selection phase, which leverages the Parallel K-MeansAlgorithm.
There are two elements in the Constraintsmodule, one is customer
requirements, another is the dataset generated by running the cloud
application. The Recommendation Outcome consists of the output
of two methods. We first describe the Constraintsmodule and how
the two phases of Decision Coremodule work. The Recommendation
Outcomewill be introduced in Section IV.

3.3 Constraints
There are two modules of the Constraints, one is cloud user require-
ments and another is the dataset generated by running the case
application. For cloud user requirements, our framework is different
from some existing approaches which used by other cloud vendors
that typically need configuration details from customers. Customer
requirements can be presented by the simple input box where users
do not have to input or search for comprehensive cloud attributes
but provide preferred requirements on simple cloud specification,
performance preference and workload. We now introduce specific

Figure 2: The architecture of our Cloud Instance Selection
framework.

Figure 3: The Cloud Instance Selection framework Architec-
ture.

details of the requirements. CPU: The number of CPU cores which
required by the users. RAM and Storage: The volume of memory
and hard disk which required by the users, the unit of measurement
is GB. CPU utilisation and RAM utilisation: The percentage of CPU
andmemory which required by the users when they execute their
cloud job. Length of execution: The users enter the length of exe-
cution time they need for the whole job, the unit of measurement
is the hour. Number of executions: The customers enter howmany
times they want to execute their job. We can calculate the result of
Length of execution divided by the Number of executions to get the
user preferences of the execution time for a single job. We show an
example of a user’s requirement in Table 3.

3.4 Instance type selection phase
We leverage AHP for choosing optimal instance in the Instance Type
Selection Phase. TheAHPproposed by Saaty [16] is a classicalMCDM
method. The AHP hierarchy consists of an overall goal, a set of crite-
ria for comparingandagroupof tactics for achieving thegoal.Thecri-
teria are pairwise compared according to the importance of criteria.
The alternatives are compared against each of the criteria according
to user preference. Figure 3 shows the hierarchywe build for solving
a cloud instance selection problem. Tohelp customer choose the opti-
mal type of instance is the Goal as the Level-A. Criteria(Level-B) con-
sists ofCPU(B1), RAM(B2) and Storage(B3).Wehave sixAlternatives
corresponding to six instances: T2-Small as C1, T2-Medium as C2,
M3-Medium as C3, M3-Large as C4, C4-Large as C5 and C4X-Large
as C6. We will leverage this hierarchy to help users make decision.

There is an importantquestionabouthowtodefine the importance
of each activity. Saaty proposed a 9-grade value scale to compare
different choices. The scale ranges from 1 (equal importance) to 9 (ex-
tremely importance). We can prioritise the alternatives by pairwise
comparisons and insert the value in a pairwise matrix. The diagonal
of thematrix consists of one, because an element is equally important
when compared to itself. For example, for each pair of activities like
C1 andC2,we insert their determined relative priority in the position
(C1, C2) where the row of C1meets the column of C2. In position (C2,
C1) insert the reciprocal value. Continue to perform pairwise com-
parisons at otherposition in thematrix. Firstly, criteria areprioritised
based on their relative significance to the goal. We consider the CPU

Table 3: An example of a customer’s requirement.

User Requirements Value
CPU (Core) 2
RAM (GB) 3.75
Storage (GB) 20
CPU Utilisation (%) 15
RAMUtilisation (%) 30
Length of execution (h) 2
Number of executions 90
Average job execution time (s) 2/90*3600=80

and RAM as equally important and moderate important than the
storage of instance, because customers always prioritise CPU and
memory when selecting virtual machine types. The result gives the
following matrix of pairwise comparisons, as illustrated in Table 4.
Secondly, alternatives are assessed based on the difference be-

tween their configuration and the users’ preference. For example,
customerswant to choosea cloud instancewith2 cores, 3.75GBmem-
oryand20GBstorage.Whenwe insert thevalue into thematrix ofB2,
M3.medium and C4.large have the highest weight because the vari-
ance is zero.M3.largeandC4.xlargehave the lowestweightdue to the
biggest difference. The larger theweight represents the larger the im-
portance, so thatwe can performpairwise comparisons of C1-C2, C1-
C3, andsoon.After theartificial judgement,wecanget threematrices
of pairwise comparisons forB1,B2andB3, as illustrated inTables 5–7.

After checking the consistency of each pairwise comparison ma-
trix, we compare all the six alternatives with three criteria for select-
ing the optimal instance type. Table 8 shows the results of AHP in
a matrix. The overall priority vector was calculated by using weight
multiply each alternative’s priority value. Because C5 has the high-
est value in the overall priority vector, the optimal alternative is
C5 which represents C4-large when the requirement of user is an
instance with 2 cores, 3.75 GBmemory and 20 GB storage.

Table 4: A decisionmatrix of the goals.

A B1 B2 B3
B1 1 1 3
B2 1 1 3
B3 0.33 0.33 1

Table 5: The CPU decisionmatrix.

B1 C1 C2 C3 C4 C5 C6
C1 1 0.333 1 0.333 0.333 1
C2 3 1 3 1 1 2
C3 1 0.333 1 0.333 0.333 1
C4 3 1 3 1 1 2
C5 3 1 3 1 1 2
C6 1 0.500 1 0.500 0.500 1

Table 6: The RAMdecisionmatrix.

B2 C1 C2 C3 C4 C5 C6
C1 1 0.500 0.333 3 0.333 3
C2 2 1 0.500 4 0.500 4
C3 3 2 1 5 1 5
C4 0.333 0.250 0.200 1 0.200 1
C5 3 2 1 5 1 5
C6 0.333 0.250 0.200 1 0.200 1

Table 7: The storage decisionmatrix.

B3 C1 C2 C3 C4 C5 C6
C1 1 1 5 0.333 1 1
C2 1 1 5 1 1 1
C3 0.200 0.200 1 0.333 0.200 0.200
C4 0.333 0.333 3 1 0.333 0.333
C5 1 1 5 1 1 1
C6 1 1 1 0.500 1 1

Table 8:Thepriority vectors in amatrix for everyalternative.

w C1 C2 C3 C4 C5 C6
B1 0.4286 0.0854 0.2369 0.0854 0.2369 0.2369 0.1185
B2 0.4286 0.1168 0.2994 0.2994 0.0502 0.2994 0.0502
B3 0.1429 0.2194 0.2194 0.0403 0.0820 0.2194 0.2194

O
ve

ra
ll

– 0.1180 0.2118 0.1706 0.1348 0.2612 0.1036

Figure 4: The architecture of the Execution Period Selection
Phase.

3.5 Execution Period Selection Phase
Weused k-means clustering algorithm to build themodel. Execution
time, CPU utilisation and memory utilisation were used as vari-
ables to find the clusters. Euclidean distance was used as the rule
of distance measure. Then, the job submission time was marked
according to different times of the day as described in Section III.A.
In the end, we calculate the proportion between time periods and
each cluster so that we can find the job submission time in which
users are interested. The architecture is depicted in Figure 4 Mean-
while, we use Hadoop to implement the parallelisation of K-means.
Apache Hadoop is an open-source framework for reliable, scalable,
distributed processing of large data sets across clusters of computers
using simple programming models. There are two reasons for using
Hadoop. Firstly,wewant to enhance the scalability of the framework.
The traditional K-means is inefficient and unstable when it is used to
calculate large-scale data sets. In the Future, we plan to incorporate
more service providers, instance types and case applications into
our system, Hadoop offers a new opportunity to solve these prob-
lems through algorithm parallelisation. These have been verified
in detail [10, 11, 20]. Secondly, Hadoop is a free and open-source
distributed computing framework which can effectively reduce the
price of deploying our framework.

In our experimental platform (see Figure 5), three virtualmachines
were used to build the cluster structure, which contains one master
node and two slave nodes. They connect to each other via the local
area network and share one file system (Hadoop distributed file
system).Whenwe submit aMapReduce job via the client, themaster
node is used to distribute the job, and the slave node is responsible
for performing the job. For the experimental software environment
is, we run Hadoop v2.6.4 on top of Linux CentOS v6.5.
Figure 6 is the MapReduce flow chart of parallel K-means algo-

rithm. As seen above, the main work to achieve parallelisation K-
means is to write Mapper and Reducer. Firstly, we copy the dataset
to HDFS and select the initial set of centres. HDFS will divide the
data set into several blocks with equal size. The format of Mapper
and Reducer input is the key-value pair. For the input of Mapper, the

Figure 5: The experimental Hadoop platform architecture.

Figure 6: MapReduce flowchart of parallel K-means algo-
rithm.

key is starting offset of each record, the value is the coordinate of
the point. The role of Mapper is to arrange each data into the nearest
cluster. After the function, the key of output is the index of the centre
which is closest to this points, the value of output is the vector of
this point. Its output is also the input of Reducer. The role of Reducer
is to calculate the average of each cluster which is chosen as the new
centre. Reduce function’s output is the result of MapReduce job, its
key is the index of the cluster and key is the new coordinate of new
centre. This process will be iterated until the result is convergent or
iteration reaches the threshold.

4 EVALUATION
We now compare our approach with the ad-hoc and cost-driven
ad-hoc selection. We use an ad-hoc selection process as the baseline,
where customers randomly select the instance type and time. An ex-
ample is provided to demonstrate how the system is evaluated. In the
cost-driven ad-hoc selection, users input the purpose of the instance
and select the lowest price instance among this series and then they
randomly select their job submission time. As can be seen in Table 1,
T2 andM3 series are designed for general purpose, C4 is a series of

Figure 7: A 3D plot of the K-means result of C4-Large and
C4-xLarge, The red x represents the user’s requirement.

computing purpose. We simulated the requirements of a user as il-
lustrated in Table 3. Through the observation of the data, we assume
that the user who demands job completion within 100 seconds will
buy a general series instance, otherwise they will purchase a com-
puting series instance. We notice that the optimal instance type is
C4-Large, because there is the smallest difference between C4-Large
characteristic and user requirements as illustrated in Table 10.

4.1 CIS framework selection results
As an example, when the CIS framework receives the requirements
of customers, decision matrices are generated by human judgement
as illustrated inTables 4–7, theoutput of InstanceType SelectionPhase
is C5 (i.e. C4-Large), which is indeed the best. Then the Execution
Period Selection Phase built a clustering model for C4-Large dataset
(as illustrated in Figure 7). Through calculating the distance from
the centre, user requirements are assigned into the black cluster.
Consequently, it recommends period 1 (0:00-5:59:59) as the optimal
job submission time. The statistical data is shown in Figure 8. Note
that the framework selects the optimal job submission time as the
onewhich has the highest ratio of the number of jobs with the target
performance. In conclusion, the result is optimal in both instance
type and job submission period based on user requirements.

4.2 Comparison to ad-hoc selection
For the first scenario, the output of random instance type selection is
C6 (i.e. C4-xLarge), which has a big difference from user preference
as illustrated in Table 10. Through calculating the distance from
the centre, the user requirements are assigned into the blue cluster.
Execution period was selected randomly at period 4 (18:00-23:59:59)
(see Figure 7). The full results are shown in Figure 8. Clearly, the
result is not optimal in both instance type and job submission period.

For the cost-driven ad-hoc scenario, because the customer intends
to finish their each job at about 80 seconds, we assume that they
would opt for an instancewith considerable computing power, there-
fore choosing C4-Large as the lowest costing instance type among
the computeoptimised series.We leverage Javaprogramto randomly
select the job submission time, the output of ad-hoc is period 4which
means customers should execute their work at 18:00-23:59:59. As
can be seen in Figure 8, it is not the optimal decision. Thus the result
of cost-driven ad-hoc is optimal in instance type selection but not
optimal in job submission period selection.

4.3 Discussion
The methods and results of the example in different selection ap-
proaches in are shown in Table 9. We repeated this process 10 times.
Experiments indicate that our approach consistently achieves better

Figure 8: The statistical data of optimal job submission time
for C4-Large and C4-xLarge based on target performance.
Number of period reference in Table 1.

Table 9: The methods and results of example in different
selection approaches

CIS Ad-hoc Cost-driven
Framwork Ad-hoc

Type Selection
Method

ITS Phase Random
Selection

Cost-driven
Selection

Type Selection
Result

C5 (C4-
Large)

C6 (C4-
xLarge)

C5 (C4-
Large)

Period Selec-
tionMethod

EPS Phase Random
Selection

Random
Selection

Period Selec-
tion Result

Period 1
0:00-5:59:59

Period 4
18:00-
23:59:59

Period 4
18:00-
23:59:59

Table 10: User requirements and the characteristic of the
instance selected by different approaches

Requirements Characteristics
CPU (Core) 2 cores 2 4
RAM (GB) 3.75 3.75 7.5
Storage (GB) 20 20 20

requirement compliance than ad-hoc approaches. We hence con-
clude that our frameworkcanbeused for effective cloud service selec-
tion. However, there are some limitations in our evaluation. Firstly,
the approach may not scale well in cases where there are thousands
of instance types as the decisionmatrix ofAHPneeds to be generated
by human judgement. Secondly, we only focus on the dataset of six
types of the cloud instances fromAmazon EC2. Investigating awider
range of instance types and those from other cloud vendors is a plan
in future work for more comprehensive evaluation. Finally, K-Mean
clustering is a non-deterministic machine learning algorithm, thus
it is difficult to guarantee its stability. However, this again would be
better determined in a wider study as already discussed.

5 CONCLUSIONAND FUTUREWORK
Cloud service customers are often faced with plenty of trade-offs
when selecting and deploying cloud instances Research into cus-
tomer cloud instance selection is an under-researched area.We have
designed aCloud Instance Selection framework to help customers se-
lect cloud instances and manage cloud spends. We explored the role
of clustering algorithms to support cloud decision making. An over-
all architecture is proposed and Analytical Hierarchy Process and
parallel K-Means Clustering algorithm are combined to address the
problem of Cloud Instance Selection. Specifically, our study focused

onrecommendationsabout the selectionof instance types inAmazon
EC2 and job submission period for the execution of the VARD appli-
cation. Our evaluation results show that: our framework is indeed
effective and can be used for cloud service selection; CIS framework
which combines parallel K-Means and AHP outperforms the ad-hoc
and cost-driven ad-hoc approaches. Our future work will investigat-
ingmore selection criteria and constraints at a larger scale to test the
scalability of our framework,wherewewill includemore service pro-
viders, more instance types, more period options and applications.

REFERENCES
[1] Akindele A. Bankole and Samuel A. Ajila. 2013. Predicting cloud re-

source provisioning using machine learning techniques. In Canadian
Conference on Electrical and Computer Engineering (CCECE). IEEE, 1–4.
https://doi.org/10.1109/CCECE.2013.6567848

[2] Alistair Baron and Paul Rayson. 2008. VARD2: A tool for dealing with spelling
variation in historical corpora. In PG Conference in Corpus Linguistics.

[3] Chia-Wei Chang, Pangfeng Liu, and Jan-JanWu. 2012. Probability-based cloud
storage providers selection algorithms with maximum availability. In 41st
International Conference on Parallel Processing. IEEE, 199–208.

[4] Tao Chen and Rami Bahsoon. 2016. Self-adaptive and online qos modeling for
cloud-based software services. IEEE Transactions on Software Engineering 43, 5
(2016), 453–475.

[5] Cloud Standards Coordination (Phase 2). 2016. Cloud Computing Users Needs -
Analysis, conclusions and recommendations from a public survey. Special Report
003 381 V2.1.1. ETSI. 12–19 pages. http://csc.etsi.org/phase2/UserNeeds.html

[6] Abdessalam Elhabbash, Faiza Samreen, James Hadley, and Yehia Elkhatib. 2019.
CloudBrokerage:A Systematic Survey. ACMComputing Surveys, toAppear (2019).

[7] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. 2011. Smicloud: A
framework for comparing and ranking cloud services. In International Conference
on Utility and Cloud Computing. IEEE, 210–218.

[8] Manish Godse and Shrikant Mulik. 2009. An approach for selecting software-
as-a-service (SaaS) product. In International Conference on Cloud Computing. IEEE,
155–158.

[9] S. Gupta, V. Muntes-Mulero, P. Matthews, J. Dominiak, A. Omerovic, J. Aranda,
and S. Seycek. 2015. Risk-Driven Framework for Decision Support in Cloud
Service Selection. In 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. 545–554. https://doi.org/10.1109/CCGrid.2015.111

[10] Amresh Kumar, M Kiran, and BR Prathap. 2013. Verification and validation of
MapReduce program model for parallel k-means algorithm on hadoop cluster.
In International Conference on Computing, Communications and Networking
Technologies (ICCCNT). IEEE, 1–8.

[11] Qing Liao, Fan Yang, and JingmingZhao. 2013. An improved parallel K-means clus-
tering algorithm with MapReduce. In International Conference on Communication
Technology (ICCT). IEEE, 764–768.

[12] Noura Limam and Raouf Boutaba. 2010. Assessing software service quality and
trustworthiness at selection time. IEEE Transactions on Software Engineering 36,
4 (2010), 559–574.

[13] David JCMacKay and David JCMac Kay. 2003. Information theory, inference and
learning algorithms. Cambridge university press.

[14] Michael Menzel, Marten Schönherr, and Stefan Tai. 2013. (MC2)2: criteria, re-
quirements and a software prototype for Cloud infrastructure decisions. Software:
Practice and Experience 43, 11 (2013), 1283–1297. https://doi.org/10.1002/spe.1110

[15] Ioannis Patiniotakis, Yiannis Verginadis, and Gregoris Mentzas. 2014. Preference-
based Cloud Service Recommendation As a Brokerage Service. In Proceedings
of the 2Nd International Workshop on CrossCloud Systems (CCB ’14). ACM, New
York, NY, USA, Article 5, 6 pages. https://doi.org/10.1145/2676662.2676677

[16] Thomas L. Saaty. 1990. How to make a decision: The analytic hierarchy
process. European Journal of Operational Research 48, 1 (1990), 9 – 26.
https://doi.org/10.1016/0377-2217(90)90057-I Desicion making by the analytic
hierarchy process: Theory and applications.

[17] Faiza Samreen, Yehia Elkhatib, Matthew Rowe, and Gordon S. Blair. 2016.
Daleel: Simplifying cloud instance selection using machine learning. In
IEEE/IFIP Network Operations and Management Symposium (NOMS). 557–563.
https://doi.org/10.1109/NOMS.2016.7502858

[18] Smitha Sundareswaran, Anna Squicciarini, and Dan Lin. 2012. A brokerage-based
approach for cloud service selection. In International Conference on Cloud
Computing (CLOUD). IEEE, 558–565.

[19] Kim Weins. 2018. Cloud computing trends: 2018 state of the cloud survey.
RightScale.

[20] Kehe Wu, Wenjing Zeng, Tingting Wu, and Yanwen An. 2015. Research and
improve on K-means algorithm based on hadoop. In International Conference on
Software Engineering and Service Science (ICSESS). IEEE, 334–337.

[21] Laiping Zhao, Yizhi Ren, Mingchu Li, and Kouichi Sakurai. 2012. Flexible service
selection with user-specific QoS support in service-oriented architecture. Journal
of Network and Computer Applications 35, 3 (2012), 962 – 973. https://doi.org/10.
1016/j.jnca.2011.03.013 Special Issue on Trusted Computing and Communications.

https://doi.org/10.1109/CCECE.2013.6567848
http://csc.etsi.org/phase2/UserNeeds.html
https://doi.org/10.1109/CCGrid.2015.111
https://doi.org/10.1002/spe.1110
https://doi.org/10.1145/2676662.2676677
https://doi.org/10.1016/0377-2217(90)90057-I
https://doi.org/10.1109/NOMS.2016.7502858
https://doi.org/10.1016/j.jnca.2011.03.013
https://doi.org/10.1016/j.jnca.2011.03.013

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data preprocessing
	3.2 Architecture
	3.3 Constraints
	3.4 Instance type selection phase
	3.5 Execution Period Selection Phase

	4 Evaluation
	4.1 CIS framework selection results
	4.2 Comparison to ad-hoc selection
	4.3 Discussion

	5 Conclusion and Future Work
	References

