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Abstract—Fault-tolerance (FT) support is a key challenge for
ensuring dependable Internet of Things (IoT) systems. Many ex-
isting FT-support mechanisms for IoT are static, tightly coupled,
and inflexible, and so they struggle to provide effective support
for dynamic IoT environments. This paper proposes Complex
Patterns of Failure (CPoF), an approach to providing FT support
for IoT systems using Complex Event Processing (CEP) that pro-
motes modularity and reusability in FT-support design. System
defects are defined using our Vulnerabilities, Faults, and Failures
(VFF) framework, and error-detection strategies are defined as
nondeterministic finite automata (NFA) implemented via CEP
systems. We evaluated CPoF on an automated agriculture system
and demonstrated its effectiveness against three types of error-
detection checks: reasonableness, timing, and reversal. Using
CPoF, we identified unreasonable environmental conditions and
performance degradation via sensor data analysis.

Index Terms—internet of things, fault tolerance, dependability,
complex event processing, automata

I. INTRODUCTION

The Internet of Things (IoT) is the latest evolution of
the Internet that aims to facilitate thing-to-thing interactions
by embedding virtual and physical objects with electronics,
sensors and connectivity, enabling them to achieve greater
value and services [1], [2]. An important challenge to realize
IoT is how to provide a dependable infrastructure for the
billions of expected devices and deliver their intended services
without failing in unexpected and catastrophic ways [3].

Dependability is threatened by faults and errors that con-
tribute to the occurrence of service failures, where a system
can no longer provide its service as intended [4]. This problem
can be addressed by designing IoT systems that support fault
tolerance (FT) to prevent service failures [5]. Lee et al. [6]
define four phases of FT, namely:

1) Error Detection. A fault activation manifests as one-or-
more system errors, and these must be detected.

2) Damage Assessment and Confinement. The damage
caused by a fault must be assessed in order to identify
and isolate all errors caused by it.

3) Error Recovery. The system must execute error-recovery
strategies to move the system into an error-free state
wherein normal system operations can continue.

4) Fault Treatment and Continued Service. Techniques
may still be required to ensure that faults do not recur in
a system despite successful error recovery.

Current implementations of FT support in IoT are static,
tightly coupled, and inflexible. For example: (1) they are
designed for a specific architecture and application [7], [8];
(2) they do not scale beyond small (decentralized) solutions
[9], [10]; and (3) they provide solutions to specific faults, such
as link failures [11]. This is problematic because IoT systems
are expected to continuously evolve in order to handle new
services, features, and devices that had not been anticipated
when the system was first designed, and FT support needs
to evolve with it. Additionally, many adopt FT solutions
that are already widely explored in distributed systems (DS),
such as hardware redundancy [7], check-pointing [12], and
traffic re-routing [11]. Their error-detection approaches are
implemented in an application-specific manner, wherein faults
are identified a priori by system designers, with checks that
only detect errors in highly specific scenarios and contexts.

IoT must go beyond DS solutions and further consider the
importance of context awareness in FT. IoT systems are highly
associated their physical environment, and so FT support
should be able to detect erroneous phenomena occurring
within the context of the environment, and also use contextual
information for error recovery. For example, context awareness
has been proposed to optimize waste management by installing
level sensors on waste bins so that waste trucks can build
optimized routes to reduce fuel consumption [13].

Complex Event Processing (CEP) is used in research and
industry to identifying complex, high-level situations (com-
posite events) by defining rule-based patterns in stream data
(primitive events). It is considered the paradigm of choice
for monitoring and reactive applications [14], [15], making it
the ideal platform to provide the FT-support features outlined
above. The focus on context awareness and adaptability in IoT
calls for novel FT-support approaches that can handle a new
range of situational faults that go beyond those found in DS.
To the best of our knowledge, CEP has not been considered
as a means of providing FT support in IoT systems before.

Our contribution is twofold. Firstly, we define the Vulnera-
bilities, Faults, and Failures (VFF) framework that generically
describes a system defect and its potential effect on a system.
Secondly, we propose Complex Patterns of Failure (CPoF), an
approach to FT support that uses CEP as the means of detect-
ing and recovering from system errors, where error-detection
events are defined as nondeterministic finite automata (NFA).



Together, VFF systematically categorizes defects so that, for
each one, there are corresponding NFA(s) to handle it in CEP.
In this paper, we use NFA to implement three types of error
checking: (1) whether data is reasonable, given some criteria;
(2) whether data is timely, given them time threshold; and
(3) performing reversal checks, to consider whether there is
a correlation between two separate error events. We prescribe
that error events be recursively fed back into the CEP data
stream for reuse in defining more complex error-detection
events, which we call complexity via recursion (CvR).

This papers sets out to discover whether we can: (1)
implement error detection via CEP; (2) provide effective error
recovery via CEP; and (3) define a taxonomy of generic NFAs
to implement application-agnostic FT support, applicable to
all IoT systems. The rest of the paper is as follows. Section
II discusses related work. Section III covers VFF. Section
IV explores NFAs for error detection and recovery. Section
V discusses CvR. Section VI evaluates CPoF with an IoT
agricultural system. Section VII concludes our work.

II. RELATED WORK

A core challenge when analyzing stream data from things in
the physical world is how to infer the occurrence of interesting
and complex situations in the environment. We focus on CEP
systems that are based on NFA because it is the established
mechanism upon which most CEP systems are based [16]. In
literature, the language model of existing CEP systems share
a variety of common operators, namely [17], [18]:
• Logic Operators. These define rules by combining sev-

eral items (e.g. via conjunction, disjunction, negation).
• Sequences. These are similar to logic operators but items

are order dependent i.e. they are satisfied when detected
in a specified order. Iterations are a special case, where
the sequence length is not a priori known, enabling
unbounded sequences.

• Windows. These involve limiting portions of input flow
to those only within a given timeframe, which also
ensures the termination of unbounded iterations.

• Event Selection. Events can be dispersed over many
input streams and, thus, are not always contiguous, es-
pecially in IoT environments. We focus on the skip till
next match (STNM) selection policy, where irrelevant
events are skipped until the next relevant event occurs.

A key reason for using CEP to provide FT support in IoT
is because of its ability to realize context-aware computing. A
context is any information that can characterize the situation of
an entity (i.e. people, places, objects), and a system is context-
aware if it uses context to provide relevant information and
services to the user [19]. The system stores context information
linked to sensor data so that data interpretation and machine-
to-machine communication can be done easily [1]. Hasan et
al. [20] considered context awareness over large-scale sensor
networks via dynamic enrichment of information flows, which
are combined with CEP, as the means to realize situation
awareness. Barbero et al. [21] proposed the Concept Reply
IoT platform to provide support for context-aware application

deployment throughout the low-level and middleware layers of
IoT systems. It contained a reasoning framework and event-
based processing agents that incorporated CEP for content-
based filtering. Nallaperuma et al. [22] proposed Incremental
Knowledge Acquisition and Self Learning (IKASL), an un-
supervised incremental learning algorithm for detection and
adaption of concept drifts in data by monitoring changes in
context i.e. location, time, activity and identity. They evaluated
its efficacy on a motor-traffic dataset to detect drifts in the
number of vehicles on the road.

Maarala et al. [23] focused on the issue of providing and
acquiring knowledge in IoT environments with a study on Se-
mantic Web technologies that can facilitate context-awareness,
interoperability, and reasoning in IoT. They identified that the
publish/subscribe message-exchange scheme supports topic
and content-based message routing and aggregation methods,
to enable context-based information fusion from multiple
heterogeneous data sources for reasoning and integrating
knowledge from diverse application domains. This supports
our decision to use CEP systems for context-aware computing
because they extend the functionality of publish/subscribe
systems by increasing the expressive power of the subscription
language to consider complex event patterns that involve the
occurrence of multiple, related events [17].

FT has been widely explored in IoT for many diverse
applications. Liu et al. [24] proposed a framework to monitor
IoT systems in an oil field to handle outliers, stuck-at faults,
and spikes in sensor data. Their approach used statistics sliding
windows that created a series of windows, where the latest
window contained recent sensor data that would regress into
historical windows as new data arrived. Their evaluation was
a simulation using real data from an oil field, which contained
751.68 million samples from 5800 sensors, and results showed
that their system could detect 95% of the three data errors.

Choubey et al. [25] presented a smart home architecture
where sensors were first analyzed for correlations so that,
if some sensor data could be predicted by others, a neural
network was trained to predict the data if a crash occurred.
Hu et al. [12] presented a framework that enabled developers to
implement FT support via user-defined exception handling (i.e.
try-catch statements) in languages such as Java and Python. A
snapshot of the sensor data was stored for check-pointing and a
relevant error handler was notified when an error was detected.
Gia et al. [7] explored FT in a healthcare scenario with a
centralized architecture that consisted of low-level nodes, a
gateway of redundant data sinks, and a back-end server that
consumed data from sinks. Upon a data blackout, it pinged
the node via an alternative sink, to ascertain whether the node
or the sink had failed.

Javed et al. [26] proposed CEFIoT to provide FT using: (1)
Docker, for consistency across cloud and edge; (2) Kafka, to
replicate and buffer data when disconnected from the cloud;
and (3) Kubernetes, for reconfiguration to handle hardware and
network failures. Their evaluation used 5 Raspberry Pis with
attached cameras that replicated images across devices. They
tolerated two node failures as Kubernetes shifted processing



TABLE I
APPLICABILITY BETWEEN VULNERABILITIES, FAULTS, AND FAILURES

FROM SECTION III (BULLET-POINTED). DEV REPRESENTS DEVELOPMENT
FAULTS, PHY FOR PHYSICAL, AND INT FOR INTERACTION.

Vulnerability Fault Failure Semantics
Omission Crash Timing Response

Hardware
Dev • • • •
Phy • •
Int • •

Software
Dev • • • •
Phy
Int • •

Networks
Dev • • • •
Phy • • • •
Int • • • •

Payload
Dev • •
Phy
Int • •

Environment
Dev
Phy
Int • • • •

Power
Dev
Phy •
Int

Human
Dev
Phy • •
Int • •

Policy
Dev • • • •
Phy • •
Int • •

to different nodes. Kafka handled node damage by retrieving
images from replica nodes.

III. CATEGORIZING VULNERABILITIES, FAULTS, AND
FAILURES

The VFF framework is designed to consider the relationship
between system vulnerabilities, faults, and failures. We iden-
tify how these three characteristics help to categorize defects
so that, for each one, there are corresponding NFA(s) to handle
it in CEP. In doing so, we can design modular, reusable
error detection and recovery techniques to generically handle
common system defects in all IoT systems. Each defect can be
described as: a vulnerability v, exploited by fault f , that may
lead to failure s. For the rest of this section, we discuss the
framework’s three attributes and summarize the applicability
between them in Table I.

A. Vulnerabilities

The eight-ingredient (8I) framework was developed for con-
ducting vulnerability analysis on internal and external aspects
of a system and identifies that the reliability and security
of communications is vital for continuous system operation
[27]. It identifies eight ‘ingredients’ that represent different
vulnerabilities that can manifest, namely:
• Hardware. Electronic and physical components that

compose the network nodes (e.g. circuits, fiber optics,
semiconductor chips).

• Software. All aspects of creating, maintaining, and pro-
tecting that code (e.g. physical storage, code develop-
ment, testing, and delivery).

• Networks. Topological configurations of nodes, synchro-
nization, redundancy, and physical and logical diversity.

• Payload. Information transported across the infrastruc-
ture (e.g. information interception, corruption).

• Environment. Physical spaces within which systems
operate (e.g. harsh (weather) conditions, cell towers).

• Power. Power required for communications networks
(e.g. internal power infrastructure, batteries).

• Human. System operators are, themselves, vulnerabili-
ties (e.g. causing (un)intentional behaviors, physical and
mental limitations, education and training).

• Policy. Agreements, standards, policies, and regulations
defining the behavior between entities and governments.

For the remainder of the paper, we will refer to these
ingredients as vulnerabilities. The presence of vulnerabilities
in IoT systems can lead to the existence of faults which, in
turn, can cause service failures (Section III-C).

B. Faults

Isermann [28] defines a fault as an unpermitted deviation
of at least one system property from the acceptable, usual,
standard condition. A fault is active when it produces one-
or-more errors; otherwise it is dormant. An activation is
the application of an input to a component that causes a
dormant fault to become active [29]. Faults can be placed into
three major groupings, namely: (1) development faults, ones
that occur during system development; (2) physical faults,
ones that affect hardware; and (3) interaction faults, ones
introduced into the system from external sources [29].

C. Failures

A service failure is the permanent interruption of a sys-
tem’s ability to perform its required function under specified
operating conditions [28]. A wide variety of reactive FT
techniques have been explored in the IoT domain which fall
within the five categories, namely: redundancy, migration,
failure semantics, failure masking, and recovery [30]. Failure
semantics categorize allowable server behaviors that occur in
DS so that developers can understand the likely failures a
system might exhibit, in order to develop relevant recovery
strategies. They are as follows [31], [32]:
• Omission. When a server fails to respond to incoming

messages, caused by failure to send or receive messages.
• Crash. When a server halts and no further service is pro-

vided by it. It is essentially an omission failure whereby
all incoming messages receive no response.

• Timing. When a server’s response is outside of the
specified time interval, classified as early or late. If a
response never arrives, then it is an omission failure.

• Response. When a server’s response is incorrect. This
manifests in the form of an incorrect value returned by
the server, or as an incorrect state transition.

IV. ERROR DETECTION

An error is a deviation of a program operation from its exact
requirements due to the presence of bugs that only appear



Fig. 1. NFA diagram symbols: (a) transition between states using STNM;
(b) same as (a), omitting some intermediary states; (c) arrow pointing to
composite event(s) produced after NFA acceptance; (d) a starting point; (e) a
state; (f) an accepting final state; (g) a non-accepting final state.

when a program is running or being tested [33]. An error is
said to be detected if its presence is indicated by an error
message/signal, whereas an undetected error is called latent
[29]. As with faults and failures, we want to consider the
generic categories into which all error-detection methods can
be placed, so that faults can be generically paired with effective
error-detection strategies. Bauer [34] prescribes eight product-
attributable error categories, namely:

• Field-Replaceable Unit (FRU) Hardware. Part of elec-
tronic equipment that can be replaced without needing to
repair the entire hardware (e.g. processor, disk failure).

• Programming Errors. Failures related to software de-
sign and development (e.g. memory leak, infinite loop,
logic errors, crashes).

• Data Inconsistency and Errors. Massive amounts of
complex data can lead to inconsistencies and errors (e.g.
checksum errors, file corruption).

• Redundancy Errors. Failures related to the redundancy
mechanisms in place to provide system robustness (e.g.
failover to a failed FRU).

• System Power. Power disruption and its effects on the
system (e.g. under/overvoltage, battery exhaustion).

• Network Errors. The degradation and failure of net-
work communications facilities and infrastructure (e.g.
dropped/corrupted IP packets, network outages, inconsis-
tent real-time clocks).

• Application Protocol Errors. Differences between sys-
tems’ implementations of a protocol (e.g. illegal message
sequences, protocol version mismatch).

• Procedures. Performance by humans on the system (e.g.
inadequate failure detection, diagnosis, recovery).

A. Automata Model

Our framework considers how error-detection events can
be designed using NFA. Our automata model is similar to
that described in [35] and we represent our NFA diagrams
using the symbols in Figure 1. We define S as the set of all
states in an automaton. For each state transition (Figure 1a,b),
there is an event ei that causes a transition to some state Si,
starting at state S1 ∈ S. An event has a value ev , representing
its data; an origin eo, representing where it was generated;
and a timestamp et, representing when it was generated. We
assume the STNM selection policy (Section II) because strict
contiguity between events is ineffective due to IoT systems
having high-volume, heterogeneous data.

Fig. 2. Reasonableness NFAs: (a) limit checking; and (b) trend checking.

The final state SA ∈ S is the accepting state that causes
the CEP system to produce composite events. A dashed arrow
(Figure 1c) points from SA to the composite error-detection
event d and an error-recovery event r. Event r is optional
because recovery is not mandatory for each detected error.
When SA is reached, the set of all accepted events E is called
an event’s pattern.

The final state SF ∈ S is the non-accepting state that a NFA
transitions into in order to halt (Figure 1g). SF differs from
SA in that it does not produce any composite events. NFAs
that have iterations (Section II) require state clearance to
prevent an endless consumption of events (e.g. leading to out-
of-memory errors). We consider two techniques to implement
state clearance: (1) a time window, to transition to SF after a
time elapse occurs; and (2) an until predicate, to transition to
SF when fulfilled by an event.

B. Error-Detection Checks

Lee et al. [6] define seven error-detection checks: replica-
tion, timing, reversal, coding, reasonableness, structural, and
diagnostic checks. We will use these checks as the basis for
our low-level, ‘simple’ NFAs. Due to space constraints, we
will explore three of these, discussed next.

1) Reasonableness: The reasonableness of events concerns
whether they are acceptable based upon criteria envisaged by
the system designer and implemented via the internal design
and construction of the system [6]. We consider three types
of data unreasonableness explored by Liu et al. [24], namely:
(1) outliers, where ev exceeds some threshold ε; (2) stuck-at
faults, where the last n event values, V , are all equal; and (3)
spikes, where some values in the last n events are drastically
higher or lower than others, resulting in high variance.

a) Limit Checking: Detecting outliers is performed via
limit checking, to check if ev is ‘within its limits’. In a NFA,
this would simply require a predicate that checks if e1 is not
within some defined limits (Figure 2a), for example:

P (e) : ¬(εmin ≤ ev ≤ εmax)

If true, the NFA transitions to SA and an error-detection
event dl is produced, optionally followed by error-recovery
event rl. The pattern for both dl and rl is {e1}.

b) Trend Checking: Isermann [28] proposed calculating
trend checking by taking the first derivative of the event value
f ′(ev), and then limit check as before. We apply this as:



Fig. 3. Timing NFAs: (a) performance checking; and (b) persistence checking.

P (e) : ¬(εmin ≤ f ′(ev) ≤ εmax)

If true, a trend has not been smooth, and thus can be
considered unreasonable. We propose the NFA in Figure 2b for
trend checking, and can be used for detecting stuck-at faults
and spikes. To detect a trend, our proposed NFA calculates
the slope between all relevant events that occur within time
window t. If the slope between two events e1, em, or an
aggregate of n prior events f(e1, ..., en), em, surpasses a slope
threshold, error events dt, rt are generated. Otherwise, em is
discarded and the NFA reattempts with some future em event,
or halts on a time window elapse. This design enables spike
detection by checking for exceptionally large trend changes
between events. Stuck-at fault detection occurs if the trend is
persistently 0.

2) Timing: A timing check is a simple implementation
that detects when an operation fails to satisfy a specified
time bound, and typically uses absolute or interval timers
to invoke the detection mechanism [36]. These checks can
address three scenarios: (1) where there exist two events e, e′

and an ‘unacceptable’ time interval ε between them; (2) where
one event e exists and an unacceptable time elapse ε that
occurs without the next event e′; and (3) where a set of events
E occur within some time bound ε. We explore these next.

a) Performance Checking: For this check, we want to
identify the timeliness of events such that, if an event does not
occur within time threshold ε since the last time, then an error-
detection event de is produced, representing a performance
failure, which is another term for a late timing failure (Section
III-C). For example, we might want to identify the timeliness
of events coming from a given origin (e.g. a sensor that is
sending data at a constant rate). Event e1 is first accepted,
and a transition to SA then occurs if the following predicate
returns true (Figure 3a):

P (E) : eo2 = eo1 ∧ (et2 − et1) > ε

If ≤ ε, the NFA halts (Figure 3a-iii). To detect when a
second event does not arrive at all, the CEP system still needs
an e2 event to reach SA. A limitation with NFAs is that a
negation (Section II) cannot be the final state transition. That
is, an NFA cannot reach an accepting state by waiting for

Fig. 4. Reversal NFA for correlation checking.

something to not happen. In literature, pruning NFAs can be
accomplished using a periodically generated null event, e∅,
that helps when reasoning about intervals between events [37].
Thus the time between event e1 and e2 = e∅ can be calculated
instead.

b) Persistence Checking: One of the most problematic
issues to identify in DS is whether a device has crashed or
is simply being untimely with its data [31]. In this scenario,
there is a threshold of time t when a timing error is thought to
be caused by data omission, and a later time (t+h) when the
error escalates to a more severe assumption of a crash failure,
caused by the persistence of the symptoms of the underlying
fault(s).

Persistence can be defined by three discrete categories,
namely [29], [33]: (1) transient: arbitrary faults, bounded in
time, that cause erroneous behavior for a short time before
going away; (2) intermittent: faults that do not go away en-
tirely, but instead oscillate between being active and dormant;
and (3) permanent: faults that are assumed to be continuous in
time. If the pattern of an error-detection event d does not make
any reference to another, then we consider d to be transient,
because it is independent from (i.e. it exists without knowledge
of) other detected errors in the system. By always starting
with the prior assumption of transience, different recovery
strategies can be applied to handle the same underlying fault,
if persistence is observed over time.

In Figure 3b, we consider how de from Figure 3a can be
checked for persistence. For both intermittent and permanent
persistence, the NFA accepts n > 1 events of type de to
reach final state SA. Halting occurs on a time window elapse.
We propose that intermittent persistence be implemented as
having n > 1 occurrences of de in time t, and permanent
persistence as having n′ ≥ n occurrences in time t′ ≥ t.
The intuition behind this is that permanent persistence would
have more occurrences over a longer period of time than an
intermittent fault. Additionally, NFAs checking for permanent
persistence might include an until predicate that halts the NFA
if error recovery is ever successful. This is because a successful
error recovery suggests that a fault is not permanent (e.g.
successfully pinging crashed hardware is impossible).

3) Reversal: A reversal check is one that takes the output
from a system and calculates what the input(s) should have
been in order to produce that output, where the calculated
inputs are used to compare with the actual inputs to check
for an error [6]. This check has predominantly deterministic
applications (e.g. reading back what was just written to disk).
However, we consider how this check can be used in scenarios
to check whether there is a relationship between two (sets of)



Fig. 5. The process of CvR in a CEP system.

events. That is, some system action(s) and/or event(s) lead to
some other action(s) and/or event(s) as a consequence.

a) Correlation Checking: From an FT perspective, we
want to identify whether, given n ≥ 1 system events e1, ..., en,
there were n ≥ 1 erroneous events en+1, ..., em that occurred
afterwards within a given time frame, or halt otherwise (Figure
4). If they do occur, we can infer that the erroneous event(s)
were caused by the preceding event(s). This check helps to
handle scenarios where an error propagates through a system
and cause other errors [29].

V. COMPLEXITY VIA RECURSION

Ascertaining the effectiveness of an error-recovery strategy
requires post-recovery assessment and fault treatment to ensure
that a fault does not persist. We propose that, instead of
defining complex, monolithic NFAs to handle specific and
well-defined error scenarios, we instead want to define simple
NFA to handle low-level, ‘atomic’ errors, and have the error-
detection and recovery events that are produced be recursively
fed back into the CEP system and used in other more complex
and application-specific NFAs. We call this CvR because
it relies on ‘event recursion’ to define composite events of
increasing complexity. The process of CvR is illustrated in
Figure 5, as follows:
(a) A stream of events from e0 to et enter the CEP system

continuously over time.
(b) Each event is passed to the NFAs. When an event fulfills

the predicate for the first state of the NFA, a copy of the
NFA, called a run, is created.

(c) An event is passed to each run currently not in a final
state or halted. This event might cause a state transition.

(d) A run might transition to a final state, producing an error-
detection event d, or halt.

(e) Event d is passed to an error-recovery handler that will
attempt to recover from d. It will produce an error-
recovery event r detailing the actions taken to handle the
error and whether they were successful or not.

(f) Events d, r are fed back into the CEP data stream to
potentially be used in other NFAs.

The benefit of CvR is that it enables error events to be
modular and reusable, freeing individual events to be used by
an arbitrary amount of other NFAs, rather than being tightly
coupled and monolithic. In particular, it enables: (1) error
propagation detection by correlating error-detection events;
and (2) system designers to define alternative recovery strate-
gies in the event of unsuccessful recovery action(s).

Fig. 6. Our indoor agriculture system.

VI. EVALUATION

We evaluated CPoF on an indoor, automated agriculture
system (Figure 6). This was motivated by the growing trend of
smart farms that grow produce indoors, where environmental
factors can be controlled to ensure a correct and efficient
amount of light and water for produce [38], [39]. The objective
of our evaluation is to see whether CEP systems are effective
in providing FT support to handle data loss and inconsistency
errors using the checks from Section IV-B.

This is distinct from the objectives of control engineering,
which tries to control and maintain system state. Our contri-
bution is a framework that identifies transitions into erroneous
system states, and provides several established means of re-
turning to an error-free state, such as: returning to the original
state (backward error recovery); entering a new state (forward
error recovery); or providing only a subset of the system
services (graceful degradation). Our framework is designed
to be applicable beyond our smart farm application, which is
simply a test-bed to evaluate CPoF.

A. Case Study

Our system had two shelves, each with two plants. Beneath
were four water containers (Figure 6d) that pumped water to
their respective plants. We had grow lights above each plant
(Figure 6b) that turned on when the room was dark, and off
when bright. Each shelf had a microcontroller (Figure 6c) that
had two moisture sensors placed into the soil of the plants,
and a light-dependent resistor (LDR). Data were sent every 5
seconds to a Raspberry Pi 3 at the network edge.

There was two multi-sensors, BoardWindow and Board-
Backup (Figure 6a), that collected infrared-light data, which
was used to control the grow lights. The water pumps and
grow lights were controlled using smart plugs (Figure 6e) that
switched ON, OFF, or activated using a TIMER that switched
it ON for t seconds then OFF. When a moisture value dropped
below 0.5, it would trigger its corresponding water pump to
activate using the TIMER function for 3 seconds. Similarly, if
an infrared value from a multi-sensor was below 0.2, the grow
lights would switch ON, or OFF if greater.

In our evaluation, we considered how the system detected
and recovered from two scenarios: (1) when attempting to
water a plant with no water left to pump; and (2) when Board-
Window suffered from a ‘performance drop’ i.e. a reduced



Fig. 7. Data from the four moisture sensors, represented by different colors.

data-transmission rate. Our methodology was to consider:
(1) the applicability of the scenario with regard to the VFF
framework; (2) the error(s) that might have propagated if the
underlying fault were activated; and (3) the error-detection
checks that would be needed to detect and recover from it.
We used FlinkCEP v1.4.21 for our CEP implementation, and
all data was normalized to the range [0, 1].

B. Experiment: Empty Water Container

In this experiment, we identified a service failure whereby
a plant was unable to be watered because its water tank
was empty. Using VFF, we identified this as: an environment
vulnerability, exploited by an interaction fault, that might have
led to a state transition response failure. This was because, if
the soil were not watered, the subsequent moisture data would
not change due to a lack of state change in the physical world.

We first needed an NFA to identify a trend in moisture
data. When soil was watered, the slope between the latest two
moisture values should have become very large for a short
period before stabilizing. We used the NFA from Figure 2b
to first consume an initial moisture data event e1. Subsequent
moisture events were checked within a time window of 30
seconds. If any second event em in this time produced a
slope ≥ 0.05, an error-detection event dt was produced. We
calculated the slope as (evm − ev1)/2.

We implemented another NFA that checked if there was not
a trend check within 30 seconds of TIMER occurring. We used
the reversal check NFA (Figure 4), as follows. Event e1 was
fulfilled when the TIMER action was successfully executed. If
3 subsequent moisture events were received, with no dt event
in that time, it was assumed that no trend would occur. The
run halted if dt occurred.

In this experiment, the water container connected to the
rightmost plant was empty. Its moisture data dropped to value
0.49 at approximately 15:49 (Figure 7b). This surpassed the
0.5 threshold and caused a TIMER action but failed to pump
any water, as is reflected in the lack of trend change in the
data. After 3 additional moisture values were received without
a trend check event occurring, the reversal check NFA was
fulfilled, indicating no trend after the TIMER action. The
recovery strategy was to send an alert message to prompt
human maintenance to resolve the issue. For comparison,

1https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/cep.html

Fig. 8. LDR data from the two microcontrollers (orange, green), and infrared
data from BoardWindow (blue) and BoardBackup (red).

the data from the center-right moisture sensor dropped below
value 0.5 at approximately 15:32 (Figure 7a), causing a large
trend increase shortly thereafter.

C. Experiment: Data Transmission Degradation

In this experiment, we identified a service failure whereby
the data transmission rate from BoardWindow started to de-
crease i.e. performance degradation. Using VFF, we identified
this as: a network vulnerability, exploited by an interaction
fault, that might have led to a timing failure.

We first defined an NFA to identify when a drop in per-
formance had occurred. Using the NFA from Figure 3a, e1
represented an infrared-light data event from BoardWindow.
When the next consecutive infrared light event was received,
e2, the difference between timestamps was checked to see if
the time difference was > 10 seconds. We chose this threshold
as it was double the 5 second data rate of BoardWindow. If
the difference between events were ≤ 10, the run halted. This
NFA produced error-detection event de.

We did not provide any error recovery for a single perfor-
mance drop, as it might have simply been a isolated, transient
error. Instead, we defined a second NFA to identify intermittent
performance drops. Using the NFA from Figure 3b, if de
occurred 3 times within 60 seconds, then the persistence of
these errors led to new error events dp, rp. Our recovery
was to activate and switch over to BoardBackup, to try to
return the overall rate of infrared light data to ≤ 5 seconds.
This can be seen in the live infrared data as it became
intermittent at 13:42:10 (Figure 8a). Each of BoardWindow’s
data events took approximately 10/15 seconds to arrive. The
wide intervals between these events caused de errors after each
one. When this occurred 3 times in 60 seconds, an intermittent
performance error was detected and caused dp, rp events,
leading to the introduction of BoardBackup data (Figure 8b).

VII. CONCLUSION AND FUTURE WORK

FT support is a key challenge for ensuring dependable IoT
systems, with many existing implementations being static,
tightly coupled, and inflexible. We proposed CPoF, where
error detection was defined as NFAs and implemented in CEP
systems to promote modularity and reusability in FT-support
design. We prescribed the VFF framework for the categorical



design of error-detection NFAs, and used an automated agri-
culture system to demonstrate them. Using CPoF, we identi-
fied unreasonable environmental conditions and performance
degradation via sensor data analysis.

In future work, we will expand our NFA taxonomy to
all combinations in the VFF framework. This will help to
establish a generic CEP framework for the easy and adaptive
implementation of FT support in IoT systems.
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