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ABSTRACT

Internet-of-Things (IoT) systems are becoming increasingly com-
plex, heterogeneous and pervasive, integrating a variety of physical
devices and virtual services that are spread across architecture lay-
ers (cloud, fog, edge) using different connection types. As such,
research and design of such systems have proven to be challeng-
ing. Despite the influx in IoT research and the significant benefits
of simulation-based approaches in supporting research, there is
a general lack of appropriate modelling and simulation platforms
to create a detailed representation of end-to-end IoT services, i.e.
from the underlying IoT nodes to the application layer in the cloud
along with the underlying networking infrastructure. To aid re-
searchers and practitioners in overcoming these challenges, we
propose IoTNetSim, a novel self-contained extendable platform for
modelling and simulation of end-to-end IoT services. The platform
supports modelling heterogeneous IoT nodes (sensors, actuators,
gateways, etc.) with their fine-grained details (mobility, energy
profile, etc.), as well as different models of application logic and net-
work connectivity. The proposed work is distinct from the current
literature, being an all-in-one tool for end-to-end IoT services with
amulti-layered architecture that allows modelling IoT systems with
different structures. We experimentally validate and evaluate our
IoTNetSim implementation using two very large-scale real-world
cases from the natural environment and disaster monitoring IoT
domains.
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1 INTRODUCTION

Internet-of-Things (IoT) systems and networks are increasingly
becoming large, complex, heterogeneous and pervasive. They inte-
grate a large variety of physical devices (IoT devices and sensors)
communicating through different networking connections (cellular,
WiFi) spread across different architecture layers (cloud, fog, edge).
That is, IoT systems are spanning both virtual and physical domains.
The research process in IoT, starting with the idea formulation and
culminating with real-world deployment, requires developing and
validating initial proofs-of-concept and subsequent prototypes [7].

Given the large scale and heterogeneity of IoT systems and net-
works, designing and testing IoT services are challenging tasks [5]
[3]. Prototyping using a large number of hardware nodes may not
be practical during the initial design phase. Similarly, benchmarking
and setting up reproducible experiments are challenging undertak-
ing tasks [6] [7]. To this extent, we argue that simulation-based
approaches are significantly important for research benchmarking,
designing, testing and experimenting IoT systems and networks
(§2).

Simulation-based approaches offer significant benefits to re-
searchers and practitioners [23] [6], supporting and accelerating
research and development of systems, applications and services [5].
Simulation tools are generally important and necessary tools de-
signed and developed to aid researchers in testing their hypothesis,
benchmarking studies in a controlled environment and easily repro-
ducing results, conducting experiments with different workloads
and resource provisioning scenarios, as well as testing systems
performance [23] [5]. In the context of cloud computing, simulators
have accelerated its research and development [5], as quantifying
the performance of service provision in real cloud environments is
challenging [6]. In IoT systems and networks, simulation tools have
also claimed their importance to fill the gap between conceptual
research and proof-of-concept implementation [7].

Despite the influx of research in IoT and the various simulations
environments proposed so far, there is a general lack —to the best
of our knowledge —of modelling and simulation environments
to create a detailed representation of end-to-end IoT services and
related networking. The recent survey by Chernyshev et al. [7]
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concluded that generally there is no available all-in-one simulator
for end-to-end IoT services (§7).

In this paper, we propose a novel self-contained platform for
modelling and simulating end-to-end IoT services with detailed
representation of IoT systems and networking components, namely
IoTNetSim. The main research objective is to assist researchers
and practitioners in designing, validating and experimenting IoT
systems and networks. To this extent, the proposed platform is
designed as a multi-layered architecture, which allows modelling
and simulating IoT systems with different structures, application
models, IoT services and network connections (§3). The modular-
ity of the architecture allows modelling model systems with any
combination of cloud, fog, edge, IoT components according to the
system architecture and design. The extendable design supports
modelling and testing bespoke IoT nodes and network types, as
well as placement algorithms used in designing IoT systems (§4).

IoTNetSim platform contributes to the research community with:
(i) detailed modelling of IoT nodes and sensors, including power
sources and mobility, (ii) modelling and testing IoT networking, cov-
ering different types of network connections used in IoT systems,
and (iii) modelling and simulation of IoT services and applications
from the sensing data phase to data analysis in the cloud. The
platform also supports modelling domain-specific IoT applications
and end-to-end services, as well as processing and testing the per-
formance of IoT systems under varying dynamic workloads with
different quality goals.

We validate and evaluate the proposed platform with a series of
experiments using two contrasting IoT case studies derived from
active real-world deployments (§5, §6). Specifically, we simulated
an IoT testbed for the natural environment deployed in UK and
a large-scale 10T testbed deployed in Japan. Adopting “Open Sci-
ence" principles, we release [oTNetSim environment as open-source
software (Appendix A).

2 BACKGROUND

IoT is defined as “a paradigm that considers pervasive presence in
the environment of various things that through wireless and wired
connections are able to interact and cooperate with other connected
things to create seamless communication and contextual services
and reach common goals" [18]. Accordingly, the IoT paradigm spans
both virtual and physical domains and is supported by the cloud,
fog and edge computing paradigms [1]. An IoT system is typically
composed of several physical devices, spread across different layers
(cloud, fog, edge), that carry out various tasks such as sensing,
controlling, visualisation, data analysis, etc.

The highly heterogeneous entities are interconnected using dif-
ferent connection types and form different network topologies [18].
Data is communicated through these networks for analysis and
decision making in the cloud with minimal or no human interven-
tion [1] [7]. Such connectivity also allows IoT devices to coordinate
more complex tasks and exhibit self-X capabilities such as config-
uration, optimisation, management, and adaptation [30] despite
many being resource-constrained in terms of processing power,
memory capacity, or battery life.

Research and development in IoT are challenging due to the
inherent nature of IoT integrating the physical world with the

virtual one. A typical cycle of IoT research process starts with
the formulation of an idea, eventually culminating in a real-world
deployment. This process requires to develop and validate the initial
proofs-of-concept and subsequent prototypes. Given the large scale
of IoT services, prototyping using a large number of hardware
nodes may not be practical during the initial exploratory design
and evaluation phase, due to economic and operational constraints,
especially when the reliability and utility of the protocol under
consideration are yet to be proven [22]. Additionally, setting up
reliable and reproducible experiments involving real hardware is
challenging and costly, and often requires specific expertise and
domain knowledge [21]. As such, proof-of-concept and theoretical
analysis are typically realised using simulations, and subsequent
prototypes are experimentally evaluated in testbeds.

Generally, IoT simulators should capture precisely real-world
complexity. This includes modelling and simulating the high-degree
of heterogeneity in IoT nodes, diverse application domains and
capturing diversity across IoT layers [15]. IoT simulators are also
challenged to offer high fidelity for real scenarios comprising nodes
failures, network disconnections. Such tools should also support
large-scale simulations and extensions custom requirements such
as new protocols evaluation, IoT services [7]. Given the crucial
role of networks in IoT ecosystems, networking should be expres-
sively modelled, covering different types of networks, signals and
protocols [22].

3 IOTNETSIM ARCHITECTURE

In this section, we outline the architecture of IoTNetSim, including
the different layers for simulating IoT services and networking.

The main objective of IoTNetSim is modelling and simulating
end-to-end IoT services with detailed representation of the IoT
paradigm and associated connectivity. The design rationale of ar-
chitecting IotNetSim is a multi-layered modular architecture, which
allows modelling and simulating different structures of IoT systems.
For instance, a simple IoT system with a set of sensors connected to
the cloud could be modelled with fine-grained details of the nodes.
Meanwhile, a complex system with the sensors connected through
edge and fog devices could also be modelled, allowing different
topologies of networks. Following this design principle, the archi-
tecture of JoTNetSim is mainly composed of different layers for the
Cloud, Fog, Edge, IoT, Application Model and Simulation Applica-
tion, built on top of an event-based simulation engine. Fig. 1 shows
the multi-layered architecture of IoTNetSim. The multi-layered mod-
ular architecture supports modelling different structures for IoT
systems and networks, as well as extensions for further function-
alities and placement algorithms. Below, we discuss the details of
each layer.

Event-based Simulation Engine. As shown in the figure, we
have inherited the event-based simulation engine of CloudSim [5]
[6]. The CloudSim simulation toolkit is one of the widely-used
general purpose cloud simulation environments [14] and the most
sophisticated discrete event simulator for clouds [10] (as discussed
in §7).

Cloud Layer. This layer extends the CloudSim core simulation
engine. CloudSim defines the core entities of a cloud environment,
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Figure 1: The architecture of IoTNetSim.

such as datacenters, hosts physical machines (PMs), virtual ma-
chines (VMs), applications or user requests (called cloudlets) [5] [6].
A Datacenter is the resources provider simulating the infrastruc-
ture of the cloud (IaaS), which includes the hosts running virtual
machines responsible for processing end-user requests (SaaS). Com-
putational capacities of PMs and VMs (CPU unit) are defined by
Pe (Processing Element) in terms of million instructions per sec-
ond (MIPS) [5] [6]. Processing elements in a PM are shared among
VMs and requests in a VM. The simulation also takes into account
the memory, storage and energy consumption of different com-
putational resources. A Datacenter Broker is responsible for the
allocation of end-user requests to VMs. Once the simulation is
started, the requests are scheduled for execution, and the cloud
behaviour is simulated. The cloud layer covers the typical compo-
nents of a cloud, including the physical resources (datacenters and
their PMs), virtual resources (VMs), virtual services (VM services
for end-user VMs provisioning) and end-user services (for running
their service requests and cloudlets).

Fog and Edge Layers. These layers model fog- and edge-related
components respectively, where simulations could include either,
both, or neither according to the conducted experiments. The fog
layer includes details of fog-enabled nodes, fog networks configu-
rations and different types of network connections. The edge layer,
similar to the fog layer, includes edge-enabled nodes and network
edges. This layer also includes edge cloudlets, edge applications,
and modules for basic and real-time data processing.

IoT Layer. This layer encompasses different types of IoT nodes,
networks and services. IoT nodes include fixed and mobile sensors,
link nodes, and gateway nodes. The power sources of each node
type are modelled in detail to allow the simulation of real-time
scenarios. More details in §4.3.

Simulation Application. This is the top-most layer for setting
up different policies and simulation parameters, including schedul-
ing policies, service types, application models, networking configu-
rations, and runtime workloads and scenarios.

The multi-layered architecture allows implementing different
functionalities of IoT nodes for processing and analysing data. For
the networking in the different layers, details for data packets and
network connection types are modelled for real-time scenarios of
network loss and disconnection, as well as network traffic. The
simulations results include quantitative measures of utility for sim-
ulating an end-to-end IoT service across all architectural layers.
Researchers and practitioners, willing to design an IoT ecosystem
and network or study the efficiency/ improvements of an exist-
ing one, would create instances of these layers with their design
and IoT nodes to be used, along with network and applications
configurations.

4 DESIGN AND IMPLEMENTATION

In this section, we provide details related to the design classes and
implementation of JoTNetSim.

4.1 IoTNetSim Design

Fig. 2 shows the class diagram of our design and implementation.
The top-level design is composed of packages, which correspond to
the layered architecture (i.e. IoT, Edge, Fog, Cloud). The packages
also allow encapsulation and reusability of entities that are common
among different layers (e.g. networking, nodes). In more details,
the design is composed of the following packages:

Networking is a common package among the different layers
of the architecture. Each connection type is modelled with signal
type, range, capacity and power model. An instance of a network
connection would inherit these properties from the type, with the
strength of the current signal. This allows simulating real and
hypothetical scenarios of network loss and disconnections. Data
Packet and Data Stream simulate the data transferred with different
sizes between different nodes.

Node is shared among the IoT, Edge, Fog and Cloud layers. The
package includes fine-grained properties that could be used for
modelling and simulating IoT, edge and fog nodes. Properties in-
clude the power source, location, as well as geographic coverage.
Configuring the location allows simulating different placement
possibilities of IoT, edge and fog nodes, as well as their networks,
enabling among other things the investigation of node placement
algorithms.

IoT encapsulates the components necessary for modelling and
simulating an IoT ecosystem. It is composed of: (i) a general class
for IoT nodes, (ii) an interface for mobile nodes, (iii) a class for
sensor nodes with communication functionalities, (iv) link node
class with functions for receiving and forwarding data, and (v) a
gateway node class for nodes capable to aggregate, process and
send data. Our implementation includes the basic functionalities of
these components.

Edge supports creating instances of edge devices with config-
urable computational and storage capacities, as well as configurable
functions of data processing and sending data to either cloud or
IoT nodes.
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Figure 2: The structure of IoTNetSim as a class diagram.

Fog creates instances of configurable fog nodes and associated
networking. A fog node could be any computing/storage device or
micro-server. These devices inherit their computational configura-
tion from the Physical Host of CloudSim and fine-grained properties
from the Node package.

Cloud (as the name implies) represents cloud infrastructure
components. The IoT Datacenter is extended from the CloudSim
Datacenter to include functionalities of storing, processing and
analysing data for IoT services. These functionalities could be ei-
ther basic or real-time and could be further extended for complex
data processing. The Hosts (physical machines) and VMs have also
been extended for tracking energy consumption. IoT Cloudlets and
Service Requests are tailored to support special types of IoT service
requests, such as in-field enquiries and real-time alerts.

The described modular design allows performing simulations
of different possible topologies. For instance, an IoT system could
be designed with an infrastructure directly connected to the cloud.
Other possibilities could be including either or both fog and edge
layers. A node in any layer could be pre-configured with a forward-
ing node, or dynamically configured during runtime.

4.2 The Simulation Process

The platform is a discrete-event simulation with the flow of events
illustrated in Fig. 3. The simulation process could start either by an
end-user submitting a service request to the cloud where the broker
will schedule and provide adequate resources or by IoT sensors
regularly submitting their sensing data by the scheduled reading
interval. Reading data are received by link nodes, which in turn
forward it to the gateway node. A gateway node aggregates data
received and sends it to either the fog, edge or cloud according to
the configured IoT system architecture. The cloud resources are for
data storage, processing and analysis.

If edge nodes are present in the architecture, they will forward
the data to the cloud and/or process it. In case of having fog nodes
only, their job will be to forward data according to the configured
topology. Nodes could also perform as actuators to take actions
according to the data received or the current state of the network.

4.3 Implementation and Experiments Design

Modelling and Simulation of Cloud Infrastructure. We have
extended some core classes of CloudSim, namely IoTDatacenter,
AdvancedHost and AdvancedVM. Extensions include adding neces-
sary quality and power metrics. The IoTDatacenter is extended with
functionalities of storing, processing and analysing data received
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Figure 3: The simulation process in IoTNetSim.

from IoT nodes. The DatacenterBroker —responsible for workload
distribution and resources provisioning —is also extended by queu-
ing models necessary for runtime adaptation capabilities.

Modelling and Simulation of IoT Nodes. Different types of
IoT node could be modelled and configured, i.e. sensors and con-
nectivity nodes. A sensor node is configured with reading interval
and readings dataset. Connectivity nodes could be configured as
link and gateway nodes. Link nodes are responsible for receiving
data from sensor nodes and forward it to gateway nodes. The latter
is more powerful nodes responsible for temporarily storing data
received from link nodes. Gateway nodes can, then, aggregate data
and send it to the cloud, and/ or process it for further actions. IoT
nodes could also be configured as actuators by implementing the
required actions. Examples of actions include sending data to a new
node, and adapting the flow of events or nodes configuration in
case of node failure. Employing combinations of these various node
types enables the modelling of all topologies and architectures of
IoT systems.

IoT nodes are configured with a power source that could be a
battery, USB charging point or continuous power supply. Battery
consumption is tracked during the simulation for real deployments.
Nodes are associated with different types of connections (e.g. 3G
WiFi) and tracked signal strength. Possible data of each sensor are
stored in csv file, and the sensors are configured to read data from
their files and submit a reading at each time interval. Data could
be selected sequentially, randomly, or randomly within a specific
range according to the hypothetical scenarios.

Support for IoT Nodes mobility. Examples of mobile sensors to
be configured include animal tracking sensors and mobile phones.
A mobile sensor extends the sensor node with functionalities of
changing location and altitude. Location and altitude are configured
using (x, y) and z parameters respectively. These could be read from
csv file, changed randomly or systematically following a specific
pattern.

Modelling and Simulation IoT Services and Applications.
We use the IoTServiceType class to model IoT services offered by
the IoT ecosystem, e.g. monitoring service, alerting service or data
acquiring service. A service type is configured by the computational

resources it requires (MIPS). An IoTServiceRequest and IoTCloudlet
are used to model an end-user request for a specific service type.
This allows modelling dynamic workloads by multiple end-users
for a variety of services. A RuntimeWorkload is also added to allow
conducting experiments for consecutive time intervals.

Support for Data Security and Privacy. Security and privacy
are also considered for data transferred between nodes and the
application layer. Our modular design allows researchers to imple-
ment their own algorithms.

Modelling and Simulation of Fog and Edge Computing. Phys-
ical devices could be enabled as fog or edge devices in an IoT system
design. These devices are configured with a network connection
and functions for data processing (cf. [8]). The platform allows
designing the topology of a fog network and network edges where
devices are located.

Modelling and Simulation of Networks and Connections.
Different networks connections could be configured and associated
with IoT, fog and edge nodes. Connection types include Wi-Fi,
3G, Bluetooth, LoRa, Zigbee, short- and long-range radio. Each
connection is detailed with the signal type, capacity, power model
and traffic management protocol. Parameters of any connection
type could be obtained from models developed in the literature.
For an IoT service, tracking the signal type for possible signal loss
scenarios is important when evaluating systems design. Data sent
by different nodes are encapsulated into data packets, where they
are tracked across the network nodes along with their size.

5 EXPERIMENTAL VALIDATION AND
EVALUATION

We conducted experimental evaluation with the aims of: (i) vali-
dating the components of the proposed platform,; (ii) evaluating
its capability to simulate large-scale systems; and (iii) assessing
the IoTNetSim’s capability to model and simulate different IoT sys-
tems. For the validation objective (aim i), we used a simple case
study where we simulated an actual deployment of an end-to-end
environmental IoT with different types of sensors and networking
nodes (§5.1). For the scalability evaluation (aim ii), we simulated
the JOSE testbed for field trials of large-scale IoT services, which
features a large-scale infrastructure and network for IoT services
(§5.2). Each case study features a different application model and
IoT scenarios, and together they help to assess the generality of the
platform by covering the whole design space (aim iii). We run all
experiments on a PC with 2.7GHz Intel Core i7 and 16GB RAM.

5.1 Case Study: End-to-end IoT for the Natural
Environment

In a field study report [19], an end-to-end IoT infrastructure was
designed and deployed for monitoring and managing the natural
environment. The field study covers a geographic region around
Conwy in North Wales, UK. This region is typical of many rural
areas supporting industries including agriculture, forestry, tourism
and fishing but facing challenges caused by climate change. The
region has been exposed recently to many intensive flooding and



Table 1: Details of the nodes in the environmental IoT case study

Node Location Function Specification

Fixed sensors field of study measure air temperature and rainfall soil sensors with short-range radio

Mobile sensors  attached to animals moving around the ~ measure location and attitude of animals livestock tracker with GPS, accelerometer and short-range
field of study radio

Relay node field of study receiving data from sensor nodes and Raspberry Pi model A+ with short-range Xbee and

Gateway node

0.5km away from the field of study

sending them to gateway node
store-and-forward data

long-range Xbee2 radio transmitter
Raspberry Pi model B with a long-range radio transmitter

Cloud server different place than the field of study data storage

and 3G cellular connection
server with database and internet connection

pollution events, storms and periods of drought. An example sce-
nario of the problem is the rejection of shellfish products by the
European Union based on high microbiological pollutant load and
risk to public health, where environmental IoT infrastructure has
been used to identify anomalous events in the region.

Simulation Setup. We have setup the deployment of this case
study using our simulation environment. The testbed consists of: (i)
sensors! used for different environmental measurements, (ii) link
nodes used to collect data received from sensor nodes and deliver
them to the cloud in two kinds: long-range relay nodes and gateway
nodes, and (iii) a cloud server with a database in which all data
received from the gateway nodes are stored. Details of the nodes
are listed in Table 1. Other cloud resources can then access this
server to use the data for analysis, modelling or visualisation. For
the day-to-day running of the deployment, the management service
also records the last time it heard any data from each node, and
the last-reported battery level of each node. The architecture of the
testbed is illustrated in Fig. 4.

Environmental Data. Since the actual readings were not avail-
able from the previous study [19], we configured the sensors to
read from csv files of historical datasets from the UK Centre for
Environmental Data Analysis [13].

< - 4
;,Q 123 ol

Cloud Server (running VM)  Micro-server (Raspberry PiA+) 0T node (Raspberry PiB)  |oT sensors with
with Database with long-range radio and with long-range radio short-range radio
internet connection

Physical Machine Gateway Node Link Node loT Sensor Node

Figure 4: An architectural view of the environmental IoT
testbed (redrawn from [19]).

Validation experiments and results. The objective of the vali-
dation experiments is to examine the correctness of the events’ flow
of the application under investigation given the IoT architecture.
In the validation experiments, we have setup the initial configura-
tion of the testbed, as shown in Table 2. The testbed is composed
of 3 air temperature sensors, 3 surface flow water sensors for air
temperature and rainfall readings respectively, one relay node for
forwarding data, one gateway node for aggregating, storing and
forwarding data, as well as one cloud server for analysing data.

!We excluded animal mobile sensors in our initial evaluation due to the complexities
of their movement patterns.

Each sensor is configured to submit 4 readings/day (reading inter-
val 6 hours) for 30 days. We have used readings of the most recent
30 days of the dataset (from December 2016).

Table 2: Configuration of the environmental IoT testbed

Node Type Number of Nodes
Air temperature sensor
Surface flow water sensor
Relay node

Gateway node

Physical host

Total

O == W W

To validate the simulation environment and ensure the correct-
ness, we traced the data from sensors to the cloud server and their
data packets. We also traced the battery level of different nodes.
The transfer of data between the different nodes of the architecture
is illustrated in Fig. 5. Samples of air temperature and rainfall data
traced at different nodes are listed in Table 3. Such data are sub-
mitted by the sensors to the relay node and then forwarded to the
gateway node. The gateway node aggregates the data of different
sensors and sends it to the cloud server, which in turn stores it and
produces a daily average. These are the expected behaviours for the
IoT nodes considering the testbed configuration. Hence, the results
reflected that the components are correctly implemented.
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Figure 5: Sequence diagram of the Environmental IoT case.

Evaluation experiments and results. To evaluate the capa-
bility of the simulation platform, we ran two sets of experiments
where we vary the number of days and the number of nodes simu-
lated. These two variables represent the scale of an IoT system and



Table 3: Sample of air temperature and rainfall data traced during the validation experiments

Readings Air Sensors (°C) Water Sensors (mm) Relay Node Gateway Node  Physical Host
S1 S2 S3 S4 S5 S6  Temp. readings Precip. readings Temp. Precip. Temp. Precip.
1 -0.34  -0.12  -0.08 0 0.01 0.07  [-0.34,-0.12,-0.08] [0, 0.01, 0.07] -0.18 0.03
; 2 -0.19 0.11 0.47 0.1 0.04 0.02  [-0.19,0.11, 0.47] [0.1, 0.04, 0.02] 0.13 0.05
S 3 0.47 -0.87 -0.69 0.15 0.2 0.02  [0.47,-0.87, -0.69] [0.15, 0.2, 0.02] -0.58 0.12
4 04 -2.06 -0.54 0 0.16 0.14  [0.4, -2.06, -0.54] [0, 0.16, 0.14] -0.73 0.10 -0.34 0.08
1 0.28 0.51 0.49 0 0.01 0.07  [0.28,0.51,0.49 ] [0, 0.01,0.07] 0.43 0.03
t 2 0.33 0.51 0.74 0.1 0.04 0.02  [0.33,0.51,0.74] [0.1, 0.04, 0.02] 0.53 0.05
‘Q“ 3 -0.09  -0.04 0.27 0.15 0.2 0.02  [-0.09,-0.04,0.27]  [0.15,0.2,0.02] 0.05 0.12
4 0.68 -0.93 0.09 0 017 0.14  [0.68, -0.93, 0.09] [0,0.17, 0.14] -0.05 0.10 0.24 0.08
1 1.36 1.71 1.79 0 0 0 [1.36,1.71, 1.79] [0, 0, 0] 1.62 0.00
'; 2 1.59 1.73 1.85 0 0 0 [1.59,1.73, 1.85] [0, 0, 0] 1.72 0.00
‘Q" 3 1.11 1.2 1.5 0 0 0 [1.11,1.2,1.5] [0, 0, 0] 1.27 0.00
4 1.84 0.01 1.36 0 0 0 [1.84,0.01, 1.36] [0, 0,0] 1.07 0.00 1.42 0.00
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Figure 6: Simulation overhead measured as the time of the simulation increases, each point represents the mean of 30 runs.

its runtime. Both sets are based on different reading interval from
the sensors. The variation in the reading interval reflects different
possible scenarios. For instance, a heavy rainy season with expected
flooding would require more frequent sensor readings, while dry
seasons require less frequent readings. We used four different read-
ing intervals in our experiments, which are 24, 12, 6 and 3 hours.
The reading intervals are indirectly proportional to the number of
events in the simulation process to stress test the platform.

In the first set of experiments, we varied the number of days
simulated. We have setup one testbed specified in Table 2 for the
different reading intervals. We have used readings of the most
recent 3 years of the dataset (from the beginning of January 2014
to the end of December 2016). We measured the actual simulation
time and memory footprint for a varying simulation period (1 to
36 months).

Fig. 6 shows the actual simulation time and memory footprint
respectively for the stress experiments. The results show the trend
of both factors increasing by the simulation period. The trend is

also varying clearly according to the reading intervals. The varia-
tions in the simulation period and reading interval helped to stress
test the environment, without requiring a high-performance com-
puter. Additionally, both behaviours are expected which reflects
the correctness of our implementation.

In the second set of experiments, we scaled the testbed by the
number of locations, where each location contains a full setup of
the testbed specified in Table 2. We varied the number of locations
between 1 and 100, i.e. up to 900 nodes. We examined the associated
simulation overhead for different reading intervals for a simulation
period of one month.

Fig. 7 illustrates the actual simulation time and memory footprint.
As expected, the simulation time proportionally increases with the
number of locations and reading intervals. Meanwhile, the memory
footprint shows more fluctuations around the regression line, which
could be attributed to the large variety of data transferred between
a large number of nodes.
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Figure 7: Simulation overhead measured as the number of locations increases, each point represents the mean of 30 runs.

5.2 Case Study: An End-to-End IoT service
using JOSE testbed

The Japan-wide Orchestrated Smart/Sensor Environment (JOSE)
is an open testbed and service platform that can accommodate
large-scale IoT services [28]. It was developed as an IaaS for IoT
services, distributed in 5 cities around Japan. The architecture of
the testbed is illustrated in Fig. 8. The infrastructure consists of:
(i) a huge number of environmental, mobile and camera sensors;
(ii) multiple types of wireless sensor networks; (iii) gateways for
each field trials; (iv) data storage resources at each location; and (v)
computational resources for analysing and processing data for each
sensor type. The storage resources are distributed at all 5 locations,
where each location has 10 PMs, while the computational resources
are distributed at 3 locations, where each location has 400 servers.
For both types of resources, each PM can run 10 VMs.

We simulated the whole testbed (i.e. 5 locations), a total of 50
PMs with 500 VMs for storage, and 1200 PMs with 12000 VMs for
computation. Since the configurations of PMs and VMs in JOSE
are not available, we configured PMs in our simulation as IBM
x3550 servers each of 2x Xeon X5670 3GHz, 6 cores and 256GB
RAM. VM characteristics correspond to the latest generation of
General Purpose Amazon EC2 instances [2], from which we used
m4.large (2 core vCPU 2.4GHz, 8GB RAM). In this case study, we
included more sensor types. In particular, we used air temperature,
air humidity, air pressure, wind speed, and precipitation sensors.
For the sensors data, we used historical datasets from the UK Centre
for Environmental Data Analysis [13].

We configured an end-to-end IoT service for disaster monitor-
ing which is responsible for sending alerts of varying types given
certain thresholds for each measurement (inspired by [12]). For
instance, a flood monitoring service would give a green alert when
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Figure 8: An architectural view of the JOSE testbed (simpli-
fied and redrawn from [28]).

precipitation readings are rising, yellow when they continue to rise,
and red when they reach the flooding threshold. Using this infras-
tructure, we conducted several experiments by varying the number
of sensors of each type at each city. For instance, we configured the
first set of experiments with 1,000 sensors for each of the 5 sensor
types at each city, i.e. a total of 25,000 sensors. We conducted each
experiment at different reading intervals as in the environment IoT
case study, varying the experiment duration (from 1 to 12 months)
and the number of sensors (from 1,000 to 1,000,000).
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Figure 9: Results of simulating the JOSE testbed, each point represents the mean of 30 runs.

Fig. 9 depicts the actual simulation time and used memory for
different experiments. All three factors (i.e. simulation duration,
scale, and reading frequency) increase simulation overhead with a
strong linear trend. Comparing the results of the two case studies,
the simulation overhead varies in the same trend when using the
same reading interval.

6 DISCUSSION

The proposed IoTNetSim platform supports modelling and simula-
tion of end-to-end IoT systems, including the different layers that
an IoT system might be composed of (i.e. cloud, fog, edge). The plat-
form features fine-grained modelling of IoT nodes and associated
networking with different types of connections and area coverage,
as well as a multitude of application and device models.

We applied IoTNetSim in two real cases of contrasting features.
The first case study is of an IoT deployment for the natural envi-
ronment, a current common scenario of IoT services. Starting with
the original small-scale deployment, we conducted a number of
experiments where we varied the experimentation period, scale
and settings. IoTNetSim exhibited very modest overhead in all con-
figurations. Our second case study features JOSE, where IoTNetSim
was able to fully model and simulate such extremely large-scale IoT

infrastructure. The overheads were considerably higher than in the
first use case, due to the nature of the simulated testbed. We argue
that the environment presents a reasonable benefit-cost ratio in
terms of enabling a thorough evaluation of such large-scale system
prior to deployment (which would cost the vicinity of $3m as a
conservative estimate).

Based on the modelling and simulation challenges in IoT by
Kecskemeti et al. [15], we argue that our work tackled the following:
(i) the ability of modelling device heterogeneity, that is accommo-
dating diverse sensor and actuator types with their fine-grained
details, as well as resulting data types and sizes; (ii) modelling dif-
ferent population of sensors and actuators, where researchers can
conduct what-if scenarios to study the placement, population and
density of sensing devices and their effect on the accuracy of data
analysed; (iii) realistic parametrisation of IoT simulation models,
such as reading intervals, network signals, devices failure, battery
consumption; (iv) support for online decision making, where re-
searchers can incorporate live data and process multiple scenarios.
Also, the platform is customisable and extendable, supporting new
device models and different experiments.

Meanwhile, there are potential threats to validity of the proposed
work. First, the choice of the evaluation case studies and the testbed



Table 4: Current simulators used for IoT research sorted chronologically and compared against our IoTNetSim.

Simulator Ref.  Application Layer Cloud Layer Fog/Edge Layer IoT Nodes Networking-support Mobility-support
PlanetSim [9] X v X X v X
J-Sim [26] X X X X v v
OverSim [4] X v X X v X
OMNeT++ [29] X X X X v v
MDCSim [17] v v X X v X
NS-3 [24] X X X X v v
CloudSim [6] v v X X X X
GreenCloud [16] v v X X v X
iCanCloud [20] v v X X v X
SimIoT [27] v v X X X X
iFogSim [11] v v v X X X
10TSim [31] v v X v X X
IoTNetSim  [this] v v v v 4 v

configurations could be biased by the authors’ background and
knowledge. Our mitigation strategy for this issue was to base the
case studies on previous work [19] and actual testbeds [28] by a
different group of researchers, which makes us believe that the
evaluation setup is practical and challenging. Second, the fact that
the proposed work is evaluated by its authors presents a threat
to objectivity. To mitigate this risk, we sought to conduct other
sets of experiments with other researchers in order to ensure wide
feasibility of the platform. Third, there is a lack of validating the
simulation accuracy against the real system in a systematic manner.
Yet, the results reflect the expected behaviour of the simulation.
While the simulation environment supports scenarios of network
failures and/ or signal loss, we have not included such scenarios in
our initial evaluation. The simulation environment is also able to
support a wide range of sensors, but we have not included all such
types (e.g. mobile sensors) in our experiments due to the complexity
of moving their locations. Such scenarios require evaluation using
multiple hypothetical scenarios, which is beyond our scope here.

7 RELATED WORK

Table 4 exhibits a comparative summary of the features of the
simulation environments discussed below.

A recent survey [7] categorised IoT simulators into ones that
support IoT elements and those that focus on IoT applications. An
example of the former category is iFogSim that focuses on resource
management for fog and edge computing [11] but lacks modelling
IoT nodes and support for networking. Examples of the latter cate-
gory include IOTSim for modelling and analysing IoT applications
and big data processing [31] and SimIoT for evaluating job process-
ing times in cloud-based systems based on sensor data [27]. The
survey also considered general-purpose network simulators that
evolved to support IoT-specific components.

Network simulators such as J-Sim [26], OMNeT++ [29] and
NS-3 [24] have been extensively used in wireless sensor networks
research. Peer-to-peer and overlay networks have been simulated
in OverSim [4] and PlanetSim [9] respectively. However, the lack
of built-in support for IoT standards, IoT-specific radio models and
application-level protocols limits their practical applicability for
IoT research.

Notable cloud simulators include: CloudSim [6], a modular
simulator of large scale clouds; GreenCloud [16], a packet-level
simulator of energy-aware cloud data centers; MDCSim [17] for
simulating multi-tier data centres in detail; and iCanCloud [20]
which focuses on modelling flexibility and scalability. Other tools

specialise in simulating specific issues, such as power consumption
and scientific workflows processing and containers in cloud data
centers [25]. Some cloud simulators have been extended for mod-
elling fog and edge computing, yet they are limited in supporting
IoT nodes.

8 CONCLUSION AND FUTURE WORK

We presented IoTNetSim, a novel platform for end-to-end modelling
and simulation of IoT systems and services, i.e. from data sensing
phase to data analysis in the cloud. The self-contained environment
embeds modules for detailed modelling of IoT nodes, supports dif-
ferent designs of IoT networks, and simulates scenarios of network
and battery failures. We demonstrate through experimental evalua-
tion that IoTNetSim is able to model and simulate large-scale IoT
infrastructures and different IoT services with reasonable overhead.

To complement the evaluation, we plan to evaluate the accuracy
of the simulation results. We also plan to conduct further evalua-
tions of IoT services from different domains, such as smart home
and digital health, as well as case studies that feature mobile sen-
sors (e.g. smartphones and animal trackers). Our future work will
focus on automating the placement of IoT nodes using different
algorithms. Such extension helps in designing IoT architectures for
more efficient data collection and topology design.
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