
SLO-ML: A Language for
Service Level ObjectiveModelling inMulti-cloud Applications

Abdessalam Elhabbash
a.elhabbash@lancaster.ac.uk

School of Computing and Communications
Lancaster University, UK

Assylbek Jumagaliyev
asyl.jumagaliyev@zuhlke.com
Zühlke Engineering Ltd., UK

Gordon S. Blair
School of Computing and Communications

Lancaster University, UK

Yehia Elkhatib
School of Computing and Communications

Lancaster University, UK

ABSTRACT
Cloud modelling languages (CMLs) are designed to assist customers
in tackling the diversity of services in the cloudmarket. While many
CMLs have been proposed in the literature, they lack practical sup-
port for automating the selection of services based on the specific
service level objectives of a customer’s application. We put forward
SLO-ML, a novel and generative CML to capture service level require-
ments and, subsequently, to select the services to honour customer
requirements and generate the deployment code appropriate to
these services. We present the architectural design of SLO-ML and
the associated broker that realises the deployment operations. We
rigorously evaluate SLO-ML using a mixed methods approach. First,
we exploit an experimental case study with a group of researchers
and developers using a real-world cloud application. We also as-
sess overheads through an exhaustive set of empirical scalability
tests. Through expressing the levels of gained productivity and ex-
perienced usability, we highlight SLO-ML’s profound potential in
enabling user-centric cloud brokers. We also discuss limitations as
application requirements grow.

CCS CONCEPTS
•Computer systemsorganization→Cloudcomputing; •Soft-
ware and its engineering→Domain specific languages.

KEYWORDS
Cloud Computing, Cloud Modelling Languages, Domain Specific
Language, Service Level Agreements, Service Level Objectives
ACMReference Format:
Abdessalam Elhabbash, Assylbek Jumagaliyev, Gordon S. Blair, and Yehia
Elkhatib. 2019. SLO-ML: A Language for Service Level Objective Modelling
in Multi-cloud Applications. In Proceedings of the IEEE/ACM 12th Inter-
national Conference on Utility and Cloud Computing (UCC ’19), December
2–5, 2019, Auckland, New Zealand. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3344341.3368805

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
UCC ’19, December 2–5, 2019, Auckland, New Zealand
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6894-0/19/12. . . $15.00
https://doi.org/10.1145/3344341.3368805

1 INTRODUCTION
The growth of the cloud market poses a challenge to its customers
who are already overwhelmedwith awide choice of services [8]. The
scale as well as heterogeneity of the range of offerings and their real
time performance variation are adding more complexity to the de-
cision of cloud service selection [22, 26], particularly in multi-cloud
applications [27].

Firstly, the scale of cloud services is rapidly growing as more
services are offered in the market. A survey of the number of the
main cloud providers showed that 198 instance types were offered in
2017 compared to 134 in 2015 [13]. The number of instance types on
offer fromMicrosoft Azure alone increased more than three times
between 2015 and 2017.

Secondly, providers adopt heterogeneousways to describe in-
stance specifications, pricing, and service level objectives (SLOs).
For instance, Microsoft Azure Cosmos DB and AWS DynamoDB
are largely equivalent NoSQL cloud services. They both express the
availabilitySLO1 in termsof theerror rate, i.e. thepercentageof failed
requests during a billing month. However, Cosmos DB error rate is
calculated in one-hour intervals whereas DynamoDBmeasures it
in five minute intervals.

Thirdly, unexpected performance may result in substantial
financial losses. Recent analysis of some cloud instances shows
that performance levels are inconsistent with the promised offer-
ings [3, 15, 19, 24]. For example, as reported in [27], the performance
of a standard workload on an AWS c4.xlarge instance is quite
the same as that of c4.large although the former is twice both in
specification and cost of the latter.

In view of the above challenges, the process of manually select-
ing the optimal service can overwhelm a human decision maker. In
order to make it easier for customers to select services and deploy
applications, cloud modelling languages (CMLs) were proposed (e.g.
[6], [23], [17],[25],[20], [28]). They provide means for composing
a high level description of a cloud application topology, then auto-
mate their deployment accordingly. Such description, also known
as Infrastructure as a Code (IaC), declaratively represents the ap-
plication architecture, interactions, and the types of required cloud
services. An orchestrator can then utilise the IaC model to deploy
the application on the cloud, as illustrated in Fig. 1.

1Monthly Availability Percentage for Cosmos DB, andMonthly Uptime Percentage for
DynamoDB.

https://doi.org/10.1145/3344341.3368805
https://doi.org/10.1145/3344341.3368805

Figure 1: The general architecture of an IaC-based system
for semi-automated cloud application deployment.

There are, however, twomaindrawbackswith currentCMLs. First,
they lack the support for automated cloud service selection. Cus-
tomers first need to identify the service(s) they need, which is chal-
lengingdue to scale andheterogeneity asdiscussed. Second, there is a
lack of support for modelling SLOs of cloud applications. Customers
need to manually compare cloud provides service level agreements
(SLAs) in order to select a service based on the required SLOs. A few
of the current CMLs support such modelling but through standards
that are designed primarily for web service providers to specify their
services levels, which is unsuitable for use by cloud customers.

In this paper, we aim to address the aforementioned challenges of
scale and heterogeneity in addition to the SLOmodelling gap. Our
aim is to assist cloud customers in selecting cloud services by achiev-
ing interoperability between the provider SLAs and the CMLs. Our
approach is to base the selection on provider guarantees regarding
service performance. That is, we aim to make selection decisions
based on a set of SLOs that are part of the SLAs. However, this re-
quires a customer-oriented language for SLO specification and an
engine that realises a SLO-driven selection of cloud services.

Therefore, we propose a design of a new language for SLOmod-
elling, SLO-ML, that provides a comprehensive syntax for capturing
service level requirements, supporting all SLOs currently used by
IaaS providers and those specified in industry standards. Through
the SLO-ML approach, we aim to raise the level of abstraction pro-
vided to cloud customers. We adopt a generative language approach
whereby customers specify SLOs (i.e. develop SLO-ML script) for
required cloud services regardless of the low level details of those
services. Then, the SLO-ML script will be translated into deployment
code that is utilised by the orchestrator to deploy.

In addition, we present the architecture of a cloud brokerage sys-
tem (CBS) that realises the SLO-ML approach [12]. The customerwill
provide anSLOmodel to theCBS.TheCBSwill thenparse themodels,
select the cloud services, and generate the deployment model. The
broker can also deploy the application on the selected cloud services.

This paper makes the following contributions:
(1) A novel SLOmodelling language, SLO-ML, that supports a com-

prehensive set of SLOs for all types of cloud applications and
covering all SLAs in the current IaaS market;

(2) An architecture of a brokerage system that utilises SLO-ML for
cloud service selection; and

(3) A mixed-methods evaluation of the applicability of SLO-ML us-
ing a real commercial application. Specifically, we assess the
added value through a case study experiment with a group of
developers of different backgrounds, and we also quantitatively
examine the overheads of SLO-ML.
The rest of the paper is organised as follows. §2 motivates the

research through a real world application. §3 and §4 present the pro-
posed approach. §5 evaluates SLO-ML through an experimental user
study where real developers are asked to utilise SLO-ML for cloud
service selection, while §6 evaluates the scalability of the broker
architecture. §7 discusses the findings, limitations, and future work.
§8 comments on related works and §9 draws conclusions.

2 MOTIVATING EXAMPLE
SolveEngine2 is a cloud-based problem-solving service. It aggregates
thousands of optimisation algorithms and uses artificial intelligence
to choose the best ones to solve optimisation problems. Users format
their problems in a supported input format and use the SolveEngine
API to call the service. SolveEngine then applies the suitable solvers
by usingMachine Learning techniques, returning the results in JSON
format. SolveEngine is a container-based application that consists of
two main components, Solver andDatabase (see Fig. 2). The Solver
processes user requests while the Database stores the processing
results. Users can also query the Database to obtain certain data of
interest.

Figure 2: The architecture of the SolveEngine application.

To deploy such 2-component application in the cloud, the appli-
cation operator (a cloud customer in this case) needs to manually
look into different cloud provider SLAs and assess whether or not
they satisfy the application’s SLOs. This is a time-consuming and
challenging task due to the scale and heterogeneity of service offer-
ings as already highlighted. Consider for example an SLO ofMonthly
BandwidthCost, which specifies the customer’s budget for data trans-
fer between components. The cost calculation depends on several
factors such as which provider to use, which service, and in which
region. Taking also into account that the cost will be different for
different permutations of services, the search space will make the
selection decision very challenging for the customer.

3 SLO-MLDESIGNANDCONCEPTS
The key aim of SLO-ML is to provide a comprehensive syntax to cap-
ture all possible SLOs that customers may require to specify service

2SolverEngine is a commercial product developed by SATALIA, and is available at
https://solve.satalia.com/

https://solve.satalia.com/

Figure 3: The architecture of using SLO-ML with the broker.
Compared to the general IaC architecture that is common in
industry (Fig. 1), the proposed architecture provides much
more abstraction and transparency.

levels of their applications. For this purpose, SLO-ML enables cus-
tomers to specify SLOs for each application component. Moreover,
SLO-ML supports SLO specification on both single- and multi-cloud
deployments.

3.1 Design principles
The design of SLO-ML is based on the following principles:
(1) Customer-oriented. SLO-ML is designed to enable customers

to specify their high-level operational requirements in a simple
declarative syntax. SLO-ML differentiates between two classes
of SLOs, namely the service-level SLOs and the application-level
SLOs. A service-level SLO represents a quantitative characteris-
tic of the cloud service regardless of the hosted application. Some
of the service-level SLOs are specified in the provider SLAs with
penalties paid to the customer in case of violation. On the other
hand,anapplication-levelSLOrepresentaquantitativecharacter-
isticof thecloudapplicationasperceivedby theapplicationclient.
This kind of SLO cannot be specified in the SLAs as it depends on
many aspects of the application such as the application architec-
ture, implementation choices, among other. This implies that the
responsibility on satisfying the application-level SLOs is outside
of the service provider. This requires an intelligent intermediary
system that is able to capture knowledge about the performance
of the application when hosted on a certain cloud service and
utilise that knowledge to inform the service selection decision.

(2) Independence. In order to prevent vendor lock-in, SLO spec-
ification needs to be independent of cloud service specification.
Furthermore, it needs to be independent of cloud application
development technology and implementation details. This is to
impose no restrictions on the customer choice of programming

models, and to minimise SLO specification changes when adapt-
ing the application. In fact, the SLO specifications need to be
adapted only when the architecture of the application changes,
as the SLOs can be specified per application components.

(3) Abstraction. Customers should be able to specify SLOs regard-
less of the required type of cloud service, such as SaaS, PaaS,
FaaS, etc.

(4) Separation of concerns. It should be possible to maintain and
adapt isolated SLO specification at an application component
level. For example, a load-balancing component’s SLOs should
be separate from those of a data storage element.

(5) Mapping SLOs A high-level SLOs which specified by users
should be broken down to low-level ones, and then further
mapped to the application component level. For example, the
response time of a three-tier application consists of processing
time for each layers.

(6) Extensibility. Extending capability should be simple. In other
words, addinganewSLOconceptshouldnot require re-engineering
of the CML but just adding a human- andmachine-readable SLO
name along with the appropriate unit and value type, if needed.
Obviously, this requires slightly amending the engine that pro-
cesses the specified model.

3.2 Key elements
At this stage of designing SLO-ML, we adopt textual syntax to repre-
sent SLOs. Themain elements of the current syntax are: name, type,
unit, operator, application, and data_flow.
• name: A unique keyword is used to refer to each SLO. The key-
words are self-explanatory, making it simple for developers to
understand. For example, the keyword Response_Time is used
to refer to the response time SLO.

• value: SLO-ML supports three types of the SLO values: scalar,
interval, and categorical. The scalar type is used to specify a nu-
merical value (e.g. availability = 0.99). The interval type is used
to specify an upper- and lower-bound of SLO value (e.g. response
time between 5ms and 10ms). Categorical types provide a higher
level of abstraction for SLOvalue specification. It allows customers
to specify a category (e.g. low, medium, high) instead of specific
values or a predefined range, relieving customers from specify-
ing an exact value in case they are not certain. For example, for
memory-intensive application, a customer can specify the cate-
gory high for the Memory_Size SLO.

• unit: SLO-ML uses a set of keywords that specify the units ofmea-
surement of each SLO. For example, the Migration_Time SLO is
specified using the hours unit. In addition, SLO-ML contains rules
for unit-to-unit conversion between units of the same kind.

• operator: SLO-ML defines a set of operators that are used to spec-
ify the SLO values. This set includes the operators: less than (<),
less than or equal (≤), greater than (>), greater than or equal (≥),
equal (=), and in (in). For instance, in can be used to indicate that
response_time should be in the interval [5ms,10ms].

• application: This is to specify the application-level SLOs.
• data_flow: This is to specify thedirectionsofdata transferamong
the application components, which are used in the service selec-
tion phase to calculate the expected data transfer costs.

Listing 1A SLO-ML file example
{
"database_comp": { //component 1
"SLOs": [
//service-level SLO
{ "unit": "",
"name": "Monthly_uptime_percentage",
"value": "0.9999",
"operator": ">="

},
//service-level SLO
{ "unit": "GB",
"name": "Monthly_egress_bandwidth",
"value": "2000",
"operator": "<="

}
],
"config": {
"type": "database"

}
},
"solver_comp": {//component 2

...
},
"application": {
"SLOs": [
//application-level SLO
{ "unit": "\$",
"name": "Monthly_bandwidth_cost",
"value": "20",
"operator": "<"

}
]

},
"data_flow": [{
"from": "solver_comp",
"to": "database_comp"

}]
}

3.3 Grammar
We adopt JSON syntax [9] for structuring the SLO-ML file (.slo)
that defines the required SLO. This definition is structure as
a Map<key,value> where the key is an application compo-
nent identifier that is defined in the IaC description, while
value is an array of maps representing the SLOs required for
that component. Each map is a Map<key,value> where the
key is one of the elements described in §3.2 and value is the
corresponding value. Listing 1 shows an example of the SLO
specification of a cloud application that consists of two components,
database_comp and solver_comp. The listing shows that data-
base_comp requires two SLOs, Monthly_uptime_percentage and
Monthly_egress_bandwidth at the service-level. The application
also requires the Monthly_bandwidth_cost which specifies the
budget for data transfer of the application. The data_flow part
shows that data will be transferred from the solver_comp component
to the database_comp. The use of an invalid element key, invalid
element value, or invalid SLO unit will produce a parsing error.

4 BROKERARCHITECTURE
We provide an architecture for a cloud broker that realises deploy-
ment based on user-provided SLO-ML descriptions.

4.1 Overall approach
Our approach views the cloud application as a set of components,
each of which requires a set of SLOs to be specified. The approach

Figure 4: The design of the Realisation Engine.

builds on existing approaches of modelling cloud applications such
as Terraform HCL3, TOSCA4, etc. We assume that the customer
request consists of SLOmodel defined using SLO-ML and the broker
will parse the model, select satisfying services, and then generate
the CML deployment code (HCL, TOSCA, etc.). The broker will then
execute the deployment code to deploy the application.

4.2 Components
Our proposed broker architecture consists of the following main
components, as illustrated in Fig. 4.

Parser andValidator parses both the SLO and IaCmodels to ex-
tract the required SLOs for each component. The validation intends
to evaluate the SLO specification by checking the correctness of the
(i) syntax, (ii) units, and (iii) consistency of the configuration. Syn-
tax validation aims at inspecting the syntax for any errors in using
SLO-ML keywords. Unit validation aims to check for any improper
use of units. For instance, the unit days cannot be used with the
Bandwidth SLO. Consistency validation ensures that component
references in the SLO file correspond to the application components
described in the IaC model.

Knowledge Base is a repository that stores information of the
cloud instances such as their type, provider, and the service levels.
The Knowledge Base also contains monitoring data that represent
the real time performance of the cloud services.

Selector selects services that match the required SLOs for each
component of the application. In its simplest implementation, the
selection is based on provider SLAs. More sophisticated implemen-
tations may include intelligent selection using monitoring data and
consequent predictions of performance. The selection approach
adopted in this paper is founded on quantifying the extent to which
each service SLO satisfies the required SLO by assigning a utility
value to each SLO. These utilities are aggregated to calculate a utility
for each cloud service. The utilities are then maximised to select the
optimal service(s).

In order to assign utilities for each service SLO, we use the func-
tion shown in eq. (1), which are adapted from a utility model for
quantifyingvolunteer services [11]. The functionassigns aminimum
utility of 0 to SLOs that satisfy the corresponding required SLO. The
service SLOs that do not satisfy the required one receive a utility of
−1. The SLOs utilities are then summed up using eq. (2) to calculate
the service utility. For each combination of services, an application-
level utility is calculated using eq. (3), where corresponding SLOs
are aggregated using suitable aggregation functions (e.g. sum for
3https://www.terraform.io/docs/configuration/syntax.html
4https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

https://www.terraform.io/docs/configuration/syntax.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

cost andmin for availability). The application-level utilities are then
maximised to select the optimal service(s).

Ui (Sj)=

{
1−eSLOr −SLOji , if SLO ji ≥SLOr

−1, otherwise
(1)

where SLO ji is the ith SLO of service j, SLOr is the corresponding
required SLO, andUi (Sj) is the utility of SLO ji .

U (Sj)=
n∑
i=1

Ui (Sj) (2)

whereU (Sj) is the utility of service j.

Ui (comb)=

{
1−eAPPr −AGG (SLOi), ifAGG(SLOi) ≥APPr
−1, otherwise

(3)

whereAGG(SLOi) is the aggregate of ith SLO of the services,APPr
is the corresponding required application-level SLO, andUi (comb)
is the utility of the combination of services.

IaC Code Generator generates the deployment code of the ap-
plication based on the selected instances. This deployment code is
readily deployablewithdefault settings of the selected cloud services,
but customers can customise it as they wish.

Deployer receives the deployment code and automates the de-
ployment of the application on the selected cloud instances.

Monitoring records the low level performance metrics of the
selected cloud services. The collected data are stored in the Knowl-
edge Base. The metrics are then mapped to the high level SLOs. If
the mapping results in violation of an SLO, the violation is reported
to the selector to re-select new instances and adapt the application
accordingly. It isworthmentioning that the details ofmonitoring and
adaptation are out of this paper’s scope as we focus on presenting
the modelling language and the realisation architecture.

5 QUALITATIVE EVALUATION
In this section,we evaluateSLO-MLusing an experimental case study.
We first present the experiment setup and the selected case study,
then comment on the results.

5.1 Experiment design
Objectives. The experiment aims at evaluating users productivity,
in terms of the time required to select cloud services, and accuracy,
in terms of the optimally of SLO offerings of the selected service.

Strategy.We compare SLO-ML approach against the manual se-
lection of cloud services where users need to manually inspect and
compare the service specification and SLA offerings in order to se-
lect suitable services for the given use cases. We adopt a controlled
experiment approach where participants are given three user cases.
The use cases are designed to be simple so that they can conveniently
doable by the participantswithin reasonable experimental time. This
controlled experiment strategy design is leveraged to evaluate the
interaction of the userswith SLO-ML. The analysis of this interaction
enables the identification of advantages and limits of SLO-ML in
addition to improvements that can be introduced.

Procedure.The experiment procedure lasts for amaximumof an
hour per participant. Each participant is assigned three use cases to
select cloud servicesfirstmanually thenbydeveloping and executing
SLO-ML scripts for each case. All participants performed the same

use cases and used the same powerful PC. At the end of the exper-
iment, the participant fills a questionnaire about their experience in
programming languages, cloud service selection, cloud application
deployment and application modelling languages and tools. Then,
each participant is asked to respond to a simple questionnaire us-
ing a 5-point Likert scale, to provide feedback about usability and
productivity of SLO-ML and things to improve.

Task: Participants were given three simple architectures of cloud
applications along with their SLO requirements. Each application
consists of one or more components, where every component can
be deployed on a cloud service that should satisfy the functional and
non-functional requirements. Participants are given a list of services
that functionally satisfy the components along with the services’
SLAs. Theyneed tofind services thatmatch the SLOrequirements by:

i) following the current approach where provider SLAs are man-
ually inspected to find matching services, and

ii) writing a SLO-ML script to be utilised for automated search.
Assistance: Before the experiment commences, participants are

introduced to the relevant SLAs of the considered cloud providers,
namely, AmazonWeb Services, Microsoft Azure, Google cloud, and
RackSpace. They are also introduced to SLO-MLwith a brief quick-
start guide (2-3minutes) and a sample script. During the experiment,
additional guidance is provided to any participant requiring assis-
tance for interacting with either the service SLAs and offerings or
with SLO-ML.

Recruitment: Participants were recruited from Computer Sci-
ence researchers and students at Lancaster University, as well as
from software developers at local startups and incubators. An incen-
tive for participation was offered in the form of an online shopping
voucher (value of £10). Overall, 20 participants with varying ex-
pertise levels in programming and cloud systems were recruited.
These were broken down as 8 researchers, 8 graduate students, and
4 professional developers. Further, 11 of them self-reported high
experience (above 5 of a scale from 1 to 7) in JSON, 4 with medium
experience (3-4) and 5with lowexperience (1-2). Regarding expertise
in programming, 8 reported high programming experience (more
than 7 years), 5 of medium experience (4-6 years), and 7 with low
experience (3 or less years). Finally, 8 self-reported knowledge of
cloud application deployment and/or cloud service selection, with
AWS and Google Cloud being the most used providers.

5.2 The SolveEngine case study
We exploit the SolveEngine application (introduced in §2) as a real-
world case study.Weask theparticipants touse it under the following
three experimental use cases:

5.2.1 Single component: In this case, the SolveEngine application
is to be deployed on a hybrid cloud where the Solver component is
hosted locally whereas the database component is deployed on a
cloud service. The customer needs to select a cloud database service
to host the database component. Case 1 in table 1 lists the required
SLOs of the database components.

5.2.2 Case 2. In this case both components need to be hosted on the
cloud. The customer needs to select a cloud database service to host
the database component and a compute service to host the solver
component.

5.2.3 Case 3. This scenario is similar to the previous one. The dif-
ference is that the user has application-level SLOs. The participant
needs to ensure the aggregate SLOs of the selected services satisfy
the application level SLOs. Table 1 shows the bandwidth required
between the components and required availability of the application.
The customer needs to select a cloud service for each component
taking into account the bandwidth budget constraint and needs to
aggregate the Monthly uptime of the services.

Table 1: SLO requirements of SolveEngine

Component SLOs
Case 1
Database monthly uptime percentage ≥ 0.99

monthly consistency percentage ≥ 0.9999
monthly latency attainment percentage ≥ 0.9999
monthly throughput percentage ≥ 0.9999

Case 2
Database monthly uptime percentage ≥ 0.9999
Solver monthly uptime percentage ≥ 0.9999
Case 3
Database monthly uptime percentage ≥ 0.9999

monthly egress bandwidth ≤ 2 TB
Solver monthly uptime percentage ≥ 0.9999

monthly egress bandwidth ≤ 2 TB
Application monthly uptime percentage ≥ 0.999

monthly bandwidth cost ≤ $175

5.3 Accuracy results
The accuracy of the selection is evaluated by calculating the distance
between the utility of the selected services and the optimal one. For
this, the above utility functions (§4) are used to calculate the utility
of the selected services.

Fig. 5 compares the accuracy of each participant’s selection in
both the SLO-ML and manual approaches. In all the three use cases,
the results demonstrate that SLO-ML improves selection accuracy. In
case 1, which is the simplest case, most of the participants manually
selected the optimal service, Microsoft Azure Cosmos DB. This
service is the only one with SLA support of the required SLOs (see
table 1). Despite the simplicity of the case, three of the participants
(P10, P15, and P18) selected wrong services, i.e. services that do
not support the required SLOs (namely, monthly consistency
attainment percentage, monthly latency attainment
percentage, and monthly throughput percentage); hence,
these 3 participants scored an accuracy level of 0 for this use case.

The improvement in accuracy is more notable as the complexity
increases in case 2, and even more so in case 3. In order to highlight
the improvement, we plot the average accuracy in the three cases
in Fig. 7. This figure reveals that there has been a sharp decline in
accuracy using the manual approach as the complexity of the case
increases. This is in contrast to the SLO-ML approach where optimal
accuracy is maintained throughout the use cases.

5.4 Productivity results
The productivity of participants is evaluated by calculating the time
spent to make a decision of service selection. In the case of SLO-ML,

productivity is calculated as the time spent to develop and execute
a valid SLO-ML script whereas in the manual approach case it is
calculated as the time from the beginning of inspecting the SLA
information until deciding on a service.

Fig. 6 compares the productivity of each participant in both ap-
proaches. In all three use cases, SLO-ML significantly reduces selec-
tion time. More importantly, the more complex the use case is the
more significant the improvement is. To better demonstrate this,
we plot the distributions of the time spent by participants in the
three cases in Fig. 8. What can be clearly seen in this figure is the
rapid growth of the completion time of the manual approach as the
complexity of the case increases. On the other hand, the growth is
much slower in the SLO-ML case, indicating its ability to assist devel-
opers in tackling cloud deployment scenarios of complex selection
decisions without a high tax on their time.

5.5 Exit interview responses
After the completion of the three cases, the participants were inter-
viewed in order to survey their experience of using SLO-ML. They
were asked to answer seven question, four of which aimed to assess
productivity and three to assess usability. Responses were collected
using a 5-point Likert scale with anchors from ‘Strongly disagree’
to ‘Strongly agree’.

Productivity. Fig. 9 shows the participant feedback on their pro-
ductivity when using SLO-ML. All the participants agreed that less
time would be required when using SLO-ML especially with com-
plex cases of service selection. All of them also agreed that SLO-ML
makes service selection easier by automating it as opposed to man-
ual inspection of SLAs. Furthermore, 85% of the participants agree
that SLO-ML reduces the possibility of selecting services that do not
satisfy the SLO requirements or services that are less optimal.

Usability. Fig. 10 shows the participant feedback on the usability
of SLO-ML. The majority of participants found SLO-ML and its con-
cepts and notations easy to use and flexible. A few of the participants
(15%) found SLO-ML lacks some features they might need, such as
support for other SLOs. One participant (5%) found that SLO-ML
restricts their freedom as a cloud customer as it does not leave the
final decision of selection to them.

6 SCALABILITY EVALUATION
We now turn our attention to evaluating the feasibility and over-
heads of our approach. Specifically, we aim through experimental
means to identify the factors that contribute to the end-to-end time
of generating the deployment code. For this purpose, we evaluate
the time required to parse the SLO-ML script, select services, and
generate deployment code at different scales. From this, we extract
conclusions about the ability of and the requirements for using the
SLO-ML approach at scale. The used platform is an Intel Core i7 with
16GBRAMrunning LinuxUbuntu v16.04 and Java SE v1.8.0. Each ex-
periment is repeated 100 times to obtain representative mean values.

6.1 Parsing time
This first experiment focuses on measuring the parsing time. This
is the time required for analysing the application structure, in terms
of the required components and the connections between them, and
also the required component- and application-level SLOs. The main

Figure 5: Accuracy of service selection of each case usingmanual and SLO-ML approaches.

Figure 6: The time spent by participants to complete each case using either approaches.

dimensions affecting the scalability of parsing are the number of
components, the number of SLOs and the degree of connectivity.
Specifically,we inspect threedegrees of application connectivity that
correspond to varying application topologies [7]: ‘low’ represents ap-
plications such as Riakwith a ring-like topologywhere a component
only connects to one or two other components; ‘mid’ is analogous to
hierarchical hub-and-spoke and other cliquey structures, e.g. Mon-
goDB and Ceph; while ‘high’ embodies complex applications with
highly connected components such as the microservice architecture
of the Netflix or Facebook infrastructures.

Fig. 11 plots the average parsing time in milliseconds. We notice
that the parsing time increases with the increase of both the number
of SLOs and the number of components. In both cases the increase
exhibits a linear trend.We notice also that the parsing time increases
with the increase in the connectivity degree between the compo-
nents. However, in all cases the parsing time is practically acceptable,

the maximum being ≈1s in a very-large scale deployment of 1000
components and 100 SLOs.

6.2 Deployment code generation time
The next experiment focuses on assessing the time required for the
step that follows parsing, i.e. generating application deployment
code. The generator is written as a Java program that receives info-
rmation of the selected services and writes to a file CML-specific
lines of code. In this paper, we generate code for Terraform deployer,
i.e. the generated code is HCL code 5. The only dimension affecting
the scalability of code generation is the number of components in
an application. We vary this dimension between 100 and 1,000 appli-
cation components – see Fig. 13. We observe a linear trend between
code generation time and the number of components. Nevertheless,
as the figure depicts, the code generation time is quite insignificant

5https://www.terraform.io/docs/configuration/syntax.html

https://www.terraform.io/docs/configuration/syntax.html

Figure 7: Box-plot and mean accuracy of service selection
in each experimental case using either approaches. The
traditional manual approach creates selection decisions
that are further away from the optimum as application
SLOs increase in complexity. Meanwhile, SLO-MLmaintains
optimal selection in all cases.

Figure 8: Box-plot and mean time spent by participants
to complete each case using either approaches. Using the
traditional manual approach, developers needed increas-
inglymore time as application complexity grew. In contrast,
SLO-ML allows them to focus only on SLO specification re-
sulting in significantly reduced time, by a factor of 4.5–7.7x.

Figure 9: Participant feedback on productivity.

even in the case of a high number of components (e.g.≈4ms for 1,000
components), underlining SLO-ML’s practicality in this regard.

6.3 Selection time
The third experiment focuses on evaluating service selection time,
defined as the time required to find a single or set of services that
satisfy the application SLO requirements. The main dimensions af-
fecting the scalability of selection are the number of components
(i.e. required services), the number of candidate services for each
component, and the number of required SLOs.We vary each of these
dimensions, plotting the average selection time in milliseconds in
Fig. 12. Selection time increases significantly with an increase in the

Figure 10: Participant feedback on usability.

number of components, and increases at an exponential ratewith the
number of candidate services. This implies that the service selection
time is the bottleneck of the process especially in the case of a high
number of components and/or services. This issue is discussed more
in the following section.

7 DISCUSSION
Reflecting on our experiences in developing and evaluating SLO-ML,
we draw the following observations and concerns.

7.1 Diversity-induced complexity
During the experimental case study with SolveEngine, many par-
ticipants tend to ignore (intentionally or mistakenly) some of the
options when selecting the services. For example, some participants
made decisions based on a subset of the required SLOs, ignoring the
effect of others. This led to the selection of services that either do
not satisfy the requirements or do but are less optimal ones. This
observation was obvious in case 3 where, perhaps due to its com-
plexity, many participants ignored bandwidth price offerings. We
observed that this oversight is due to two reasons. The first reason is
the difficulty of finding the relevant SLA documents of the required
services. Some participants tended to select services the SLAs of
which are easily found. The second reason is the diversity in band-
width pricing schemes, as several cloud providers charge differently
based on region and availability zone. This seemed to confuse some
participants as theywere not able to determinewhich offering is best
to use, while others did not want to spend time to inspect all of the
offerings and opted for randomly selected one. Although complexity
is clearly to blame for such behaviour, it clearly can lead to wrong
or sub-optimal decision making.

Furthermore, some participants made wrong decisions (i.e. they
selected services that do not satisfy the required SLOs) due to lack
of knowledge. They either looked into irrelevant SLAs or they were
confounded by the heterogeneous terminology adopted by different
providers to express the same SLOs.

7.2 Scalability
Service selection time is themajor contributor to the end-to-end time
of processing SLO-ML script. For the worst experimental case illus-
trated in Fig. 12where an application has 7 different components and
100 SLOs, the selection time between 100 services is 45 milliseconds
which is quite reasonable. Though, this overhead would increase
quite rapidly as complexity grows. In this paper, we implemented
a naïve exhaustive search to find the optimal service. However, in
the case of applications of a higher scale, more scalable selection

Figure 11: Parsing time of SLO-ML script with varied scales and connectivity degrees between components.

Figure 12: SLO-ML’s selection time as the complexity of an application and the number of its SLOs grow.

Figure 13: SLO-ML code generation time for applicationswith
different numbers of components.

algorithms are required. This is beyond the scope of this paper, but
luckily the web service selection literature is rich of such selection
algorithms [10].

7.3 Experimental validity
As is common with experimental case study designs, external va-
lidity (i.e. the ability to generalise the results) is naturally impaired
to an extent in order to attain higher internal validity (i.e. validat-
ing the cause-effect inference). However, by choosing a real-world
application that is representative of a range of user-facing cloud
applications, we are satisfied that our results are indicative of the
significant value added by SLO-ML.

7.4 Future directions
Currently,SLO-MLonly caters toSLOs that are supportedbyprovider
SLAs. For evenmore abstract support of applicationneeds, this needs
to be extended to include application-specific SLOs that cannot be
guaranteed by the provider. An example is the Completion time
SLO that specifies a deadline for a certain job. Such extension, how-
ever, requires run-timemonitoringof the application and continuous
assessment of the SLO’s satisfaction. This also requires the devel-
opment of adaptation techniques to adapt service selection in case
the current selection fails to satisfy the SLOs. In turn, this also re-
quires the accumulationof knowledge about services andapplication
performance, and the utilisation of such knowledge to predict per-
formance before making the selection decision. These issues are the
focus of our ongoing work to extend the SLO-ML approach.

8 RELATEDWORK
A CML uses modelling concepts to raise the level of abstraction,
enabling customers to describe their specific application needs that
could then be systematically matched against cloud service offer-
ings. As such, CMLs have been used to design different aspects
of cloud application engineering [4]. Many CMLs (e.g. Blueprint,
CAML, CloudDSL, GENTL, CAMEL [25]) address the deployment
of services and application components to a cloud environment
by describing deployment configurations. Meanwhile, other CMLs
(e.g. CloudMIG, StratusML, TOSCA) deal with the automation of

cloud resources provisioning, applicationmigration to the cloud and
re-configuration of provisioned cloud services.

A prominent example is the Topology and Orchestration Spec-
ification for Cloud Applications (TOSCA) [2], an OASIS standard
for describing the structure of cloud applications (i.e. components
and relationships) in XML format. Similar efforts include GENTL [1],
CloudML-UFPE [16], and CloudML-SINTEF [5].

Blueprint [23] provides concepts for representing service-based
applications to facilitatedeployment andmigrationoncloud services.
The provided concepts also allow for the representation of different
cloud service offerings. MULTICLAPP [17] introduces a UML-based
profile tomodel components that can be annotatedwith deployment
information. StratusML [18] adopts a similar approach. CAMEL
[25] can be viewed as a ‘superset’ CML as it integrates and extends
existing DSLs. ARGON [28], addresses the issue of abstracting the
complexity of usingCMLsby enablingusers to specify infrastructure
resources then generating deployment code, similar to the SLO-ML
approach. CadaML [21] is used to manage multi-tenant architecture
evolution by transforming an abstract model into the appropriate
code for different cloud data storage types.

There are two main shortcomings of the above and other CMLs.
First, they require the customer to develop a service-specific IaC
model, which means customers need to manually select the cloud
services. Such IaC model can be complex to develop from scratch,
especially for large-scale applications. Second, they provide limited
support for modelling customer SLOs. Instead, they seem to have
been designed with a simplistic representation of the provider’s per-
spective not that of the customer. For instance, Blueprint assumes the
presence of a marketplace where providers can publish their service
descriptions asWS-Policyfiles.WS-Policy is intended to specify non-
functional properties of unary web services, not the complex cloud
services customers use today. Furthermore, such assumedmarket-
place does not exist [13, 14], so suchCMLs are of little practical value
in real-world deployments. SLO-ML addresses the above shortcom-
ings and raises the level of abstraction provided to cloud customers.

9 CONCLUSION
We presented SLO-ML, the first cloud modelling language to auto-
mate the selection of cloud services to satisfy customer service level
objectives (SLOs) and generate the appropriate deployment code.
SLO-ML is specifically designed to capture awide range of SLOs from
customers. Our findings from an experimental case study suggest
that the raised level of abstraction provided by SLO-ML results in sig-
nificant improvements in both developer productivity and optimal
service selection.Wealso identified the limitations of SLO-ML,which
poses a number of research questions for future work in this area.

ACKNOWLEDGMENTS
This work was supported by the Adaptive Brokerage for the Cloud
(ABC) project, UK EPSRC grant EP/R010889/1.

REFERENCES
[1] Vasilios Andrikopoulos, Anja Reuter, Santiago Gómez Sáez, and Frank Leymann.

2014. A GENTL Approach for Cloud Application Topologies. In Service-Oriented
and Cloud Computing. 148–159.

[2] Ankita Atrey, Hendrik Moens, Gregory Van Seghbroeck, Bruno Volckaert, and
Filip De Turck. 2015. An overview of the OASIS TOSCA standard: Topology and

Orchestration Specification for Cloud Applications. Technical Report. IBCN-iMinds,
Department of Information Technology.

[3] Matt Baughman, Ryan Chard, Logan Ward, Jason Pitt, Kyle Chard, and Ian
Foster. 2018. Profiling and Predicting Application Performance on the Cloud. In
IEEE/ACM 11th International Conference on Utility and Cloud Computing (UCC).
21–30. https://doi.org/10.1109/UCC.2018.00011

[4] Alexander Bergmayr, Uwe Breitenbücher, Nicolas Ferry, Alessandro Rossini,
Arnor Solberg, Manuel Wimmer, Gerti Kappel, and Frank Leymann. 2018. A
Systematic Review of Cloud Modeling Languages. ACM Comput. Surv. 51, 1,
Article 22 (Feb 2018), 38 pages. https://doi.org/10.1145/3150227

[5] Alexander Bergmayr, Alessandro Rossini, Nicolas Ferry, Geir Horn, Leire
Orue-Echevarria, Arnor Solberg, and Manuel Wimmer. 2015. The Evolution of
CloudML and its Applications. InWorkshop on MDE on and for the Cloud.

[6] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2014. TOSCA:
Portable Automated Deployment and Management of Cloud Applications. Springer,
527–549. https://doi.org/10.1007/978-1-4614-7535-4_22

[7] Simon Bouget, Yérom-David Bromberg, Adrien Luxey, and François Taiani.
2018. Pleiades: Distributed Structural Invariants at Scale. In IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN). 542–553.
https://doi.org/10.1109/DSN.2018.00062

[8] Cloud Standards Coordination (CSC). 2016. CSC Phase 2: Cloud Computing Users
Needs - Analysis, conclusions and recommendations from a public survey. Special
Report 003 381 V2.1.1. The European Telecommunications Standards Institute
(ETSI). 12–19 pages. http://csc.etsi.org/phase2/UserNeeds.html

[9] Douglas Crockford. 2006. The application/json Media Type for JavaScript Object
Notation (JSON). Internet RFC 4627.

[10] Schahram Dustdar and Wolfgang Schreiner. 2005. A survey on web services
composition. International journal of web and grid services 1, 1 (2005), 1–30.

[11] AbdessalamElhabbash, Rami Bahsoon, Peter Tino, and Peter R. Lewis. 2014. AUtil-
ityModel for Volunteered ServiceComposition. In International Conference onUtil-
ity and Cloud Computing (UCC). IEEE/ACM. https://doi.org/10.1109/UCC.2014.43

[12] Abdessalam Elhabbash, Yehia Elkhatib, Gordon Blair, Yuhui Lin, and Adam
Barker. 2019. A Framework for SLO-driven Cloud Specification and Brokerage.
In 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). 666–667. https://doi.org/10.1109/CCGRID.2019.00085

[13] Abdessalam Elhabbash, Faiza Samreen, James Hadley, and Yehia Elkhatib. 2019.
Cloud Brokerage: A Systematic Survey. Computing Surveys 51, 6, Article 119 (Jan
2019), 28 pages. https://doi.org/10.1145/3274657

[14] Yehia Elkhatib. 2016. Mapping Cross-Cloud Systems: Challenges and Oppor-
tunities. In Conference on Hot Topics in Cloud Computing (HotCloud). USENIX
Association, 77–83.

[15] Nadir Ghrada, Mohamed Faten Zhani, and Yehia Elkhatib. 2018. Price and
Performance of Cloud-hosted Virtual Network Functions: Analysis and Future
Challenges. In PVE-SDN.

[16] Glauco Estacio GonÃğalves, Patricia Endo, Marcelo Santos, Djamel Sadok, Judith
Kelner, Bob Melander, and Jan-Erik Mangs. 2011. CloudML: An Integrated
Language for Resource, Service and Request Description for D-Clouds. CloudCom
(2011).

[17] Joaquín Guillén, Javier Miranda, Juan Manuel Murillo, and Carlos Canal. 2013. A
UML Profile for Modeling Multicloud Applications. In Service-Oriented and Cloud
Computing. 180–187.

[18] Mohammad Hamdaqa and Ladan Tahvildari. 2015. Stratus ML: A Layered Cloud
Modeling Framework. In IEEE International Conference on Cloud Engineering.

[19] K. Hwang, X. Bai, Y. Shi, M. Li, W. G. Chen, and Y.Wu. 2016. Cloud Performance
Modeling with Benchmark Evaluation of Elastic Scaling Strategies. Trans. Parallel
Distrib. Syst. 27, 1 (2016), 130–143. https://doi.org/10.1109/TPDS.2015.2398438

[20] Assylbek Jumagaliyev and Yehia Elkhatib. 2019. CadaML: AModeling Language
for Multi-Tenant Cloud Application Data Architectures. In IEEE International
Conference on Cloud Computing (CLOUD).

[21] Assylbek Jumagaliyev and Yehia Elkhatib. 2019. AModelling Language to Support
Evolution of Multi-Tenant Cloud Data Architectures. In IEEE/ACM International
Conference on Model Driven Engineering Languages and Systems (MODELS).

[22] Cinar Kilcioglu, Justin M. Rao, Aadharsh Kannan, and R. PrestonMcAfee. 2017.
Usage Patterns and the Economics of the Public Cloud. In 26th International
Conference onWorldWideWeb. 83–91. https://doi.org/10.1145/3038912.3052707

[23] Dinh Khoa Nguyen, Francesco Lelli, Yehia Taher, Michael Parkin, Mike P.
Papazoglou, andWillem-Jan van den Heuvel. 2011. Blueprint Template Support
for Engineering Cloud-Based Services. In Towards a Service-Based Internet. 26–37.

[24] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Ylä-Jääski, and Pan Hui.
2012. Exploiting Hardware Heterogeneity within the Same Instance Type of
AmazonEC2. InConference onHot Topics inCloudComputing (HotCloud). USENIX.

[25] Alessandro Rossini, Kiriakos Kritikos, Nikolay Nikolov, JÃűrg Domaschka,
Frank Griesinger, Daniel Seybold, Daniel Romero, Michal Orzechowski,
Georgia Kapitsaki, and Achilleas Achilleos. 2017. The cloud application mod-
elling and execution language (CAMEL). Technical Report. Universität Ulm.
https://doi.org/10.18725/oparu-4339

https://doi.org/10.1109/UCC.2018.00011
https://doi.org/10.1145/3150227
https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1109/DSN.2018.00062
http://csc.etsi.org/phase2/UserNeeds.html
https://doi.org/10.1109/UCC.2014.43
https://doi.org/10.1109/CCGRID.2019.00085
https://doi.org/10.1145/3274657
https://doi.org/10.1109/TPDS.2015.2398438
https://doi.org/10.1145/3038912.3052707
https://doi.org/10.18725/oparu-4339

[26] Maria Salama, Amir Zeid, Ahmed Shawish, and Xiaohong Jiang. 2014. A
novel QoS-based framework for cloud computing service provider selection.
International Journal of Cloud Applications and Computing 4, 2 (2014), 48–72.

[27] Faiza Samreen, Yehia Elkhatib, Matthew Rowe, and Gordon S. Blair. 2016.
Daleel: Simplifying cloud instance selection using machine learning. In
IEEE/IFIP Network Operations and Management Symposium (NOMS). 557–563.
https://doi.org/10.1109/NOMS.2016.7502858

[28] Julio Sandobalin, Emilio Insfran, and Silvia Abrahao. 2017. An Infrastructure
Modelling Tool for Cloud Provisioning. In IEEE International Conference on
Services Computing (SCC). 354–361. https://doi.org/10.1109/SCC.2017.52

https://doi.org/10.1109/NOMS.2016.7502858
https://doi.org/10.1109/SCC.2017.52

	Abstract
	1 Introduction
	2 Motivating Example
	3 SLO-ML Design and Concepts
	3.1 Design principles
	3.2 Key elements
	3.3 Grammar

	4 Broker Architecture
	4.1 Overall approach
	4.2 Components

	5 Qualitative Evaluation
	5.1 Experiment design
	5.2 The SolveEngine case study
	5.3 Accuracy results
	5.4 Productivity results
	5.5 Exit interview responses

	6 Scalability Evaluation
	6.1 Parsing time
	6.2 Deployment code generation time
	6.3 Selection time

	7 Discussion
	7.1 Diversity-induced complexity
	7.2 Scalability
	7.3 Experimental validity
	7.4 Future directions

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

