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Abstract 

One extremely sensitive and highly successful application of Raman spectroscopy is the structural 

characterisation of proteins Understanding higher order structure and its effect on protein stability 

is essential not only for biopharmaceutical and food manufacturing but also for the understanding of 

diseases that result from the misfolding of proteins including diabetes type II, Alzheimer’s and 

Parkinson’s disease. Due to the large amount of structural information available in Raman spectra, 

even small alterations in protein conformations including increased exposure of binding regions or 

changes in geometry of secondary structural elements can be identified. In this study, we 

demonstrate the unique sensitivity of Raman spectroscopy to subtle structural transitions in an 

intrinsically open, flexible protein, αs-casein, in response to phosphorylation and deprotonation. 

Through the application of 2D correlation analysis two separate transition phases have been 

identified from pH 6-9 and pH 10-12 for both phosphorylated and dephosphorylated αs-casein. 

However, the actual structural changes observed in each pH range differed considerably between 

the phosphorylated and dephosphorylated αs-casein. Furthermore, the presence of the 

phosphorylated serine residues is demonstrated to have a shielding effect during deprotonation of 

the protein.  
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Proteins, including enzymes, antibodies and transport molecules, are not only essential for 

maintaining health, but also play an important role in biopharmaceutical and food manufacture. 

However, regardless of the role they play proteins will only function optimally when in the correct 

structural conformation and devastating effects can occur as a result of protein misfolding, for 

example diseases such as Alzheimer’s, Parkinson’s, diabetes Type II and atherosclerosis all result 

from misfolded proteins forming amyloid fibril plaques.1 Maintaining the correct fold is also essential 

for protein based therapeutics and in food manufacturing if protein activity is to be preserved 

throughout production and storage.2-4 Even small changes in conformation that occur as a result of 

post-translational modifications (PTM) and variations in preparation and formulation, including pH, 

can affect protein stability and function. Consequently, there is a need for analytical methods that 

can identify subtle changes in conformation and stability throughout the manufacturing processes. 

Raman spectroscopy provides an ideal analytical tool to assess changes in the higher order structure 

and stability of proteins. The technique is non-destructive, rapid, can be applied to low and high 

concentrations of samples and as water is a weak Raman scatterer it can be applied to proteins in 

aqueous conditions.    

Phosphorylation is an important PTM, which effects protein conformation and stability. The 

phosphorylation of a protein by a kinase, or dephosphorylation by a phosphatase can play an 

essential role in cellular processes.5, 6 In particular, the heavily phosphorylated casein proteins, act as 

both storage and transport molecules for calcium in the mammary glands but also act as protecting 

agents against amyloid formation during self-association of individual caseins.7-9 Due to the 

difficulties in crystallising caseins they were all initially thought of as random coil or intrinsically 

denatured proteins, however, a range of spectroscopic studies have identified the presence of 

secondary structural elements including α-helix, β-sheet, turns, and polyproline  II (PP-II) 

confirmation, although the exact percentage content of each is still to be unequivocally determined. 
7, 9-12 Despite the existence of such structural elements, caseins do not form globular conformations 

but remain in more open and flexible forms.7, 9 This open and more flexible structure of caseins 

compared to other proteins is attributed to the high content of proline residues and high surface 

hydrophobicity7, 8, 11 and whilst this offers some flexibility in the protein conformation maintaining 

protein stability and the correct fold is still essential for protein function. Studies of the individual 

caseins suggest that αs1- and β-casein play an important role in preventing protein misfolding and 

amyloid formation in αs2- and κ-caseins, respectively, during self-assembly and aggregation in the 

absence of calcium.7-9 In this study, we have compared pH-induced structural changes in bovine αs-

casein (a mix of the two αs1- and αs2- components at a 4:1 ratio in bovine milk) in both the 

phosphorylated and dephosphorylated forms to investigate important changes in protein 

conformation that result from deprotonation and phosphorylation using Raman spectroscopy and 

2D correlation analysis. 

 

Experimental 

Data collection 

Samples of phosphorylated and dephosphorylated αs-casein from bovine milk were purchased from 

Sigma Aldrich and used without further purification. Separate samples were prepared at different 

pH’s in the pH range 5.7 to 12.3 at concentrations of 10 mg/mL, to ensure full deprotonation of the 
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protein. The dry material was dissolved in deionised water and pH was adjusted using dilute NaOH 

or HCl. The pH of each sample was measured using a pH meter (HI2210) by Hanna Instruments 

(~0.5). For the phosphorylated αs-casein sample pH values of 5.7, 6.5, 7.7, 8.7, 9.2, 10.2, 11.1 and 

12.1 were recorded and for the dephosphorylated αs-casein pH values of 6.1, 7.0, 7.6, 8.9, 10.1, 11.7 

and 12.3 were recorded. Native samples (samples without any adjustment of pH) were recorded at 

pH 6.5 for phosphorylated αs-casein and pH 7.0 for dephosphorylated αs-casein. 400 µL of each 

solution was pipetted into a quartz 96-well plate before spectral collection. All Raman 

measurements were performed using a confocal Raman system (inVia, Rensihaw plc, Wotton-Under 

Edge, UK) coupled to a 785 nm wavelength laser, x15 objective and 1200 mm grating. Spectra were 

acquired for 10s exposure with 180 accumulations (total collection time 30 minutes) with a laser 

power at sample of ~30 mW. 3 repeat spectra were collected for each pH and then averaged for 

data analysis. 

2D correlation spectroscopy (2DCOS) 

2DCOS is a cross-correlation technique, which can be applied to a set of perturbation-induced 

spectra as a function of two independent wavenumber positions. The acquired data set (ordered in 

the direction of relatively consistent perturbation-induced changes) forms an experimental matrix to 

which the cross-correlation function is applied resulting in a new set of matrices improving 

visualization and therefore interpretation of the spectral variations.4, 13, 14  Synchronous matrices 

identify similarities in behaviour, whilst asynchronous matrices identify differences in behaviour 

between data points at two independent wavenumbers. Autocorrelation plots display significantly 

varying peak intensities (identified in the synchronous matrix) from which the overall extent of 

intensity changes of individual bands can be determined and compared. Perturbation correlation 

moving windows (PCMW) matrices relate the spectral variations to the specific perturbation values 

identifying distinct phases in behaviour.4, 13, 14  

As has been extensively discussed in previous papers, appropriate data preprocessing is necessary to 

generate reliable and clear 2DCOS plots, particularly with biological samples.15, 16 For the Raman 

spectra presented here solvent extraction, normalisation to the intensity invariant Raman band 

measured at ~1450 cm-1 (arising from methylene deformations), baseline subtraction and smoothing 

were all carried out in MATLAB software (version R2016a) using an in-house toolbox. Interpolation 

was also applied to the 2DCOS data sets before calculation of 2DCOS matrices. Full details of all data 

processing approaches are available in Supplementary Information).  

 

Results and Discussion 

Comparison of phosphorylated and dephosphorylated αs-casein  

Figure 1 compares the Raman spectra of the phosphorylated and dephosphorylated forms of αs-

casein where numerous Raman features assigned to amino acid residues and secondary structure 

can clearly be observed (Table 1).  As previously reported by Jarvis et al.17 who successfully 

quantified casein phosphorylation using Raman spectroscopy, the two spectra are very similar with 

only minimal intensity differences between the phosphorylated and dephosphorylated forms of αs-

casein. In Figure 1 the bands assigned to side chain residues at 1003 cm-1 (Phe),18, 19   850/830 cm-1 
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(Tyr Fermi Doublet)20, 21 and 755 cm-1 (Trp)22, 23 as well as bands assigned to secondary structure at 

1667 cm-1 (β-sheet),24 1337 cm-1 (α-helix / Trp),25, 26 1318 cm-1 (α-helix)15, 26 and 1250 cm-1 

(disordered)15, 27 can all be observed to have a slightly higher intensity in the phosphorylated 

spectrum compared to the dephosphorylated spectrum. The decrease in Raman spectral intensity 

has previously been attributed to a loss of structure and a change in solvent exposure of the 

aromatic amino acids.17, 28 In particular, the significant difference in intensity and bandwidth at 1003 

cm-1 was identified as an important feature in the calibration method used to quantify 

phosphorylation.17  

However, previous studies using CD and fluorescence spectroscopy to measure secondary structural 

differences between phosphorylated and dephosphorylated αs-casein could not identify any 

differences in secondary structure and in fact an increase in secondary structure in the 

dephosphorylated form has also been suggested.8 Raman bands can arise specifically from side chain 

orientation as well as the quantity of amino acids and secondary structure and therefore changes 

observed in the Tyr and Trp Raman bands at 755, 850/830 and 1337 cm-1 can be associated with 

changes in side chain orientation and/or solvent exposure (Table 1). Variations in the wavenumber 

position of α-helical assigned bands in the region of 1315-1345 cm-1 have also been associated with 

subtle changes in α-helical symmetry25 and again, it may be these changes rather than a distinctive 

loss of secondary structure that is being detected by the spectral variations observed in Figure 1.  

Importantly, in Figure 1 there are several Raman bands with the same intensity and position 

regardless of whether αs-casein is phosphorylated or not including Raman bands observed at 1615, 

1208, 1173, 1124 and 930 cm-1.  

 

Figure 1. Averaged (n=3) Raman spectra of phosphorylated αs-casein (blue) and dephosphorylated 

αs-casein (red). Further information on band assignments is provided in Table 1.  

 

Table 1. Proposed Raman band assignments for phosphorylated and dephosphorylated αs-casein 

Wavenumber Proposed Assignment 

1667 cm-1 β-sheet24 

1615-1600 cm-1 Tyr, downward shift with protonation, minor contribution from Phe21, 29, 30  

1575 cm-1 Tyr21  

1550 cm-1 Trp18, 22 

1460 cm-1 Side chains, Ala, Leu 31 

1447 cm-1 CH2 def 15, 32 

1400-1415 cm-1 Carboxyl stretch, ionization state 15, 29, 30 
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1337 cm-1 Trp26 α-helix25 

1318 cm-1 α-helix15, 25 

1262 cm-1 α-helix26, 29 

1250 cm-1 Disordered structure15, 27 

1234 cm-1 β-sheet24 

1208 cm-1 Tyr21, 32 

1173 cm-1 Tyr21, 32 

1124 cm-1 Trp32 

1065 cm-1 C-C stretch, Charged side chins Lys, Asp and Glu32, 33 

1030 cm-1 Phe19, 32 

1003 cm-1 Phe18, 19 

980 cm-1 Phosphate stretch17, 28, 34 

930 cm-1 α-helix15, 24 

850cm-1 Tyr,  in-plane ring-breathing motion 20, 21 

830 cm-1 Tyr, C-H out of plane bending20, 21 

755 cm-1 Trp, indole ring18, 24 

 

With the exception of the band observed at 930 cm-1 these invariant bands are assigned to Tyr and 

Trp residues reflecting that the numbers of specific residues remain consistent between 

phosphorylated and dephosphorylated forms of αs-casein reported as 10 and 2 for bovine αs1-casein 

and 11 and 2 for bovine αs2-casein, respectively.7, 35 The band at 930 cm-1 is assigned to α-helix 

content and has not been shown to change with variations in α-helix symmetry15 also suggesting 

that while the overall secondary structure content of αs-casein remains consistent regardless of 

phosphorylation subtle changes in conformation can be determined. Interestingly, the Raman band 

at 1003 cm-1 assigned to Phe displays the largest difference in intensity in Figure 1 despite this peak 

often being assigned as invariant to conformation changes and being used for normalisation of 

biomolecular spectra, although more recent studies suggest that changes in intensity are associated 

with variations in interactions and backbone orientation around the Phe residues.18, 19 As previously 

stated Jarvis et al.17 determined that the Raman band at 1003 cm-1 was the largest contributing peak 

in the quantification of phosphorylated to dephosphorylated αs-casein ratios. There is a difference in 

the number of Phe residues in bovine αs1-casein (n=8) and αs2-casein (n=5) which may differ slightly 

in ratio in the phosphorylated and dephosphorylated αs-casein samples available from Sigma Aldrich 

as exact αs1-casein:αs2-casein ratios are not determined although in bovine milk this is reported as a 

4:1 ratio. The importance of the Raman band at 1003 cm-1 for quantification of phosphorylation may 

also be a result of its proximity to the 980 cm-1 phosphate stretch band (discussed below) which is 

observed as a shoulder in Raman spectrum of phosphorylated αs-casein.  

The challenge of observing phosphate peaks in proteins is well documented and has previously been 

accredited to the presence of overlapping peptide bands in the same region as well as the lower 

solubility of phosphorylated proteins in aqueous solution compared to phosphorylated amino 

acids.17, 36 However, in a previous study we successfully demonstrated that the presence of 

phosphate peaks at ~980 and 1080 cm-1 in Raman spectra of amino acids and proteins is very much 

pH dependent.28  In Figure 1 a shoulder at ~980 cm-1 can be observed for phosphorylated αs-casein at 

a native pH 7 whose increasing intensity is associated with the number of phosphorylated 

monomers in a dibasic form (-OPO3
2-) where the negative charge is delocalized over the three 

oxygen atoms.5, 28, 34 The phosphate peak at ~1080 cm-1 is associated with the monobasic form (-
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OPO3H-) and therefore increases in intensity with increasingly acidic conditions. Only once highly 

acidic conditions (pH<2) are reached does stabilization of the fully protonated structure occur (-

OPO3H2).5, 28, 36 examined closely the spectra in Figure 1 do reveal a slightly broader peak at ~1080 

cm-1 in the phosphorylated compared to the dephosphorylated form of αs-casein, which may be 

associated with a monobasic phosphate stretch. However, the feature is too small to be conclusive 

without further investigation and is not observed in the averaged spectrum measured at pH 5.7 

(Figure 2b). 

 

Phosphorylated αs-casein 2DCOS autocorrelation 

As previously discussed the presence or absence of PTMs as well as protein protonation can 

significantly affect protein stability, therefore to gain a better understanding of αs-casein in the 

different forms we carried out 2DCOS on pH dependent spectral data. Figure 2 displays the pH-

induced spectral data set of phosphorylated αs-casein alongside the 2DCOS autocorrelation revealing 

numerous spectral variations dominated by side chain and secondary structure assigned bands 

(Table 1). One of the challenges when analysing spectral data sets of induced transitions in proteins 

is determining the most important variations from what are often very complex and detailed 

spectra. By calculating the 2DCOS autocorrelation (Figure 2a) not only can the most significantly 

changing bands be identified but also the extent of variation can be directly compared across 

peaks.13, 37  

 

Figure 2. pH-induced spectral variations of phosphorylated αs-casein. (a) 2DCOS autocorrelation and 

(b) phosphorylated αs-casein spectra acquired at solvent pH 5.7, 6.5, 7.7, 8.7, 9.2, 10.2, 11.1 and 

12.2. 
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From the intensity of the autocorrelation peaks in Figure 2a the largest spectral variations with 

changing solvent pH can be determined to occur at ~1415 and 1600 cm-1 followed by the peak at 980 

cm-1 for phosphorylated αs-casein. As expected the shoulder at 980 cm-1 can be observed to increase 

with increasing pH monitoring a change from mixed monobasic and dibasic phosphate populations 

to the dibasic form only.28, 36 The Raman band at 1600 cm-1 is assigned to Tyr and Phe and more 

specifically to the deprotonation of Tyr residues whilst the 1415 cm-1 band is assigned to ionised 

carboxylic acid side chains (Table 1) and therefore also expected to vary in intensity as solvent pH is 

altered. A significant increase in intensity for both bands can be observed at pH 11.1 and 12.2 

compared to the lower pH values (Figure 2b). The pKa value for Tyr is reported to be 10.3 1.2 and 

the dramatic increase in intensity at 1600 cm-1 above pH 10 can be attributed to the deprotonation 

of Tyr residues.21, 30 An additional peak in Figure 2b can also be observed at 1615 cm-1 below pH 10 

which disappears with increased intensity at 1600 cm-1. A shift from 1616 to 1600 cm-1 has 

previously been reported in Raman spectra of Tyr with increasing pH.21, 30 The band at ~1065 cm-1 is 

also assigned to changes in charged of amino acids32 and although the autocorrelation peak at 1065 

cm-1 has low intensity compared to the peaks at 1415 and 1600 cm-1 the presence of distinct 

autocorrelation peaks does indicate a significant pH-induced intensity change with deprotonation of 

phosphorylated αs-casein.  

Phosphorylated α-casein PCMW 

While the autocorrelation provides useful information as to which bands vary in intensity with 

changing conditions it does not directly relate these spectral changes to the actual perturbation. The 

further 2DCOS technique PCMW overcomes this problem by directly relating the spectral 

transitions.13, 14, 38 Figure 3 displays PCMW contour plots of the pH-induced phosphorylated αs-casein 

plotted as a function of spectral wavenumber and the average translating perturbation, in this case 

pH. In Figure 3 the largest increases in intensity (identified by the darker colour and larger number of 

contours) can be observed for Raman bands at 1415 and 1600 cm-1 from pH 10-12. These are 

consistent with the changes previously identified from the autocorrelation and the spectra (Figure 

2). However, in the PCMW contours indicate an increase in intensity only from ~pH 8.3-10 for the 

peak at 1600 cm-1, whereas for the peak 1415 cm-1 fluctuations in intensity occur throughout the full 

pH range. In Figure 3 a positive (red) contour at 980 cm-1 can be observed from pH 5.7-9 indicating 

the increase in the phosphate stretch assigned peak with increasing pH, however, no contours and 

therefore no further significant spectral changes are determined above pH 9. This lack of contours 

suggests that all phosphates are dibasic, with the negative charge delocalised over the three oxygen 

atoms at pH 9.  

From a general overview of the PCMW shown in Figure 3 there appears to be two transition phases 

as a result of increasing pH, and initial phase from pH ~5.7-9 and a second from pH ~10-12. Although 

contours are observed between pH 9-10 only one spectrum was recorded in this pH range and 

therefore these contours may be a result of small fluctuations between individual spectra, as can be 

seen for the Raman bands at 1065 and 1460 cm-1 in the spectra and further data at smaller pH steps 

are needed to confirm this potential transition phase. These fluctuations may also account for why a 

negative contour is observed from pH 10.5-11.5 for the Raman band at 1065 cm-1 in Figure 3 despite 

the fact the appearance, and therefore increase in intensity, of a distinct peak can be observed in 

the Raman spectra (Figure 2b).   
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 Figure 3. PCMW of pH-induced phosphorylated αs-casein spectral data. PCMW plotted as a function 

of spectral wavenumber and average translating window pH.  Contours shaded red indicate Raman 

bands that are increasing in intensity with increasing pH, while blue shading indicates decreasing 

peak intensity with increasing pH. The darker the shade of blue or red and the closer together the 

contours the greater the change in intensity, as indicated by the colour shading bar. The scale on this 

bar is of arbitrary units. A moving window size of 5 with a maximum of 6 contours was applied. 

 

Despite the influence of these minor fluctuations, the lack of intensity variation in the phosphate 

stretch at 980 cm-1 and the increased number of contours in the second transition range compared 

to the first indicates that very different conformational changes occur from pH 6-9, compared to 

those that occur from pH 10-12, most likely as a result of the phosphorylated serine molecules 

providing protection from deprotonation of other charged side chain residues. In particular, from pH 

10-12 decreases in intensity associated with changes in side chain environment can be determined 

from negative (blue) contours observed at 820, 850, 1065 and 1460 cm-1. Furthermore, decreases in 

Raman band intensity can also be identified from contours centred at ~930 and 1262 cm-1 both 

assigned to α-helix and therefore indicating a loss of α-helix at this pH range. Two positive contours 

can also be observed at 1308 and 1355 cm-1 despite the fact that Raman bands assigned to α-helix 

are actually observed at 1318 and 1337 cm-1 (Figure 1 and 2b). In 2DCOS the most significantly 

changing wavenumbers do not always match to the maximum band intensity as the correlation 

determines the largest spectral changes which can occur as a result of shoulders and/or broadening 

as well as changes in maximum peak intensity.15 In Figure 2b an increase in the peak at 1318 cm-1 can 

be observed and the two contours observed at 1308 and 1355 cm-1 in the PCMW (Figure 3) could 

potentially indicate a broadening of this wavenumber region suggesting a change in α-helical 

structure.  

Distinctive Raman bands assigned to β-structure in protein spectra are frequently observed in the 

regions of 1665-1670 and 1230-1245 cm-1. In Figure 3 a negative contour can be observed from pH 

6-8 that shifts centrally from 1660 to 1670 cm-1. This upward shift is reported to indicate an increase 

in less ordered β-structure/ β-turns, including the possible increase in PPII structure30 suggesting 

conformational transitions from β-sheet to β-turn or less defined structure alongside an overall 
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decrease in the total amount of β-structure with deprotonation of the phosphate serine groups.  No 

further contours are observed in the region of 1665-1670 cm-1 with increasing pH although 

surprisingly a positive contour can be observed at 1234 cm-1 also assigned to β-sheet potentially 

suggesting an increase in β-sheet. Only a loss in secondary structure, not an increase, is expected to 

occur with deprotonation as increasing alkalinity has been reported to result in the unfolding / 

denaturing of casein proteins and no self-assembly or aggregation has been observed.11, 39 However, 

when examined closely in Figure 2b (and Figure 1) it can be determined that a Raman band is 

observed at 1250 cm-1 and it may be a broadening of the 1250 cm-1 band that produces the contour 

observed at 1234 cm-1. The Raman band at 1250 cm-1 is assigned to disordered structure15, 27and 

therefore an increase in intensity would be consistent with the loss a helical and β-structure as a 

result of increasing pH.  

 

Dephosphorylated α-casein autocorrelation and PCMW 

Figure 4 displays the pH-induced spectral data set of dephosphorylated αs-casein alongside the 

2DCOS autocorrelation. As with the previously discussed autocorrelation (Figure 2a) spectral 

variations dominated by side chain assigned bands can be observed for the dephosphorylated αs-

casein but relative intensities differ considerably. Whilst the peaks at 1415 and 1600 cm-1 assigned to 

side chain protonation still dominate in Figure 4a the peak at 1065 cm-1 is also very intense possibly 

suggesting increased deprotonation of Lys, Asp and Glu side chains in dephosphorylated compared 

to phosphorylated αs-casein. As expected, the autocorrelation peak at 980 cm-1 assigned to the 

dibasic phosphate stretch is no longer observed. In the PCMW of the pH-induced dephosphorylated 

αs-casein spectral data set (Figure 5) the wavenumber position of the contours is again similar to 

that of the phosphorylated αs-casein PCMW (Figure 3) but the actual position of contours with 

respect to pH is significantly different. Unlike the phosphorylated αs-casein, the PCMW of the 

dephosphorylated form has the largest number of contours in the pH range 6-9. In fact, the pattern 

and position of contours in this lower pH range in Figure 5 appears similar to the contour patterns in 

the pH range 10-12 in the phosphorylated form in Figure 3 indicating that side chain deprotonation 

occurs at a lower pH in the absence of phosphate. The contours observed at 1415 cm-1 again vary in 

colour as pH is increased indicating an initial increase then decrease before a further increase in 

intensity. 
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Figure 4. pH-induced spectral variations of dephosphorylated α
s
-casein. (a) 2DCOS autocorrelation 

and (b) phosphorylated α
s
-casein spectra acquired at solvent pH 6.1, 7.0, 7.6, 8.9, 10.1, 10.8, 11,7 

and 12.3 

 

The PCMW plots (Figure 3 and 5) demonstrate the sensitivity of Raman spectroscopy combined with 

2DCOS for determining even subtle structural changes in protein stability as a result of protonation 

and PTM. As previously discussed, in both forms of αs-casein the deprotonation of side chain 

molecules can clearly be determined with increasing pH, however this occurs at a much lower pH 

(pH 6-9) in the dephosphorylated αs-casein compared to the phosphorylated αs-casein where 

changes are observed from pH 9-12. This shielding effect of the additional phosphate groups may 

also influence the loss of α-helical structure indicated by intensity changes in the Raman bands in the 

region of 1308-1355 cm-1 and at 1262 cm-1 which also occur at a lower pH in the dephosphorylated 

αs-casein compared to phosphorylated. Interestingly, the α-helical Raman band at 930 cm-1 can be 

observed to decrease in intensity across the full pH range for both forms of αs-casein and therefore 

this loss of secondary structure occurs regardless of phosphate deprotonation. Further Raman bands 

where the response to increasing pH is not affected by changes in phosphorylation include bands 

observed at 1003 cm-1, 1308 cm-1, 1600 cm-1, and 1670 cm-1. 
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Figure 5. PCMW of pH-induced dephosphorylated αs-casein spectral data.  PCMW plotted as 
a function of spectral wavenumber and average translating window pH.  Contours shaded 
red indicate Raman bands that are increasing in intensity with increasing pH, while blue 
shading indicates decreasing peak intensity with increasing pH. The darker the shade of blue 
or red and the closer together the contours the greater the change in intensity, as indicated 
by the colour shading bar. The scale on this bar is of arbitrary units. A moving window size 
of 5 with a maximum of 6 contours was applied. 

 

A further interesting difference in response to increasing pH of the phosphorylated compared to the 

dephosphorylated αs-casein is observed in the well-established Tyr Fermi Doublet, a known marker 

of hydration and solvent exposure of Tyr residues.20, 21 A decrease in the calculated ratio of peak 

intensities recorded at 830 and 850 cm-1 (I850 / I830) is associated with a decrease in solvent exposure. 

For both the phosphorylated and dephosphorylated spectral data presented in this study a decrease 

in the I850 / I830 ratio was observed to decrease from ~1.5 to 0.9 in both experiments with increasing 

pH. However, when the spectra and 2DCOS results are examined closely very different behaviour is 

observed for each peak. For phosphorylated αs-casein an autocorrelation peak can only be observed 

at 850 cm-1 (Figure 2a) which can be observed in the spectral data to increase in intensity at pH 10.2 

but to decrease at pH 12.2 compared to the more acidic pH range, no obvious variations can be 

observed for the 830 cm-1 Raman band (Figure 2b). In contrast in the dephosphorylated αs-casein 

autocorrelation a peak is only observed at 830 cm-1 and a clear increase in Raman intensity is 

observed in the spectra with increasing pH (Figure 4). The increase in intensity of the Raman band at 

830 cm-1 from pH 9 and 12 can also be clearly determined in the PCMW (Figure 5) where a positive 

contour is observed. No contours are observed for the peak at 850 cm-1 in this pH range although a 

negative contour is observed from pH 6-8. A detailed investigation of Raman markers of tyrosine by 

Hernández et al.21 suggests that the two bands arise from different vibrational modes, with 

variations in intensity of the 850 cm-1 band arising from in-plane ring breathing modes whereas 830 

cm-1 corresponds to the out-of-plane C-H bond collective motions.  Consequently, it may be this very 

specific difference in vibrational mode of that accounts for the difference in Tyr spectral variations 

observed between pH-induced changes phosphorylated and dephosphorylated αs-casein. 
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Conclusion 

In this study we have demonstrated the unique sensitivity of Raman spectroscopy for the 

determination of even the most subtle of changes in protein conformation as a result of 

phosphorylation and deprotonation. While there is a limit to the extent of structural information 

that be gained from a single Raman spectrum of a protein we have shown how, vast amounts of 

information can be gained by comparing perturbation-induced variations in Raman spectra. By 

combining Raman spectroscopy with 2DCOS more detailed analysis of protein stability during 

bioprocessing and food manufacturing can be achieved.   .  
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