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Abstract

We present a rigorous study of framework rigidity in finite dimensional normed spaces

using a wide array of tools to attack these problems, including differential and discrete

geometry, matroid theory, convex analysis and graph theory. We shall first focus on

giving a good grounding of the area of rigidity theory from a more general view point

to allow us to deal with a variety of normed spaces. By observing orbits of placements

from the perspective of Lie group actions on smooth manifolds, we obtain upper bounds

for the dimension of the space of trivial motions for a framework.

Utilising aspects of differential geometry, we prove an extension of Asimow and

Roth’s 1978/9 result establishing the equivalence of local, continuous and infinitesimal

rigidity for regular bar-and-joint frameworks in a d-dimensional Euclidean space.

Further, we establish the independence of all graphs with d+ 1 vertices d-dimensional

normed space, and also prove they will be flexible if the normed space is non-Euclidean.

Next, we prove that a graph has an infinitesimally rigid placement in a non-

Euclidean normed plane if and only if it contains a (2, 2)-tight spanning subgraph.

The method uses an inductive construction based on generalised Henneberg moves

and the geometric properties of the normed plane. As a key step, rigid placements are

constructed for the complete graph K4 by considering smoothness and strict convexity

properties of the unit ball.

Finally, we carry our previous results to countably infinite frameworks where this

is possible, and otherwise identify when such results cannot be brought forward. We

first establish matroidal methods for identifying rigidity and flexibility, and apply

these methods to a large class of normed spaces. We characterise a necessary and
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sufficient condition for countably infinite graphs to have sequentially infinitesimally rigid

placements in a general normed plane, and further stengthen the result for a large class

normed planes. Finally, we prove that infinitesimal rigidity for countably infinite generic

frameworks implies a weaker (but possibly equivalent) form of continuous rigidity, and

infinitesimal rigidity for countably infinite algebraically generic frameworks implies

continuous rigidity.
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Introduction

A friend once put forth the following as the fundamental principal in structural

engineering: if it moves, you have failed. While this is a gross oversimplification that

ignores how structures are actually constructed to move so as to avoid breaking, the

spirit of the idea is essentially correct; if we wish to make suitable buildings we should

consider structures that are rigid, not those that are flexible. From a mathematical

point of view, it is natural to first assess simplified models and use what we gleam

from them to make predictions of what is rigid and what is flexible.

For what follows, we inform the reader that all specific terminology introduced

shall be properly defined later in the text. We instead will give an informal definitions

so as to give the reader a more intuitive look at the background and history of the

areas studied.

The most simple abstract structure one can observe from this point of view is a

bar-joint framework; a set of unbending, infinitesimally thin bars connected by joints

that allow full range of motions, even those that allow bars to intersect each other.

This can mathematically be modelled as a pair (G, p), where G is a simple finite graph

and p - the placement of G - is a map from the vertices of G to the Euclidean space

the framework sits in; the edges of G represent the bars of the framework, while the

vertices of G represent the joints. This can be reversed; if we have a graph G and a

placement p of G in some Euclidean space we can define a framework (G, p) in the said

Euclidean space. With our method of modelling of bar-joint frameworks, we may now
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define a framework to be rigid if every continuous motion of the vertices that preserves

the edge lengths corresponds to a rigid motion of the framework, i.e. some combination

rotational and translational motion; otherwise, we shall define (G, p) to be flexible.

While research had been undertaken into rigid structures going as far back as Cauchy

[12], the study of the rigidity of bar-joint frameworks from a more combinatorial point

of view began with J. C. Maxwell. In 1864 he presented what is now known as the

Maxwell counting rule: for a bar-joint framework with j joints in a 3-dimensional

Euclidean space to be rigid we need at least

b ≥ 3j − 6,

where b is the number of bars [49]. As a hand-wavy explanation, the count exists due

to three things:

(i) Without any bars, a framework has 3j degrees of freedom, since each joint has 3

degrees of freedom.

(ii) We cannot remove the 6 degrees of freedom an object in 3-dimensional Euclidean

space enjoys by any amount of bars.

(iii) Each bar will, usually, remove a degree of freedom from the framework, as it

adds a single constraint between two joints, thus to remove all but 6 degrees of

freedom we will need at least 3j − 6 bars.

We can now see that the “3” is due to our framework sitting in a 3-dimensional space,

and the “6” is as any object in 3-dimensional Euclidean space will have 6 degrees

of freedom. If a bar-joint framework has any more bars than are required to obtain

rigidity then it is over-constrained, since the extra bars must, in some sense, be adding

nothing extra to the rigidity of the structure. As we wish to avoid over-constraining



Table of contents 3

Fig. 1 The double banana framework

any part of the framework, we note as a corollary that for any part of the framework

on j′ ≥ 3 joints with b′ bars, we wish to have

b′ ≤ 3j′ − 6.

Any rigid framework where Maxwell’s counting rule also holds (i.e. is not over-

constrained) is known as an isostatic framework. The Maxwell counting rule, however,

is only a necessary condition, not a sufficient one; we direct the reader to Figure 1 for

the double-banana framework, where Maxwell’s counting rule holds but the framework

is not rigid.

By noting that objects in the Euclidean plane have 3 degrees of freedom (2 transla-

tional + 1 rotational), Maxwell’s counting rule needs to be changed to suit bar-joint

frameworks (with j joints and b bars) in the Euclidean plane with the rule

b = 2j − 3,



4 Table of contents

Fig. 2 A rigid placement of the bipartite graph K3,3 (left) and flexible placement of
same graph with vertices lying on a circle [10, Theorem 14] (right).

where for any part of the framework on j′ ≥ 2 joints with b′ bars,

b′ ≤ 2j′ − 3.

Although Maxwell’s counting rule for the plane can also fail if our framework is

placed in some special position (see Figure 2), unlike with 3-dimensional space, no

counter-examples to Maxwell’s counting rule could be found for “suitably generic”

frameworks, raising the immediate question: is Maxwell’s counting rule also sufficient

for almost all bar-joint frameworks in the Euclidean plane? In her 1927 paper [58],

H. Pollaczek-Geiringer proved that this was indeed true, but unfortunately her result

was lost to the mists of time until recently. Her result showed that for “suitably generic”

frameworks the placement of the framework’s vertices could be forgotten, a landmark

result.

H. Pollaczek-Geiringer’s result was later rediscovered in 1970 by G. Laman [42]

who - utilising an earlier result of L. Henneberg [27] - proved we can construct isostatic

frameworks from a single edge by using Henneberg moves; the (2-dimensional) 0-

extension, where we add a vertex and connect it to two distinct vertices, and the

(2-dimensional) 1-extension, where we delete an edge and then add a vertex connected

to the ends of the deleted edge and one other vertex (see Figure 3). The strength of

such a characterisation lies in the fact that we can quickly check by eye whether a

framework in the Euclidean plane is rigid.



Table of contents 5

Fig. 3 A 0-extension (left) and a 1-extension (right).

Fig. 4 Two continuously and locally rigid placements of the complete graph K3 in the
Euclidean plane. While the placement on the left is infinitesimally rigid, the placement
on the right is infinitesimally flexible. The last bar of the right framework has been
drawn curved so that the reader may view it.

There is, however, an issue with much of the commentary above, which is the

vagueness of their definitions of rigidity. The type of rigidity they wish to prove

- the definition we originally gave - is continuous rigidity, however there are many

similar definitions that we could use for rigidity. Other possibilities we could have

chosen include infinitesimal rigidity (whether the framework can be deformed under

infinitesimal motions), or local rigidity (whether any other sufficiently close placement

with equivalent edge lengths must also be congruent). For many of the above results,

no distinction would be made between finite rigidity (continuous or local rigidity) and

infinitesimal rigidity, since while the former was property that was desired, the latter

only requires calculating the rank of a matrix. Although both properties are often

equivalent, infinitesimal rigidity can often be seen to be a strictly stronger property,

see Figure 4.

This ambiguity was finally solved by L. Asimow and B. Roth in 1978/79 [5] [6].

They proved that infinitesimal rigidity is a strictly stronger property than finite

rigidity, and all types of rigidity are equivalent for almost all placements of a given

framework; further, it also established that if a framework had a single infinitesimally

rigid placement then almost all placements would be infinitesimally rigid. It follows
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from this and H. Pollaczek-Geiringer’s result that we may define a graph to be rigid if

it has a infinitesimally rigid placement and flexible otherwise.

In recent years the area of rigidity theory has expanded dramatically. For recent

research we refer the reader to [30] [66] for global rigidity (whether a framework defined

by certain edge lengths is unique up to isometry) and the closely linked redundant

rigidity (whether a framework will remain rigid after the removal of any edge, often

closely linked to global rigidity), [22] for universal rigidity (whether a framework in

a given space defined by certain edge lengths is unique up to isometry in any higher

dimensional space), [64] [31] for frameworks with symmetry, [33] [28] for infinitesimal

rigidity concerning alternative types of frameworks and [54] for frameworks on surfaces.

The focus of this thesis shall be two specific areas.

The first shall be considering bar-joint frameworks in a (finite dimensional real)

normed space, a (finite dimensional real) linear space X with a norm, function ∥ · ∥ :

X → R such that the following holds:

(i) ∥x∥ ≥ 0 for all x ∈ X with equality if and only if x = 0,

(ii) ∥λx∥ = |λ|∥x∥ for all x ∈ X and λ ∈ R,

(iii) ∥x+ y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ X.

Normed spaces (also referred to as Minkowski spaces) have been studied as far back as

B. Riemann in 1868 [59] with the mention of the ℓ4-norm, however as the name suggests,

the study of them did not truly begin until H. Minkowski in 1894 [50]. An equivalent

definition for a normed space is to first define a compact, centrally symmetric, convex

set B ⊂ X with non-empty interior and then define the map

∥ · ∥ : X → R, x 7→ inf {λ > 0 : x ∈ λB} .
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Fig. 5 (Left) Unit ball of a 2-dimensional normed space X; (right) a flexible framework
in X.

By considering each bar to be a distance constraint between points, the latter definition

of a normed space hints at how the geometry of the unit ball will effect whether a

framework is rigid or not; see Figure 5. Recently research has been undertaken into

framework rigidity in a variety of normed spaces, in particular spaces with ℓp norms

(p ∈ [1,∞]) [36], polyhedral norms [34] and matrix norms such as the Schatten p-norms

[35]. We also recommend [48] [67] to the reader if they wish for more background and

history on the topic of finite dimensional normed spaces.

The second area we shall focus on shall be considering countably infinite frameworks,

i.e. frameworks with a countable set of vertices. Many of the results we have previously

described no longer hold for infinite frameworks for a multitude of reasons; the Maxwell

counting rule no longer applies as both b and j would be required to be infinite, and

local rigidity now has a multitude of non-equivalent definitions. Even the property

that infinitesimal rigidity implies finite rigidity fails, as can be seen by Figure 6. Due

to all of these reasons, much work has been undertaken into this area, usually with the

assumption that the framework has periodic symmetry [9] [56] [32]. A recent paper

by D. Kitson and S. C. Power [38] instead deals with countably infinite frameworks

with no such assumptions being made, and much of the inspiration of our work will

stem from their research. Although study has been undertaken into frameworks with
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Fig. 6 An infinitesimally rigid framework in the Euclidean plane that is not continuously
rigid, see [37, Example 6.4] for more details.

an uncountable set of vertices (for example [4]), we shall restrict ourselves just to

countable frameworks.

The goals we wish to achieve in this thesis are the following:

(i) Developing precise definitions for infinitesimal, continuous and local rigidity for

countable frameworks in normed spaces, and deciding when they are equivalent.

(ii) Identifying combinatorial methods to decide whether a given countable graph has

an infinitesimally rigid placement in a given normed space, especially in the case

of 2-dimensional normed spaces.

The former deals with the more geometric side of framework rigidity, and we refer the

reader to the results Theorem 2.1.5, Theorem 4.4.1, Theorem 4.4.6 and Theorem 4.4.12

for some of our main results. The latter is more in keeping with the combinatorial

nature of framework rigidity, and we refer the reader to Theorem 3.4.2, Theorem 4.1.20,

Theorem 4.3.12 for our main results.

The thesis shall be set out as follows.

In Chapter 1, we shall set out all the required background material needed for

rigidity theory. We shall generalise everything so as to apply in any normed space

and any size framework unless stated otherwise. After introducing all of the required

normed space geometry we shall give precise definitions of frameworks and placements,

and present a rigorous study of the orbit and the trivial motion space of a set of points.
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We will give an upper bound for the dimension of the space of trivial motions which

will be achievable by most placements. We then define the varying types of rigidity for

bar-joint frameworks, give some immediate necessary conditions for these to hold, and

cover some of the more classical results for finite frameworks in Euclidean spaces.

In Chapter 2, we shall prove an extension of L. Asimow and B. Roth’s 1978/9 result

via differential geometry methods. We then establish that all graphs with d+ 1 vertices

are independent in any d-dimensional normed space, and also flexible if the normed

space is non-Euclidean. We finish by defining the graph substitution operation for all

normed spaces, and detail for what normed spaces it preserves rigidity.

In Chapter 3, we shall extend H. Pollaczek-Geiringer’s result to non-Euclidean

normed planes. To prove this we employ a similar method to G. Laman, however,

we require two additional graph operations: vertex splitting (see Section 3.3.3) and

vertex-to-K4 extensions (see Section 3.3.4). These graph operations were originally

applied in the context of infinitesimal rigidity in [68] and [53] respectively. We first are

required to prove that the complete graph on 4 vertices is rigid in all normed planes.

To do this we shall split into three cases dependent on whether the normed plane X is

smooth or strictly convex (see Section 1.1.3). The cases will be:

(i) X is not strictly convex,

(ii) X is strictly convex but not smooth,

(iii) X is both strictly convex and smooth.

For the first case we will construct an infinitesimally rigid placement of K4 that takes

advantage of the lack of strict convexity. In the second case we shall construct a

sequence of placements pn of K4 and show that (K4, p
n) will be infinitesimally rigid

for large enough n. In the last case we shall use methods utilised in [16] to prove the

existence of an infinitesimally rigid placement of K4. We finish the chapter by giving
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some sufficient connectivity conditions for graph rigidity analogous to those given by

Lovász & Yemini for the Euclidean plane in [46].

In Chapter 4, we will be extending the theory introduced in previous chapters to

countably infinite frameworks and graphs. We first will outline the background for

infinite frameworks and towers of frameworks, and also set up a matroidal structure for

infinite frameworks that will be a vital tool in later sections. We then will discuss generic

spaces, a class of normed space that is ideal for observing the combinatorial rigidity

properties of countably infinite graphs. Afterwards, we shall extend H. Pollaczek-

Geiringer’s result to countably infinite graphs, and give a stronger classification for

generic placements in generic spaces (see Section 4.2 for a full definition). Finally, we

shall discuss the limitations of using infinitesimal rigidity to observe continuous rigidity,

and what results we can gleam from it.

We shall finish with outlining possible further avenues of research in Chapter 5,

which we hope will be of interest in future.



Chapter 1

Introduction to geometric rigidity

theory in normed spaces

1.1 Normed space geometry

For a topological space X and set S, we shall denote S◦ to be the interior of S, S to

be the closure of S and ∂S to be the boundary of S.

All normed spaces (X, ∥ · ∥) shall be assumed to be over R and finite dimensional;

it follows that all normed spaces will be complete and all norms on a given linear space

will generate the same topology which we shall refer to as the norm topology. We shall

denote a normed space by X when there is no ambiguity. For any normed space X

we shall use the notation Br(x), Br[x] and Sr[x] for the open ball, closed ball and the

sphere with centre x and radius r > 0 respectively. If dimX = 2 we shall refer to X

as a normed plane.

Given normed spaces X, Y we shall denote by L(X, Y ) the normed space of all

linear maps from X to Y with the operator norm ∥ · ∥op and A(X, Y ) to be space of

all affine maps from X to Y with the norm topology. If X = Y we shall abbreviate to

L(X) and A(X). We denote by ι the identity map on X.
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We define X∗ := L(X,R) to be the dual space of X, and refer to the operator norm

as ∥ · ∥ when there is no ambiguity. We shall also define B∗r (f), B∗r [f ] and S∗r [f ] for the

open ball, closed ball and the sphere of X∗ with centre f and radius r > 0 respectively.

Given an affine map h : X → Y we can define its linear component to be the

map H : x 7→ h(x) − h(0). If X = Y it is immediate that h is invertible if and only

if H is invertible. We denote GL(X) ⊂ L(X) to be the invertible linear maps and

GA(X) ⊂ A(X) to be the invertible affine maps. They are both groups and are referred

to as the general linear group (of X) and the affine group (of X).

For any x1, x2 ∈ X we denote by

[x1, x2] := {tx1 + (1 − t)x2 : t ∈ [0, 1]} (x1, x2) := {tx1 + (1 − t)x2 : t ∈ (0, 1)}.

the closed line segment (for x1, x2) and open line segment (for x1, x2) respectively. For

a set of points S ⊂ X we define convS to be the convex hull of S.

For a C1-differentiable manifold M we shall denote by TxM the tangent space of M

at x ∈ M . If dimTxM = k for all x ∈ M we shall define M to be k-dimensional, which

we shall denote by dimM := k. For a general reference on the theory of manifolds and

the notation we shall be using, we refer the reader to Appendix A.1.

1.1.1 Euclidean and non-Euclidean normed spaces

We shall define a normed space X to be a Euclidean space if its norm is generated by an

inner product ⟨·, ·⟩ (i.e. for all x ∈ X, ∥x∥ = ⟨x, x⟩
1
2 ), otherwise X is a non-Euclidean

(normed) space.

The following are some useful results for Euclidean spaces.
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Theorem 1.1.1 (The Cauchy-Schwarz inequality). Let X be a Euclidean normed

space. Then for all x, y ∈ X,

| ⟨x, y⟩ | ≤ ∥x∥∥y∥,

with equality if and only if x and y are linearly dependent.

Proof. Let α = 1 if ⟨x, y⟩ ≥ 0 and α = −1 otherwise. Define for any t ∈ R, f(t) :=

∥x− αty∥2. For all t ∈ R, f(t) ≥ 0 and

f(t) = ⟨x− αty, x− αty⟩ = ∥x∥2 − 2t| ⟨x, y⟩ | + t2∥y∥2.

If ∥y∥ = 0 then | ⟨x, y⟩ | = 0, as otherwise f(t) < 0 for large enough t. If ∥y∥ > 0, then

we note that if t0 = |⟨x,y⟩|
∥y∥2 then

f(t0) = ∥x∥2 − | ⟨x, y⟩ |2 ≥ 0.

By rearranging we obtain the required inequality.

Theorem 1.1.2 (The parallelogram equality). [3, (1.1)] Let X be a normed space.

Then X is Euclidean if and only if for all x, y ∈ X,

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.

Proposition 1.1.3. Let X and Y be d-dimensional normed spaces and suppose X is

Euclidean. Then Y is Euclidean if and only if there exists a linear isometry T : Y → X.

Proof. Suppose Y is Euclidean. Choose an orthonormal basis x1, . . . , xd ∈ X and an

orthonormal basis y1, . . . , yd ∈ Y . If we define T : Y → X to be the linear map with

T (yi) = xi for all i = 1, . . . , d then T is an isometry.
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Now suppose there exists a linear isometry T : Y → X and choose y1, y2 ∈ Y . By

Theorem 1.1.2, the parallelogram equality holds in X. It now follows

∥y1 + y2∥2 + ∥y1 − y2∥2 = ∥T (y1) + T (y2)∥2 + ∥T (y1) − T (y2)∥2

= 2∥T (y1)∥2 + 2∥T (y2)∥2

= 2∥y1∥2 + 2∥y2∥2,

thus the parallelogram equality holds. As this is true for all y1, y2 ∈ Y , by Theorem

1.1.2, Y is Euclidean.

Remark 1.1.4. It follows from Proposition 1.1.3 that for each d ∈ N, there exists a

unique (up to isometry) d-dimensional Euclidean space. For Rd we define the standard

Euclidean norm to be the norm generated by the standard inner product

〈
(x(i))d

i=1, (y(i))d
i=1

〉
:=

d∑
i=1

x(i)y(i).

Example 1.1.5. Let q ∈ [1,∞) and define ℓd
q to be the linear space Rd with the

ℓq-norm, i.e. the norm

∥(x(i))d
i=1∥q :=

(
d∑

i=1
|x(i)|q

) 1
q

.

We also define ℓd
∞ to be the linear space Rd with the ℓ∞-norm (or supremum norm),

i.e. the norm

∥(x(i))d
i=1∥∞ := sup

i=1,...,d
|x(i)|.

If d = 1 then ℓ1
q = ℓ1

q′ for all q, q′ ∈ [1,∞]. For all d ∈ N, ℓd
2 is the standard Euclidean

space. For all q ̸= 2 and d > 1, ℓd
q is non-Euclidean however, as the parallelogram
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inequality fails to hold for x, y ∈ ℓd
q with x(1) = x(2) = y(1) and x(i) = y(j) = 0 for

any i > 2, j > 1.

1.1.2 Differentiation in normed space

For normed spaces X, Y and U ⊂ X, V ⊂ Y we define a map f : U → V to be

(Fréchet) differentiable at x0 ∈ U◦ (the interior of U) if there exists a linear map

df(x0) : X → Y such that

∥f(x0 + h) − f(x0) − df(x0)h∥Y

∥h∥X

→ 0

as h → 0; we refer to df(x0) as the (Fréchet) derivative of f at x0. If U ′ ⊂ U◦ is open

and f is differentiable at all points in U ′ we say that f is differentiable on U ′. If f is

differentiable on U ′ and the map

df : U ′ → L(X, Y ), x 7→ df(x)

is continuous then we say that f is C1-differentiable on U ′ and define df to be the

C1-derivative of f ; if U ′ = U we just say that f is C1-differentiable. For all k ∈ N we

define inductively dkf := d(dk−1f) where d1f := df and d0f := f ; by this we define

f to be Ck-differentiable if dkf exists and is continuous. If f is Ck-differentiable for

all k ∈ N ∪ {0} we say f is C∞-differentiable or smooth. If f is Ck-differentiable and

bijective with Ck-differentiable inverse we say that f is a Ck-diffeomorphism or smooth

diffeomorphism if k = ∞.

If we restrict ourselves to the case where f : U ⊂ Rn → Rm then we may also define

for certain points x0 ∈ U the partial derivatives ∂f i/∂xj(x0) and Jacobian matrix

Jf(x0) of f at x0 in the standard way (see [47, Section 2.3, page 69] for more details).

The following result shall help with computing specific derivatives.
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Proposition 1.1.6. [47, Proposition 2.4.12] Let f : U ⊂ Rn → Rm be differentiable

on an open set U . Then the following holds:

(i) If f is differentiable at x0 ∈ U , then each partial derivative of f at x0 exists.

(ii) If f is differentiable at x0 ∈ U , then Jf(x0) exists and is the matrix representation

of df(x0).

(iii) f is C1-differentiable on U if and only if the map

Jf : U → Mn×m, x 7→ Jf(x0)

is well-defined and continuous, where Mn×m is the space of n × m real-valued

matrices.

Some of the results referenced refer specifically to Gâteaux differentiation, however

for Lipschitz maps between finite dimensional normed spaces Gâteaux differentiability

is equivalent to differentiability (see [8, Proposition 4.3]).

The definitions for differentiability may be carried naturally to manifolds, and

the definitions will be consistent if we consider open subsets of normed spaces to be

manifolds. We refer the reader to [47, Section 3] for more details.

Remark 1.1.7. If we have a continuous path α : (a, b) → X that is differentiable at

t ∈ (a, b) with differential α′(t) in the traditional sense i.e

α′(t) := lim
h→0

α(t+ h) − α(t)
h

,

then α′(t) = dα(t)(1). Further, if M is a Ck-submanifold (see [47, Definition 3.2.1] for

more detail) of some normed space X, then α1 : (a, b) → M is Ck-differentiable if and

only if α2 : (a, b) → X is Ck-differentiable, where α1(t) = α2(t) for all t ∈ (a, b).
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1.1.3 Support functionals

Let x ∈ X and f ∈ X∗, then we say that f is support functional of x if ∥f∥ = ∥x∥ and

f(x) = ∥x∥2.

Proposition 1.1.8. Every point in a normed space has a support functional.

Proof. Choose x0 ∈ X with ∥x0∥ = 1. Define the linear functional φ : span{x0} → R

where φ(ax0) = a for all a ∈ R. We note that φ(x) ≤ ∥x∥ for all x ∈ span{x0}, thus

by the Hahn-Banach theorem there exists a linear map f : X → R where f(x) ≤ ∥x∥

for all x ∈ X and f(x) = φ(x) for all x ∈ span{x0}. It now follows f is a support

functional of x0.

Choose any x0 ∈ X. If x0 = 0 then the zero map is a support functional of x0.

Suppose x0 ̸= 0, then x0/∥x0∥ has support functional f and we note ∥x0∥f is a support

functional of x0.

As every point has at least one support functional we shall define for each x ∈ X

the set ϕ[x] of support functionals of x.

We say that a non-zero point x is smooth if it has a unique support functional

(i.e. |ϕ[x]| = 1) and define smooth(X) ⊆ X \ {0} to be the set of smooth points of

X. If smooth(X) ∪ {0} = X then we say that X is smooth. We define a norm to be

strictly convex if ∥tx+ (1 − t)y∥ < 1 for all distinct x, y ∈ S1[0] and t ∈ (0, 1).

The dual map of X is the map

ϕ : smooth(X) ∪ {0} → X∗, x 7→ ϕ(x),

where ϕ(0) = 0 and ϕ(x) is the unique support functional of x ∈ smooth(X). It is

immediate that ϕ is homogeneous since f is the support functional of x if and only if

af is the support functional of ax for a ̸= 0.
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Proposition 1.1.9. Let X be a Euclidean normed space. Then the following holds:

(i) X is strictly convex.

(ii) X is smooth, and for each x ∈ X,

ϕ(x) : X → R, y 7→ ⟨x, y⟩

is the unique support functional of x.

(iii) The dual map ϕ : X → X∗ is a linear isometric isomorphism.

Proof. (i): For any distinct x, y ∈ S1[0] and t ∈ (0, 1),

∥tx+ (1 − t)y∥2 = t2∥x∥2 + 2t(1 − t) ⟨x, y⟩ + (1 − t)2∥y∥2

< t2 + 2t(1 − t) + (1 − t)2

= 1,

by the Cauchy-Schwarz inequality, as x ̸= y.

(ii): Choose x ∈ X, then by the Cauchy-Schwarz inequality, ϕ(x) supports x.

Suppose that there also exists f ∈ X∗ that supports x. The map z 7→ ⟨z, ·⟩ is an

injective (thus surjective) linear map between X and X∗, thus there exists some y ∈ X

such that f = ϕ(y). By the Cauchy-Schwarz inequality,

|ϕ(y)x| ≤ ∥x∥∥y∥ = ∥x∥2

with equality if and only if y = x or y = −x. As ϕ(y)x = −∥x∥2 if y = −x, then y = x

and f = ϕ(x). As this holds for all x ∈ X \ {0}, X is smooth.

(iii): As noted in (ii), ϕ is a linear isomorphism. As ϕ(x) is the unique suport

functional of x ∈ smooth(X) ∪ {0} then ∥ϕ(x)∥ = ∥x∥ by definition.
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The following result shows that if two normed spaces are isometrically isomorphic

then they have equivalent support functions in some way.

Proposition 1.1.10. Let X and Y be normed spaces and T : X → Y a isometric

isomorphism. Then the following holds:

(i) If f ∈ X∗ is a support functional of x ∈ X, then f ◦ T−1 is a support functional

of T (x).

(ii) x is a smooth point of X if and only if T (x) is a smooth point of Y .

(iii) X is smooth if and only if Y is smooth.

(iv) X is strictly convex if and only if Y is strictly convex.

Proof. (i): As T is an isometric isomorphism, ∥T (x)∥Y = ∥x∥X , thus f ◦ T−1(T (x)) =

∥T (x)∥2
Y . Choose any y ∈ Y with ∥y∥Y = 1, then as T is an isomorphism there exists

y′ ∈ X with T (y′) = y, and ∥y′∥X = 1 also. We now note that

|f ◦ T−1(y)| = |f(y′)| ≤ ∥x∥X = ∥T (x)∥Y ,

thus ∥f ◦ T−1∥Y = ∥T (x)∥Y as required.

(ii): Let f, g ∈ X∗ be distinct support functionals of x ∈ X. By (i), f ◦ T−1

and g ◦ T−1 are support functionals of T (x). We note that f, g can not be linearly

dependent; if f = cg for some c ̸= 0, 1 then f(x) = c∥x∥X ̸= ∥x∥X . As f, g are linearly

independent we may choose any y ∈ ker f such that y /∈ ker g. It now follows that

T (y) ∈ ker f ◦ T−1 and T (y) /∈ ker g ◦ T−1, thus f ◦ T−1 ≠ g ◦ T−1. This implies that

if x is a non-smooth point of X then T (x) is a non-smooth point of Y . By symmetry

we note the converse also holds as required.

(iii): This follows immediately from (ii).
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(iv): Suppose X is strictly convex and choose any two points x, y ∈ Y with

∥x∥Y = ∥y∥Y = 1. As T is an isomorphism there exist x′, y′ ∈ X with T (x′) = x,

T (y′) = y; we note that ∥x′∥X = ∥y′∥X = 1 also. It now follows that for any t ∈ (0, 1),

∥tx+ (1 − t)y∥Y = ∥T (tx′ + (1 − t)y′)∥Y = ∥tx′ + (1 − t)y′∥X < 1

as X is strictly convex, thus Y is strictly convex as required.

For a d-dimensional normed space X we shall define S ⊂ X to be negligible if

for every ϵ > 0 there exists a sequence (xn)n∈N in S and (rn)n∈N in (0,∞) such that∑
n∈N r

d
n < ϵ and

S ⊂
⋃

n∈N
Brn(xn).

We note that for two norms ∥ · ∥, ∥ · ∥′ of X, if S is a negligible subset of (X, ∥ · ∥) it

will also be a negligible subset of (X, ∥ · ∥′). The countable union of negligible sets is a

negligible set, and the complement of a negligible set is a dense set (see Proposition

B.2.7). If S ⊂ Rd, then S is negligible if and only if it has Lebesgue measure zero (see

Theorem B.2.6).

Proposition 1.1.11. For any normed space X the following properties hold:

(i) For x0 ̸= 0, x0 ∈ smooth(X) if and only if x 7→ ∥x∥ is differentiable at x0.

(ii) If x 7→ ∥x∥ is differentiable at x0 then it has derivative 1
∥x0∥ϕ(x0).

(iii) The set smooth(X) is dense in X and smooth(X)c is negligible.

(iv) The map ϕ is continuous.

(v) X is Euclidean if and only if X is smooth and the map ϕ is a linear map.
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Proof. (i) & (ii): By [40, Lemma 1], x 7→ ∥x∥ is differentiable at x0 if and only if

x0 ∈ smooth(X) with derivative 1
∥x0∥ϕ(x0).

(iii): The result follows from (i), [60, Theorem 25.5] and Theorem B.2.6 as x 7→ ∥x∥

is convex.

(iv): By [60, Theorem 25.5], the map x 7→ 1
∥x∥ϕ(x) is continuous on smooth(X), thus

ϕ is continuous on smooth(X) also. As ∥ϕ(x)∥ = ∥x∥ it follows that ϕ is continuous

at 0 ∈ X∗ also as required.

(v): If X is Euclidean then by Proposition 1.1.9 (iii), X is smooth and ϕ is linear.

Suppose ϕ is linear. If we define ⟨x, y⟩ := 1
2(ϕ(x)y + ϕ(y)x) for each x, y ∈ X then

⟨·, ·⟩ is an inner product on X and ∥x∥2 = ⟨x, x⟩, thus X is Euclidean.

The following are some examples of normed spaces and their corresponding dual

maps.

Example 1.1.12 (Smooth and strictly convex). For q ∈ (1,∞), the space ℓd
q is strictly

convex, as the real-valued function a 7→ aq is strictly convex and increasing. Let

sgn : R → {−1, 0, 1} be the sign function, i.e.

sgn(a) =



1, if a > 0

0, if a = 0

−1, if a < 0.

For each x := (x(i))d
i=1 ∈ Rd and r > 0 define the vector x(r) ∈ Rd, where for each

i = 1, . . . , d,

x(r)(i) := sgn (x(i)) |x(i)| .
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Take x ∈ S1[0], then we obtain the support functional

ϕ(x) : Rd → R, y 7→ 1
∥x∥q−2

q

〈
x(q−1), y

〉
.

As we can differentiate ∥ · ∥q at any point in Rd, it follows from Proposition 1.1.11 (i)

that ℓd
q is smooth.

Example 1.1.13 (Neither smooth nor strictly convex). Fix d ≥ 2 and choose a finite

spanning set F ⊂ (Rd)∗ such that 0 /∈ F and if f ∈ F then −f ∈ F . We may define a

centrally symmetric (d-dimensional) polytope

P := {x ∈ Rd : f(x) ≤ 1 for all f ∈ F}.

Define X to be the linear space Rd with norm

∥x∥P := max
f∈F

|f(x)|.

By [34, Lemma 3], ∥x0∥Pf ∈ F is a support functional of x0 if and only if f(x0) = ∥x0∥P .

We refer to these norm spaces as polyhedral norm spaces.

The set of points x ∈ S1[0] where ∥x∥P = f(x) = g(x) for distinct f, g ∈ F is a

non-empty negligible set as it is exactly the intersection of a finite set of hyperplanes,

thus X is not smooth but does have an open set of smooth points. As |F | < ∞ there

must exist two points x, y ∈ S1[0] that obtain their norm for the same linear functional

f ∈ F , and so

t∥x∥P + (1 − t)∥y∥P = tf(x) + (1 − t)f(y)

= f(tx+ (1 − t)y)

≤ ∥tx+ (1 − t)y∥P
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≤ t∥x∥P + (1 − t)∥y∥P ,

thus X is also not strictly convex.

Example 1.1.14 (Smooth but not strictly convex). Let X be the linear space R2 with

norm

∥(x, y)∥ =



|y|, if |y| > |x|

x2+y2

2|x| if |x| ≥ |y|, x ̸= 0

0 if x = y = 0

with unit sphere as described in Figure 1.1.

Let z = (x, y) ∈ X and choose any w ∈ X. The norm is differentiable at all

non-zero points (i.e. X is smooth), thus we have ϕ(z)w = ∥z∥ ⟨f(z), w⟩, where,

f(z) =



(0, 1), if |y| > |x|(
x3−xy2

2|x|3 , y
|x|

)
if |x| ≥ |y|, x ̸= 0

(0, 0), if x = y = 0.

The norm is not strictly convex however, as the points {(t, 1) : t ∈ (−1, 1)} all lie in

S1[0].

Example 1.1.15 (Strictly convex but not smooth). Let ∥ · ∥a be a strictly convex and

smooth norm on Rd and ∥ · ∥b be a non-smooth norm on Rd. We define X to be the

linear space Rd with the norm ∥x∥ := ∥x∥a + ∥x∥b.

Choose any non-zero, non-smooth point x ∈ (Rd, ∥ · ∥b). If x is a smooth point of

X then by Proposition 1.1.11 (i), both ∥ · ∥ and ∥ · ∥a are differentiable at x. However,

as ∥ · ∥b = ∥ · ∥ − ∥ · ∥a, then ∥ · ∥b would be differentiable at x also, a contradiction. It
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Fig. 1.1 The unit ball of the normed space described in Example 1.1.14.

follows that the smooth points of X are exactly the smooth points of (Rd, ∥ · ∥b), thus

X is not smooth.

Choose any two points x, y ∈ S1[0] and t ∈ (0, 1), then by the strict convexity of

∥ · ∥a,

∥tx+ (1 − t)y∥ = ∥tx+ (1 − t)y∥a + ∥tx+ (1 − t)y∥b

< (t∥x∥a + (1 − t)∥y∥a) + (t∥x∥b + (1 − t)∥y∥b)

= t∥x∥ + (1 − t)∥y∥,

thus X is also strictly convex.

The following are some useful properties regarding support functionals.

Proposition 1.1.16. Let X be a normed space and x ∈ X \ {0}. Then the following

holds:

(i) ϕ[x] is a compact and convex subset of S∗∥x∥[0].

(ii) If dimX = 2 then ϕ[x] = [f, g] for some f, g ∈ X∗, and x ∈ smooth(X) if and

only if f = g.
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Proof. (i): For each f ∈ ϕ[x] we have ∥f∥ = ∥x∥ by definition, thus ϕ[x] ⊂ S∗∥x∥[0].

Given f, g ∈ ϕ[x] and t ∈ [0, 1] we note that (tf + (1 − t)g)(x) = ∥x∥2 and

∥tf + (1 − t)g∥ ≤ t∥f∥ + (1 − t)∥g∥ = ∥x∥,

thus tf+(1−t)g ∈ ϕ[x] and ϕ[x] is convex. Finally if (fn)n∈N is a convergent sequence of

support functionals of x with limit f then ∥f∥ = ∥x∥ and f(x) = limn→∞ fn(x) = ∥x∥2,

thus f ∈ ϕ[x]; since this implies ϕ[x] is a closed subset of the compact set S∗∥x∥[0] then

it too is compact.

(ii): If x is smooth then ϕ[x] = {ϕ(x)} = [ϕ(x), ϕ(x)]. Suppose x is not smooth,

then by (i), ϕ[x] is a compact convex subset of the 1-dimensional manifold S∗∥x∥[0], and

hence is a line segment.

Proposition 1.1.17. Let X be a normed space and x ∈ S1[0] ∩ smooth(X). Then

the following holds:

(i) The set ϕ(x)−1[{1}] ∩ S1[0] is closed and convex.

(ii) If dimX = 2, ϕ(x)−1[{1}] ∩ S1[0] = [x1, x2].

Proof. (i): Choose y, z ∈ ϕ(x)−1[{1}] ∩ S1[0], then ϕ(x)(ty + (1 − t)z) = 1 for all

t ∈ [0, 1]. We further note that

1 = |ϕ(x)(ty + (1 − t)z)| ≤ ∥ty + (1 − t)z∥ ≤ 1,

thus ty+ (1 − t)z ∈ S1[0] also and ϕ(x)−1[{1}] ∩ S1[0] is convex. As ϕ(x) is continuous

then ϕ(x)−1[{1}] ∩ S1[0] is closed also.

(ii): If dimX = 2 it follows that ϕ(x)−1[{1}] ∩ S1[0] = [x1, x2] as S1[0] is a

1-dimensional topological manifold homeomorphic to the circle.
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Example 1.1.18. Let V be a finite dimensional real vector space with dual V ∗. Choose

a non-empty set F ⊂ V ∗ such that the following holds:

(i) If f ∈ F then −f ∈ F .

(ii) For each x ∈ V , there exists M > 0 such that f(x) ≤ M for all f ∈ F .

(iii) spanF = V ∗.

We may now define the normed space X = (V, ∥ · ∥) where for all x ∈ X,

∥x∥ := sup
f∈F

f(x).

We note that the following holds:

(i) As F is compact it follows that if ∥x∥ = 1, there exists f ∈ F such that f(x) = 1.

It is immediate that f is a support functional of x.

(ii) If we define ∥ · ∥′ to be the norm generated by F , ∥ · ∥′′ to be the norm generated

by conv(F ) and ∥ · ∥′′′ to be the norm generated by ∂ conv(F ), then

∥ · ∥ = ∥ · ∥′ = ∥ · ∥′′ = ∥ · ∥′′′

(iii) By [60, Theorem 14.5], B∗1 [0] = conv(F ); it follows that S∗1 [0] = ∂ conv(F ).

(iv) For any x ∈ S1[0], define Fx ⊂ F to be the set

Fx := {f ∈ F : f(x) = 1},

then ϕ[x] = conv(Fx). It follows that x ∈ smooth(X) if and only if |Fx| = 1.
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x1

x2

x3
x4

Fig. 1.2 The unit ball of the normed space described in Example 1.1.19 with the first
four elements of the sequence (xn)n∈N of non-smooth points.

Example 1.1.19. Although most normed spaces that are commonly studied have an

open set of smooths points, not all normed spaces do so. We shall now construct a

normed plane with a smooth point that does not lie in smooth(X)◦.

For each i, j ∈ {−1, 1} and θ ∈ [0, π
2 ], define the linear functional s∗(i, j, θ) ∈ (R2)∗,

where for any x ∈ R2,

s∗(i, j, θ)(x) :=
〈(

(−1)i cos (θ) , (−1)j sin (θ)
)
, x
〉
.

Define the sequence (θn)n∈N where θn := π
2n , and further define

F := {s∗(i, j, θn) : n ∈ N, i, j ∈ {−1, 1}}.

We note that

F = F ∪ {s∗(−1, 1, 0), s∗(1, 1, 0)},
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with s∗(i,−1, 0) = s∗(i, 1, 0) for i ∈ {−1, 1}.

Following Example 1.1.18, we define the norm ∥ · ∥ for R2 with F . For any

i, j ∈ {−1, 1} and n ∈ N,

s∗(i, j, θn)((1, 0)) = (−1)i cos
(
π

2n

)
< 1

and

s∗(1, 1, 0)((1, 0)) = 1,

thus (1, 0) is smooth (and similarly (−1, 0) is smooth).

For each n ∈ N define

xn :=
2 sin

(
θn+1

2

)
sin (θn+1)

(
cos

(
3θn+1

2

)
, sin

(
3θn+1

2

))
,

and the function fn : [0, π
2 ] → R with

fn(φ) := s∗(1, 1, φ)(xn) =
2 sin

(
θn+1

2

)
cos

(
3θn+1

2 − φ
)

sin (θn+1)
.

We now note that

fn(θn) = fn(θn+1) = 1,

thus if ∥xn∥ = 1 then s∗(1, 1, θn) and s∗(1, 1, θn+1) support xn. To see that ∥xn∥ = 1

we first note by differentiating that f is strictly increasing on [0, 3θn+1
2 ] and strictly

decreasing on [3θn+1
2 , π

2 ], thus for all m ∈ N

fn(θm) ≤ fn(θn) = 1.
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As

s∗(i, j, θm)(xn) ≤ fn(θm) ≤ 1,

∥xn∥ = 1. The sequence (xn)n∈N is a sequence of non-smooth points converging to a

smooth point (1, 0), thus smooth(X) is not open.

The following gives a useful characterisation for strictly convex normed spaces.

Proposition 1.1.20. Let X be a normed space, then X is strictly convex if and only

if no support functional supports more than one point in X.

Proof. Suppose there exists f ∈ X∗ that supports two distinct points x, y ∈ S1[0]. For

all t ∈ (0, 1) we have

1 = tf(x) + (1 − t)f(y) = f (tx+ (1 − t)y) ≤ ∥tx+ (1 − t)y∥,

thus X is not strictly convex. Now suppose there exists f ′ ∈ X∗ that supports two

distinct points x′, y′ ∈ X, then by definition ∥x′∥ = ∥y′∥ = ∥f ′∥. Let c = 1
∥f ′∥ and

define f := cf ′, x := cx′ and y := cy′. It follows that f supports x, y ∈ S1[0], thus X∗

is not strictly convex.

Now suppose [x, y] ⊂ S1[0] for distinct points x, y ∈ X. Choose t ∈ (0, 1) and let

f be a support functional of tx+ (1 − t)y. As ∥f∥ = 1 then f(x), f(y) ≤ 1. Suppose

f(x) < 1, then

1 = f (tx+ (1 − t)y) = tf(x) + (1 − t)f(y) < 1,

thus f(x) = 1. By symmetry, f(y) = 1, thus f supports x and y.

Remark 1.1.21. It follows from Proposition 1.1.20 that if the dual map of X is

injective then X is strictly convex, and the converse holds if X is smooth.
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We define for S1[0] the (inner) Löwner ellipsoid S of S1[0], the unique convex body

of maximal volume bounded by S1[0] which has a Minkowski functional ∥·∥S : X → R≥0

that can be induced by an inner product. It is immediate that ∥x∥S ≥ ∥x∥ for all

x ∈ X and the Euclidean space (X, ∥ · ∥S) has unit sphere S. For more information on

Löwner ellipsoids see [67, Chapter 3.3].

Lemma 1.1.22. Let X be a d-dimensional normed space. Then there exists smooth

points y1, . . . , yd ∈ S1[0] so that ϕ(y1), . . . , ϕ(yd) are linearly independent.

Proof. By [3, Lemma 6.1] there exists y1, . . . , yd ∈ S1[0] that lie on the Löwner ellipsoid

S of S1[0]. Suppose fi is a support functional for yi with respect to ∥ · ∥ and choose any

x ∈ S. As S ⊂ B1[0] (the unit ball of (X, ∥ · ∥)) then |fi(x)| ≤ 1, thus f is a support

functional for yi with respect to ∥ · ∥S also. As (X, ∥ · ∥S) is Euclidean then it follows

that y1, . . . , yd are smooth and ϕ(y1), . . . , ϕ(yd) are linearly independent.

Proposition 1.1.23. Suppose dimX = d ≥ 2. For all

x1, . . . , xn ∈ S1[0] ∩ smooth(X)

with n < d there exists y ∈ S1[0] ∩ smooth(X) such that

y /∈ span{x1, . . . , xn} ϕ(y) /∈ span{ϕ(x1), . . . , ϕ(xn)}.

Proof. By Lemma 1.1.22, there exists smooth points y1, . . . , yd ∈ S1[0] so that the

support functionals ϕ(y1), . . . , ϕ(yd) are linearly independent. Define

Z := span{ϕ(x1), . . . , ϕ(xn)},

then dimZ ≤ n < d. If ϕ(y1), . . . , ϕ(yd) ∈ Z then dimZ = d, thus there exists yi /∈ Z.

We now choose y := yi.
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1.1.4 Lie groups and Lie group actions

A group Γ is a Lie group if it is a finite dimensional smooth manifold and the maps

G×G → G, (g, h) 7→ gh G → G, g 7→ g−1

are smooth. We define a subgroup Γ′ ≤ Γ to be a regular Lie subgroup of Γ if Γ′ is a

submanifold of Γ and a Lie group under the inherited group operations.

Example 1.1.24. Let Mn denote the space of n× n-matrices and GLn ⊂ Mn denote

the subset of invertible matrices, then GLn is a smooth submanifold of Mn; see Example

A.1.7 for more detail. The formulae used to define multiplication and inverse operations

are rational functions of the matrix components, thus GLn is a Lie group. As Mn is

isomorphic to L(X) (as normed algebras) if dimX = n, it follows that GL(X) is also

a Lie group; it further follows that GA(X) is also a Lie group.

The following is an important theorem that we shall often apply.

Theorem 1.1.25. (Closed subgroup theorem)[1, Proposition 4.1.12] Let Γ′ be a closed

subgroup of the Lie group Γ. Then Γ′ is a regular Lie subgroup of Γ.

Let Γ be a Lie group and M a (finite dimensional) smooth manifold. If there exists

a smooth group action

φ : Γ ×M → M, (g, x) 7→ g.x

we say that φ is a Lie group action of Γ on M . We define the following for all x ∈ M :

(i) the stabiliser of x, Stabx := {g ∈ Γ : g.x = x},

(ii) the orbit of x, Ox := {g.x : g ∈ Γ},

(iii) φx : Γ → Ox, g 7→ g.x.
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We note immediately that Stabx is a closed subgroup of Γ, thus by Theorem 1.1.25,

Stabx is a smooth submanifold of Γ.

We say that Γ acts properly on M if the map

θ : Γ ×M → M ×M, (g, x) 7→ (φ(g, x), x)

is proper i.e. the preimage of any compact set is compact. If H is a closed subgroup of

Γ then by [47, Theorem 5.1.16], Γ/H (the set of left cosets gH, g ∈ Γ) has a unique

manifold structure such that the quotient map π : Γ → Γ/H is a smooth surjective

submersion i.e. dπ(g) is surjective for all g ∈ Γ.

Lemma 1.1.26. [1, Corollary 4.1.22] Let φ be a Lie group action of Γ on M . Suppose Γ

acts properly on M , then Ox is a closed smooth submanifold of M that is diffeomorphic

to Γ/ Stabx under the map φ̃x : g Stabx 7→ g.x.

1.1.5 The group of isometries of a normed space

We shall define Isom(X, ∥·∥) to be the group of isometries of (X, ∥·∥) and IsomLin(X, ∥·∥)

to be the group of linear isometries of (X, ∥·∥) with the group actions being composition;

we shall denote these as Isom(X) and IsomLin(X) if there is no ambiguity.

Lemma 1.1.27. Let g ∈ Isom(X), then g is bijective.

Proof. As g is an isometry it is continuous and injective. By applying translations we

may assume g(0) = 0, thus g maps Sr[0] to Sr[0] for all r > 0. Assume there exists

x ∈ Sr[0] that does not lie in the compact set g(Sr[0]); it follows that there exists ϵ > 0

such that ∥x− y∥ > ϵ for all y ∈ Sr[0]. We define the sequence (xn)n∈N in Sr[0] with

x1 = x and xn+1 = g(xn). We note that for all n,m ∈ N with n < m,

∥xn − xm∥ = ∥gn−1(x) − gn−1(xm−n+1)∥ = ∥x− xm−n+1∥ > ϵ,
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contradicting that Sr[0] is compact, thus g(Sr[0]) = Sr[0]. As this holds for all r > 0

and g(0) = 0, g is surjective.

Using the above lemma we may state a useful rewording of a famous theorem in

normed space geometry.

Theorem 1.1.28 (Mazur-Ulam’s theorem). [67, Theorem 3.1.2] Let X be a normed

space, then Isom(X) is a subset of the set A(X) of affine transformations of X.

It now follows we may gift Isom(X) the topology inherited from A(X), and we note

that with this topology, Isom(X) is a closed subgroup of A(X). By Theorem 1.1.25,

Isom(X) is a regular Lie subgroup of A(X), while IsomLin(X) is a compact regular

Lie subgroup of GL(X) as it is closed and bounded in L(X); further, IsomLin(X) is a

regular Lie subgroup of Isom(X).

Lemma 1.1.29. Let X be a d-dimensional normed space, then the following holds:

(i) There exists a unique Euclidean space (X, ∥ · ∥2) such that Isom(X, ∥ · ∥) is a

regular Lie subgroup of Isom(X, ∥ · ∥2) and IsomLin(X, ∥ · ∥) is a regular Lie

subgroup of IsomLin(X, ∥ · ∥2).

(ii) If X is Euclidean then:

(a) dim Isom(X) = d(d+1)
2 ,

(b) dim IsomLin(X) = d(d−1)
2 .

(iii) If X is non-Euclidean then:

(a) d ≤ dim Isom(X) ≤ d(d−1)
2 + 1,

(b) 0 ≤ dim IsomLin(X) ≤ (d−1)(d−2)
2 + 1.

Proof. (i): This follows from [67, Corollary 3.3.4] and Theorem 1.1.25.
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(ii): See [25, Section 2.5.5] and [25, Section 2.5.9].

(iii): [51, Lemma 4].

Lemma 1.1.30. For any normed space X, dim Isom(X) = dim IsomLin(X) + dimX.

Proof. Choose any g ∈ Tι Isom(X). Denote T (X) to be the set of constant maps

X → X. We note that there is a unique pair g0 ∈ T (X) and g ∈ L(X) such that

g = g0 + g1; we now need to show that g1 ∈ Tι IsomLin(X).

By definition there exists a continuous path α : (−1, 1) → Isom(X) that is differen-

tiable at t = 0 such that α0 = ι and α′0 = g. We note that g0 : x 7→ g(0) is an affine

map and g1 : x 7→ g(x) − g(0) is a linear map. For each t ∈ (−1, 1) define the isometry

βt : x 7→ x+ αt(0), then β : (−1, 1) → Isom(X) is a continuous map that is differen-

tiable at t = 0 with β′0 = g0. Now define the continuous path γ : (−1, 1) → IsomLin(X)

where γt := β−1
t ◦ αt, and note that γ is differentiable at t = 0. By definition we have

that αt = βt ◦ γt for all t ∈ (−1, 1). As α0 = β0 = γ0 = ι then we note that

g = α′0 = (βt ◦ γt)′|t=0 = β′0 ◦ γ0 + β0 ◦ γ′0 = β′0 + γ′0.

As g0, g1 are unique, β′0 = g0 and γ′0 = g1, thus g1 ∈ Tι IsomLin(X).

As T (X) ∩ Tι IsomLin(X) = {0} and g was chosen arbitrarily it follows that

Tι Isom(X) = Tι IsomLin(X) ⊕ T (X). As dimT (X) = dimX, the result holds.

Proposition 1.1.31. Let X and Y be normed spaces and T : X → Y be a isometric

isomorphism. Then

Isom(Y ) = {T ◦ g ◦ T−1 : g ∈ Isom(X)}.

Further, dim Isom(X) = dim Isom(Y ) and dim IsomLin(X) = dim IsomLin(Y ).
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Proof. Define the linear isomorphism

F : A(X) → A(Y ), g 7→ T ◦ g ◦ T−1.

Choose any isometry g ∈ Isom(X), then it is clear that F (g) = T ◦ g ◦ T−1 is an

isometry of Y . Similarly, if h ∈ Isom(Y ), then F−1(h) = h ◦ T is an isometry of X.

Choose any h ∈ Isom(Y ) and define the isometry g := T−1 ◦ h ◦ T of X. We now note

that F (g) = h, thus F (Isom(X)) = Isom(Y ).

As F is a linear isomorphism then it is a diffeomorphism. It now follows that if

we define F̃ to be the restriction of F to Isom(X) and Isom(Y ) then F̃ is a diffeomor-

phism also, thus dim Isom(X) = dim Isom(Y ). By Lemma 1.1.30, dim IsomLin(X) =

dim IsomLin(Y ) also.

The following are useful properties of Euclidean spaces.

Lemma 1.1.32. Let X be a Euclidean space, then T ∈ L(X) is an isometry if and

only if for all x, y ∈ X,

⟨T (x), T (y)⟩ = ⟨x, y⟩ .

Proof. It is immediate that if ⟨T (x), T (y)⟩ = ⟨x, y⟩ for all x, y ∈ X then ∥T (x)∥ = ∥x∥

for all x ∈ X.

Suppose ∥T (x)∥ = ∥x∥ for all x ∈ X, then for all x, y ∈ X,

⟨T (x), T (y)⟩ = 1
2∥T (x) − T (y)∥2 − 1

2∥T (x)∥2 − 1
2∥T (y)∥2

= 1
2∥x− y∥2 − 1

2∥x∥ − 1
2∥y∥

= ⟨x, y⟩ .
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Proposition 1.1.33. Let X be a Euclidean space and S ⊂ X. If f : S → X is an

isometry then f can be extended to an isometry f̃ : X → X.

Proof. By applying suitable translations we may suppose 0 ∈ S and f(0) = 0. We first

note that for all x, y ∈ S,

⟨f(x), f(y)⟩ = 1
2∥f(x) − f(y)∥2 − 1

2∥f(x) − f(0)∥2 − 1
2∥f(y) − f(0)∥2

= 1
2∥x− y∥2 − 1

2∥x− 0∥2 − 1
2∥y − 0∥2

= ⟨x, y⟩ .

Let B := {x1, . . . , xn} ⊂ S be a basis of spanS. As the inner product is preserved by

f we note that

∥∥∥∥∥
n∑

i=1
aif(xi)

∥∥∥∥∥
2

=
∥∥∥∥∥

n∑
i=1

aixi

∥∥∥∥∥
2

,

thus the map ∑n
i=1 aixi 7→ ∑n

i=1 aif(xi) is injective. As the map is also surjective,

dim span f(B) = dim spanB.

Suppose span f(B) ̸= spanB. By Proposition 1.1.3, there exists an isometry

g : span f(B) → spanB. The map g ◦ f is an isometry with

spanB = span g ◦ f(B),

and g ◦ f can be extended to an isometry of X if and only if the same holds for

f . It follows that we may without loss of generality assume span f(B) = spanB. If

we find an extension of f to a linear isometry h ∈ IsomLin(spanS), we may trivially

extend h to f̃ ∈ IsomLin(X) by letting f̃(x) = x for all x ⊥ spanB, thus we may

assume spanB = X (i.e. n = d). As B ⊂ S, it follows that by our new assumption,

spanS = X and span f(S) = X also.
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Define f̃ : X → X to be the linear map where f̃(xi) = f(xi) for 1 ≤ i ≤ d and

f̃

(
d∑

i=1
aixi

)
=

d∑
i=1

aif̃(xi).

As

〈
f̃(xi), f̃(xj)

〉
= ⟨xi, xj⟩

for each i, j = 1, . . . , d then by Lemma 1.1.32, f̃ is a linear isometry. Choose any x ∈ S,

then for all i = 1, . . . , d,

0 = ⟨x, xi⟩ − ⟨x, xi⟩

=
〈
f̃(x), f̃(xi)

〉
− ⟨f(x), f(xi)⟩

=
〈
f̃(x), f̃(xi)

〉
−
〈
f(x), f̃(xi)

〉
=

〈
f̃(x) − f(x), f̃(xi)

〉
.

As f̃(x1), . . . , f̃(xd) are linearly independent then f̃(x) = f(x) as required.

Proposition 1.1.33 does not hold for any non-Euclidean normed space however. In

fact, many of the difficulties involved from the study of rigidity in general normed

spaces stem from exactly this issue.

Proposition 1.1.34. Let X be a non-Euclidean normed space, then there exists a

finite set S ⊂ X and isometry f : S → X such that f cannot be extended to an

isometry of X.

Proof. As X is non-Euclidean then by [3, (2.8)], there exists x, y ∈ S1[0] such that

there exists no linear isometry that maps x to y. Take S := {0, x} and f : S → X

with f(0) = 0 and f(x) = y. If f could be extended to an isometry of X then there

would exist a linear isometry that can map x to y, contradicting our choice of x, y.
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Let X be a Euclidean space. Then for all T ∈ L(X) we may define the adjoint of

T , the unique linear map T ∗ ∈ L(X) where for all x, y ∈ X,

⟨x, T (y)⟩ = ⟨T ∗(x), y⟩ .

The following is a useful characterisation of the group of isometries of any Euclidean

space.

Proposition 1.1.35. Let X be the Euclidean space and T ∈ L(X). Then the following

hold:

(i) T ∈ IsomLin(X) if and only if T ∗T = ι.

(ii) T ∈ Tι IsomLin(X) if and only if T ∗ = −T .

For the following proof we shall need to define the exponential map exp : L(X) →

L(X), where for all A ∈ L(X),

exp(A) :=
∞∑

n=0

1
n!A

n.

The exponential function has the following properties:

(i) exp(0) = ι [24, Proposition 2.3 (1)].

(ii) exp(A∗) = exp(A)∗ [24, Proposition 2.3 (2)].

(iii) If AB = BA, exp(A) exp(B) = exp(A+B) [24, Proposition 2.3 (5)].

(iv) d
dt

exp(tA) = exp(tA)A [24, Proposition 2.4].

Proof. (i): By Lemma 1.1.32, for all x, y ∈ X,

⟨T ∗T (x), y⟩ = ⟨T (x), T (y)⟩ = ⟨x, y⟩ ⇔ ⟨(T ∗T − ι)(x), y⟩ = 0,
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thus if T ∗T = ι then T ∈ IsomLin(X). Suppose (T ∗T − ι) ̸= 0, then there exists x ∈ X

such that (T ∗T − ι)(x) ̸= 0. If we choose y = (T ∗T − ι)(x) then

⟨(T ∗T − ι)(x), y⟩ = ∥(T ∗T − ι)(x)∥2 ̸= 0,

thus T /∈ IsomLin(X).

(ii): Suppose T ∈ Tι IsomLin(X), then there exists a continuous path γ : (−1, 1) →

IsomLin(X) that is differentiable at t = 0 with γ(0) = ι and γ′(0) = T . Define

the continuous path γ∗ : (−1, 1) → IsomLin(X) with γ∗(t) := γ(t)∗, then γ∗ is also

differentiable at t = 0 with γ∗(0) = ι and (γ∗)′(0) = T ∗. It now follows

0 = (γ∗(t)γ(t))′|t=0 = γ∗(0)γ′(0) + (γ∗)′(0)γ(0) = T + T ∗,

thus T ∗ = −T as required.

Now suppose T ∗ = −T . Define for each t ∈ (−1, 1), γ(t) := exp(tT ), then γ is a

differentiable path in L(X) with γ(0) = ι and γ′(0) = T . As (tT ∗)(tT ) = (tT )(tT ∗),

γ(t)∗γ(t) = exp(tT )∗ exp(tT ) = exp(tT ∗ + tT ) = exp(0) = ι.

for all t ∈ (−1, 1), thus T ∈ Tι IsomLin(X).

1.2 Frameworks and placements

1.2.1 Notation and graph sparsity

We shall assume that all graphs are simple i.e. no loops or parallel edges, and have

a countable vertex set; we will allow them to have a countably infinite vertex set

unless we explicitly state otherwise. We will denote V (G) and E(G) to be the vertex
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and edge sets of G respectively. If H is a subgraph of G we will represent this by

H ⊆ G. For a given vertex v ∈ V (G) we define NG(v) := {w ∈ V (G) : vw ∈ E(G) and

dG(v) := |NG(v)|.

For a set S we shall denote by KS the complete graph on the set S. If S ⊂ V (G)

for some graph G then we define the subgraph induced by S to be the graph G[S] :=

(S,E(S)) with E(S) := {vw ∈ E(G) : v, w ∈ S}. Given a subset T ⊂ E(G) for some

graph G we define V (T ) := {v ∈ V (G) : vw ∈ T for some w ∈ V (G)}.

For a set S we shall denote the power set of S (the set of all subsets of S) by P(S).

If S is an infinite set and T is a finite subset of S we shall denote this by T ⊂⊂ S.

Further, if G is a countably infinite graph and H is a finite subgraph we denote this

by H ⊂⊂ G. We define a subset T ⊂ S to be a cofinite subset if S \ T is finite, and we

say H ⊂ G is a cofinite subgraph if both E(G) \ E(H) and V (G) \ V (H) are finite.

We shall note that the following definition can be applied to both finite and infinite

graphs. We refer the reader to [43] for more details on graph sparsity.

Definition 1.2.1. Let k, l ∈ N. We say a graph G is (k, l)-sparse if for every finite

subgraph H ⊂ G we have |E(H)| ≤ max{k|V (H)| − l, 0}. We say a finite (k, l)-sparse

graph G is (k, l)-tight if |E(G)| = k|V (G)| − l.

1.2.2 Definitions for frameworks and placements

Let X be a normed space. For any set S we say p ∈ XS is a placement of S in X;

we will denote this (p, S) if we need to clarify what set p is the placement of. For a

graph G we say p is a placement of G in X if p is a placement of V (G). We define a

(bar-joint) framework to be a pair (G, p) where G is a graph and p is a placement of G

in X. For all X and S we will gift XS the product topology from X; if |S| < ∞ we
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define the norm

∥ · ∥S : (xv)v∈S 7→ max
v∈S

∥xv∥

on XS. For x ∈ XS and T ⊂ S we define x|T := (xv)v∈T ∈ XT .

A placement p is spanning in X if the set {pv : v ∈ S} affinely spans X. A

placement p is in general position if for any choice of distinct vertices v0, v1, . . . , vn ∈ S

(n ≤ dimX) the set {pvi
: i = 0, 1, . . . , n} is affinely independent. It is immediate that

if p is in general position and |S| ≥ dimX + 1 then p is spanning. We denote the set

of placements of S in general position by G(S) ⊆ XS; likewise for any graph G we

let G(G) := G(V (G)). If S is finite, G(S) is an algebraic variety, thus by Proposition

B.3.7, G(S) is an open dense subset of XS and XS \ G(S) is negligible.

For placements (q, T ), (p, S) we say (q, T ) is a subplacement of (p, S) (or (q, T ) ⊆

(p, S)) if T ⊆ S and pv = qv for all v ∈ T . For frameworks (H, q) and (G, p) we

say (H, q) is a subframework of (G, p) (or (H, q) ⊆ (G, p)) if H ⊆ G and pv = qv

for all v ∈ V (H). If H is also a spanning subgraph we say that (H, q) is a spanning

subframework of (G, p).

1.2.3 The rigidity map and the rigidity matrix

We say that an edge vw ∈ E(G) of a framework (G, p) is well-positioned if pv − pw ∈

smooth(X); if this holds we define the edge support functional ϕv,w := ϕ
(

pv−pw

∥pv−pw∥

)
.

Unless stated otherwise, the edge support functional for an edge vw of a framework

(G, pδ) for some superscript δ will be defined to be ϕδ
v,w. If all edges of (G, p) are

well-positioned we say that (G, p) is well-positioned and p is a well-positioned placement

of G. We shall denote the subset of well-positioned placements of G in X by the set

W(G).
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Example 1.2.2. If X = ℓd
q , q ∈ (1,∞), W(G) is exactly the set of placements p of G

with no zero length edge, i.e. for all vw ∈ E(G), ∥pv − pw∥ ≠ 0. We note that is also

covers the Euclidean case.

Corollary 1.2.3. Let X and Y be normed spaces and T : X → Y be a isometric

isomorphism. Let (G, p) be a framework in X and (G, q) be a framework in Y with

qv = T (pv) for all v ∈ V (G). Then (G, p) is well-positioned in X if and only if (G, q) is

well-positioned in Y .

Proof. As qv − qw = T (pv − pw), this follows from Proposition 1.1.10 (ii).

Lemma 1.2.4. Let G be finite, then W(G) is dense subset of XV (G) and W(G)c is

negligible.

Proof. By Proposition 1.1.11 (iii) the set smooth(X) is dense and its complement

negligible, thus the result holds for all graphs with a single edge. Suppose the result

holds for all graphs with n − 1 edges and let G be any graph with n edges. Choose

vw ∈ E(G), and define G1, G2 to be the spanning subgraphs of G where E(G1) :=

E(G) \ {vw} and E(G2) := {vw}. By assumption, W(G1)c and W(G2)c are negligible.

As W(G)c = W(G1)c ∪ W(G2)c then W(G)c is negligible also; this further implies

W(G) is also dense. The result now follows by induction.

We can extend this result to placements where we fix some subset of points.

Lemma 1.2.5. Let G be a finite graph, ∅ ≠ V ( V (G), X a normed space and

p ∈ XV chosen such that pv − pw ∈ smooth(X) for all vw ∈ E(V ). Then the set

W(G)V := {q ∈ XV (G)\V : q ⊕ p ∈ W(G)}

is dense in XV (G)\V and (W(G)V )c is negligible.
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Proof. If G has one edge the result can be seen to immediately follow from Lemma 1.1.11

(iii). Suppose this holds for all graphs with n−1 edges and let G be a graph with n edges.

If there exists no edge connecting V and V (G) \ V then W(G)V = W(G[V (G) \ V ])

and so the result follows from Lemma 1.2.4. Suppose there exists vw ∈ E(G) such

that v ∈ V and w ∈ V (G) \ V . Define G1, G2 to be the spanning subgraphs of G

where E(G1) := E(G) \ {vw} and E(G2) := {vw}. By assumption (W(G1)V )c and

(W(G2)V )c are negligible. As (W(G)V )c = (W(G1)V )c ∪ (W(G2)V )c then (W(G)V )c

is negligible also. As the complement of a negligible set is dense the result follows by

induction.

We define the rigidity map of G (in X) to be the map

fG : XV (G) → RE(G), x = (xv)v∈V (G) 7→ (∥xv − xw∥)vw∈E(G)

and for well-positioned placements p we also define the rigidity operator of G at p in

X to be the linear map

dfG(p) : XV (G) → RE(G), x = (xv)v∈V (G) 7→ (ϕv,w(xv − xw))vw∈E(G).

For any framework we define the configuration space of (G, p) in X to be the set

f−1
G [fG(p)].

Remark 1.2.6. For a finite or infinite graph G, the rigidity map fG is continuous

with respect to the product topologies for XV (G) and RE(G). Likewise, if p ∈ W(G)

then the rigidity operator dfG(p) is continuous.

Proposition 1.2.7. [40, Proposition 6] Let X be a normed space and G a finite graph.

Then fG is differentiable at p if and only if p is a well-positioned placement of G;
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further, if this holds then the rigidity operator at p is the derivative of the rigidity map

at p.

Lemma 1.2.8. Let X be a normed space and G a finite graph. Then the map

dfG : W(G) → L(XV (G),RE(G)), x 7→ dfG(x)

is continuous.

Proof. This follows from Proposition 1.1.11 (iv).

For any well-positioned finite framework we can define the rigidity matrix of (G, p)

in X to be the |E(G)| × |V (G)| matrix R(G, p) with entries in the dual space X∗ given

by

ae,v :=


ϕv,w, if e = vw ∈ E(G)

0, otherwise

for all (e, v) ∈ E(G) × V (G).

Remark 1.2.9. Let (G, p) be a well-positioned framework in the standard Euclidean

space Rd. The usual definition for the rigidity matrix R of (G, p) would be the

|E(G)| × d|V (G)| real valued matrix with entries ae,(v,i) for each e ∈ E(G), v ∈ V (G)

and i ∈ {1, . . . , d}, where

ae,(v,i) :=


the i-th coordinate of pv − pw, if e = vw ∈ E(G)

0, otherwise
.

The matrix R can easily be changed into the rigidity matrix R(G, p), and so in many

ways most results are not affected. Our version of a rigidity matrix is defined differently

so as to fit better with pseudo-rigidity matrices (see Section 1.3.3).
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For any |E(G)| × |V (G)| matrix A with entries in the dual space X∗ we may regard

A as the linear transform from XV (G) to RE(G) given by

u 7→ A(u) :=
 ∑

w′∈V (G)
a(vw,w′)(uw′)


vw∈E(G)

.

By this definition we see that A has row independence if and only if A is surjective

when considered as a linear transform. With this definition we note that R(G, p) is

a matrix representation of dfG(p); we shall often use the notation R(G, p) if we wish

to observe properties involving the structure of the matrix and dfG(p) if we wish to

observe properties of the linear map. See Appendix B.1 for more details for matrices

with vector entries.

1.2.4 Orbits of placements

For any set S, element x ∈ XS and affine map g ∈ A(X) we define g.x := (g(xv))v∈S.

With this notation we define for any S the map

φ : Isom(X) ×XS → XS, (g, x) 7→ g.x.

If |S| < ∞ then this is a Lie group action of Isom(X) on XS; we shall always refer to

this group action if we mention Isom(X) acting on XS.

Lemma 1.2.10. For any normed space X and finite set S, the group of isometries

Isom(X) acts properly on XS.

Proof. Let ((gn.p
n, pn))n∈N be a convergent sequence in the image of

θ : Isom(X) ×XS → XS ×XS
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with limit (q, p). By Mazur-Ulam’s theorem (Theorem 1.1.28), for each n ∈ N there

exists Gn ∈ IsomLin(X) and xn ∈ X such that gn = Txn ◦ Gn, where Txn is the

translation map y 7→ y+xn. As ((gn.p
n, pn))n∈N converges then (gn.p

n)n∈N and (pn)n∈N

are bounded in XS, thus (xn)n∈N is bounded as

∥xn∥ = ∥(xn)v∈S∥S ≤ ∥Gn.p
n + (xn)v∈S∥S + ∥Gn.p

n∥S = ∥gn.p
n∥S + ∥pn∥S.

It follows by the Bolzano-Weierstrass theorem that there exists a convergent subsequence

(xnk
)k∈N of (xn)n∈N with limit x ∈ X. Since IsomLin(X) is compact, there exists a

convergent subsequence (Gnkl
)l∈N of (Gnk

)k∈N with limit G ∈ IsomLin(X). This implies

(gnkl
)l∈N converges to g := Tx ◦G, thus ((gn, p

n))n∈N has a convergent subsequence.

Choose a compact set C ⊂ XS ×XS and any sequence ((gn, p
n))n∈N in the closed

set θ−1(C). As C is compact then ((gn.p
n, pn))n∈N has a convergent subsequence

((gnk
.pnk , pnk))k∈N. As shown previously, it follows that ((gnk

, pnk))n∈N has a convergent

subsequence, thus ((gn, p
n))n∈N has a convergent subsequence. Since θ−1(C) is closed

then the convergent subsequence of ((gn, p
n))n∈N converges in φ−1(C). It now follows

that φ−1(C) is compact, thus as C was chosen arbitrarily, θ is proper as required.

Corollary 1.2.11. Let (p, S) be a placement in a normed space X, then Stabp is

a compact subgroup of Isom(X). Further, if pv = 0 for some v ∈ S then Stabp ≤

IsomLin(X).

Proof. It is immediate that Stabp is a subgroup of Isom(X).

Suppose p is a finite placement, then by Lemma 1.2.10, φ is a proper map. As

Stabp := {g : (g, p) ∈ φ−1[(p, p)]} then Stabp is compact. If p is not finite then we note

that for any finite subplacement q, Stabp is a closed subgroup of the compact group

Stabq, thus Stabp is compact for any placement p. We finally note that if pv = 0 then

each element of Stabp is linear.
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Lemma 1.2.12. Let p be a placement of a finite set in a normed space X, then Op is

a closed smooth submanifold of XV (G) and the map

φ̃p : Isom(X)/ Stabp → Op, g Stabp 7→ g.p

is a smooth diffeomorphism.

Proof. By Lemma 1.2.10 and Lemma 1.1.26 it follows that Op is a closed smooth

submanifold of XV (G) diffeomorphic to Isom(X)/ Stabp under the diffeomorphism

φ̃p.

For a placement (p, S) in a normed space X define the finite dimensional linear

space Ap := {h.p : h ∈ A(X)} with the topology inherited from XS. We note that the

topology on Ap is equivalent to the norm topology, thus Ap is a smooth manifold. We

also note that if α : (−δ, δ) → Ap is a differentiable path then α′(t) = (α′v(t))v∈S.

Lemma 1.2.13. Let (q, T ) ⊂ (p, S) be placements in X where the affine span of

{pv : v ∈ S} is equal to the affine span of {qv : v ∈ T}. If |T | < ∞ then Op is a smooth

manifold that is diffeomorphic to Oq and the restriction map

ρ : Op → Oq, (xv)v∈S 7→ (xv)v∈T

is a smooth diffeomorphism.

Proof. We note that the linear map ρ̃ : Ap → Aq where ρ̃(x) := x|T is a continuous

linear isomorphism. This implies the map ρ̃−1|Oq is a smooth embedding into the

smooth manifold Ap with image Op. By Lemma 1.2.12, Oq is a smooth manifold, thus

Oq is diffeomorphic to Op and ρ := ρ̃|Oq

Op
is a smooth diffeomorphism.

Let (p, S) be a placement in a normed space X. We will define a continuous path

in XS through p to be a family α := (αv)v∈S of continuous paths αv : (−δ, δ) → X (for
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some fixed δ > 0) where αv(0) = pv for all v ∈ S. If α(t) := (αv(t))v∈S ∈ Op for all

t ∈ (−δ, δ) then α is a trivial finite motion.

Let u ∈ XS. If there exists a trivial finite motion α of p that is differentiable at

t = 0 and uv = α′v(0) for all v ∈ S then we say that u is a trivial (infinitesimal) motion

of p. For any placement p we shall denote T (p) to be the set all trivial infinitesimal

motions of p.

Theorem 1.2.14. Let p be a placement in a normed space X, then Op is a smooth

manifold with tangent space T (p) at p and

φ̃p : Isom(X)/ Stabp → Op, g Stabp 7→ g.p

is a smooth diffeomorphism.

Proof. Choose a finite subplacement (q, T ) of (p, S) so that the p and q affinely span

the same space, then Stabp = Stabq. By Lemma 1.2.12, Oq is a smooth manifold

diffeomorphic to Isom(X)/ Stabq under the smooth diffeomorphism φ̃q. By Lemma

1.2.13, Op is a smooth manifold diffeomorphic to Isom(X)/ Stabp and the restriction

map ρ : Op → Oq is a smooth diffeomorphism. As φ̃p = ρ−1 ◦ φ̃q then it is also a

smooth diffeomorphism. It follows from its definition that T (p) is the tangent space of

Op at p.

Remark 1.2.15. As the set of all trivial infinitesimal motions of a placement is a

tangent space to a manifold, it follows that it must therefore be linear.

Corollary 1.2.16. Let p be a placement in a normed space X. Then the map φp is a

smooth submersion and dφp(ι) : Tι Isom(X) → T (p) is surjective with dφp(ι)g = g.p

for all g ∈ Tι Isom(X). Further, ker dφp(ι) = Tι Stabp.

Proof. By Theorem 1.2.14, φ̃p is a smooth diffeomorphism. We note that φp = φ̃p ◦ π

where π : Isom(X) → Isom(X)/ Stabp is the natural quotient map. By Theorem 1.1.25,
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π is a smooth submersion, thus φp is a smooth submersion also and dφp(ι) is surjective.

As φ̃p is a smooth diffeomorphism then ker dφp(ι) = ker π as required.

Corollary 1.2.17. Let (p, S) and (q, T ) be placements in a normed space X where

the affine span of {pv : v ∈ S} is equal to the affine span of {qv : v ∈ T}, then the

following hold:

(i) The orbits Op and Oq are diffeomorphic.

(ii) dim T (p) = dim T (q).

(iii) If (q, T ) ⊆ (p, S) then the restriction map

ρ : Op → Oq, (xv)v∈S 7→ (xv)v∈T

is a smooth diffeomorphism.

Proof. (iii): Choose a finite subplacement (r, U) ⊆ (q, T ) ⊆ (p, S) so that the affine

span of {rv : v ∈ U} is equal to the affine span of {qv : v ∈ T}. Define the restriction

maps ρT : Oq → Or and ρS : Op → Or, then by Lemma 1.2.13, ρT , ρS are smooth

diffeomorphisms. As ρ = ρ−1
T ◦ ρS then it is also a smooth diffeomorphism.

(i): If (q, T ) ⊆ (p, S) this follows from (iii). Suppose (q, T ) is not a subplacement of

(p, S). Define (t, S ⊔ T ) to be the placement where S ⊔ T is the disjoint union of S and

T , t|S = p and t|T = q. We note all three placements span the same affine subspace of

X. As (p, S) ⊂ (t, S ⊔ T ) and (q, T ) ⊆ (t, S ⊔ T ) then by (iii) we have Op
∼= Ot

∼= Oq

as required.

(ii): By Theorem 1.2.14, Op has tangent space T (p) at p and Oq has tangent space

T (q) at q. By (i), Op
∼= Oq and so dim T (p) = dim T (q).
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1.2.5 Full placements and isometrically full placements

Proposition 1.2.18. Let p be a placement in a normed space X. Then the following

holds:

(i) dφp(ι) is injective if and only if φp is a smooth local diffeomorphism i.e. dφp(g) is

bijective for all g ∈ Isom(X).

(ii) φp is injective if and only if φp is a smooth diffeomorphism.

(iii) If either (i) or (ii) hold then dim T (p) = dim Isom(X).

Proof. (i): If φp is a local diffeomorphism then dφp(ι) is bijective.

Suppose dφp(ι) is injective. Choose any g ∈ Isom(X), then we note that ker dφp(g) =

g ker dφp(ι). It now follows that dφp(g) is injective for all g ∈ Isom(X). By Corollary

1.2.16 it follows that dφp(g) is bijective for all g ∈ Isom(X), thus φp is a local

diffeomorphism.

(ii): Suppose φp is injective. Then Stabp is trivial, thus Isom(X)/ Stabp = Isom(X)

and φ̃p = φp. By Theorem 1.2.14, φp is a smooth diffeomorphism. Conversely, suppose

φp is a smooth diffeomorphism. As φp = φ̃p ◦π, the quotient map π is a diffeomorphism.

This implies π is a group isomorphism, thus Stabp is trivial and φp is injective.

(iii): If either (i) or (ii) hold then dφp(ι) is bijective and dim T (p) = Isom(X).

Definition 1.2.19. We define a placement p to be full if φp is a local diffeomorphism

and isometrically full if φp is a diffeomorphism.

It is immediate that any isometrically full placement is full. By Proposition 1.2.18

(i) our notion of full agrees with that given in [35]. The set of full placements of a set

S will be denoted by Full(S) and likewise the set of full placements of a graph G will

be denoted by Full(G).
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Corollary 1.2.20. Let p be a placement in a normed space X. Then the following

hold:

(i) p is full if and only if Stabp is a finite set of points.

(ii) p is isometrically full if and only if Stabp = {ι}.

Proof. (i): By Corollary 1.2.11, Stabp is compact. By Corollary 1.2.16, ker dφp(ι) =

Tι Stabp. By Proposition 1.2.18 (i), it follows that p is full if and only if Tι Stabp = {0},

i.e. Stabp is a 0-dimensional manifold. As all compact 0-dimensional manifolds are

finite then the result follows.

(i): This follows immediately from Proposition 1.2.18 (ii).

Corollary 1.2.21. Let X and Y be normed spaces and T : X → Y be a isometric

isomorphism. Let p be a placement in X and q be a placement in Y with qv = T (pv) for

all v ∈ V (G). Then the space of trivial infinitesimal motions of p is linearly isomorphic

to the space of trivial infinitesimal motions of q. Further, p is full (respectively,

isometrically full) in X if and only if q is full (respectively, isometrically full) in Y .

Proof. Define the linear isomorphism F : A(X) → A(Y ) with F (g) := T ◦ g ◦ T−1. It

follows from Proposition 1.1.31 that

Tι Isom(Y ) = {F (g) : g ∈ Tι Isom(X)},

thus Tι Isom(X) and Tι Isom(Y ) are isomorphic. Now define TX(p) to be the space of

trivial infinitesimal motions of p in X, TY (q) to be the space of trivial infinitesimal

motions of q in Y , and F̃ : TX(p) → TY (q) to be the linear map where F̃ (g.p) := F (g).q.

Suppose F̃ (g.p) = 0, then

0 = F̃ (g.p) = F (g).q = (T ◦ g ◦ T−1(T (pv)))v∈V (G) = (T ◦ g(pv))v∈V (G).
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As T is an isomorphism then F̃ is a bijection and TX(p) ∼= TY (q).

By Corollary 1.2.20 and Proposition 1.1.31, it follows that p is full (respectively,

isometrically full) in X if and only if q is full (respectively, isometrically full) in Y .

Corollary 1.2.22. Let p, q be placements in a normed space X. Suppose q is (iso-

metrically) full and q is a subplacement of a placement p, then p is (isometrically)

full.

Proof. As Stabp ≤ Stabq this follows from Corollary 1.2.20.

Corollary 1.2.23. Let p be a placement in a normed space X. Suppose p is (isomet-

rically) full and q ∈ Op, then q is (isometrically) full.

Proof. Let q := h.p for some h ∈ Isom(X), then Stabq = h Stabp h
−1, thus | Stabq | =

| Stabp |. The result now follows Corollary 1.2.20.

Corollary 1.2.24. Let p be a placement in a normed space X where the affine span

of {pv : v ∈ V } is a hyperplane of X, then p is full.

Proof. By Lemma 1.1.29 (i), there exists a Euclidean norm ∥ · ∥2 so that Isom(X, ∥ · ∥)

is a subgroup of Isom(X, ∥ · ∥2), thus

Stabp ≤ Stab2
p := {h ∈ Isom(X, ∥ · ∥2) : h.p = p}.

As the affine span of {pv : v ∈ V } is a hyperplane of X then Stab2
p = {ι, h}, where

h is the unique reflection of X about the hyperplane formed by the affine span of

{pv : v ∈ V }. It now follows that | Stabp | ≤ 2, thus by Corollary 1.2.20 (i), p is full.

Corollary 1.2.25. Let p be a spanning placement in a normed space X, then p is

isometrically full.

Proof. Suppose g.p = p for some g ∈ Isom(X) and choose v0, . . . , vd ∈ S so that

pv0 , . . . , pvd
is an affine basis of X. By our choice of isometry, g(pvi

) = pvi
for all
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i = 0, . . . , d. By Mazur-Ulam’s theorem [67], g is affine, thus as pv0 , . . . , pvd
is an affine

basis of X this map must be unique. As ι.p = p then g = ι and φp is injective. The

result now follows by Proposition 1.2.18 (ii).

Example 1.2.26. Choose q ∈ [1,∞] with q ̸= 2. The linear isometries of ℓ2
q are

generated by the π/2 anticlockwise rotation around the origin and the reflection in

the line {(t, 0) : t ∈ R}. Let S = {v1, v2} and (p1, S) and (p2, S) be the non-spanning

placements in X where p1
v1 = p2

v1 = 0, p1
v2 = (1, 0) and p2

v2 = (1, 2). Both placements

are full in X, however p2 is isometrically full while p1 is not. This example shows that

while all spanning placements are isometrically full and all isometrically full placements

are full the reverse is not necessarily true.

Proposition 1.2.27. Let d + 1 ≤ |S| < ∞ and X a d-dimensional normed space.

Then Full(S) is an open dense subset of XS and Full(S)c is negligible.

Proof. Since |S| ≥ d + 1 then all placements in general position are spanning. By

Corollary 1.2.25 we have G(S) ⊂ Full(S), thus as G(S) is dense in XS then Full(S)

is dense in XS. Since G(S)c is an algebraic set then it is negligible, thus it follows

Full(S)c also is negligible.

Define the affine map

F : XS → L(Tι Isom(X), XS), p 7→ dφp(ι).

The set of injective maps of L(Tι Isom(X), XS) is open. We note Full(S) is the preimage

of the set of injective maps of L(Tι Isom(X), XS) under F by Proposition 1.2.18 (ii)

and so Full(S) is open.

Corollary 1.2.28. Let X be a normed space. Then all isometrically full placements

in X are spanning if and only if X is Euclidean.
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Proof. Suppose all isometrically full placements in X are spanning, then it follows by

Proposition 1.2.18 (ii) that for all linear hyperplanes Y of X there exists a linear map

TY ̸= ι that is invariant on Y . By [3, (4.7)], X is Euclidean.

Conversely, suppose X is Euclidean. If p is a non-spanning placement in X then p

lies in some affine hyperplane H. We note that if h is the reflection in H then h.p = p,

thus by Proposition 1.2.18 (ii) p is not isometrically full.

We may now give an upper and lower bound for the dimension of T (p).

Theorem 1.2.29. For any placement p in a d-dimensional normed space X,

d ≤ dim T (p) ≤ dim Isom(X)

with dim T (p) = dim Isom(X) if and only if p is full.

Proof. By Corollary 1.2.16, dφp(ι) : Tι Isom(X) → T (p) is surjective, thus we have

dim T (p) ≤ dim Isom(X). Let x1, . . . , xd ∈ X be a basis. Define for each i ∈ {1, . . . , d}

the trivial finite motion α(i) of p where for each v ∈ S we have

α(i)v : (−1, 1) → X, t 7→ pv + txi.

We note that (α(i)′v(0))v∈S = (xi)v∈S ∈ T (p) for each i ∈ {1, . . . , d}, thus dim T (p) ≥ d.

If p is full then by Proposition 1.2.18 (i), dim T (p) = dim Isom(X). If dim T (p) =

dim Isom(X) then by Corollary 1.2.16, dφp(ι) is bijective; it then follows by Proposition

1.2.18 (i) that p is full.

A rigid motion of X is a family γ := (γx)x∈X of continuous maps

γx : (−δ, δ) → X, x ∈ X
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(for some fixed δ > 0) where γx(0) = x and ∥γx(t) − γy(t)∥ = ∥x− y∥ for all x, y ∈ X

and t ∈ (−δ, δ). We note immediately that for each t ∈ (−δ, δ), the map x 7→ γx(t) is

an isometry. The following shows that our definition of a trivial finite motion agrees

with the definition given in [36] if a framework is isometrically full.

Proposition 1.2.30. Let p be an isometrically full placement in a normed space X.

If α is a continuous path through p in XS then the following are equivalent:

(i) α is a trivial finite motion.

(ii) There exists a unique continuous path h : (−δ, δ) → Isom(X) such that ht(pv) =

αv(t) for all t ∈ (−δ, δ) and v ∈ S.

(iii) There exists a unique rigid motion γ such that γpv = αv for all v ∈ S.

Proof. (i) ⇒ (ii): As α is a continuous path in Op and φp is a smooth diffeomorphism

we define the unique continuous path h := φ−1
p ◦ α.

(ii) ⇒ (iii): Define γ to be the unique family of maps γ where γx(t) = ht(x) for all

x ∈ X and t ∈ (−δ, δ), then γ is a rigid motion as required.

(iii) ⇒ (i): We note that γ restricted to the set {pv : v ∈ S} is a trivial finite

motion.

1.3 Rigidity and independence

1.3.1 Local, continuous and infinitesimal rigidity

We define a finite flex of a framework (G, p) to be a continuous path α in XV (G) through

a placement p where ∥αv(t) − αw(t)∥ = ∥pv − pw∥ for all vw ∈ E(G) and t ∈ (−δ, δ).

If α is a trivial finite motion of a placement p of G we say α is a trivial finite flex of

(G, p); we note that α will automatically be a finite flex of (G, p) as isometries preserve

distance.
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We define u ∈ XV (G) to be a trivial (infinitesimal) flex of (G, p) if u is a trivial

motion of p. If (G, p) is well-positioned we say that u ∈ XV (G) is an (infinitesimal)

flex of (G, p) if dfG(p)u = 0. The following proposition shows a link between finite and

infinitesimal flexes for frameworks.

Lemma 1.3.1. Let (G, p) be a well-positioned framework in X and α a finite flex of

(G, p) that is differentiable at 0, then (α′v(0))v∈V (G) is an infinitesimal flex of (G, p).

Proof. This follows from the proof of [36, Lemma 2.1.(ii)].

Since all trivial flexes of (G, p) are trivial motions of p we shall also denote T (p) to

be the set all trivial infinitesimal flexes (G, p). If (G, p) is well-positioned we define

F(G, p) to be the space of all infinitesimal flexes of (G, p). The latter is clearly a linear

space as it is exactly the kernel of the rigidity operator. By Proposition 1.3.1 it follows

T (p) ⊆ F(G, p).

Definition 1.3.2. Let (G, p) be a framework in a normed space X. Then we define

the following:

(i) (G, p) is continuously rigid (in X) if the only finite flexes of (G, p) are trivial,

and (G, p) is continuously flexible if it is not continuously rigid.

(ii) Suppose (G, p) is finite. (G, p) is locally rigid (in X) if there exists a neighbourhood

U ⊆ XV (G) of p such that f−1
G [fG(p)] ∩ U = Op ∩ U , and (G, p) is locally flexible

if it is not locally rigid.

(iii) Suppose (G, p) is well-positioned. (G, p) is infinitesimally rigid (in X) if every

flex is trivial, and (G, p) is infinitesimally flexible (in X) if it is not infinitesimally

rigid.

We classify both continuous rigidity and local rigidity as finite rigidity.
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1.3.2 Regular placements and independence for finite graphs

For a finite graph G we say that a well-positioned framework (G, p) in a normed space

X is regular if for all q ∈ W(G) we have rank dfG(p) ≥ rank dfG(q). We shall denote

the subset of W(G) of regular placements of G in X by R(G).

Lemma 1.3.3. Let G be a finite graph and X a normed space. Then the set of regular

placements of G is a non-empty open subset of the set of well-positioned placements of

G.

For this lemma we shall need to use the fact that the rank function on the space of

linear maps between finite dimensional normed spaces X, Y is lower semi-continuous

i.e. for all c ≥ 0 the set {T ∈ L(X, Y ) : rank T ≥ c} is open.

Proof. Let n := sup{rank dfG(p) : p ∈ W(G)}. The rank function T 7→ rank T is lower

semi-continuous and by Lemma 1.2.8, dfG is continuous, thus the map

f : W(G) → N ∪ {0}, p 7→ rank dfG(p)

is lower semi-continuous. As R(G) = f−1[[n,∞)] then R(G) is open.

Lemma 1.3.4. Let G be a finite graph and X a normed space. Then the set of

regular placements of G in general position is a non-empty open subset of the set of

well-positioned placements of G.

Proof. By Lemma 1.2.4, W(G)c is negligible. As G(G)c is an algebraic set then it is

a closed negligible set, thus G(G) ∩ W(G) is dense in XV (G) and G(G) ∩ W(G) is an

open dense subset of W(G). By Lemma 1.3.3, R(G) is open in W(G) and so the result

follows.
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Remark 1.3.5. If X is Euclidean then for any finite graph G the set R(G) is an open

dense subset of W(G) (see [5, Section 3] for more details), however this is not always

the case e.g. if X is a polyhedral normed space [34, Lemma 16].

Definition 1.3.6. Let (G, p) be a (possibly infinite) well-positioned framework in a

normed space X. We define (G, p) to be independent if dfG(p) is surjective and define

(G, p) to be dependent otherwise. If (G, p) is infinitesimally rigid and independent we

shall say that it is isostatic.

We shall use the convention that any framework with no edges (regardless of

placement) is independent and that (K1, p) is isostatic for any choice of placement p.

It is immediate that if a finite framework is independent then its placement is regular,

however the reverse does not necessarily hold.

We have a few equivalent definitions for independence. We first define for any

well-positioned finite framework (G, p) an element (avw)vw∈E(G) ∈ RE(G) to be a stress

of (G, p) if it satisfies the stress condition at each vertex v ∈ V (G), i.e.

∑
w∈NG(v)

avwϕv,w = 0.

Remark 1.3.7. Let (G, p) be a well-positioned framework in the standard Euclidean

space Rd and a ∈ RE(G). The usual definition for the stress condition is given as

∑
w∈NG(v)

avw(pv − pw) = 0

for all v ∈ V (G). If a satisfied the above version of the stress condition then a would not

necessarily satisfy our version of the stress condition, since ϕv,w = ϕ( pv−pw

∥pv−pw∥), however

(avw∥pv − pw∥)vw∈E(G) would, and so in many ways most results are not effected. Our

version of a stress is defined differently so as to fit better with pseudo-stresses (see

Section 1.3.3).
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Proposition 1.3.8. Let (G, p) be a finite well-positioned framework in a normed space

X. Then the following are equivalent:

(i) (G, p) is independent.

(ii) R(G, p) has independent rows.

(iii) |E(G)| = rank dfG(p).

(iv) The only stress of (G, p) is the zero stress i.e. avw = 0 for all vw ∈ E(G).

Proof. (i) ⇔ (ii): If we consider R(G, p) as a linear transform then it is surjective if

and only if it has row independence. As R(G, p) = dfG(p) when considered as a linear

transform the result follows.

(i) ⇔ (iii): This follows immediately as im dfG(p) ⊆ RE(G).

(ii) ⇔ (iv): A non-zero stress is equivalent to a linear dependence on the edges of

R(G, p).

Remark 1.3.9. Let (G, p) be a well-positioned framework, then we may define a

subset E ⊂ E(G) to be independent if the subframework generated on the edge set E

is an independent framework. Since framework independence is a property determined

by matrix row independence then the power set of E(G) with the independent sets as

defined will be a matroid, see Appendix A.2.1 for more details. Because of this, it follows

that every infinitesimally rigid framework has a spanning isostatic subframework; we

remove any independent edges to form a maximally independent subframework (H, p)

and note that rank dfG(p) = rank dfH(p).

We note that rigidity and independence is all equivalent for isometrically isomorphic

normed spaces.

Corollary 1.3.10. Let X and Y be normed spaces and T : X → Y be a isometric

isomorphism. Let (G, p) be a framework in X and (G, q) be a framework in Y with

qv = T (pv) for all v ∈ V (G). Then the following holds:
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(i) If (G, p) is finite and well-positioned, (G, p) is regular in X if and only if (G, q) is

regular in Y .

(ii) If (G, p) is well-positioned, (G, p) is independent in X if and only if (G, q) is

independent in Y .

(iii) If (G, p) is well-positioned, (G, p) is infinitesimally rigid in X if and only if (G, q)

is infinitesimally rigid in Y .

(iv) If (G, p) is finite, (G, p) is locally rigid in X if and only if (G, q) is locally rigid in

Y .

(v) (G, p) is continuously rigid in X if and only if (G, q) is continuously rigid in Y .

Proof. We first note that by Corollary 1.2.3, if (G, p) is well-positioned in X then

(G, q) is well-positioned in Y . Define the linear isomorphism F : XV (G) → Y V (G) with

F ((xv)v∈V (G)) = (T (xv))v∈V (G), fX
G to be the rigidity map of G in X and fY

G to be the

rigidity map of G in Y . We note immediately that fY
G = fX

G ◦ F−1 and (if (G, p) is

well-positioned) dfY
G (q) = dfX

G (p) ◦ F−1. It follows that, if (G, p) is well-positioned,

dfX
G (p) is surjective if and only if dfY

G (q) is surjective, and if (G, p) is also finite,

rank dfX
G (p) = rank dfY

G (q), thus (i) and (ii) hold.

(iii): Define TX(p) to be the space of trivial infinitesimal flexes of p in X and TY (q)

to be the space of trivial infinitesimal flexes of q in Y . We note that dim ker dfX
G (p) =

dim ker dfY
G (q) and, by Corollary 1.2.21, dim TX(p) = dim TY (q), thus the result holds.

(iv): Suppose that (G, p) is locally rigid in X, then there exists a neighbourhood

U ⊆ XV (G) of p such that if p′ ∈ U and fX
G (p′) = fX

G (p′) then there exists g ∈ Isom(X)

such that p′ = g.p. Define U ′ := F (U) and suppose q′ ∈ U ′ with fY
G (q′) = fY

G (q). As

F−1(q′) ∈ U and

fX
G (F−1(q′)) = fY

G (q′) = fY
G (q) = fG(p),



1.3 Rigidity and independence 61

then there exists g ∈ Isom(X) such that

g.F−1(q′) = g ◦ T−1.q′ = p.

By Proposition 1.1.31, T ◦ g ◦ T−1 is an isometry of Y . As T ◦ g ◦ T−1.q′ = q, then

(G, q) is locally rigid in Y . By a similar method we can show the converse holds also.

(v): This follows using a similar method to (iv).

1.3.3 Pseudo-rigidity matrices

Often frameworks which are not well-positioned can be used to obtain information

about well-positioned frameworks. We can apply the following method to test for

independence, mainly applied in sections 3.2.2 and 3.3.

Suppose (G, p) is a not well-positioned framework in a normed space X, then there

exists a non-empty subset F ⊂ E(G) of non-well-positioned edges. For each vw ∈ F we

will choose some f ∈ X∗ and define ϕv,w := f . We define ϕv,w to be the pseudo-support

functional of vw for p. Using the support functionals of the edges in E(G) \F and the

chosen pseudo-support functionals of the edges in F we define φ := {ϕv,w : vw ∈ E(G)}

to be the set of support functionals and pseudo-support functionals for our framework

and R(G, p)φ to be the |E(G)| × |V (G)| pseudo-rigidity matrix generated by our set φ

in the same manner as the rigidity matrix. We shall also use the notation (G, p)φ to

indicate that we are considering (G, p) with the pseudo-rigidity matrix R(G, p)φ.

We define (G, p)φ to be independent if R(G, p)φ has row independence and dependent

otherwise. We define a vector a := (avw)vw∈E(G) ∈ RE(G) to be a pseudo-stress of (G, p)φ

if it satisfies the pseudo-stress condition i.e. for all v ∈ V (G), ∑w∈NG(v) avwϕv,w = 0.

Following from Proposition 1.3.8 we can see that (G, p)φ is independent if and only if

the only pseudo-stress is (0)vw∈E(G).
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Suppose we have a sequence (pn)n∈N of well-positioned placements of G such that

pn → p as n → ∞ and the sequences (ϕn
v,w)n∈N in X∗ converge for all vw ∈ E(G),

where ϕn
v,w is the support functional of vw in (G, pn). If vw ∈ E(G) \ F then by

Proposition 1.1.11 (iv), ϕn
v,w → ϕv,w as n → ∞. We say that (G, p)φ is the framework

limit of (G, pn) (or (G, pn) → (G, p)φ as n → ∞) if ϕn
v,w → ϕv,w for all vw ∈ E(G).

Proposition 1.3.11. Suppose (G, p)φ is the framework limit of the sequence of well-

positioned frameworks ((G, pn))n∈N in a normed space X. If R(G, p)φ has row inde-

pendence then there exists N ∈ N such that (G, pn) is independent for all n ≥ N .

Proof. First note that if we consider |E(G)| × |V (G)| matrices with entries in X∗ to

be elements of L(XV (G),RE(G)) as described in Appendix B.1, then they will have

row independence if and only if they are surjective. As (G, pn) → (G, p)φ as n → ∞

then R(G, pn) → R(G, p)φ entrywise as n → ∞. Since the set of surjective maps of

L(XV (G),RE(G)) is an open subset and R(G, p)φ is surjective then by Lemma 1.2.8 the

result follows.

1.3.4 Necessary conditions for rigidity of frameworks and graphs

The following gives us some necessary and sufficient conditions for infinitesimal rigidity.

Theorem 1.3.12. [40, Theorem 10] Let (G, p) be a finite well-positioned framework

in a normed space X. Then the following hold:

(i) If (G, p) is independent then |E(G)| = (dimX)|V (G)| − dim F(G, p).

(ii) If (G, p) is infinitesimally rigid then |E(G)| ≥ (dimX)|V (G)| − dim T (p).

The following gives an equivalence for isostaticity.

Proposition 1.3.13. Let (G, p) be a finite well-positioned framework in X. If any

two of the following properties hold then so does the third (and (G, p) is isostatic):
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(i) |E(G)| = (dimX)|V (G)| − dim T (p)

(ii) (G, p) is infinitesimally rigid

(iii) (G, p) is independent.

Proof. Apply the Rank-Nullity theorem to the rigidity operator of G at p. The result

follows the same method as [23, Lemma 2.6.1.c].

Lemma 1.3.14. Let (G, p) be a finite (possibly not spanning) framework in a d-

dimensional normed space X with |V (G)| ≥ d+ 1. Suppose q ∈ R(G) is full, then the

following hold:

(i) If (G, p) is independent then (G, p) is regular and (G, q) is independent.

(ii) If (G, p) is infinitesimally rigid then (G, p) is regular, p is full and (G, q) is

infinitesimally rigid.

Proof. (i): As (G, p) is independent then dfG(p) is surjective. As surjective linear maps

have maximal possible rank then (G, p) is regular. Since q is regular it follows that

(G, q) is independent.

(ii): As (G, q) is regular then by the Rank-Nullity theorem we have

d|V (G)| − dim T (p) = rank dfG(p) ≤ rank dfG(q) ≤ d|V (G)| − dim T (q),

thus by Theorem 1.2.29, dim T (q) ≤ dim T (p) ≤ dim Isom(X). As q is full then by

Theorem 1.2.29, dim T (q) = dim Isom(X). It follows that dim T (p) = dim Isom(X)

and thus p is full. From the above inequality it now also follows that (G, q) is

infinitesimally rigid.

By using Lemma 1.3.14 we can extend Theorem 1.3.12 to obtain the following.
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Corollary 1.3.15. Let (G, p) be a finite independent framework in a normed space

X with |V (G)| ≥ dimX + 1. Then for all H ⊂ G with |V (H)| ≥ dimX + 1,

|E(H)| ≤ (dimX)|V (H)| − dim Isom(X).

If (G, p) is also isostatic then

|E(G)| = (dimX)|V (G)| − dim Isom(X).

Proof. As G(G) is an open dense subset of XV (G) and G(G)c is negligible, by Lemma

1.2.4 and Lemma 1.3.3, the set R(G) ∩ G(G) is non-empty. Choose p′ to be a regular

placement of G in general position. Since (G, p′) is regular it follows that it is also

independent.

Define q := p′|V (H), then (H, q) is in general position. As (H, q) ⊆ (G, p′) then it

follows from Remark 1.3.9 that (H, q) is independent; furthermore as H has at least

d+ 1 vertices then q is spanning. By Theorem 1.3.12,

|E(H)| = (dimX)|V (H)| − dim F(H, q).

By Corollary 1.2.25 and Theorem 1.2.29, dim T (q) = dim Isom(X). As T (q) ⊂ F(H, q)

we obtain the required inequality.

Suppose (G, p) is also isostatic. We note that the required equality holds due to

Proposition 1.3.13, Lemma 1.3.14 (ii) and Theorem 1.2.29.

Definition 1.3.16. Let X be a normed space and G a finite graph. We define the

following:
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(i) G is rigid (in X) if it has a infinitesimally rigid placement i.e. there exists a

well-positioned placement p of G where (G, p) is infinitesimally rigid. If no such

placement exists then G is flexible (in X).

(ii) G is independent (in X) if it has a independent placement i.e. there exists a well-

positioned placement p of G where (G, p) is independent. If no such placement

exists then G is dependent (in X).

(iii) G is isostatic (in X) if it is both rigid and independent.

If a given graph G is isostatic in a normed space X then by definition it will

have independent placements and infinitesimally rigid placements, however from the

definition it could possibly be that G has no placement that is both independent and

infinitesimally rigid, i.e. isostatic. Fortunately, the following result tells us that this

cannot happen.

Proposition 1.3.17. A finite graph G is isostatic if and only if it has an isostatic

placement.

Proof. By later results in Chapter 2 (Theorem 2.2.8 and Proposition 2.2.7) we may

suppose |V (G)| ≥ d + 1. If G has an isostatic placement then it is both rigid and

independent as required. Suppose G is isostatic with infinitesimally rigid placement p.

By Theorem 1.3.12,

|E(G)| ≥ (dimX)|V (G)| − dim T (p).

By Lemma 1.3.14 (ii), p is full, thus dim T (p) = dim Isom(X). As G has an independent

placement then it follows by Corollary 1.3.15 that

|E(G)| ≤ (dimX)|V (G)| − dim Isom(X),
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thus

|E(G)| = (dimX)|V (G)| − dim T (p).

By Proposition 1.3.13, (G, p) is isostatic as required.

The following shows that graph rigidity and graph independence is invariant under

isometric isomorphisms.

Corollary 1.3.18. Let X and Y be normed spaces, T : X → Y be a isometric

isomorphism and G a finite graph. Then the following holds:

(i) G is rigid in X if and only if G is rigid in Y .

(ii) G is independent in X if and only if G is independent in Y .

Proof. This follows immediately from Corollary 1.3.10.

1.3.5 Rigidity in the Euclidean spaces

Many results can be simplified for Euclidean spaces. We outline some that will be

useful in this section. The first gives an equivalence of the different forms of rigidity

for Euclidean spaces.

Theorem 1.3.19. [5][6] Let (G, p) be a regular finite framework in a Euclidean space

X, then the following are equivalent:

(i) (G, p) is infinitesimally rigid in X,

(ii) (G, p) is locally rigid in X,

(iii) (G, p) is continuously rigid in X.

In her 1927 paper, H. Pollaczek-Geiringer proved the following.
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Theorem 1.3.20. [58] For any graph G with |V (G)| ≥ 2, G is isostatic in the Euclidean

plane if and only if G is (2, 3)-tight.

This result was later rediscovered by G. Laman who utilised the Henneberg moves

to obtain the result [42]. His proof follows from three key results.

Proposition 1.3.21. [42, Theorem 5.6] Let G be a finite simple graph with |V (G)| ≥ 2.

If G is isostatic in the Euclidean plane then G is (2, 3)-tight.

Proposition 1.3.22. [42, Theorem 6.4, Theorem 6.5] Henneberg moves preserve the

(2, 3)-tightness and (2, 3)-sparsity of graphs. Further, any (2, 3)-tight graph on 2 or

more vertices can be constructed from K2 by a finite sequence of Henneberg moves.

Proposition 1.3.23. [42, Proposition 5.3, Proposition 5.4] If G is isostatic in the

Euclidean plane and G′ is the graph formed from G by a Henneberg move then G′ is

also isostatic in the Euclidean plane.

We can now see that combining Proposition 1.3.21, Proposition 1.3.22 and Propo-

sition 1.3.23 we obtain Theorem 1.3.20. Theorem 1.3.20 is the converse of Corollary

1.3.15 for dimension 2, however this cannot be extended to any dimension higher than

2. The counter-example to this for R3 with the Euclidean norm is the graph G of the

double-banana framework (see Figure 1). For every H ⊂ G with |V (H)| ≥ 3 we have

|E(H)| ≤ 3|V (H)| − 6, however G is clearly flexible. It is, however, an open problem

for all other 3-dimensional normed spaces whether the converse of Corollary 1.3.15

holds.

In the Euclidean spaces it is easy to determine rigidity and flexibility for non-

spanning frameworks and/or complete frameworks, as the results below show.

Proposition 1.3.24. Let (G, p) be a finite framework in a d-dimensional Euclidean

space X so that the following holds:
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(i) The dimension of the affine span of p is n, with 0 ≤ n < d.

(ii) |V (G)| > n+ 1.

Then (G, p) is infinitesimally flexible.

Proof. By translation we may assume that pv0 = 0 for some v0 ∈ V (G). Let x1, . . . , xd

be an orthonormal basis and define Xk := span{x1, . . . , xk} for each 1 ≤ k ≤ d; we may

assume we chose the basis such that (G, p) lies in Xn. As each space Xk is Euclidean,

by Lemma 1.1.29 (ii), dim Isom(Xk) = k(k+1)
2 . For k ≥ n, we will denote by Tk(p)

and Fk(G, p) the space of trivial flexes of p in Xk and the space of flexes of p in Xk

respectively.

As (G, p) spans Xn then by Corollary 1.2.25, Corollary 1.2.24 and Theorem 1.2.29,

dim Tn(p) = n(n+ 1)
2 , dim Tn+1(p) = (n+ 1)(n+ 2)

2 .

Define for each v ∈ V (G) the flex uv ∈ (Xn)V (G) with uv
w = 0 if w ̸= v and uv

v = xn+1.

We now note that

dim Fn+1(G, p) ≥ dim Tn(p) + dim{uv : v ∈ V (G)}

>
n(n+ 1)

2 + (n+ 1)

= (n+ 1)(n+ 2)
2

= dim Tn+1(p),

thus (G, p) is infinitesimally flexible in Xn+1.

If n + 1 = d then Xn+1 = X and we are done. Suppose n + 1 < d and (G, p) is

infinitesimally rigid in X. As (G, p) is infinitesimally flexible in Xn+1 there exists a

non-trivial flex u of (G, p) in Xn+1; by subtracting a suitable trivial flex we may assume

uv0 = 0. As (G, p) is infinitesimally rigid in X then u is a trivial flex of (G, p). By

Corollary 1.2.16, there exists T ∈ Tι IsomLin(X) such that T.p = u. By Proposition
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1.1.35 (ii), T ∗ = −T . As T (pv) = uv ∈ Xn+1 for all v ∈ V (G) and T is linear, then

T |Xn maps into Xn+1. Define the linear map R ∈ L(Xn+1) such that R(x) = T (x)

for all x ∈ Xn and R(xn+1) = 0. It follows R∗ = −R, thus by Proposition 1.1.35 (ii),

R ∈ Tι IsomLin(Xn+1). By Corollary 1.2.16, R.p = u ∈ Tk(p), contradicting that u is

non-trivial.

Proposition 1.3.25. Let (K, p) be a finite framework in a Euclidean space X where

K is a complete graph. Then (K, p) is continuously and locally rigid. If (K, p) is also

spanning then (K, p) is also infinitesimally rigid.

Proof. By Proposition 1.1.33, f−1
K [fK(p)] = Op, thus (K, p) is continuously and locally

rigid.

Suppose (K, p) is spanning, then by [23, Corollary 2.3.1], F(K, p) = d(d+1)
2 . By

Corollary 1.2.25, p is full and by Theorem 1.2.29 and Lemma 1.1.29 (ii), dim T (p) =
d(d+1)

2 . As F(K, p) = T (p) then (K, p) is infinitesimally rigid.

Although complete frameworks are always continuously, locally and (in most cases)

infinitesimally rigid, in non-Euclidean spaces this does not automatically hold. Take

for instances any well-positioned placement p of K3 in a non-Euclidean normed plane

X. We first note that p either affinely spans X or a hyperplane of X, thus by Corollary

1.2.24, p is full. By Theorem 1.2.29 and Lemma 1.1.29 (iii), dim T (p) = 2, but

dim F(K3, p) = 2|V (G)| − rank dfK3(p) ≥ 6 − |E(G)| = 3,

thus (K3, p) will be infinitesimally flexible.





Chapter 2

Framework rigidity in general

normed spaces

In this chapter we shall generalise the regularity condition required for Theorem 1.3.19

to a new property - whether a framework is constant. Using this new property, we shall

prove an analogue of Theorem 1.3.19 for this new class of framework; see Theorem

2.1.5. Following this we shall establish, among other properties, the flexibility and

independence of small frameworks in general non-Euclidean normed spaces. We shall

finish the chapter by defining the graph substitution operation for all normed spaces,

and detail what properties a normed space requires for the operation to preserve graph

rigidity.
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2.1 Equivalence of local, continuous and infinitesi-

mal rigidity

2.1.1 Properties of constant and regular placements

For a finite graph G we say that a well-positioned framework (G, p) in a normed space

X is constant if there is an open neighbourhood U ⊂ XV (G) of p such that U ⊂ W(G)

and rank dfG(q) = rank dfG(p) for all q ∈ U . We shall define C(G) to be the subset of

W(G) of constant placements of G.

For Euclidean spaces R(G) = C(G) as R(G) is an open dense subset of XV (G) (see

[5, Section 3] for more details). For a large class of normed spaces we can give an

extension of this result.

Proposition 2.1.1. Let X be a normed space with an open set of smooth points and

G be a finite graph. Then the following holds:

(i) W(G) is an open dense subset of XV (G).

(ii) C(G) is an open dense subset of W(G).

(iii) R(G) is an open subset of C(G).

Proof. (i): By Lemma 1.2.4, W(G) is a dense subset of XV (G). As smooth(X) is an

open subset of X it follows that if |E(G)| = 1 then W(G) is open. Suppose for all

finite graphs G with at most n edges the set W(G) is an open dense subset of XV (G).

Let H be any graph with n+ 1 edges and choose an edge e ∈ E(H). Define

H1 = (V (H), {e}), H2 = (V (H), E(H) \ {e}),

then W(H) = W(H1) ∩ W(H2). As |E(H1)|, |E(H2)| ≤ n then W(H1), W(H2) are

open dense subsets of XV (H) by assumption, thus W(H) is an open dense subset also.
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By induction it now follows that W(G) is an open dense subset of XV (G) for any finite

graph G.

(ii): For any open set U ⊆ W(G) and n ∈ N define Un ⊆ U to be the subset of

placements p ∈ U where rank dfG(p) ≥ n for all q ∈ U . The rank function T 7→ rank T

is lower semi-continuous, thus by Lemma 1.2.8, the map

f : U → N ∪ {0}, p 7→ rank dfG(p)

is lower semi-continuous. As Un = f−1[[n,∞)], Un is open in W(G) for all n ∈ N.

It follows from the definition that C(G) is open in XV (G), thus C(G) is open in

W(G). Choose any p ∈ W(G), then by (i) we may choose an open neighbourhood

U ⊂ W(G) of p. The rank function will be bounded by dim(RE(G)) = |E(G)|, thus

there exists p′ ∈ U where rank dfG(p′) := n ≥ rank dfG(q) for all q ∈ U . Since Un

is open in W(G) and Um = ∅ for all m > n then the set of placements q ∈ U with

rank dfG(q) = n is the open set Un, thus p′ is a constant placement. Since this holds

for all open neighbourhoods of p and p was chosen arbitrarily then C(G) is dense in

W(G).

(iii): By Lemma 1.3.3, R(G) is an open subset of W(G). By (i), W(G) is open

in XV (G). It now follows R(G) is open in XV (G), thus every regular placement is

constant.

2.1.2 Equivalence of types of rigidity for constant frameworks

The following theorem is a simplification of the original result for finite dimensional

manifolds.

Theorem 2.1.2 (The Constant Rank Theorem). [47, Theorem 2.5.15] Let X and Y be

normed spaces with dimX = m and dim Y = n, U ⊂ X be an open set and f : U → Y
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be Cr-differentiable on U . Suppose f has constant rank k at u ∈ U i.e. rank df(x) = k

for all points x in a neighbourhood of u. Then there exists the following:

(i) Open neighbourhoods U2 ⊂ U and V1 ⊂ Y of u0 and f(u0) respectively, with

f(U2) ⊂ f(V1).

(ii) Open sets U1 ⊂ Rk × Rm−k and V2 ⊂ Rk × Rn−k.

(iii) Cr-diffeomorphisms ψ : U1 → U2 and ϕ : V1 → V2 such that ϕ ◦ f(u) = (0, 0),

ψ(0, 0) = u and ϕ ◦ f ◦ ψ(x1, x2) = (x1, 0) for all (x1, x2) ∈ U1.

We can make the immediate corollary.

Corollary 2.1.3. Let X and Y be normed spaces, U ⊂ X be an open set, p ∈ U and

f : X → Y be Cr-differentiable on U . Suppose f has constant rank at every point in

an open neighbourhood of f−1[f(p)] ∩ U , then the following hold:

(i) f−1[f(p)] ∩ U is a Cr-submanifold of X.

(ii) The tangent space of f−1[f(p)] ∩ U at u ∈ f−1[f(p)] ∩ U is ker df(u).

Proof. (i): Choose any u ∈ f−1[f(p)] ∩U and note that f−1[f(u)] ∩U = f−1[f(p)] ∩U .

Let m := dimX, n := dim Y and k := rank df(u), then dim ker df(u) = m − k. By

applying Theorem 2.1.2 at the point u, there exists U1, U2, V1, V2, ψ and ϕ as described.

Choose any x ∈ f−1[f(p)] ∩ U2, then there exists a unique point (x1, x2) ∈ U1 such

that ψ(x1, x2) = x. As x ∈ f−1[f(p)] ∩ U2 then

(x1, 0) = ϕ ◦ f ◦ ψ(x1, x2) = ϕ ◦ f(u) = (0, 0),

thus x1 = 0. It now follows that

ψ−1[f−1[f(p)] ∩ U2] = U2 ∩ ({0} × Rm−k).
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We now note that ψ−1 : U2 → U1 is a chart of the Cr-manifold X with the submanifold

property (see [47, Definition 3.2.1]). As this holds for all u ∈ f−1[f(p)] ∩ U then

f−1[f(p)] ∩ U is a (m− k)-dimensional Cr-submanifold of X.

(ii): Choose any u ∈ f−1[f(p)] ∩ U . By definition,

Tuf
−1[f(p)] ∩ U = {α′(0) : α is C1-differentiable in f−1[f(p)] ∩ U, α(0) = u}.

Choose any C1-differentiable path α : (−δ, δ) → f−1[f(p)] ∩ U with α(0) = u. As

f ◦ α(t) = f(p) for all t ∈ (−δ, δ) then

df(u)(α′(0)) = d(f ◦ α)(0) = lim
t→0

1
t
(f ◦ α(t) − f ◦ α(0)) = 0,

thus Tuf
−1[f(p)] ∩ U ⊂ ker df(u). As

dimTuf
−1[f(p)] ∩ U = dim f−1[f(p)] ∩ U = m− k = dim ker df(u)

the result now follows.

The following key lemma shows why the notion of constant frameworks is required

for linking the various types of rigidity.

Lemma 2.1.4. Let (G, p) a constant finite framework in a normed space X, then there

exists an open neighbourhood U ⊂ XV (G) of p such that f−1
G [fG(p)]∩U is a C1-manifold

with tangent space F(G, p) at p and Op ∩ U is a C1-submanifold of f−1
G [fG(p)] ∩ U .

Proof. Since (G, p) is constant then p is an interior point of W(G). By Proposition 1.2.7

and Lemma 1.2.8, fG is C1-differentiable with constant rank on an open neighbourhood

of p in XV (G). By Corollary 2.1.3, f−1
G [fG(p)] ∩ U is a C1-manifold with tangent space

ker dfG(p) = F(G, p) at p.
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By Lemma 1.2.12, Op is a smooth submanifold of XV (G). As

Op ∩ U ⊆ f−1
G [fG(p)] ∩ U ⊆ XV (G)

and both Op ∩ U and f−1
G [fG(p)] ∩ U are C1-submanifolds of XV (G) then the inclusion

map Op ∩U ↪→ f−1
G [fG(p)] ∩U is a C1-embedding, thus Op ∩U is a C1-submanifold of

f−1
G [fG(p)] ∩ U .

We are now ready to prove the following.

Theorem 2.1.5. Let (G, p) be a constant finite framework in a normed space X, then

the following are equivalent:

(i) (G, p) is infinitesimally rigid in X,

(ii) (G, p) is locally rigid in X,

(iii) (G, p) is continuously rigid in X.

Proof. By Lemma 2.1.4, Op ∩ U is a C1-submanifold of f−1
G [fG(p)] ∩ U for some open

neighbourhood U of p. As manifolds are locally path-connected we may assume we

chose U small enough such that f−1
G [fG(p)] ∩ U and Op ∩ U are path-connected.

(Infinitesimal rigidity ⇔ Local rigidity): Since Op ∩ U is a C1-submanifold of

f−1
G [fG(p)] ∩ U we have

f−1
G [fG(p)] ∩ U ′ = Op ∩ U ′ for some open neighbourhood U ′ ⊆ U of p

⇔ Tp(f−1
G [fG(p)] ∩ U) = Tp(Op ∩ U)

⇔ F(G, p) = T (p);

this is equivalent to saying (G, p) is infinitesimally rigid if and only if (G, p) is locally

rigid.
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(Continuous rigidity ⇒ Local rigidity): Suppose (G, p) is continuously rigid. Choose

q ∈ f−1
G [fG(p)] ∩ U , then there exists a continuous path from p to q in f−1

G [fG(p)] ∩ U .

This implies that we may define a finite flex α of (G, p) such that α(t0) = q for some

t0 ∈ (−δ, δ). Since (G, p) is continuously rigid then α is trivial and thus a continuous

path in Op. It now follows q ∈ Op ∩ U as required.

(Local rigidity ⇒ Continuous rigidity): For r > 0 and s ∈ XV (G), we shall define

Br(s) to be the open ball of the normed space XV (G); we refer the reader to Section

1.2.2 for more details on this space.

Suppose (G, p) is locally rigid, then there exists ϵ > 0 such that Bϵ(p) ⊂ U and

f−1
G [fG(p)] ∩Bϵ(p) = Op ∩Bϵ(p). First note that both f−1

G [fG(p)] and Op are invariant

under Isom(X). Choose any q ∈ Op, then there exists g ∈ Isom(X) such that g.p = q.

We now note that

Op ∩Bϵ(q) = g. (Op ∩Bϵ(p)) = g.
(
f−1

G [fG(p)] ∩Bϵ(p)
)

= f−1
G [fG(p)] ∩Bϵ(q).

As this holds for all q ∈ Op then Op is open in f−1
G [fG(p)]. By Lemma 1.2.12, Op is

closed in XV (G), thus Op is clopen in f−1
G [fG(p)].

Define f−1
G [fG(p)]Γ to be the path-connected component of f−1

G [fG(p)] that contains

p with the subspace topology. As path-connected spaces are connected, the only clopen

set in f−1
G [fG(p)]Γ is itself. Define OΓ

p := Op ∩ f−1
G [fG(p)]Γ, then OΓ

p is clopen since Op

is clopen. This implies that OΓ
p = f−1

G [fG(p)]Γ and so any finite flex α lies in Op.

Remark 2.1.6. Suppose G is any finite graph and smooth(X) is an open subset of X

(an example would be any ℓd
q space). By Proposition 2.1.1, every regular placement

will be constant, thus by Theorem 2.1.5, if (G, p) is infinitesimally rigid then it will be

continuously and locally rigid also.
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2.2 Small frameworks and non-spanning placements

2.2.1 Orbits of non-spanning placements

For a normed space (X, ∥ ·∥) we shall define (X, ∥ ·∥2) to be the unique Euclidean space

for (X, ∥ · ∥) as defined in Lemma 1.1.29; if we refer to just X we shall be referring to

the general normed space (X, ∥ · ∥). For any placement p in X we shall define T2(p) to

be the space of trivial motions of p in (X, ∥ · ∥2).

Lemma 2.2.1. Let p be a placement in a normed space X. Then T (p) is a linear

subspace of T2(p).

Proof. By Lemma 1.1.29, Isom(X, ∥ · ∥) ≤ Isom(X, ∥ · ∥2). It now follows that T (p) ⊆

T2(p).

For Euclidean spaces we have the following equality for the dimension of the space

of trivial motions for non-spanning placements.

Lemma 2.2.2. [23, Lemma 2.3.3] Let (p, S) be a placement in a d-dimensional normed

space X and let n be the dimension of the affine span of {pv : v ∈ S}. Then

dim T2(p) = (n+ 1)(2d− n)
2 .

We now wish to obtain an upper and lower bound for the dimension of the space of

trivial motions for non-spanning placements. To do this we shall first find an upper-

bound for when |S| = 2 in non-Euclidean normed spaces and then use an inductive

argument.

Lemma 2.2.3. Let x0 ∈ X \ {0} and dimX = d. Then the set

O(x0) := {T (x0) : T ∈ IsomLin(X)}
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is a closed smooth submanifold of X; further dim O(x0) = d − 1 if and only if X is

Euclidean.

Proof. Since IsomLin(X) is compact then IsomLin(X) gives rise to a proper Lie group

action on X by x 7→ T (x) for all T ∈ IsomLin(X), x ∈ X. As O(x0) is the orbit

of x0 (with respect to IsomLin(X)) then by Lemma 1.1.26, O(x0) is a closed smooth

submanifold of X.

First suppose X is Euclidean. By [67, Corollary 3.3.3], IsomLin(X) acts transitively

on S∥x0∥[0], thus O(x0) = S∥x0∥[0]. As the unit sphere of a Euclidean space is the

d-sphere and S∥x0∥[0] = ∥x0∥S1[0] we have dim O(x0) = d− 1.

Now suppose dim O(x0) = d − 1. If d = 1 then all normed spaces are Euclidean

so assume d > 1. The set S∥x0∥[0] is a closed connected topological submanifold of X

with dimension d− 1 as it is homeomorphic to the d-sphere. Since O(x0) ⊂ S∥x0∥[0]

then O(x0) is a closed subset of S∥x0∥[0]. As dim O(x0) = dimS∥x0∥[0] it follows from

Brouwer’s theorem for invariance of domain [44, Theorem 1.18] that the inclusion map

O(x0) ↪→ S∥x0∥[0] is an open map, thus O(x0) is an open subset of S∥x0∥[0]. As the

only clopen non-empty subset of a connected set is itself then O(x0) = S∥x0∥[0]. This

implies IsomLin(X) acts transitively on S∥x0∥[0], thus by [67, Corollary 3.3.5], X is

Euclidean.

Lemma 2.2.4. Let S := {v1, v2} and p be a placement of S in a d-dimensional normed

space X in general position. Then dim T (p) ≤ 2d− 1 with equality if and only if X is

Euclidean.

Proof. By Lemma 2.2.1 and Lemma 2.2.2 it follows dim T (p) ≤ 2d− 1 with equality if

X is Euclidean.

Now suppose dim T (p) = 2d− 1. Without loss of generality we may assume pv1 = 0.

If d = 1 then all normed spaces are Euclidean so assume d > 1. As p is in general

position then pv2 ≠ 0. By Lemma 2.2.3, O(pv2) is a closed smooth submanifold of
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X. We observe that the tangent space of O(pv2) at pv2 is {u ∈ X : (0, u) ∈ T (p)}.

Since dim T (p) = d+ (d− 1) and the trivial motions generated by translations form a

d-dimensional subspace then it follows O(pv2) has dimension d− 1. By Lemma 2.2.3,

the space X is Euclidean as required.

Lemma 2.2.5. Let X be a d-dimensional normed space and 2 ≤ k ≤ d. Suppose

(p, S) ⊂ (p′, S ′) are placements in X such that {pv : v ∈ S} has an affine span of

dimension k − 1 and {p′v : v ∈ S ′} has an affine span of dimension k. Then

dim T (p′) − dim T (p) ≤ d− k.

Proof. Choose T := {v0, . . . , vk−1} ⊂ S and T ′ := T ∪ {vk} such that vk ∈ S ′ \ S and

p′v0 , . . . , p
′
vk

have affine span with dimension k. By translation we may assume pv0 = 0.

Define the linear restriction map

P : XT ′ → XT , (xvi
)k

i=0 7→ (xvi
)k−1

i=0

and the placements (q, T ) ⊂ (p, S) and (q′, T ′) ⊂ (p′, S ′). We note

P (T2(q′)) ⊆ T2(q), P (T (q′)) ⊆ T (q).

Choose any u ∈ T (q), then by Corollary 1.2.16, there exists h ∈ Tι Isom(X) such

that u = h.q. By Corollary 1.2.16, h.q′ ∈ T (q′), thus as P (h.q′) = h.q we have

P (T (q′)) = T (q). By a similar argument we can see that P (T2(q′)) = T2(q) also.

By the Rank-Nullity theorem applied to P |T2(q′) and Lemma 2.2.2

dim kerP |T2(q′) = dim T2(q′) − dim T2(q) = (k + 1)(2d− k)
2 − k(2d− k + 1)

2 = d− k.
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By Lemma 2.2.1 and the Rank-Nullity theorem applied to P |T (q′)

dim T (q′) − dim T (q) = dim kerP |T (q′) ≤ dim kerP |T2(q′) = d− k.

By Corollary 1.2.17 (ii), T (q) ∼= T (p) and T (q′) ∼= T (p′) and so the result follows.

Proposition 2.2.6. Let (p, S) be a placement in a d-dimensional normed space X

where {pv : v ∈ S} has an affine span of dimension 1 ≤ n ≤ d. Then

dim T (p) ≤ (n+ 1)(2d− n)
2

with equality if and only if X is Euclidean.

Proof. If X is Euclidean then the result follows by Lemma 2.2.2.

Suppose X is non-Euclidean. If n = 1 then the result follows by Lemma 2.2.4 and

Corollary 1.2.17 (ii). Let n > 1 and suppose the theorem holds for all m ≤ n − 1.

Choose a subplacement q ⊂ p with an affine span of dimension n−1, then by assumption

dim T (q) < n(2d−n+1)
2 . By Lemma 2.2.5 it follows that

dim T (p) ≤ dim T (q) + d− n <
n(2d− n+ 1)

2 + d− n = (n+ 1)(2d− n)
2 .

2.2.2 Infinitesimal flexibility and independence of small frame-

works and non-full frameworks

We define a framework (G, p) in a d-dimensional normed space to be small if |V (G)| ≤

d+ 1. The following is a well known result for Euclidean spaces.
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Proposition 2.2.7. Let (G, p) be a small well-positioned framework in a d-dimensional

Euclidean space X. Then (G, p) is isostatic if and only if G is a complete graph and p

is in general position.

Proof. (⇒): Let (G, p) be isostatic. By Proposition 1.3.13 and Lemma 2.2.2, |E(G)| =
|V (G)|(|V (G)|−1)

2 , thus G is a complete graph. By Proposition 1.3.24, p is in general

position.

(⇐): This follows from [23, Theorem 2.4.1.d].

Using Theorem 1.2.29 we can now state our own result for small frameworks for

non-Euclidean spaces.

Theorem 2.2.8. Let (G, p) be a small well-positioned framework with in a d-dimensional

non-Euclidean normed space X. Then (G, p) is infinitesimally flexible or |V (G)| = 1.

Proof. If |V (G)| = 1 then (G, p) is infinitesimally rigid by definition. Suppose |V (G)| ≥

2 and the affine span of {pv : v ∈ V (G)} has dimension n. We note that

n ≤ |V (G)| − 1 ≤ d.

Define the map f : R → R where

f(x) = (x+ 1)(2d− x)
2 .

We note that f is increasing on the interval [0, d − 1] and f(d − 1) = f(d), thus it

follows that f(|V (G)| − 1) ≥ f(n). We note

|E(G)| ≤ |V (G)|(|V (G)| − 1)
2

= d|V (G)| − f(|V (G)| − 1)

≤ d|V (G)| − f(n)
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< d|V (G)| − dim T (p) by Lemma 2.2.6

thus by Theorem 1.3.12, (G, p) is infinitesimally flexible.

We may also show that sufficiently small graphs will also be independent. We note

that this differs from showing that small frameworks are always flexible and the two

properties in this special case are unrelated.

Let (G, p) be well-positioned in a normed space X. We say (G, p) has the graded

independence property if we can order the vertices v1, . . . , vn so that for each 1 < j ≤ n,

the set

ϕ(G)n := {ϕvj ,vi
: 1 ≤ i < j, vivj ∈ E(G)}

is linearly independent; we shall define vn to be the highest vertex of (G, p). It is

immediate that any framework with the graded independence property must be small.

We also note that if (G, p) has the graded independence property with highest vertex

vn and (G′, p′) is the framework formed from (G, p) by deleting the vertex vn then

(G′, p′) also has the graded independence property.

Lemma 2.2.9. Let (G, p) be a well-positioned framework in a normed space X. If

(G, p) has the graded independence property then (G, p) is independent.

Proof. Let |V (G)| = n and suppose the result holds for all frameworks with less than

n vertices. Let a be a stress of (G, p). By observing the flex condition at vn we note

that as the set ϕ(G)n is linearly independent then avivn = 0 for all 1 ≤ i < n. Define

(G′, p′) to be subframework of (G, p) formed by deleting the highest vertex vn, then

a|E(G′) is a stress of (G′, p′). As |V (G′)| = n − 1 then by assumption, a|E(G′) = 0. It

now follows a = 0 and (G, p) is independent as required.

Lemma 2.2.10. Let X be a d-dimensional normed space. Then for each 1 ≤ n ≤ d+1,

there exists a placement of Kn with the graded independence property.
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Proof. We note that the graded independence property holds for well-positioned

placements of K1 and K2. Suppose the result holds for all graphs on n− 1 vertices or

less for some 2 ≤ n ≤ d+ 1. We shall now show the result holds for Kn.

Label the vertices of Kn as v1, . . . , vn and let Kn−1 be the complete graph on

v1, . . . , vn−1. By assumption we have a placement q of Kn−1 with the graded indepen-

dence property; we shall further assume that qvn−1 = 0. Define the set of points

A :=
n−1⋂
i=1

{x ∈ X : x− qvi
∈ smooth(X)},

then it follows from Proposition 1.1.11 (i) that A is a dense subset of X.

By Proposition 1.1.23, there exists y ∈ smooth(X) so that

ϕv1,vn−1 , . . . , ϕvn−2,vn−1 , ϕ(y)

are linearly independent. Define the map

ϕ̃ : smooth(X) → X∗, x 7→ 1
∥x∥

ϕ(x)

and the sequence (xk)k∈N with xk := 1
k
y; we note that ϕ̃(xk) = ϕ̃(y) for all k ∈ N. By

Proposition 1.1.11 (iv), ϕ̃ is continuous. As A is dense we may choose for each k ∈ N

some element yk ∈ A sufficiently close to xk so that

∥ϕ̃(yk) − ϕ̃(y)∥ = ∥ϕ̃(yk) − ϕ̃(xk)∥ < 1
k
.

Define the map J : A → L(X,Rn−1), where for all x, x′ ∈ X, J(x′) is the map

J(x′)x :=
(
ϕ̃(x′ − qv1)x, . . . , ϕ̃(x′ − qvn−2)x, ϕ̃(x′)x

)
.
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We note J is continuous as ϕ̃ is continuous. Define S ⊂ L(X,Rn−1) to be the subset

of surjective maps, then S is an open non-empty subset. Let T ∈ L(X,Rn−1) be the

map where for all x ∈ X,

T (x) := (ϕvn−1,v1x, . . . , ϕvn−1,vn−2x, ϕ̃(y)x),

then T ∈ S by our choice of y. We now note that J(yk) → T pointwise as k → ∞,

thus as S is open there exists some N ∈ N where J(yN) ∈ S.

Define p to be the placement of Kn with pvi
= qvi

for 1 ≤ i ≤ n− 1 and pvn = yN .

We now note that as J(yN) is surjective then the set of edge support functionals

with end point vn are linearly independent, thus (Kn, p) has the graded independence

property as required.

Theorem 2.2.11. Let G be a graph with |V (G)| ≤ d+ 1 and X be a d-dimensional

normed space. Then G is independent in X.

Proof. We may suppose G = Kn for some 1 ≤ n ≤ d + 1. By Lemma 2.2.10, there

exists a well-positioned placement p of Kn with the graded independence property. By

Lemma 2.2.9, (Kn, p) is independent as required.

Corollary 2.2.12. Let G be a graph with |V (G)| ≤ d+ 1 and X be a d-dimensional

normed space. Then G is independent and flexible in X.

Proof. This follows from Theorem 2.2.8 and Theorem 2.2.11.

We may also give a weaker analogue to the infinitesimal flexibility of frameworks in

Euclidean spaces that are not isometrically full (see Proposition 1.3.24 and Corollary

1.2.25).

Proposition 2.2.13. Let G be a finite graph with |V (G)| ≥ d + 1 and X be a d-

dimensional normed space. If G is rigid then any regular and constant placement of G

is full.
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Proof. Suppose there exists a regular and constant placement p of G that is not full.

As G is rigid we may choose some infinitesimally rigid placement p′ of G. As (G, p) is

regular then by Lemma 1.3.14 (ii) and Theorem 1.2.29,

dim F(G, p) = dim F(G, p′) = dim Isom(X).

By Proposition 1.2.7 and Lemma 1.2.8, fG is C1-differentiable with constant rank

on an open neighbourhood of p in XV (G). By the Constant Rank Theorem (Theorem

2.1.2), there exists the following:

(i) Open neighbourhoods U2 ⊂ R(G) and V1 ⊂ RE(G) of p and fG(p) respectively,

with fG(U2) ⊂ fG(V1).

(ii) Open sets U1 ⊂ Rd|V (G)|−k ×Rk and V2 ⊂ R|E(G)|−k ×Rk, where k := dim F(G, p).

(iii) C1-diffeomorphisms ψ : U1 → U2 and φ : V1 → V2 such that φ ◦ fG(p) = (0, 0),

ψ(0, 0) = p and

f̃G := φ ◦ fG ◦ ψ : U1 → V2, (x1, x2) 7→ (x1, 0).

We immediately note that for all (x1, x2) ∈ U1 and (x′1, x′2) ∈ Rd|V (G)|−k × Rk,

df̃G(x1, x2)(x′1, x′2) = (x′1, 0).

For any q ∈ U2 and u ∈ XV (G) define (q1, q2) := ψ−1(q) and (u1, u2) = dψ(q1, q2)−1(u).

By the Chain Rule [47, Theorem 2.4.3],

df̃G(q1, q2) = d(φ ◦ fG)(q) ◦ dψ(q1, q2)
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As φ, ψ are C1-diffeomorphisms then for u ∈ XV (G),

dfG(p)(u) = 0 ⇔ d(φ ◦ fG)(q)(u) = 0

⇔ df̃G(q1, q2) ◦ dψ(q1, q2)−1(u) = (u1, 0) = 0,

thus for all q ∈ U2,

dψ(q1, q2)
(
{0} × Rk

)
= F(G, q).

As the set of spanning placements of G is an open dense subset of XV (G), choose

a sequence (pn)n∈N of spanning placements of G such that pn ∈ U2 for all n ∈ N and

pn → p as n → ∞; it follows from Corollary 1.2.25 and Theorem 1.2.29, (G, pn) is

infinitesimally rigid for all n ∈ N. As (G, p) is regular but not full it follows from

Theorem 1.2.29 that there exists u ∈ F(G, p) \ T (p). For each n ∈ N, define

un := dψ(pn
1 , p

n
2 )(0, u2),

then un ∈ F(G, pn). Since ψ is a C1-diffeomorphism, dψ is continuous, thus un → u

as n → ∞.

Since (G, pn) is infinitesimally rigid and full, there exists a unique element gn ∈

Tι Isom(X) such that gn.p
n = un. We note that the Lie group action

θ : Tι(Isom(X)) ×XV (G) → XV (G) ×XV (G), (g, q) → (g.q, q)

is proper as it is linear. As (θ(gn, p
n))n∈N converges it follows that there exists a

convergent subsequence ((gnk
, pnk))k∈N with limit (g, p) ∈ Tι(Isom(X)) ×XV (G). We

now see that

u = lim
k→∞

unk = lim
k→∞

gnk
.pnk = g.p,
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thus u ∈ T (p), contradicting our choice of u.

Remark 2.2.14. We note that Proposition 2.1.1 need not hold if G is a finite flexible

graph. Take for instance the graph

G := ({v1, v2, v3, v4}, {v1v2, v2, v3, v3v4}).

If we define the placement p of G in the standard Euclidean space R3 with

pv1 = (0, 0, 0), pv2 = (1, 0, 0), pv3 = (2, 0, 0), pv4 = (3, 0, 0),

then (G, p) is regular, constant but not full.

2.3 Composition and substitution of rigid graphs

and frameworks

2.3.1 Composition of rigid frameworks

For a normed space X define

min Full(X) := min{|S| : S ̸= ∅, there exists a full placement of S in X}.

It follows from Corollary 1.2.24 that 1 ≤ min Full(X) ≤ dimX.

Example 2.3.1. If X is Euclidean then min Full(X) = dimX, thus the top bound is

exact. We shall see later (Proposition 2.3.5) that the lower bound is also exact.

Theorem 2.3.2. Let X be a normed space and G,H be finite graphs. Suppose the

following holds:

(i) |V (G) ∩ V (H)| ≥ min Full(X)
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(ii) G has infinitesimally rigid placement p.

(iii) H has infinitesimally rigid placement q.

(iv) pv = qv for all v ∈ V (G) ∩ V (H).

(v) p ∩ q := p|V (G)∩V (H) is full.

Then (G ∪H, r) is infinitesimally rigid, where rv = pv for all v ∈ V (G) and rv = qv for

all v ∈ V (H).

Proof. Let u be a flex of (G ∪H, r). We note that u|V (G) is a trivial infinitesimal flex

of (G, p) and u|V (H) is a trivial infinitesimal flex of (H, q), thus there exists g1, g2 ∈

Tι Isom(X) such that g1.p = u|V (G) and g2.q = u|V (H). Since p ∩ q is a full placement

then there exists a unique map g ∈ Tι Isom(X) such that g.(p ∩ q) = u|V (G)∩V (H). As

g1.(p ∩ q) = u|V (G)∩V (H) and g2.(p ∩ q) = u|V (G)∩V (H) then g = g1 = g2, thus g.p = u.

By Corollary 1.2.16, u is a trivial infinitesimal flex of (G ∪H, r) as required.

Corollary 2.3.3. Suppose G is a graph with N vertices that is rigid in a normed

space X, then Kn is rigid for all n ≥ N .

Proof. Suppose N < d + 1. By Theorem 2.2.8, X is Euclidean, and by Proposition

2.2.7, Kd+1 is rigid. It now follows that if the statement holds for N ≥ d + 1 the

statement holds, thus we shall assume N ≥ d+ 1.

Suppose Kn is rigid where n ≥ N . We now define G to be a complete graph on

the vertices v1, . . . , vn−1, a and H to be the complete graph on v1, . . . , vn−1, b. As Kn

is rigid, by Lemma 1.3.4 there exists a infinitesimally rigid placement p of G in general

position. Let q be a placement of H where qvi
= pvi

for all i = 1, . . . , n− 1 and qb = pa,

then (H, q) is infinitesimally rigid also. By Theorem 2.3.2, (G ∪H, r) is infinitesimally

rigid, where rv = pv for all v ∈ V (G) and rv = qv for all v ∈ V (H), thus G∪H is rigid.

As G ∪H is the complete graph on n+ 1 vertices minus an edge then Kn+1 is rigid.

By an inductive argument the result now follows.



90 Framework rigidity in general normed spaces

2.3.2 Composition and substitution of rigid graphs in normed

spaces with a finite number of linear isometries

Lemma 2.3.4. For a normed space X, min Full(X) = 1 if and only if there exist only

finitely many linear isometries of X.

Proof. Let p be a placement of the single element set {v} in X, then by Corollary

1.2.23 we may assume pv = 0.

Suppose | IsomLin(X)| < ∞. By Corollary 1.2.11, | Stabp | ≤ | IsomLin(X)| < ∞,

thus by Corollary 1.2.20 (i), p is full and min Full(X) = 1 as required.

Now suppose min Full(X) = 1. As Op = X then by Corollary 1.2.23, p is full. By

Proposition 1.2.18 (i), dim Isom(X) = dimX, thus by Lemma 1.1.30, dim IsomLin(X) =

0. As IsomLin(X) is compact and 0-dimensional then it is finite as required.

Theorem 2.3.5. For any normed space X, the following are equivalent:

(i) dim Isom(X) = dimX.

(ii) | IsomLin(X)| < ∞.

(iii) min Full(X) = 1.

(iv) All placements are full.

(v) For any set S ̸= ∅ and any p ∈ XS, T (p) = dimX.

Proof. (i) ⇔ (ii): By Lemma 1.1.30, dim IsomLin(X) = dim Isom(X) − dimX. As

IsomLin(X) is a compact manifold, IsomLin(X) is finite if and only if dim IsomLin(X) = 0,

thus the equivalence holds.

(ii) ⇔ (iii): Lemma 2.3.4.

(iii) ⇒ (iv): Let p be a placement in X, choose v ∈ S and define q := p|v. As

min Full(X) = 1 then there exists a full placement q′ of {v}, thus by Corollary 1.2.23,

q is also full. As q ⊂ p then by Corollary 1.2.22, p is full.
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(iv) ⇒ (iii): This is immediate.

(iv) ⇒ (v): Choose any placement p, then p is full. Let S be any set with |S| = 1,

then the placement (q, S) is also full, thus dim T (p) = dim T (q) = dimX.

(v) ⇒ (i): Let p be a spanning placement, then by Corollary 1.2.25, p is full. By

Theorem 1.2.29, dim Isom(X) = T (p) = dimX.

Let H and G be finite graphs with |V (G) ∩ V (H)| = 1 and v0 ∈ V (G) ∩ V (H). We

form a H-substitution of G at v0 from G by replacing v0 with a copy of H and every

edge vv0 ∈ E(G) with a new edge vw for some w ∈ V (H).

Lemma 2.3.6. Let X be a normed space and x ∈ S1[0]. Define (xn)n∈N to be a

sequence of smooth points such that

∥∥∥∥ 1
n
x− xn

∥∥∥∥ < 1
n2 ,

then xn

∥xn∥ → x as n → ∞.

Proof. We first note that

∣∣∣∣ 1n − ∥xn∥
∣∣∣∣ ≤

∥∥∥∥ 1
n
x− xn

∥∥∥∥ < 1
n2 ,

thus

n− 1
n2 < ∥xn∥ < n+ 1

n2 .

We now note∥∥∥∥∥ xn

∥xn∥
− x

∥∥∥∥∥ = ∥xn − ∥xn∥x∥
∥xn∥

≤

∥∥∥xn − 1
n
x
∥∥∥+

∥∥∥ 1
n
x− ∥xn∥x

∥∥∥
∥xn∥
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<

1
n2 +

∣∣∣ 1
n

− ∥xn∥
∣∣∣

∥xn∥

<
2

n2

∥xn∥

<
2

n2
n−1
n2

= 2
n− 1 .

Lemma 2.3.7. Let G,H be finite independent graphs, G′ be a H-substitution of G

at v0 and p an independent placement of G in a normed space X. Then there exists

an independent placement p′ of G′ such that p′|V (G) = p.

Proof. We define q′ to be the not well-positioned placement of G′ that agrees with p

on V (G) and has q′v = pv0 for all v ∈ V (H). Let x := (xv)v∈V (H) be an independent

placement of H in general position with xv0 = 0 (Lemma 1.3.4) and define for all

vw ∈ E(H) the pseudo-support functionals

ϕ′v,w := ϕ

(
xv − xw

∥xv − xw∥

)
;

by this we may define φ and (G′, q′)φ.

Let a := (avw)vw∈E(G′) be a pseudo-stress of (G′, q′)φ. Define b := (bvw)vw∈E(G) with

bvw = avw for all vw ∈ E(G)∩E(G′) and bv0w = avw for all vw ∈ E(G′) with v ∈ V (H),

w /∈ V (H). It is immediate that the stress condition of b holds at any vertex v ̸= v0.

The stress condition of b at v0 holds as

∑
w∈NG(v0)

bv0wϕv0,w =
∑

v∈V (H)

∑
w∈NG(v)

avwϕ
′
v,w =

∑
v∈V (H)

0 = 0,

since for each vw ∈ E(H) the stress vectors avwϕ
′
v,w cancel each other out. It now

follows b is a stress of an independent framework (G, p), thus avw = 0 for all vw /∈ E(H).
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Since (H, x) is independent it follows that avw = 0 for all vw ∈ E(H), thus a = 0 and

(G′, q′)φ is independent.

Define qn to be the placement of G′ where qn agrees with q′ on V (G′) \ V (H) and

qn
v = q′v0 + 1

n
xv for all v ∈ V (H). Define V := (V (G′) \ V (H)) ∪ {v0}. By Lemma 1.2.5,

we may choose pn ∈ W(G) such that ∥pn − qn∥V (G) <
1

n2 and pn
v = qn

v for all v ∈ V . By

our choice of pn we have that ϕn
v,w = ϕ′v,w for vw ∈ E(G′) with v, w ∈ V . By Lemma

2.3.6 and Proposition 1.1.11 (iv), ϕn
v,w → ϕ′v,w as n → ∞ for the remaining edges. This

implies (G′, pn) → (G′, q′)φ as n → ∞ and so by Proposition 1.3.11, there exists an

independent placement p′ := pn of G′ for sufficiently large n ∈ N.

Theorem 2.3.8. Let X be a normed space, G,H be finite graphs and G′ be a H-

substitution of G at v0. Then the following holds:

(i) If G and H are independent in X then G′ is independent in X.

(ii) If G and H are rigid in X and | IsomLin(X)| < ∞ then G′ is rigid in X.

Proof. (i): This follows from Lemma 2.3.7.

(ii): Suppose G,H are rigid in X and IsomLin(X) is finite. We may suppose G and

H are also independent in X by deleting edges. Let p, x, p′ be regular placements of

G,H,G′ respectively, then by Theorem 2.3.5, all three are full. By Corollary 1.3.15,

|E(G)| = dimX(|V (G)| − 1) and |E(H)| = dimX(|V (H)| − 1). We now note that

|E(G′)| = |E(G)| + |E(H)| = dimX(|V (G)| + |V (H)| − 1).

As (G′, p′) is independent then by Proposition 1.3.13, (G′, p′) is isostatic.

Corollary 2.3.9. Let X be a normed space and G,H be finite graphs with |V (G) ∩

V (H)| = 1. Then the following holds:

(i) If G and H are independent in X then G ∪H is also independent in X.
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(ii) If G and H are rigid in X and | IsomLin(X)| < ∞, then G ∪H is rigid in X.

Proof. Let v0 be the single vertex in V (G) ∩ V (H), then it is clear that G ∪ H is a

H-substitution at v0, thus by Theorem 2.3.8 the result holds.



Chapter 3

Graph rigidity in the normed plane

In this chapter we shall extend Theorem 1.3.20 to non-Euclidean normed planes; see

Theorem 3.4.2. The proof is inductive, so requires a base of induction and an induction

step.

For our base of induction, we shall prove in Section 3.2 that the graph K4 is indeed

rigid in all normed planes, as unlike for Euclidean spaces, this is far from obvious for

general normed planes. The proof will be split into three cases:

(i) when X is not strictly convex (Section 3.2.1),

(ii) when X is strictly convex but not smooth (Section 3.2.3),

(iii) when X is both strictly convex and smooth (Section 3.2.2).

We shall next prove our induction step in Section 3.3 by proving that any graph

that is formed from an isostatic graph by one of our graph operations will also be

isostatic. The operations are actually proven to hold with stronger conditions than are

required, as we shall require this later in Section 4.3. When combined with Proposition

3.4.1, we shall be able to prove the required result.
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We shall finish the chapter by giving some sufficient connectivity conditions for

graph rigidity analogous to those given by Lovász & Yemini for the Euclidean plane in

[46], and by Jordán in [29].

3.1 Frameworks in normed planes

Many of our previous results may be simplified for the special case or normed planes.

We shall outline the main changes here.

3.1.1 Isometries of a normed plane and full placements

For 2-dimensional normed spaces we can immediately categorize Isom(X) into one of

two possibilities.

Proposition 3.1.1. Let X be a normed plane, then the following holds:

(i) If X is Euclidean then there are infinitely many linear isometries of X and the

tangent space Tι Isom(X) = span{T1, T2, T0} where T1, T2 are linearly independent

translations and T0 is an invertible linear map.

(ii) If X is non-Euclidean then there are a finite number of linear isometries of

X and the tangent space Tι Isom(X) = span{T1, T2} where T1, T2 are linearly

independent translations.

Proof. (i): Let x1, x2 be an orthonormal basis of X. By Proposition 1.1.35, T ∈

Tι IsomLin(X) if and only if T ∗ = −T . We note that this is equivalent to T being a

scalar multiple of the linear isometry

T : X → X, ax1 + bx2 7→ ax2 − bx1.



3.1 Frameworks in normed planes 97

(ii): As remarked in [67, pg. 83] there are only finitely many linear isometries

ι := L0, L1, . . . , Ln of X and so by Mazur-Ulam’s theorem (Theorem 1.1.28) we have

Isom(X) = {Tx ◦ Li : x ∈ X, i = 0, . . . , n}

where Tx(y) = x + y for all y ∈ X. We can now see that the tangent space at ι is

exactly the space of constant maps from X to itself and the result follows.

Corollary 3.1.2. Let (p, S) be a placement in normed plane X. Then p is full if and

only if either:

(i) X is non-Euclidean,

(ii) X is Euclidean and the affine span of p is a line or X.

Proof. Suppose X is non-Euclidean. By Proposition 3.1.1 (ii), | IsomLin(X)| < ∞, thus

by Theorem 2.3.5, all placements are full.

Suppose X is Euclidean. By Corollary 1.2.23, we may assume pw = 0 for some

w ∈ S. If the affine span of p is a line or X then by Corollary 1.2.24, p is full. If the

affine span of p has dimension 0 then pv = 0 for all v ∈ S. It follows from Proposition

3.1.1 (i) that | Stabp | = ∞, thus by Corollary 1.2.20, p is not full.

3.1.2 Necessary conditions for graph rigidity in the normed

plane

We shall now improve upon some previously given necessary conditions for rigidity for

the specific case of normed planes.

Theorem 3.1.3. Let X be a normed plane. Define k = 3 if X is Euclidean and k = 2

if X is non-Euclidean. For any finite graph G with at least two vertices the following

holds:
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(i) If |V (G)| = 2 or 3 then G is rigid if and only if X is Euclidean and G = K2 or

K3.

(ii) If G is independent then G is (2, k)-sparse.

(iii) If G is isostatic then G is (2, k)-tight.

(iv) If G is rigid then G contains a (2, k)-tight spanning subgraph.

Proof. (i): This follows from Theorem 2.2.8.

(ii): Choose H ⊂ G. We have three possibilities:

(i) If |V (H)| ≥ 3 then by Corollary 1.3.15, |E(H)| ≤ 2|V (H)| − k.

(ii) If |V (H)| = 2 then either |E(H)| = 0 or |E(H)| = 1 ≤ 2|V (H)| − k.

(iii) If |V (H)| then |E(H)| = 0.

As this holds for any H ⊂ G then G is (2, k)-sparse.

(iii): As (i) holds we may assume |V (G)| ≥ 4. Let p be a isostatic placement of G.

By Corollary 1.3.15, |E(G)| = 2|V (G)| − k, thus G is (2, k)-tight.

(iv): As (i) holds we may assume |V (G)| ≥ 4. Let p be an infinitesimally rigid

placement of G. By Remark 1.3.9, there exists a spanning isostatic subframework

(H, p) of (G, p). As (iii) holds it follows H is (2, k)-tight.

Corollary 3.1.4. Let X be a normed plane and k := Isom(X). For any graph G with

at least 3 vertices, if two of the following hold so does the third (and G is isostatic):

(i) |E(G)| = 2|V (G)| − k

(ii) G is independent

(iii) G is rigid.
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Proof. By Lemma 1.3.4 we may choose a regular placement p of G in general position.

By Corollary 1.2.25 and Theorem 1.2.29, dim T (p) = dim Isom(X). We now apply

Proposition 1.3.13.

3.2 Rigidity of K4 in all normed planes

In this section we shall prove the following.

Theorem 3.2.1. K4 is rigid in all normed planes.

This shall follow from Lemma 3.2.7, Lemma 3.2.11 and Lemma 3.2.23. We shall

consider three separate cases; not strictly convex normed planes (Section 3.2.1), strictly

convex but not smooth normed planes (Section 3.2.2), and strictly convex and smooth

normed planes (Section 3.2.3).

3.2.1 The rigidity of K4 in not strictly convex normed planes

We remember from Proposition 1.1.17 (ii) that if X is a normed plane and x ∈

smooth(X) then for some (possibly not distinct) x1, x2 ∈ S1[0],

ϕ(x)−1[{∥x∥}] ∩ S1[0] = [x1, x2].

Lemma 3.2.2. Let X be a normed space and [x1, x2] ⊂ S1[0]. If

x, y ∈ [x1, x2] ∩ smooth(X)

then ϕ(x) = ϕ(y).
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Proof. If x1 = x2 this is immediate so assume x1 ≠ x2. Choose x := t0x1 + (1 − t0)x2

for t0 ∈ (0, 1) and define the convex and differentiable map f : [0, 1] → R where

f(t) := ϕ(x)(tx1 + (1 − t)x2) = tϕ(x)x1 + (1 − t)ϕ(x)x2.

We note f(t0) = 1 and f ′(t) = ϕ(x)x1 − ϕ(x)x2, thus if f is not constant then there

exists t ∈ [0, 1] where f(t) > 1; however we note

|f(t)| ≤ t|ϕ(x)x1| + (1 − t)|ϕ(x)x2| ≤ 1,

a contradiction. As f is constant then f(t) = f(t0) = 1 for all t ∈ [0, 1], thus ϕ(x) is a

support functional for all y ∈ [x1, x2] and the result follows.

Lemma 3.2.3. Let X be a normed space and x, y ∈ S1[0] ∩ smooth(X) with

ϕ(x)−1[{1}] ∩ S1[0] = [x1, x2]

for distinct x1, x2. Define a, b ∈ R such that y = ax1 + bx2, then one of the following

holds:

(i) a, b ≥ 0 or a, b ≤ 0 and ϕ(x), ϕ(y) are linearly dependent.

(ii) a < 0 < b or b < 0 < a and ϕ(x), ϕ(y) are linearly independent.

Proof. (i): If a = 0 then y = x2 or −x2 and ϕ(x), ϕ(y) are linearly dependent; similarly

if b = 0 then ϕ(x), ϕ(y) are linearly dependent. We first note that ϕ(x)y = a+ b. If

a, b > 0 then

a+ b = ϕ(x)y ≤ ∥y∥ = ∥ax1 + bx2∥ ≤ a+ b,
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thus ϕ(x) is a support functional of y. If a, b < 0 then similarly we have ϕ(y) =

−ϕ(−y) = −ϕ(x); in either case ϕ(x), ϕ(y) are linearly dependent.

(ii): Let a < 0 < b and ϕ(x), ϕ(y) be linearly dependent. As ϕ(y) = −ϕ(−y) we

may assume ϕ(y) = ϕ(x), thus ϕ(x)y = 1. By assumption this implies y ∈ [x1, x2]; it

follows that there exists t ∈ [0, 1] such that

y = tx1 + (1 − t)x2,

thus a, b ≥ 0 contradicting our assumption. We see a similar contradiction if b < 0 < a

and ϕ(x), ϕ(y) be linearly dependent, thus the result holds.

Lemma 3.2.4. Let X be a normed plane that is not strictly convex, then there exists

x, y ∈ S1[0] ∩ smooth(X) such that the following holds:

(i) ϕ(x)−1[{1}] ∩ S1[0] = [x1, x2] with x1 ̸= x2.

(ii) ϕ(x), ϕ(y) are linearly independent.

(iii) y = ax1 − bx2 for a, b > 0.

(iv) −ax1 + 2bx2 ∈ smooth(X).

Proof. As X is not strictly convex, we may choose x ∈ S1[0] ∩ smooth(X) such that (i)

hold. We note that we need only now find an element y ∈ smooth(X) that satisfies (ii),

(iii) and (iv) since we may always multiply y by a suitable scalar so that it lies in S1[0].

Define the linear isomorphism T ∈ L(X) where T (x1) = −x1 and T (x2) = 2x2 and

D := T−1(smooth(X)). By Proposition 1.1.11 (i), smooth(X)c is negligible. As T−1

is linear then Dc = T−1(smooth(X)c) must also be negligible, thus D ∩ smooth(X) is

a dense subset in X. It follows that we may choose y ∈ D ∩ smooth(X) such that

y = ax1 − bx2 for a, b > 0.
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We first note that y satifies (iii) and (iv). By Lemma 3.2.3, (ii) holds also as

required.

We define for any x1, x2 ∈ X the following sets:

(i) The open cone,

cone+(x1, x2) := {ax1 + bx2 : a, b > 0} = {rx : x ∈ (x1, x2), r > 0} .

(ii) The closed cone,

cone+[x1, x2] := {ax1 + bx2 : a, b ≥ 0} = {rx : x ∈ [x1, x2], r ≥ 0} .

(iii) The two-sided open cone,

cone(x1, x2) := cone+(x1, x2) ∪ cone+(−x1,−x2).

(iv) The two-sided closed cone,

cone[x1, x2] := cone+[x1, x2] ∪ cone+[−x1,−x2].

If x1, x2 are linearly independent then the (two-sided) open cone is open and the

(two-sided) closed cone is cone.

Lemma 3.2.5. Let x1, x2 ∈ S1[0] be linearly independent in a normed plane X and

f ∈ X∗ be a support functional of both x1 and x2. Then the following holds:

(i) If y ∈ cone+[x1, x2] then ∥y∥f is a support functional for y.

(ii) If y ∈ cone+(x1, x2) then y is smooth.
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Proof. (i): Let y ∈ cone+[x1, x2]. By scaling we may assume ∥y∥ = 1, thus y =

tx1 + (1 − t)x2 for some t ∈ [0, 1]. We now note that

f(y) = tf(x1) + (1 − t)f(x2) = 1

and thus f is a support functional for y.

(ii): Suppose y ∈ cone+(x1, x2) is not smooth. By scaling we may assume ∥y∥ = 1,

thus y = tx1 + (1 − t)x2 for some t ∈ (0, 1). As y is not smooth then y has support

functional g ∈ X∗ with f ̸= g. If g isn’t a support functional for either x1 or x2 then

g(y) = tg(x1) + (1 − t)g(x2) < 1,

thus g must be a support functional for both x1, x2. It follows by (i) that f, g are

support functionals for all x ∈ cone+(x1, x2), thus cone(x1, x2) ⊆ smooth(X)c. As

cone(x1, x2) is a non-empty open set this contradicts Proposition 1.1.11 (iii).

Lemma 3.2.6. Let L be a line (i.e. a hyperplane) in a normed plane X that does not

contain 0, then the set smooth(X) ∩ L is dense in L.

Proof. Suppose otherwise, then there exists distinct x1, x2 ∈ L and r > 0 such that

(x1, x2) lies in L \ smooth(X). We note that x1, x2 must be linearly independent as

0 /∈ L, thus cone+(x1, x2) is a non-empty open subset of X. Since ϕ is homogeneous it

follows that cone+(x1, x2) ⊆ smooth(X)c which contradicts Proposition 1.1.11 (iii).

We are now ready for our key lemma of the section.

Lemma 3.2.7. Let X be a normed plane that is not strictly convex, then K4 is rigid

in X.

Proof. Choose x, y as described in Lemma 3.2.4 and let V (K4) = {v1, v2, v3, v4}. Define

for r > 0 the placement pr of K4 where:
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(i) pr
v1 = 0,

(ii) pr
v2 = ax1 − ry = (1 − r) ax1 + rbx2,

(iii) pr
v3 = bx1 + ry = rax1 + (1 − r) bx2,

(iv) pr
v4 = (1 − 2r) y = (1 − 2r) ax1 − (1 − 2r) bx2.

We note for all 0 < r < 1
3 the following holds:

(i) pr
v2 − pr

v1 , pr
v3 − pr

v1 , pr
v2 − pr

v4 ∈ cone+(x1, x2).

(ii) pr
v2 − pr

v3 and pr
v4 − pr

v1 are positive scalar multiples of y.

(iii) pr
v4 − pr

v3 = (1 − 3r) ax1 − (2 − 3r) bx2 /∈ cone[x1, x2].

Define the line

L := {ax1 − 2bx2 + 3r(−ax1 + bx2) : r ∈ R}.

As 0 /∈ L, by Lemma 3.2.6 it follows we may choose r ∈
(
0, 1

3

)
such that pr

v4 − pr
v3 is

smooth. Fix r so that this holds and define ϕr
v,w to be the support functional of vw in

(K4, p
r). We now note the following holds:

(i) ϕr
v2,v1 , ϕr

v3,v1 , ϕr
v2,v4 = ϕ(x) (Lemma 3.2.5).

(ii) ϕr
v2,v3 , ϕr

v4,v1 = ϕ(y).

(iii) ϕr
v4,v3 = f for some f ∈ S∗1 [0] where f, ϕ(x) are linearly independent (Lemma

3.2.3 (ii)).
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v4

v2

v1

v3

y

x1 x2

Fig. 3.1 A diagram to illustrate Lemma 3.2.7 applied to a not strictly convex normed
plane X. (Left): The constructed infinitesimally rigid framework (K4, p

r). (Right):
The unit ball of X. The edge directions from our placement have been added as their
corresponding colour lines, x1, x2 have been added as blue dashed lines and cone[x1, x2]
is shown as the blue area indicated.

We now obtain the following rigidity matrix for R(K4, p
r):



v1 v2 v3 v4

v1v2 −ϕ(x) ϕ(x) 0 0

v1v3 −ϕ(x) 0 ϕ(x) 0

v1v4 −ϕ(y) 0 0 ϕ(y)

v2v3 0 ϕ(y) −ϕ(y) 0

v2v4 0 ϕ(x) 0 −ϕ(x)

v3v4 0 0 −f f



As ϕ(x), ϕ(y) are linearly independent and f, ϕ(x) are linearly independent then it

follows that R(K4, p
r) has independent rows, thus (K4, p

r) is independent. Since K4 is

independent in X, by Corollary 3.1.4, K4 is isostatic in X as required.
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3.2.2 The rigidity of K4 in strictly convex but not smooth

normed planes

The following technical lemmas will be of use later.

Lemma 3.2.8. Let K4 be the complete graph on the vertex set {v1, v2, v3, v4}. Suppose

we have a placement p of K4 in a normed plane X where all edges but v1v4 are well-

positioned. Further suppose the following:

(i) ϕv1,v2 = ϕv3,v4 = ϕ(x).

(ii) ϕv1,v3 = ϕv2,v4 = ϕ(y).

(iii) ϕv2,v3 = ϕ(ω), where ϕ(ω) = aϕ(x) + bϕ(y) for some a, b ∈ R.

(iv) ϕ(x), ϕ(y), ϕ(ω) are pairwise independent support functions.

(v) φ is the set of support functionals of (K4, p) with the pseudo-support functional

ϕv1,v4 .

If ϕv1,v4 and aϕ(x) − bϕ(y) are linearly independent then R(K4, p)φ has row indepen-

dence.

Proof. We see that with the given parameters R(K4, p)φ is of the form



v1 v2 v3 v4

v1v2 ϕ(x) −ϕ(x) 0 0

v1v3 ϕ(y) 0 −ϕ(y) 0

v1v4 ϕv1,v4 0 0 −ϕv1,v4

v2v3 0 ϕ(ω) −ϕ(ω) 0

v2v4 0 ϕ(y) 0 −ϕ(y)

v3v4 0 0 ϕ(x) −ϕ(x)


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Suppose (cvw)vw∈E(G) is a pseudo-stress of (K4, p)φ. By the second column

−cv1v2ϕ(x) + cv2v3ϕ(ω) + cv2v4ϕ(y) = (cv2v3a− cv1v2)ϕ(x) + (cv2v3b+ cv2v4)ϕ(y) = 0,

thus as ϕ(x), ϕ(y) are linearly independent, cv1v2 = cv2v3a and cv2v4 = −cv2v3b. By the

third column

−cv1v3ϕ(y) − cv2v3ϕ(ω) + cv3v4ϕ(x) = −(cv2v3a− cv3v4)ϕ(x) − (cv2v3b+ cv1v3)ϕ(y) = 0,

thus as ϕ(x), ϕ(y) are linearly independent, cv3v4 = cv2v3a and cv1v3 = −cv2v3b. By the

first column combined with our previous results we see that

cv1v2ϕ(x) + cv1v3ϕ(y) + cv1v4ϕv1,v4 = cv2v3(aϕ(x) − bϕ(y)) + cv1v4ϕv1,v4 = 0.

As ϕv1,v4 is linearly independent of aϕ(x) − bϕ(y) then cv2v3 = cv1v4 = 0. This implies

c = 0 and thus R(K4, p)φ has row independence.

Lemma 3.2.9. Let X be a normed space and z ∈ X. Then there exists x, y ∈

smooth(X) so that x+ y = z and x− y ∈ smooth(X). If z /∈ smooth(X) ∪ {0}, then

x, y are linearly independent.

Proof. If z = 0, choose any x ∈ smooth(X) and define y := −x. Similarly, if

z ∈ smooth(X), let x := 2z and y := −z.

Now suppose z /∈ smooth(X) ∪ {0}. By Proposition 1.1.11 (iii), the sets

z + smooth(X), z − smooth(X)

have negligible complements, thus the complement of

A := (smooth(X) − z) ∩ (smooth(X) + z)
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is negligible. It follows that A ̸= ∅ and so we may choose w ∈ A. If we define

x := 1
2(z + w) and y := 1

2(z − w) then x, y and x − y are smooth, and z = x+ y. If

x, y are linearly dependent then z is smooth, a contradiction, thus x, y are linearly

independent.

Lemma 3.2.10. Let X be a strictly convex normed plane, z ≠ 0 be non-smooth with

∥z∥ = 1 and ϕ[z] = [f, g], and define

X+ := (f − g)−1(0,∞), X− := (f − g)−1(−∞, 0).

If (zn)n∈N is a sequence of smooth points that converges to z with ∥zn∥ = 1, then the

following properties hold:

(i) (ϕ(zn))n∈N has a convergent subsequence.

(ii) If ϕ(zn) → h as n → ∞ then h = f or g.

(iii) If ϕ(zn) → h as n → ∞ and ϕ(zn) ∈ X+ for large enough n then h = f .

(iv) If ϕ(zn) → h as n → ∞ and ϕ(zn) ∈ X− for large enough n then h = g.

Proof. (i): This holds as S∗1 [0] is compact.

(ii): Choose any ϵ > 0, then we may choose N ∈ N such that for all n ≥ N

∥h− ϕ(zn)∥ < ϵ

2 and ∥z − zn∥ < ϵ

2 .

We now note,

|1 − h(z)| = |ϕ(zn)(zn) − h(z)|

≤ |ϕ(zn)(zn) − ϕ(zn)(z)| + |ϕ(zn)(z) − h(z)|

≤ ∥zn − z∥ + ∥ϕ(zn) − h∥
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< ϵ.

As this holds for all ϵ > 0 then h(z) = 1. As ∥h∥ = 1 then h supports z, thus h ∈ [f, g].

If h lies in the interior of [f, g] then for large enough n ∈ N we would have ϕ(zn) in

the interior of [f, g] (with respect to S∗1 [0]), thus ϕ(zn) is a support functional of z. If

z ̸= zn then we note that [z, zn] ∈ S1[0] as for any t ∈ [0, 1]

1 = ϕ(zn)(tz + (1 − t)zn) ≤ ∥tz + (1 − t)zn∥ ≤ 1,

however this contradicts the strict convexity of X. If z = zn then as zn is smooth z is

also smooth, however this contradicts the assumption that z is non-smooth. As the

only non-interior points are f, g the result follows.

(iii): Suppose for contradiction that ϕ(zn) → g as n → ∞. As f ̸= g then f, g must

be linearly independent (as otherwise 0 ∈ [f, g] ⊂ S∗1 [0]), thus for each n ∈ N there

exists an, bn ∈ R such that ϕ(zn) = anf + bng. Since ϕ(zn) → g then for large enough

n we have that bn > 0.

Suppose an, bn ≥ 0 for large enough n, then

∥ϕ(zn)∥ = ∥anf + bng∥

≤ an + bn

= anf(z) + bng(z)

= ϕ(zn)(z)

≤ ∥ϕ(zn)∥,

thus ϕ(zn) is a support functional of z. As noted previously, this either contradicts

that X is strictly convex or that zn is smooth and z is non-smooth.

Suppose instead that for large enough n we have an < 0 < bn. We now note that

ϕ(zn)(zn) = anf(zn) + bng(zn)
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= an(f − g)(zn) + (an + bn)g(zn)

< (an + bn)g(zn) as zn ∈ X+ and an < 0

≤ an + bn

= ∥bng∥ − ∥ − anf∥ as ∥f∥ = ∥g∥ = 1

≤ ∥anf + bng∥

= ∥ϕ(zn)∥

which implies ϕ(zn)(zn) < 1 contradicting that ϕ(zn) is the support functional of zn

and ∥zn∥ = 1. It follows that ϕ(zn) 9 g, thus ϕ(zn) → f by (ii).

(iv) now follows by the same method given above.

We are now ready for our key lemma.

Lemma 3.2.11. Let X be a strictly convex normed plane with non-zero non-smooth

points, then K4 is rigid in X.

Proof. We consider K4 to be the complete graph on the vertex set {v1, v2, v3, v4}. Let

z be a non-zero non-smooth point of X with ∥z∥ = 1. By Lemma 3.2.9, we can choose

smooth linearly independent x, y ∈ X such that z = x+ y and w := x− y is smooth.

Define the placements p, qk of K4 for k ∈ Z \ {0} where

pv1 = 0, pv2 = x, pv3 = y, pv4 = x+ y = z,

and:

qk
v1 = 0, qk

v2 = x+ 1
k
x, qk

v3 = y, qk
v4 = x+ y + 1

k
x = z + 1

k
x.

By Lemma 1.2.5 there exists for each k ∈ Z \ {0} a well-positioned placement pk such

that ∥pk − qk∥V (K4) <
1

k2 and pk
v1 = 0.
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By Proposition 1.1.11 (iv), the support functionals ϕk
v,w for pk satisfy the following:

(i)

lim
k→∞

ϕk
v2,v1 = lim

k→−∞
ϕk

v2,v1 = lim
k→∞

ϕk
v4,v3 = lim

k→−∞
ϕk

v4,v3 = 1
∥x∥

ϕ(x),

(ii)

lim
k→∞

ϕk
v3,v1 = lim

k→−∞
ϕk

v3,v1 = lim
k→∞

ϕk
v4,v2 = lim

k→−∞
ϕk

v4,v2 = 1
∥y∥

ϕ(y),

(iii)

lim
k→∞

ϕk
v2,v3 = lim

k→−∞
ϕk

v2,v3 = 1
∥w∥

ϕ(w).

By Proposition 1.1.16 (ii), ϕ[z] = [f, g] for some f ̸= g. We now further define

X+ := (f − g)−1(0,∞), X− := (f − g)−1(−∞, 0).

We note that (f − g)x ̸= 0 (as otherwise x, z are linearly independent), thus without

loss of generality we may assume x ∈ X+. For each k ∈ Z \ {0} define dk := pk
v4 − qk

v4 ,

then ∥dk∥ < 1
k2 . As

(f − g)
(
pk

v4 − pk
v1

)
= (f − g)

(
z + 1

k
x+ dk

)
= 1
k

(f − g)(x) + (f − g)(dk)

and ∥f − g∥ ≤ 2 it follows that

∣∣∣∣(f − g)
(
pk

v4 − pk
v1

)
− 1
k

(f − g)(x)
∣∣∣∣ = (f − g)(dk) ≤ 2

k2 .
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We may rewrite this as

1
k

(
(f − g)(x) − 2

k

)
≤ (f − g)

(
pk

v4 − pk
v1

)
≤ 1
k

(
(f − g)(x) + 2

k

)
,

thus there exists N ∈ N such that if k ≥ N then pk
v4 − pk

v1 ∈ X+ and if k ≤ −N then

pk
v4 − pk

v1 ∈ X−. By Lemma 3.2.10, there exists a strictly increasing sequence (ni)i∈N

in N such that

lim
i→∞

ϕni
v4,v1 = f lim

i→∞
ϕ−ni

v4,v1 = g.

Define φf to be the support functionals of (K4, p) with pseudo-support func-

tional ϕv4,v1 = f and likewise define φg to be the support functionals of (K4, p) with

pseudo-support functional ϕv4,v1 = g. We note that R(K4, p
ni) → R(K4, p)φf and

R(K4, p
−ni) → R(K4, p)φg as i → ∞.

There exists unique a, b ∈ R such that ϕ(w) = aϕ(x) + bϕ(y). By Lemma 3.2.8,

R(K4, p)φf has row independence if f is linearly independent of aϕ(x) − bϕ(y) and

R(K4, p)φg has row independence if g is linearly independent of aϕ(x) − bϕ(y). Both

f, g cannot be linearly dependent to aϕ(x) − bϕ(y) as f, g are linearly independent,

thus either R(K4, p)φf or R(K4, p)φg has row independence. By Lemma 1.3.11 this

implies that for large enough i we have either (K4, p
ni) or (K4, p

−ni) are independent

and thus there exists an independent placement of K4. It now follows by Proposition

1.3.13 that K4 is rigid also.
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v1

v2 v3

v4

v1

v2
v3

v4

v1

v2 v3

v4

Fig. 3.2 From left to right: (K4, p
−ni), (K4, p) and (K4, p

ni) for i ∈ N. The red dashed
edge indicates the edge v1v4 of (K4, p) is not well-positioned. We note that the support
functional of the green edge will approximate g while the support functional of the
blue edge will approximate f .

3.2.3 The rigidity of K4 in strictly convex and smooth normed

planes

For this section we shall define {v1, v2, v3, v4} to be the vertex set of K4 and e := v1v4.

The graph K4 − e will be the subgraph of K4 formed by removing the edge e. Given a

normed plane X we shall fix a basis b1, b2 ∈ S1[0].

Definition 3.2.12. Let (G, p) be a framework in a normed space X. We say (G, p) is

in 3-cycle general position if every subframework (H, q) ⊂ (G, p) with H ∼= K3 is in

general position.

Lemma 3.2.13. Let X be a strictly convex normed space and x, y ∈ X linearly

independent and smooth. Then ϕ(x), ϕ(y) are linearly independent.

Proof. Suppose ϕ(x), ϕ(y) are linearly dependent, then ϕ(x) = cϕ(y) for some c ∈ R.

As ϕ is homogenous it follows ϕ(x) = ϕ(cy), thus by Proposition 1.1.20, x = cy as

required.

Lemma 3.2.14. Let (K4 − e, p) be in 3-cycle general position in a strictly convex

normed plane X. Then the following holds:

(i) For all q ∈ f−1
K4−e[fK4(p)], (K4 − e, q) is in 3-cycle general position.
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(ii) If (K4 − e, p) is well-positioned, then (K4 − e, p) is independent.

Proof. (i): Suppose (K4 − e, q) is not in 3-cycle general position, then without loss of

generality we may assume qv1 , qv2 , qv3 lie on a line. By possibly reordering vertices we

note that we have

∥qv1 − qv2∥ + ∥qv2 − qv3∥ = ∥qv1 − qv3∥.

Define a12 = ∥pv1 −pv2∥, a23 = ∥pv2 −pv3∥, x12 = (pv1 −pv2)/a12 and x23 = (pv2 −pv3)/a23.

As p is in general position we note a12, a23 > 0 and x12, x23 are linearly independent.

As fK4(q) = fK4(p), then

∥a12x12 + a23x23∥ = ∥a12x12∥ + ∥a23x23∥.

We note that

a23

a12 + a23
= 1 − a12

a12 + a23
.

If we let t := a12
a12+a23

then t ∈ (0, 1) and

∥tx12 + (1 − t)x23∥ = ∥a12x12 + a23x23∥
a12 + a23

= ∥a12x12∥ + ∥a23x23∥
a12 + a23

= t∥x12∥ + (1 − t)∥x23∥

= 1,

which contradicts the strict convexity of X.
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(ii): Suppose a ∈ RE(K4)\{e} is a stress of (K4 − e, p). By observing the stress

condition at v1 we note

av1v2ϕv1,v2 + av1v3ϕv1,v3 = 0.

As (K4 − e, p) is in 3-cycle general position then by Lemma 3.2.13, av1v2 = av1v3 = 0.

Similarly, if we observe the stress condition at v4 we see that av2v4 = av3v4 = 0. We

now see that the stress condition at v2 is

av1v2ϕv2,v1 + av2v3ϕv2,v3 + av2v4ϕv2,v4 = av2v3ϕv2,v3 = 0,

thus a = 0 and (K4 − e, p) is independent.

Define for any graph G and vertex v ∈ V (G) the map

fG,v : XV (G) → RE(G) ×X, p 7→ (fG(p), pv).

It is immediate that fG,v is differentiable at p if and only if p is well-positioned. We

note that the kernel of dfG,v(p) is exactly the space of infinitesimal flexes u of (G, p)

where uv = 0.

Lemma 3.2.15. Let X be a strictly convex and smooth normed plane and suppose

(K4 − e, p) is in 3-cycle general position with pv1 = 0, then V (p) := f−1
K4−e,v1 [fK4−e,v1(p)]

is a 1-dimensional compact Hausdorff C1-manifold.

Proof. As K4 − e is connected, V (p) is bounded. As fK4−e,v1 is continuous then V (p)

is closed, thus V (p) is compact; further, as XV (K4) is Hausdorff so too is V (p).

Choose any q ∈ V (p), then by Lemma 3.2.14 (i), (K4 − e, q) is in 3-cycle general

position. By Lemma 3.2.14 (ii), (K4 − e, q) is independent, thus for all q ∈ V (p) we

have that dfK4,v1(q) is surjective i.e. p is a regular point of fK4−e,v1 . It now follows from
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[47, Theorem 3.5.2(ii)] that V (p) is a C1-manifold with dimension dim ker dfK4−e,v1(p).

Since K4 − e is independent then dim ker dfK4−e,v1(p) = 1 as required.

We denote by T the circle group i.e. the set {eiφ : φ ∈ (−π, π]} with topology and

group operation inherited from C \ {0}. Let X be a normed plane with basis b1, b2.

We note there exists a surjective continuous map θ : X \ {0} → T given by

x = λb1 + µb2 7→ λ+ µi√
λ2 + µ2 .

If we restrict θ to S1[0] then it is a homeomorphism. Let x, y ∈ X \ {0} be linearly

independent, then θ(x)θ(y)−1 = eiφ ̸= ±1; if φ ∈ (0, π) then we say xθy, while if

φ ∈ (−π, 0) then we say yθx.

Choose any two linearly independent points x, y in a normed plane X and define

L(x, y) to be the unique line through x and y. By abuse of notation we also denote by

L(x, y) the unique linear functional L(x, y) : X → R where L(x, y)x = L(x, y)y = 1.

We say that z, z′ ∈ X are on opposite sides of the line L(x, y) if and only if L(x, y)z <

1 < L(x, y)z′ or vice versa.

Lemma 3.2.16. Let X, p and V (p) be as defined in Lemma 3.2.15. Define the maps

f, g : V (p) → {−1, 1} where

f(q) =


1, if qv2θqv3

−1, if qv3θqv2

and

g(q) =


1, if L(qv2 , qv3)(qv4) > 1

−1, if L(qv2 , qv3)(qv4) < 1,



3.2 Rigidity of K4 in all normed planes 117

then f, g are well-defined and continuous.

Proof. We note that f is not well-defined at q if and only if qv2 , qv3 are linearly

dependent. By Lemma 3.2.14 (i), as (K4 − e, q) is in 3-cycle general position and

qv1 = 0 then qv2 , qv3 are linearly independent, thus f is well-defined at all q ∈ V (p).

The map g is not well-defined at q if and only if either qv2 , qv3 are linearly dependent

or qv4 lies on L(qv2 , qv3), thus g is not well-defined at q if and only if q is not in 3-cycle

general position. By Lemma 3.2.14 (i), (K4 − e, q) is in 3-cycle general position for all

q ∈ V (p), thus g is well-defined.

As f and g are locally constant they are continuous.

Lemma 3.2.17. [48, Proposition 31] Let X be a strictly convex normed plane and

a, b, c ∈ X \ {0} be distinct with ∥b∥ = ∥c∥. If either,

(i) aθb, bθc and aθc,

(ii) cθb, bθa and cθa,

then ∥a− b∥ < ∥a− c∥.

Lemma 3.2.18. Let X be a strictly convex normed plane, x, y ∈ X be distinct and

rx, ry > 0. If Srx [x] ∩ Sry [y] ̸= ∅ then one of the following holds:

(i) Srx [x] ∩ Sry [y] = {z} and x, y, z are colinear.

(ii) Srx [x] ∩ Sry [y] = {z1, z2} for z1 ̸= z2. Further, if x = 0 then z1θy and yθz2 or vice

versa, and if x, y are linearly independent then z1, z2 are on opposite sides of the

line L(x, y).

Proof. Let θ : S1[0] → T be as previously described. Define the continuous map

φ : [−π, π] → Srx [x], φ(t) := rxθ
−1(ei(t+t0)) + x,



118 Graph rigidity in the normed plane

where rxθ
−1(eit0) the unique point between x, y on Srx [x]. Now define the map

h : [−π, π] → R, h(t) := ∥φ(t) − y∥.

We note that φ(−π) = φ(π) and h(−π) = h(π). It follows from Lemma 3.2.17 that h

is strictly increasing on [0, π] and strictly decreasing on [−π, 0].

If φ(0) ∈ Srx [x] ∩ Sry [y] then for all t ̸= 0,

∥φ(t) − y∥ = h(t) > h(0) = ry,

thus Srx [x] ∩ Sry [y] = {z} with z := φ(0); similarly if φ(π) ∈ Srx [x] ∩ Sry [y] then

Srx [x] ∩ Sry [y] = {z} with z := φ(π) and so (i) holds.

Suppose φ(0), φ(π) /∈ Srx [x] ∩ Sry [y]. We note that as Srx [x] ∩ Sry [y] ̸= ∅ then

there exists t1 ∈ (−π, π) \ {0} so that h(t1) = ry. First suppose t1 ∈ (−π, 0), then for

all t ∈ (t1, 0) and t′ ∈ (−π, t1) we have h(t) < h(t1) < h(t′), thus there are no other

intersection points in (−π, 0). As h|[0,π] is strictly increasing and

h(0) < h(t1) = ry < h(−π) = h(π)

then by the Intermediate Value Theorem there exists a unique value t2 ∈ (0, π) so that

h(t2) = ry, thus Srx [x] ∩ Sry [y] = {φ(t1), φ(t2)} with −π < t1 < 0 < t2 < π. Similarly

if t1 ∈ (0, π) then Srx [x] ∩ Sry [y] = {φ(t1), φ(t2)} with −π < t2 < 0 < t1 < π.

If x = 0 then it is immediate that φ(t1)θφ(0) and φ(0)θφ(t2). As φ(0) is a positive

scalar multiple of y then φ(t1)θy and yθφ(t2). Now suppose x, y are linearly independent,

then we now note that φ(t1) and φ(t2) lie on opposite sides of the line through x, y as

ei(t1+t0) and ei(t2+t0) lie on opposite sides of the line through eit0 and e−it0 .
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Lemma 3.2.19. Let X, p and V (p) be as defined in Lemma 3.2.15. Let q1, q2 ∈ V (p)

with f(q1) = f(q2), g(q1) = g(q2) and q1
v2 = q2

v2 , then q1 = q2.

Proof. By Lemma 3.2.14 (i), q1, q2 are in 3-cycle general position. As q1
v1 , q

1
v2 , q

1
v3 are

not colinear then by Lemma 3.2.18 there exists exactly one other point z ∈ X such

that ∥z− q1
v1∥ = ∥q1

v3 − q1
v1∥ and ∥z− q1

v2∥ = ∥q1
v3 − q1

v2∥. We note that as q1
v1 = q2

v1 = 0

and q1
v2 = q2

v2 then q2
v3 = q1

v3 or q2
v3 = z. By Lemma 3.2.18 (ii), either zθq1

v2 and q1
v3θz

or vice versa. If q2
v3 = z then f(q2) = −f(q1), thus q2

v3 = q1
v3 .

Similarly, as q1
v2 , q

1
v3 , q

1
v4 are not colinear then by Lemma 3.2.18 there exists exactly

one other point z′ ∈ X such that ∥z′ − q1
v2∥ = ∥q1

v4 − q1
v2∥ and ∥z′ − q1

v3∥ = ∥q1
v4 − q1

v3∥.

By Lemma 3.2.18 (ii), z′, q1
v4 are on the opposite sides of L(q1

v2 , q
1
v3). If q2

v4 = z′ then

g(q2) = −g(q1), thus q2
v4 = q1

v4 .

Lemma 3.2.20. LetX, p and V (p) be as defined in Lemma 3.2.15. The path-connected

components of V (p) are exactly f−1[1] ∩ g−1[1], f−1[1] ∩ g−1[−1], f−1[−1] ∩ g−1[1] and

f−1[−1]∩g−1[−1]. Further, each f−1[i]∩g−1[j] component is a path-connected compact

Hausdorff 1-dimensional C1-manifold.

Proof. By multiple applications of Lemma 3.2.18 it follows that each f−1[i] ∩ g−1[j] is

non-empty.

Choose i, j ∈ {1,−1}. Suppose there exists disjoint path-connected components of

A,B ⊂ f−1[i] ∩ g−1[j], then by Lemma 3.2.15, A,B are both path-connected compact

Hausdorff 1-dimensional C1-manifolds. As every path-connected compact Hausdorff

1-dimensional manifold is homeomorphic to a circle (see [45, Theorem 5.27]) we may

define the homeomorphisms α : T → A and β : T → B. We will define αvi
, βvi

to be

the vi components of α and β respectively.

Suppose there exists z1, z2 ∈ T such that αv2(z1) = αv2(z2), then by Lemma 3.2.19,

α(z1) = α(z2), thus the map αv2 : T → S∥pv2∥[0] is injective; similarly, the map

βv2 : T → S∥pv2∥[0] is also injective. As T is compact then by the Brouwer’s theorem
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for invariance of domain [44, Theorem 1.18] it follows αv2 , βv2 are homeomorphisms,

thus we may choose z, z′ ∈ T so that αv2(z) = βv2(z′). By Lemma 3.2.19 it follows

α(z) = β(z′) and A,B are not disjoint path-connected components.

Lemma 3.2.21. Let X, p and V (p) be as defined in Lemma 3.2.15 and V0(p) be the

path-connected component of V (p) that contains p. Suppose pv4 = pv2 + pv3 , then for

all q ∈ V0(p) we have qv4 = qv2 + qv3 .

Proof. Choose q ∈ V0(p) then by Lemma 3.2.20, f(q) = f(p) and g(q) = g(p). Define

q′ to be the placement of K4 − e where q′vi
= qvi

for i = 1, 2, 3 and q′v4 = q′v2 + q′v3 . We

immediately note q′ ∈ V (p) and f(q′) = f(p). Suppose q′ ̸= q, then by Lemma 3.2.19

we must have −g(q′) = g(q) = g(p); however

L(pv2 , pv3)(pv4) = L(pv2 , pv3)(pv2 + pv3) = 2 > 1

and

L(q′v2 , q
′
v3)(q′v4) = L(q′v2 , q

′
v3)(q′v2 + q′v3) = 2 > 1,

and so g(q′) = 1 = g(p), a contradiction, thus q′ = q and the result follows.

We will finally need the following result which will help us separate when we are

dealing with Euclidean and non-Euclidean normed planes.

Theorem 3.2.22. Let X be a normed plane and

D(ϵ) := {∥a+ b∥ : ∥a− b∥ = ϵ, ∥a∥ = ∥b∥ = 1}
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(K4 − e, q2)

(K4 − e, q1)

α(t)

Fig. 3.3 The frameworks (K4 − e, q1) and (K4 − e, q2) in some strictly convex and
smooth normed plane X, as described in Lemma 3.2.23. The inner dotted shape
represents the unit sphere of X and the outer dotted shape represents the sphere
of X with radius ∥q2

v4∥. As the framework follows the differentiable path α(t) the
distance ∥αv1(t) −αv4(t)∥ is non-constant; when the derivative of t 7→ ∥αv1(t) −αv4(t)∥
is non-zero at point s we add the edge v1v4 and note (K4, α(s)) will be infinitesimally
rigid.

If X is a non-Euclidean normed plane then for all 0 < ϵ < 2 where ϵ ≠ 2 cos(kπ/2n)

(n, k ∈ N, 1 ≤ k ≤ n),

inf D(ϵ) < supD(ϵ).

Proof. This follows by [2, p. 323] and noting that if Property Qϵ does not hold then

D(ϵ) is not a single point.

We are now ready for our key lemma.

Lemma 3.2.23. Let X be a normed plane that is strictly convex and smooth, then

K4 is rigid in X.

Proof. If X is Euclidean this follows from Theorem 1.3.20 so suppose X is non-

Euclidean.

Choose any 0 < ϵ < 2 so that ϵ ̸= 2 cos(kπ/2n) for all n, k ∈ N with 1 ≤ k ≤ n. By

the continuity of the norm we may choose a placement p of K4 so that:
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(i) pv1 = 0,

(ii) ∥pv2∥ = ∥pv3∥ = 1,

(iii) pv2θpv3 ,

(iv) ∥pv2 − pv3∥ = ϵ,

(v) pv4 = pv2 + pv3 ,

We note (K4 − e, p) is in 3-cycle general position, f(p) = 1 as pv2θpv3 , and g(p) = 1 as

L(pv2 , pv3)(pv4) = L(pv2 , pv3)(pv2 + pv3) = 2 > 1.

By Lemma 3.2.15 and Lemma 3.2.20, V0(p) = f−1[1] ∩ g−1[1] is a path-connected

compact Hausdorff 1-dimensional C1-manifold. We note that for every pair a, b in S1[0]

with ∥a− b∥ = ϵ there exists q ∈ V0(p) so that qv2 = a and qv3 = b or vice versa, thus

there exists q1, q2 ∈ V0(p) so that

∥q1
v4∥ = inf{∥a+ b∥ : ∥a− b∥ = ϵ, ∥a∥ = ∥b∥ = 1}

∥q2
v4∥ = sup{∥a+ b∥ : ∥a− b∥ = ϵ, ∥a∥ = ∥b∥ = 1};

further, by Theorem 3.2.22 we have that ∥q2
v4∥ − ∥q1

v4∥ > 0.

As V0(p) is a path connected C1-manifold that is C1-diffeomorphic to T we may

define a C1-differentiable path α : [0, 1] → V0(p) where α(0) = q1, α(1) = q2 and

α′(t) ̸= 0 for all t ∈ [0, 1]. By Lemma 3.2.21, αv4(t) = αv2(t) + αv3(t) for all t ∈ [0, 1];

further, as αv2(t), αv3(t) are linearly independent, αv4(t) ̸= 0 for all t ∈ [0, 1].



3.3 Graph operations for the normed plane 123

As X is smooth, (K4, α(t)) is well-positioned for all t ∈ [0, 1]. By Proposition 1.1.11

(i) and Proposition 1.1.11 (ii), for all 1 ≤ i < j ≤ 4, (i, j) ̸= (1, 4) and t ∈ [0, 1],

0 = d

dt
∥αvi

(t) − αvj
(t)∥ = ϕ

(
αvi

(t) − αvj
(t)

∥αvi
(t) − αvj

(t)∥

)
(α′vi

(t) − α′vj
(t)),

thus α′(t) is a non-trivial flex of (K4 − e, α(t)) with α′v1(t) = 0. By Lemma 3.2.14 (ii),

(K4 − e, α(t)) is independent and so it follows from Theorem 1.3.12 that α′(t) is the

unique (up to scalar multiplication) non-trivial flex of (K4 − e, α(t)) with α′v1(t) = 0.

By the Mean Value Theorem it follows that there exists s ∈ [0, 1] so that

ϕ

(
αv4(s)

∥αv4(s)∥

)
(α′v4(s)) = d

dt
∥αv4(t)∥|t=s = ∥q2

v4∥ − ∥q1
v4∥ > 0,

thus α′(s) is not a flex of (K4, α(s)). As F(K4, α(s)) ( F(K4 −e, α(s)) then (K4, α(s))

is infinitesimally rigid as required.

3.3 Graph operations for the normed plane

In this section we shall define a set of graph operations and prove that they preserve

isostaticity in non-Euclidean normed planes. The Henneberg moves and the vertex

split (see Section 3.3.3) have also been shown to preserve isostaticity in the Euclidean

normed plane and can even be generalised to higher dimensions [23] [68], however the

vertex-to-K4 extension (see Section 3.3.4) is strictly a non-Euclidean normed plane

graph operation as it will not preserve (2, 3)-sparsity.

3.3.1 0-extensions

We will first prove a more general result concerning frameworks.
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Lemma 3.3.1. Let (G, p) be a finite framework in general position in a normed

plane X and G′ a 0-extension of G from the vertices v1, v2 ∈ V (G) by a vertex v0.

Suppose p′ is a placement of G′ such that (G, p) ⊂ (G′, p′), p′ is in general position and

ϕ′v0,v1 , ϕ
′
v0,v2 are linearly independent. Then (G, p) is independent if and only if (G′, p′)

is independent.

Proof. Choose any stress a = (avw)vw∈E(G′) of (G′, p′), then by observing the stress

condition at v0 we note that

0 = av0v1ϕ
′
v0,v1 + av0v2ϕ

′
v0,v2 .

As ϕ′v0,v1 , ϕ
′
v0,v2 are linearly independent then av0vi

= 0 for i = 1, 2 and a|E(G) is a stress

of (G, p). It now follows that there exists a non-zero stress of (G′, p′) if and only if

there exists a non-zero stress of (G, p). By Proposition 1.3.8, (G′, p′) is independent if

and only if (G, p) is independent.

Lemma 3.3.2. Let (G, p) be a finite independent framework in general position in a

normed plane X and G′ a 0-extension of G from the vertices v1, v2 ∈ V (G) by a vertex

v0. Then there exists a p′ a placement of G′ in general position such that p′|V (G) = p

and (G′, p′) is independent.

Proof. By Proposition 1.1.23 we may choose linearly independent y1, y2 ∈ smooth(X)

such that ∥y1∥ = ∥y2∥ = 1 and ϕ(y1), ϕ(y2) ∈ X∗ are linearly independent; we note

that if y1, y2 and pv1 − pv2 are not pairwise linearly independent then by Proposition

1.1.11 (iv) and Proposition 1.1.11 (iii), we may perturb y1 and y2 so that they are

smooth, ϕ(y1), ϕ(y2) are linearly independent and y1, y2, pv1 − pv2 are pairwise linearly

independent.
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Define for i = 1, 2 the lines

Li := {pvi
+ tyi : t ∈ R},

then since pv1 ̸= pv2 (as p is in general position) and y1, y2, pv1 − pv2 are pairwise

linearly independent then there exists a unique point z ∈ L1 ∩ L2 and z ̸= pvi
for

i = 1, 2. Define p′ to be the placement of G′ that agrees with p on V (G) with p′v0 = z.

By Lemma 3.3.2, (G′, p′) is independent as required.

We finally note that if p′ is not in general position, by Lemma 1.2.5 and Lemma 1.3.4,

we may perturb the vertex v0 such that p′ is in general position and independent.

We may now use Lemma 3.3.2 to prove the following.

Lemma 3.3.3. 0-extensions preserve independence, dependence and isostaticity in

any normed plane.

Proof. Let G be a finite graph in a normed plane X. Since we can only apply 0-

extensions to graphs with at least two vertices we may assume that |V (G)| ≥ 2 and

define v1, v2 ∈ V (G) to be the vertices where we are applying the 0-extension. Let G′

be the 0-extension of G at v1, v2 with added vertex v0.

Suppose G is dependent. Let p′ be a well-positioned placement of G′ and p := p′|V (G)

be a well-positioned placement of G. As (G, p) is dependent and (G, p) ⊂ (G′, p′) then

(G′, p′) is dependent, thus G′ is dependent.

Now suppose G is independent. By Lemma 1.3.4, we may choose an independent

placement p ∈ R(G) ∩ G(G). By Lemma 3.3.2, there exists an independent placement

p′ of G′, thus G′ is independent.

As G was chosen arbitrarily then it follows that 0-extensions preserve independence

and dependence. By Proposition 1.3.22 and Proposition 3.4.1, (2, k)-tightness is
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preserved by 0-extensions (for k = 2, 3), thus it follows from Corollary 3.1.4 that

isostaticity is also preserved.

3.3.2 1-extensions

Lemma 3.3.4. Let (G, p) be a finite independent framework in general position in a

normed plane X and G′ a 1-extension of G formed by deleting the edge v1v2 ∈ E(G)

and adding a vertex v0 connected to the end points and some other distinct vertex

v3 ∈ V (G). Then there exists a placement p′ of G′ in general position such that

p′|V (G) = p and (G′, p′) is independent.

Proof. By Proposition 1.1.23 there exists y ∈ smooth(X), ∥y∥ = 1, such that y, pv1 −pv2

are linearly independent and ϕ(y), ϕv1,v2 are linearly independent. We note that as

y, pv1 − pv2 are linearly independent and pv1 , pv2 , pv3 are not colinear (since (G, p)

is in general position) then the line through pv1 , pv2 and the line through pv3 in the

direction y must intersect uniquely at some point z ̸= pv3 . By Proposition 1.1.11 (iii)

and Proposition 1.1.11 (iv), if z = pvi
for some i = 1, 2 we may perturb y to some

sufficiently close y′ ∈ smooth(X) such that the pairs y′, pv1 − pv2 and ϕ(y′), ϕv1,v2 are

linearly independent and our new intersection point z′ is not equal to pvi
for i = 1, 2;

we will now assume y is chosen so that this holds.

Define q′ to be the placement of G′ where q′v = pv for all v ∈ V (G) and q′v0 = z.

We recall that ϕ′v,w is the support functional vw ∈ E(G′) in (G′, q′); it is immediate

that if vw ∈ E(G) \ {v1v2} then ϕ′v,w = ϕv,w. We note that ϕ′v1,v0 , ϕ′v0,v2 , ϕ′v1,v2 are all

pairwise linearly dependent, thus there exists f ∈ S∗1 [0] and σvi,vj
∈ {−1, 1} such that

ϕ′vi,vj
= σvi,vj

f for distinct i, j ∈ {0, 1, 2}, with σvj ,vi
= −σvi,vj

. We further note that,

due to our choice placement, at least one of ϕ′v1,v0 , ϕ′v0,v2 must be equal to ϕ′v1,v2 ; we

may assume by our ordering of v1, v2 and choice of f that σv1,v0 = σv1,v2 = 1. We may
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also assume ϕ′v0,v3 = ϕ(y), as if ϕ′v0,v3 = −ϕ(y) we may assume we originally chose y to

be −y. Lastly, note that ϕ(y) is linearly independent of f by our choice of z.

Choose any stress a := (avw)vw∈E(G′) of (G′, q′). If we observe a at v0 we note

av0v1ϕ
′
v0,v1 + av0v2ϕ

′
v0,v2 + av0v3ϕ

′
v0,v3 = (σv0,v2av0v2 − av0v1)f + av0v3ϕ(y) = 0,

thus since f, ϕ(y) are linearly independent, av0v3 = 0 and σv0,v2av0v1 = av0v2 . Define

b := (bvw)vw∈E(G) where bvw = avw for all vw ∈ E(G) \ {v1v2} and bv1v2 = av0v1 =

σv0,v2av0v2 . For each v ∈ V (G) \ {v1, v2} it is immediate that

∑
w∈NG(v)

bvwϕv,w =
∑

w∈NG′ (v)
avwϕ

′
v,w = 0;

we note that this will also hold for v3 as av0v3 = 0. If we observe whether the stress

condition of b holds at v1 we note

∑
w∈NG(v1)

bvwϕv,w = bv1v2f +
∑

w∈NG(v1)
w ̸=v2

bvwϕv,w = av0v1ϕ
′
v1,v0 +

∑
w∈NG′ (v1)

w ̸=v0

avwϕ
′
v,w = 0,

while if we observe whether the stress condition of b holds at v2 we note

∑
w∈NG(v2)

bvwϕv,w = −bv1v2f +
∑

w∈NG(v2)
w ̸=v1

bvwϕv,w = av0v2ϕ
′
v2,v0 +

∑
w∈NG′ (v2)

w ̸=v0

avwϕ
′
v,w = 0,

thus b is a stress of (G, p). Since (G, p) is independent then b = 0 which in turn implies

a = 0. As a was chosen arbitrarily then (G′, q′) is independent.

By applying Lemma 1.2.5 with V := V (G) to (G′, q′) and Lemma 1.3.3 it follows

that we may choose a well-positioned placement p′ of G′ in general position with

p′|V = q′|V = p sufficiently close to q′ so that (G′, p′) is independent as required.
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Fig. 3.4 A vertex split (left) and a vertex-to-K4 extension (right).

Lemma 3.3.5. 1-extensions preserve independence and isostaticity in any normed

plane.

Proof. Let G be independent, with 1-extension G′. By Lemma 1.3.4 (applied to G) and

Lemma 3.3.4, it follows that G′ is independent. By Proposition 1.3.22 and Proposition

3.4.1, (2, k)-tightness is preserved by 1-extensions (for k = 2, 3), thus it follows from

Corollary 3.1.4 that isostaticity is also preserved.

3.3.3 Vertex splitting

A vertex split is given by the following process applied to any graph G (see Figure 3.4):

1. Choose an edge v0w0 ∈ E(G),

2. Add a new vertex w1 to V (G) and edges v0w1, w0w1 to E(G),

3. For every edge vw0 ∈ E(G) we may either leave it or replace it with vw1.

Lemma 3.3.6. Let (G, p) be a finite independent framework in general position in a

normed plane X and G′ formed by a vertex split applied to G at the edge v0w0 with

added vertex w1. Then there exists a placement p′ of G′ in general position such that

p′|V (G) = p and (G′, p′) is independent.

Proof. We shall define q′ to be the not well-positioned placement of G′ with q′w1 =

q′w0 = pw0 and q′v = pv for all v ∈ V (G′) \ {w1}. By Proposition 1.1.23, we may choose

smooth x ∈ S1[0] such that ∥x∥ = 1, the pair x, pv0 − pw0 are linearly independent,
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and the pair ϕ(x), ϕv0,w0 are linearly independent. We shall define the pseudo-support

functional ϕ′w0,w1 := ϕ(x) and thus define (G′, q′)φ with φ := {ϕ′v,w : vw ∈ E(G′)}.

Let a := (avw)vw∈E(G′) be a pseudo-stress of (G′, q′)φ. Define b := (bvw)vw∈E(G) with

bv0w0 = av0w0 + av0w1 , bvw1 = avw0 if v ̸= v0 and bvw = avw for all other edges of G. We

shall now show b is a stress of (G, p). We first note that for any v ∈ V (G) \ {v0, w0}

the stress condition of b at v holds as the pseudo-stress of a holds at v, and the stress

condition of b at v0 holds as

bv0w0ϕv0,w0 = av0w0ϕ
′
v0,w0 + av0w1ϕ

′
v0,w1 ;

further, if we observe the stress condition of b at w0 we note

∑
v∈NG(w0)

bw0vϕw0,v =
∑

v∈NG′ (w0)
aw0vϕ

′
w0,v +

∑
v∈NG′ (w1)

aw1vϕ
′
w1,v = 0 + 0 = 0,

thus b is a stress of (G, p). As (G, p) is independent then b = 0, thus avw = 0 for all

edges vw ̸= w0w1, v0w0, v0w1 of G′, and av0w0 + av0w1 = 0. We note by observing the

pseudo-stress condition of a at w0,

0 =
∑

v∈NG′ (w0)
aw0vϕ

′
w0,v = aw0w1ϕ

′
w0,w1 + av0w0ϕ

′
w0,v0 = aw0w1ϕ(x) + av0w0ϕw0,v0 ,

thus av0w0 = aw0w1 = 0; similarly, by observing the pseudo-stress condition of a at w1

we note av0w1 = 0. It now follows a = 0, thus R(G′, q′)φ has row independence.

Define qn ∈ XV (G′) to be the placement of G′ that agrees with q′ on V (G) with

qn
w1 = q′w0 − 1

n
x. By Lemma 1.2.5 (with V = V (G)) we may choose pn ∈ W(G′) ∩ G(G′)

such that pn|V (G) = qn|V (G) = p and ∥pn − qn∥V (G′) <
1

n2 . By Proposition 1.1.11 (iv),

ϕn
v,w1 → ϕ′v,w1 as n → ∞ for all vw1 ∈ E(G′) with v ̸= w0. By Lemma 2.3.6 and

Proposition 1.1.11 (iv), ϕn
w0,w1 → ϕ′w0,w1 as n → ∞ also. This implies (G′, pn) →
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(G′, q′)φ as n → ∞ and so by Proposition 1.3.11, there exists an independent placement

p′ := pn of G′ in general position for sufficiently large n ∈ N.

Lemma 3.3.7. Vertex splitting preserves independence and isostaticity in any non-

Euclidean normed plane.

Proof. Let G be independent and G′ formed from G by a vertex split. By Lemma 1.3.4

(applied to G) and Lemma 3.3.6, it follows that G′ is independent. By Proposition

3.4.1, (2, 2)-tightness is preserved by vertex splitting, thus it follows from Corollary

3.1.4 that isostaticity is also preserved.

3.3.4 Vertex-to-K4 extensions

The vertex-to-K4 extension is given by the following process applied to any graph G

(see Figure 3.4):

1. Choose a vertex v0 ∈ V (G),

2. Add the vertices v1, v2, v3 to V (G) and edges vivj to E(G), 0 ≤ i < j ≤ 3,

3. Replace any edge v0w ∈ E(G) with viw for some i = 0, 1, 2, 3.

Lemma 3.3.8. Let (G, p) be an independent framework in a normed plane X and G′

a vertex-to-K4 extension. Then there exists an independent placement p′ of G′ in X

so that p′|V (G) = p.

Proof. By Theorem 3.2.1 and Corollary 3.1.4, K4 is isostatic in any non-Euclidean

normed plane. We now note a vertex-to-K4 substitution is a K4-substitution (see

Section 2.3.2), thus by Lemma 2.3.7, the result follows.

Lemma 3.3.9. Vertex-to-K4 moves preserve independence and isostaticity in any

non-Euclidean normed plane.
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Proof. By Theorem 3.2.1 and Corollary 3.1.4, K4 is isostatic in any non-Euclidean

normed plane. We now note a vertex-to-K4 substitution is a K4-substitution (see

Section 2.3.2), thus by Proposition 3.1.1 (ii) and Theorem 2.3.8, the result follows.

3.4 Graph sparsity and connectivity conditions for

rigidity

3.4.1 A characterisation of rigid graphs in normed planes

The following result provides an analogue for Proposition 1.3.22.

Proposition 3.4.1. [53, Theorem 1.5] Henneberg moves, vertex splitting and vertex-

to-K4 extensions preserve (2, 2)-tightness and (2, 2)-sparsity. Further, if G is (2, 2)-tight

then it may constructed from K1 by a finite sequence of Henneberg moves, vertex

splitting and vertex-to-K4 extensions.

We are now ready to prove our main theorem of the chapter.

Theorem 3.4.2. Let X be a non-Euclidean normed plane. Then a graph G is isostatic

in X if and only if G is (2, 2)-tight.

Proof. Suppose |V (G)| ≤ 2, then G is either K1, K2 or K1 ⊔K1 (the graph on 2 vertices

with no edges). We note all three are (2, 2)-sparse but only K1 is (2, 2)-tight. By

definition, K1 is rigid and by Theorem 3.1.3 (i), both K2 and K1 ⊔K1 are infinitesimally

flexible as required.

Let G be isostatic with |V (G)| ≥ 3, then by Theorem 3.1.3 (iii), G is (2, 2)-tight.

Now let G be (2, 2)-tight with |V (G)| ≥ 3, then by Proposition 3.4.1 it can be

obtained from K4 by a finite sequence of 0-extensions, 1-extensions, vertex splitting

and vertex-to-K4 extensions. By Theorem 3.2.1 and Corollary 3.1.4 K4 is isostatic and

so by Lemma 3.3.3, Lemma 3.3.5, Lemma 3.3.7 and Lemma 3.3.9, G is isostatic.
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We now have an immediate corollary.

Corollary 3.4.3. A graph is rigid in all normed planes if and only if it contains a

proper (2, 3)-tight spanning subgraph.

Proof. Let G contain a proper (2, 3)-tight spanning subgraph H. As H is proper there

exists e ∈ E(G) \ E(H). It follows that H ∪ {e} is a (2, 2)-tight spanning subgraph of

G. By Theorem 1.3.20 and Theorem 3.4.2, G is rigid in all normed planes.

Suppose G is rigid in all normed planes, then by Theorem 1.3.20, G contains a

(2, 3)-tight spanning subgraph H and |E(G)| ≥ 2|V (G)| − 2. As |E(H)| < |E(G)|, H

is proper.

We note that there exist (2, 2)-tight graphs which are not rigid in the Euclidean

plane, e.g. consider two copies of K4 joined at a single vertex (see Figure 3.5).

3.4.2 Analogues of Lovász & Yemini’s theorem for non-Euclidean

normed planes

We say that a connected graph is k-connected if G remains connected after the removal

of any k − 1 vertices and k-edge-connected if G remains connected after the removal of

any k−1 edges. This section shall deal with how we may obtain sufficient conditions for

rigidity from the connectivity of the graph. The first result is the famous connectivity

result given by Lovász & Yemini in [46].

Theorem 3.4.4. Any 6-connected graph is rigid in the Euclidean plane.

The following is a corollary of a famous result of Nash-Williams [52, Theorem 1].

Corollary 3.4.5. The following properties hold:

(i) G is (k, k)-tight if and only if G contains k edge-disjoint spanning trees T1, . . . , Tk

where E(G) = ⋃k
i=1 E(Ti)
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Fig. 3.5 (Left): A (2, 2)-tight graph that is not rigid in the Euclidean plane. (Right):
A 3-connected (and hence 3-edge-connected) graph that does not contain a (2, 2)-tight
spanning subgraph.

(ii) If G is k-edge-connected then G contains k edge-disjoint spanning trees.

Using Corollary 3.4.5 we may obtain an analogous result.

Theorem 3.4.6. Any 4-edge-connected graph is rigid in all non-Euclidean normed

planes.

Proof. By Corollary 3.4.5 if G is 4-edge-connected then it will contain two edge-disjoint

spanning trees, thus by Corollary 3.4.5, G must have a (2, 2)-tight spanning subgraph

H. By Theorem 3.4.2 we have that G is rigid in any non-Euclidean normed plane as

required.

Since k-connectivity implies k-edge-connectivity then we can see that a 4-connected

graph will also be rigid in all non-Euclidean normed planes. We note that this is the

best possible result as we can find graphs that are 3-edge-connected but do not contain

a (2, 2)-tight spanning subgraph (see Figure 3.5).

Corollary 3.4.7. Any 6-connected graph is rigid in all normed planes.

Proof. As G is 6-connected then by Theorem 3.4.4, G is rigid in the Euclidean normed

plane. As 6-connected implies 6-edge-connected then G is 4-edge-connected, thus by

Theorem 3.4.6, G is rigid in any non-Euclidean normed plane.

This following result is generalisation of Lovász & Yemini’s theorem given by Tibor

Jordán on the number of rigid spanning subgraphs contained in a graph.
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Theorem 3.4.8. [29, Theorem 3.1] Any 6k-connected graph contains k edge-disjoint

(2, 3)-tight spanning subgraphs.

Yet again we may obtain an analogous result.

Theorem 3.4.9. Any 4k-edge-connected graph contains k edge-disjoint (2, 2)-tight

spanning subgraphs.

Proof. By Corollary 3.4.5 if G is 4k-edge-connected then it will contain 2k edge-disjoint

spanning trees, thus by Corollary 3.4.5, G has k (2, 2)-tight spanning subgraphs.

Combining this we have the final generalisation.

Corollary 3.4.10. Any 6k-connected graph contains k edge-disjoint spanning sub-

graphs H1, . . . , Hk that are rigid in any normed plane.

Proof. Since 6k-connected implies 6k-edge-connected then by Theorem 3.4.8 there

exists k edge-disjoint (2, 3)-tight spanning subgraphs A1, . . . , Ak and by Theorem

3.4.8 k edge-disjoint (2, 2)-tight spanning subgraphs B1, . . . , Bk. We shall define

A := ⋃k
i=1 Ai and B := ⋃k

i=1 Bi, then |E(B)| − |E(A)| = k and so we may choose

e1, . . . , ek ∈ E(B) \ E(A). For any i = 1, . . . , k we note that Hi := Ai ∪ {ei} will be a

(2, 2)-tight spanning subgraph that contains a (2, 3)-tight spanning subgraph Ai, thus

by Corollary 3.4.3, Hi is rigid in all normed planes. We now note E(Hi) ∩ E(Hj) = ∅

for i ̸= j as required.

Remark 3.4.11. Corollary 3.4.10 only gives that for any normed plane X a graph G

will contain k edge-disjoint spanning subgraphs H1, . . . , Hk with infinitesimally rigid

placements (H1, p
1), . . ., (Hk, p

k) in X. In general this does not guarantee the existence

of a single placement p of G such that (H1, p), . . . , (Hk, p) are infinitesimally rigid in X.

However if R(H) is dense in W(H) for any subgraph H ⊂ G then such a placement

does exist. An example where this occurs would be any graph in any smooth ℓp space
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(see [38, Lemma 2.7]). In contrast, if X has a polyhedral unit ball then this property

does not hold in general (see [34, Lemma 16]).





Chapter 4

Rigidity for countable frameworks

In this chapter we will be extending the theory introduced in previous chapters to

countably infinite frameworks and graphs. We shall define a matroidal structure for

infinite frameworks that will be a vital tool when dealing with generic placements

and generic spaces; see Section 4.2 for more details. We shall then extend Theorem

1.3.20 and Theorem 3.4.2 to countably infinite graphs (see Theorem 4.3.12), with a

stronger classification for generic placements in generic spaces (see Theorem 4.3.14).

We shall finish the chapter by investigating how we may utilise infinitesimal rigidity to

detect continuous rigidity, especially in the case of algebraically generic frameworks;

see Section 4.4.

4.1 Preliminaries on countably infinite frameworks

4.1.1 Well-positioned and completely well-positioned frame-

works

We define a placement (p, S) in a normed space X to be completely well-positioned if the

framework (KS, p) is well-positioned in X. We define a framework (G, p) in a normed
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space X to be completely well-positioned if (p, V (G)) is a completely well-positioned

placement.

Remark 4.1.1. For much of the material of this chapter we shall require that a

framework is completely well-positioned. This is as we shall often be observing the

infinitesimal flex spaces of all possible frameworks with a given placement.

For a placement (p, S) and normed space X, we usually consider XS so that the

rigidity operator of a given framework is continuous. For the following, however, we

shall consider instead the box topology, the topology of XS generated by all sets of the

form ∏
s∈S Us, where each Us is an open set in X. We note that if a set is dense in XS

with respect to the box topology then it is automatically dense in XS with respect to

the product topology.

Proposition 4.1.2. Let X be a normed space, S := {s1, s2, . . .} a countable set and

Sn := {s1, . . . , sn} for all n ∈ N. Suppose (Pn)n∈N are a sequence of sets with the

following properties:

(i) Pn ⊂ XSn and XSn \ Pn is negligible for each n ∈ N.

(ii) For all n ≤ m, if (xs)s∈Sm ∈ Pm then (xs)s∈Sn ∈ Pn.

If P ⊂ XS is the set of all points (xs)s∈S ∈ XS such that (xs)s∈Sn ∈ Pn for each n ∈ N,

then P is dense in XS with respect to the box topology.

Proof. Choose p ∈ XS and a sequence (rn)n∈N of strictly positive real numbers. Define

U := ∏
n∈NBrn(psn), the sets Un := ∏n

i=1 Brn(psn), and the surjective maps

ρn,m : Um → Un, (xsi
)m

i=1 7→ (xsi
)n

i=1

for any n,m ∈ N with n ≤ m. We note it is sufficient to find q ∈ P ∩ U for the result

to hold.
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Choose any n ∈ N, then Un ∩ Pn ̸= ∅. Choose any C ⊆ Un ∩ Pn such that Cc is

negligible in Un and define for each m ≥ n+ 1,

Am(C) := ρ−1
n,m(C) ∩ Pm.

As Am(C)c = ρ−1
n,m(Cc) then by Proposition B.2.10 (i), Am(C)c is negligible in Um. We

note

An+1(C) ⊃ ρn+1,n+2(An+2(C)) ⊃ ρn+1,n+3(An+3(C)) ⊃ . . .

By Proposition B.2.10 (ii), ρn+1,m(Am(C))c is negligible in Um. It now follows that if

we define

Bn+1(C) :=
⋂

m≥n+1
ρn+1,m(Am(C)) ⊂ Un+1 ∩ Pn+1

then Bn+1(C)c is negligible in Un+1. The set Bn+1(C) is now the set of all elements of

Um that are an extension of a point from C which in turn can for each m ≥ n+ 1 be

extended to a point in Um ∩ Pm.

Define C1 := U1 ∩ P1 and Cn+1 := Bn+1(Cn) for all n ∈ N. As shown prior, each

Cn is non-empty, thus we may choose q1 ∈ C1. Due to how the sequence (Cn)n∈N was

constructed, we now may choose a sequence (qn)n∈N where qn ∈ Cn and ρn,m(qm) = qn

for all n ≤ m. We now define q ∈ XS where qsn := qn
sn

for all n ∈ N.

Corollary 4.1.3. Let G be a countably infinite graph and X a normed space. Then

W(G) is dense in XV (G) with respect to the box topology.

Proof. This follows from Lemma 1.2.4 and Proposition 4.1.2.

Corollary 4.1.4. Let V be a countable set, then the set of completely well-positioned

placements is dense in XV with respect to the box topology.
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Proof. We note that the set of completely well-positioned placements of V is exactly

W(KV ), thus we apply Corollary 4.1.3 to KV .

4.1.2 Towers of frameworks

We define a tower (of frameworks) to be a sequence of finite frameworks ((Gn, pn))n∈N

in a normed space X where (Gn, pn) ⊂ (Gn+1, pn+1) for all n ∈ N. Given a framework

(G, p) in X we define a tower ((Gn, pn))n∈N to be a tower of (G, p) if (Gn, pn) ⊂ (G, p)

for all n ∈ N. A tower ((Gn, pn))n∈N of (G, p) is (completely) well-positioned if

each framework in the sequence is (completely) well-positioned, vertex-complete if⋃
n∈N V (Gn) = V (G), edge-complete if ⋃n∈NE(Gn) = E(G) and complete if it is

both vertex-complete and edge-complete. We note that an edge-complete tower of a

framework with no isolated vertices is a complete tower.

Given a well-positioned tower ((Gn, pn))n∈N we define the projection maps

ρj,k : XV (Gk) → XV (Gj), (xv)v∈V (Gk) 7→ (xv)v∈V (Gj)

for all 1 ≤ j ≤ k; if ((Gn, pn))n∈N is a tower of (G, p) we also define the projection

maps

ρk : XV (G) → XV (Gk), (xv)v∈V (G) 7→ (xv)v∈V (Gk)

for all k ∈ N.

Let (I,≤) be a partially ordered set where any two elements have an upper bound.

An inverse system (of vector spaces and linear maps) is a triple ((Vi)i∈I , (fi,j)i≤j, (I,≤))

where:

(i) For all i ∈ I, Vi is a vector space
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(ii) For all i, j ∈ I with i ≤ j, fi,j : Vj → Vi is a linear map.

(iii) For all i, j, k ∈ I with i ≤ j ≤ k, fi,i is the identity map and fi,j ◦ fj,k = fi,k

If clear we shall denote this by (Vi, fi,j). For an inverse system (Vi, fi,j) we define the

inverse limit to be the linear space

lim
←
Vi :=

{
(vi)i∈I ∈

∏
i∈I

Vi : fi,j(vj) = vi for all i ≤ j

}
.

We note that ρj,k(F(Gk, pk)) ⊂ F(Gj, pj), thus we have the inverse system

(F(Gk, pk), ρj,k)

and inverse limit

lim
← F(Gk, pk) := {(xk)k∈N ∈

∏
k∈N

F(Gk, pk) : ρj,k(xk) = xj for all 1 ≤ j ≤ k}.

A tower ((Gn, pn))n∈N has the flex-cancellation property if for each j ∈ N there

exists k > j such that ρj,k(F(Gk, pk)) ⊂ T (pj). We define a non-trivial flex u ∈

F(G1, p1) to be an enduring flex of ((Gn, pn))n∈N if for each n ∈ N there exists

u′ ∈ F(Gn, pn) such that u′|V (G1) = u. We say a tower is relatively infinitesimally rigid

if ρk,k+1(F(Gk+1, pk+1)) ⊂ T (pk).

The following are useful results with regard to towers of frameworks.

Lemma 4.1.5. (Lemma 3.6, [38]) Let ((Gn, pn))n∈N be a tower in a normed space X

with an enduring flex u ∈ F(G1, p1), then there exists a sequence (un)n∈N such that

un ∈ F(Gn, pn), un+1|V (Gn) = un and u1 = u.

Proposition 4.1.6. If ((Gn, pn))n∈N is a complete tower of (G, p) then F(G, p) is

isomorphic (as a vector space) to lim
← F(Gk, pk).
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Proof. Let u ∈ F(G, p), then (ρk(u))k∈N ∈ lim
← F(Gk, pk), and so we may define the

linear map f : F(G, p) → lim
← F(Gk, pk), f(u) := (ρk(u))k∈N. If f(u) = 0 then uv = 0

for all v ∈ ⋃
n∈N V (Gn) = V (G), thus f is injective. Choose (uk)k∈N ∈ lim

← F(Gk, pk),

then as ((Gn, pn))n∈N is vertex-complete there exists u ∈ XV (G) so that ρk(u) = uk for

all k ∈ N. As ((Gn, pn))n∈N is edge-complete it follows that u ∈ F(G, p), thus f is also

surjective as required.

Theorem 4.1.7. [38, Proposition 3.10, Theorem 3.14] Let (G, p) be a countably infinite

framework in a normed space X, then the following are equivalent:

(i) (G, p) is infinitesimally rigid.

(ii) Every complete tower of (G, p) has the flex cancellation property.

(iii) (G, p) contains a vertex-complete tower with the flex cancellation property.

(iv) (G, p) contains a vertex-complete relatively infinitesimally rigid tower.

We define a tower ((Gn, pn))n∈N in a normed space X to be sequentially infinitesi-

mally rigid if (Gn, pn) is infinitesimally rigid for all n ∈ N and sequentially isostatic

if (Gn, pn) is isostatic for all n ∈ N. If a framework contains a complete sequentially

infinitesimally rigid tower we shall also call the framework sequentially infinitesimally

rigid; likewise if a framework contains a complete sequentially isostatic tower we shall

also call the framework sequentially isostatic.

Corollary 4.1.8. [38, Corollary 3.16] If a tower ((Gn, pn))n∈N is sequentially infinites-

imally rigid in a normed space X then it is relatively infinitesimally rigid. Similarly, if

a framework (G, p) is sequentially infinitesimally rigid in a normed space X then it is

infinitesimally rigid.

It should be noted that not every relatively infinitesimally rigid tower is sequentially

infinitesimally rigid, see Figure 6 for such a framework.
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4.1.3 Independence for countably infinite frameworks

We define a tower to be independent/isostatic if every element of the sequence is an

independent/isostatic framework. For the next result we remember from Definition 1.3.6

that a well-positioned framework is independent if its rigidity operator is surjective.

Lemma 4.1.9. Let ((Gn, pn))n∈N be a complete tower of a well-positioned framework

(G, p) in a normed space X. Then (G, p) is independent if and only if ((Gn, pn))n∈N is

independent.

Proof. Suppose (G, p) is independent. Choose n ∈ N and an ∈ RE(Gn). As dfG(p) is

surjective then there exists x ∈ XV (G) so that dfG(p)x = a, where avw = an
vw for all

vw ∈ E(Gn) and avw = 0 otherwise. We now note that dfGn(pn)(x|V (Gn)) = an as

required.

Suppose (Gn, pn) is independent for all n ∈ N. Choose a ∈ RE(G) and define

an := a|V (Gn). Define for each n ∈ N the affine space

An := dfGn(pn)−1[an] ⊂ XV (Gn),

then ρn,m(Am) ⊂ An for all m ≥ n. We now define for each n ∈ N,

Bn :=
⋂

m≥n

ρn,m(Am) ⊂ XV (Gn).

As (ρn,m(Am))∞m=n is a nested sequence of finite dimensional affine spaces, there exists

f(n) ∈ N such that ρn,m(Am) = Bn for all m ≥ f(n). By assumption we may choose

each f(n) such that the map f : N → N is increasing. We now note that

ρn,m(Bm) = ρn,m ◦ ρm,f(m)(Af(m)) = ρn,f(m)(Af(m)) = Bn

for all n ≤ m.
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Choose x1 ∈ B1, then there exists a sequence (x1)n∈N such that xn ∈ Bn and

ρn,m(xm) = xn; further, for each n ∈ N, dfGn(pn)xn = an. As ρn,m(xm) = xn for all

1 ≤ n ≤ m and ((Gn, pn))n∈N is complete we may define x ∈ XV (G) with x|V (Gn) = xn

for all n ∈ N. We now note that dfG(p)(x) = a as required.

Proposition 4.1.10. A framework is independent if and only if all of its finite sub-

frameworks are independent.

Proof. For finite frameworks the result follows from Remark 1.3.9. Let (G, p) be a

well-positioned countably infinite framework. Suppose all of the finite subframeworks

of (G, p) are independent, then we can construct an independent complete tower of

(G, p), thus by Lemma 4.1.9, (G, p) is independent. Now suppose (G, p) is independent

and choose any (H, q) ⊂⊂ (G, p). Let ((Gn, pn))n∈N be a complete tower of (G, p),

then by Lemma 4.1.9, ((Gn, pn))n∈N is independent. As ((Gn, pn))n∈N is complete there

exists k ∈ N such that (H, q) ⊂ (Gk, pk), thus (H, q) is independent as required.

We can extend the concept of stresses to infinite frameworks as such; for a well-

positioned framework (G, p) in a normed space X we define a ∈ RE(G) to a finitely

supported stress if the following holds:

(i) The support of a, the set {vw ∈ E(G) : avw ̸= 0}, is finite.

(ii) a satisfies the stress condition i.e. for each v ∈ V (G), ∑w∈NG(v) avwϕv,w = 0.

Corollary 4.1.11. A well-positioned framework (G, p) is independent if and only if

the only finitely supported stress of (G, p) is the zero stress i.e. (0)vw∈E(G).

Proof. Suppose (G, p) is independent, then by Proposition 4.1.10, all subframeworks

of (G, p) are independent. Let a ∈ RE(G) be a finitely supported stress of (G, p) with

support E ⊂ E(G). If E ̸= ∅ then we note that a|E is a non-zero stress of the

finite framework ((V (E), E), p), thus by Proposition 1.3.8, ((V (E), E), p) is dependent,
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contradicting our assumption that (G, p) is independent. As E = ∅ then a is the zero

stress as required.

Suppose (G, p) is dependent, then by Proposition 4.1.10, there exists dependent

(H, q) ⊂⊂ (G, p). By Proposition 1.3.8, there exists a non-zero stress a ∈ RE(H) of

(H, q). Define b ∈ RE(G) as the non-zero element where bvw = avw for all vw ∈ E(H)

and bvw = 0 otherwise. We now note b satisfies the stress condition and is finitely

supported as required.

The following result illustrates how we may in some ways replace the idea of a regular

framework (which is no longer well-defined for infinite frameworks) with independent

frameworks, reflecting that independence implies regularity for finite frameworks.

Proposition 4.1.12. Let (G, p) be sequentially isostatic in a normed space X and q

be an independent full placement of G. Then (G, q) is sequentially isostatic also.

Proof. Let ((Gn, pn))n∈N be the complete isostatic tower of (G, p), then this also defines

a complete tower ((Gn, qn))n∈N of (G, q). We may assume that we chose our tower so

that each qn has the same affine span as q, thus by Corollary 1.2.17 (ii) and Theorem

1.2.29, qn is full for all n ∈ N. By Lemma 4.1.9, ((Gn, qn))n∈N is independent, thus as

each qn is full then ((Gn, qn))n∈N is isostatic also as required.

4.1.4 The closure operator

In this section we shall define some tools that will be vital in proving later results in

Section 4.2.

Let p be a completely well-positioned placement of a countable set V in a normed

space X. We define for each e = vw ∈ E(KV ) the linear function

ep : XV (G) → R, (xv)v∈V (G) 7→ ϕv,w(xv − xw).
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It is immediate from definition that dfG(p)(u) = 0 if and only if ep(u) = 0 for all

e ∈ E(G).

We define the map ⟨·⟩p : P(E(KV )) → P(E(KV )), where for any set E ⊂ E(KV ),

⟨E⟩p := {e ∈ E(KV ) : ep ∈ span{fp : f ∈ E}},

to be the closure operator (with respect to (p, V )).

Lemma 4.1.13. Let p be a completely well-positioned placement of V in a normed

space X. Then the following holds for all E ⊆ F ⊆ E(KV ):

(i) CL1: E ⊆ ⟨E⟩p.

(ii) CL2:
〈
⟨E⟩p

〉
p

= ⟨E⟩p.

(iii) CL3: ⟨E⟩p ⊆ ⟨F ⟩p.

(iv) CL4: For all e, f ∈ E(KV ) \ ⟨E⟩p, if e ∈ ⟨E ∪ {f}⟩p then f ∈ ⟨E ∪ {e}⟩p.

(v) CL5: ⟨E⟩p = ⋃
F⊂⊂E ⟨F ⟩p.

Proof. (i): If ep ∈ {fp : f ∈ E} then ep ∈ span{fp : f ∈ E}.

(ii): This follows as span span{fp : f ∈ E} = span{fp : f ∈ E}.

(iii): This follows as span{fp : f ∈ E} ⊆ span{fp : f ∈ F}.

(iv): As e ∈ ⟨E ∪ {f}⟩p then

ep =
n∑

i=1
ai(ei)p + bfp

for some a1, . . . , an, b ∈ R, e1, . . . , en ∈ E. If b = 0 then e ∈ ⟨E⟩p, thus b ̸= 0. We now

note

fp = (ep −
n∑

i=1
ai(ei)p)/b,
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thus f ∈ ⟨E ∪ {e}⟩p.

(v): By CL3 it follows ⋃F⊂⊂E ⟨F ⟩p ⊆ ⟨E⟩p. Suppose e ∈ ⟨E⟩p, then ep =∑n
i=1 ai(ei)p for some a1, . . . , an ∈ R, e1, . . . , en ∈ E. If we define F := {e1, . . . , en}

then e ∈ F and F ⊂⊂ E, thus ⟨E⟩p ⊆ ⋃
F⊂⊂E ⟨F ⟩p.

Given a completely well-positioned placement (p, V ) in a normed space X we say a

set E ⊂ E(KV ) is independent (with respect to (p, V )) if for all e ∈ E, e /∈ ⟨E \ {e}⟩p;

otherwise E is dependent (with respect to (p, V )). We denote by Ip the set of all subsets

of E(KV ) that are independent (with respect to (p, V )). If the context is clear we shall

just refer to these properties as independence and dependence. By Lemma 4.1.13 we

see that (E(KV ), Ip) is a finitary matroid; see Appendix A.2.2 for more details.

Proposition 4.1.14. Let (p, V ) be a completely well-positioned placement in a normed

space X, E ⊂ E(KV ) and G = (V,E). Then the following are equivalent:

(i) (G, p) is independent.

(ii) {fp : f ∈ E} is an independent set of linear functions.

(iii) E is an independent set in (E(KV ), Ip).

Proof. (i) ⇔ (ii): From the definition of linear independence, {fp : f ∈ E} is a

dependent set of linear functions if and only if the only there exists a non-zero finitely

supported stress of (G, p). The result now follows from Corollary 4.1.11.

(ii) ⇒ (iii): Suppose {fp : f ∈ E} is independent and choose e ∈ E, then

ep /∈ span{fp : f ∈ E \ {e}}. Thus e /∈ ⟨E⟩p; as this holds for any e ∈ E then E is

independent.

(iii) ⇒ (ii): Suppose E is independent and choose any ep ∈ {fp : f ∈ E}, then

ep /∈ span{fp : f ∈ E \ {e}}. Thus ep is linearly independent of {fp : f ∈ E \ {e}}; as

this holds for any ep ∈ {fp : f ∈ E} then {fp : f ∈ E} is independent.
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Let (G, p) be a framework in a normed space X. By choosing V = V (G) we define

⟨G⟩p := (V (G), ⟨E(G)⟩p).

Proposition 4.1.15. Let (G, p) be completely well-positioned in a normed space X

with complete tower ((Gn, pn))n∈N, then

⟨G⟩p =
⋃

n∈N
⟨Gn⟩p =

⋃
H⊂⊂G

⟨H⟩p .

Proof. Since (Gn)n∈N is a complete tower of G then

V (⟨G⟩p) = V

⋃
n∈N

⟨Gn⟩p

 = V

( ⋃
H⊂⊂G

⟨H⟩p

)
.

By CL5 it follows ⟨G⟩p = ⋃
H⊂⊂G ⟨H⟩p. By CL3 it follows ⋃n∈N ⟨Gn⟩p ⊆ ⟨G⟩p. Choose

e ∈ ⟨E(G)⟩p, then by CL5, e ∈ ⟨F ⟩p for some F ⊂⊂ E(G). As (Gn)n∈N is a complete

tower of G then there exists n ∈ N so that F ⊂ E(Gn). By CL1, e ∈ ⋃
n∈N ⟨E(Gn)⟩p

as required.

Lemma 4.1.16. For any completely well-positioned framework (G, p) in a normed

space X,

F(⟨G⟩p , p) = F(G, p).

Proof. As (G, p) is a spanning subframework of (⟨G⟩p , p) then F(⟨G⟩p , p) ⊆ F(G, p).

Choose any u ∈ F(G, p) and any edge e ∈ E(⟨G⟩p), then by CL5 there exists

F ⊂⊂ E(G) where e ∈ ⟨F ⟩p; it follows that ep = ∑
f∈F affp, where af ∈ R. As

u ∈ F(G, p) then fp(u) = 0 for all f ∈ F , thus ep(u) = 0. As this holds for all

e ∈ ⟨E(G)⟩p then u ∈ F(⟨G⟩p , p).

Lemma 4.1.17. Let (G, p) be a finite completely well-positioned framework in a

normed space X, then the following are equivalent:
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(i) e ∈ E(⟨G⟩p).

(ii) F(G, p) = F(G ∪ {e}, p).

(iii) rank dfG(p) = rank dfG∪{e}(p).

Proof. (i) ⇒ (ii): Suppose e ∈ E(⟨G⟩p), then ⟨G ∪ {e}⟩p = ⟨G⟩p. By Proposition

4.1.16 we have that

F(G, p) = F(⟨G⟩p , p) = F(⟨G ∪ {e}⟩p , p) = F(G ∪ {e}, p).

(ii) ⇒ (i): Suppose e /∈ E(⟨G⟩p). Define E := span{fp : f ∈ E(G)}, then ep /∈ E .

Since G is finite then E is a subspace of the dual space of XV (G). By the Hahn-Banach

theorem there exists u ∈ XV (G) such that f(u) = 0 for all f ∈ E and ep(u) = 1, thus

F(G, p) ̸= F(G ∪ {e}, p).

(ii) ⇔ (iii): This follows from the Rank-Nullity theorem applied to dfG(p).

Lemma 4.1.18. Let (G, p) be a completely well-positioned framework in a normed

space X, then the following are equivalent:

(i) e ∈ E(⟨G⟩p).

(ii) F(G, p) = F(G ∪ {e}, p).

Proof. If G is finite this follows from Lemma 4.1.17 so we shall assume G is countably

infinite.

Suppose e ∈ ⟨E(G)⟩p, then ⟨G ∪ {e}⟩p = ⟨G⟩p, thus by Proposition 4.1.16 we have

that

F(G, p) = F(⟨G⟩p , p) = F(⟨G ∪ {e}⟩p , p) = F(G ∪ {e}, p).
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Conversely suppose e = vw /∈ ⟨E(G)⟩p. Let ((Gn, pn))n∈N be a complete tower of

(G, p) with v, w ∈ V (G1), then by Proposition 4.1.15, e /∈ ⟨E(Gn)⟩p for all n ∈ N. By

Lemma 4.1.17, for each n ∈ N there exists xn ∈ F(Gn, pn) such that ϕv,w(xn
v −xn

w) = 1.

For all n ∈ N define Un to be the finite dimensional affine subspace of F(Gn, pn)

such that x ∈ Un if and only if ϕv,w(xv − xw) = 1, then Un ̸= ∅. It is clear that

ρn,m(Um) ⊆ Un for all n ≤ m and so we have the inclusion

U1 ⊇ ρ1,2(U2) ⊇ ρ1,3(U3) ⊇ . . . .

As they are all finite dimensional affine spaces there exists some N ∈ N such that

ρ1,n(Un) = ρ1,N(UN) for all n ≥ N . Choose u1 ∈ ρ1,N(UN) ⊂ Fq(G1, p1), then u1 is an

enduring flex of ((Gn, pn))n∈N. By Lemma 4.1.5, there exists u ∈ F(G, p) such that

u|V (G1) = u1. As

ϕv,w(uv − uw) = ϕv,w(un
v − un

w) = 1 ̸= 0

for all n ∈ N, then u ∈ F(G, p) \ F(G∪ {e}, p). It now follows F(G, p) ̸= F(G∪ {e}, p)

as required.

We may now state the following key lemma.

Lemma 4.1.19. Let (p, V ) be a completely well-positioned placement in a normed

space X. Suppose G,H are graphs with V (G) = V (H) = V , then the following are

equivalent:

(i) F(G, p) = F(H, p).

(ii) ⟨G⟩p = ⟨H⟩p.
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Proof. Suppose that ⟨G⟩p ̸= ⟨H⟩p then without loss of generality there exists e ∈

⟨E(G)⟩p \ ⟨E(H)⟩p. By Lemma 4.1.18, there exists u ∈ F(H, p) such that ep(u) ̸= 0.

As e ∈ E(G) then u /∈ F(G, p), thus F(G, p) ̸= F(H, p) as required.

Now suppose ⟨G⟩p = ⟨H⟩p, then by Lemma 4.1.16,

F(G, p) = F(⟨G⟩p , p) = F(⟨H⟩p , p) = F(H, p)

as required.

Theorem 4.1.20. Let (G, p) be a completely well-positioned framework in a normed

space X. Then the following are equivalent:

(i) (G, p) is infinitesimally rigid in X.

(ii) ⟨G⟩p = KV (G) and (KV (G), p) is infinitesimally rigid in X.

Proof. Suppose (G, p) is infinitesimally rigid, then as (G, p) is a spanning subframework

of (KV (G), p) we have that

T (p) ⊆ F(KV (G), p) ⊆ F(G, p) = T (p)

and thus (KV (G), p) is infinitesimally rigid. Since F(G, p) = F(KV (G), p) then by

Lemma 4.1.19 ⟨G⟩p = KV (G) as required.

Now suppose ⟨G⟩p = KV (G) and (KV (G), p) is infinitesimally rigid. Then by Lemma

4.1.19

F(G, p) = F(⟨G⟩p , p) = F(KV (G), p) = T (p)

and thus (G, p) is infinitesimally rigid.
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4.2 Countably infinite frameworks in generic spaces

4.2.1 Generic placements, spaces and properties

We define a completely well-positioned placement (p, V ) in a normed space X to be

generic if every finite subframework of (KV , p) is regular; we likewise define a framework

to be generic if it has a generic placement, and define a tower to be generic if every

framework in its sequence is generic.

Proposition 4.2.1. Let (G, p) be independent and (G, q) be generic in a normed space

X. Then (G, q) is independent also.

Proof. As (G, p) is independent then by Proposition 4.1.10, every finite subframework

of (G, p) is independent. It now follows that as (G, q) is generic the same holds, thus

by Proposition 4.1.10, (G, q) is also independent.

Proposition 4.2.2. Let (G, p) be sequentially infinitesimally rigid and (G, q) be

generic and full in a normed space X. Then (G, q) is sequentially infinitesimally rigid

also.

Proof. Let ((Gn, pn))n∈N be a complete sequentially infinitesimally rigid tower of (G, p).

As (G, q) is generic then for each n ∈ N, (Gn, qn) is regular, where qn := q|V (Gn).

Without loss of generality we may assume that our original tower was chosen so that

the affine span of qn is the same as the affine span of q for all n ∈ N, thus by Corollary

1.2.17 (ii) and Theorem 1.2.29, each (Gn, qn) is full. It now follows that each (Gn, qn)

is infinitesimally rigid, thus (G, q) is sequentially infinitesimally rigid.

Motivated by Proposition 4.2.1, for a given normed space X we shall define a

countably infinite graph G to be independent (in X) if it has a independent placement

and dependent (in X) otherwise, extending the definitions from finite graphs. With

some further motivation from Proposition 4.1.12 and Proposition 4.2.2, we shall also
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define a countably infinite graph G to be sequentially rigid (in X) if it has a sequentially

infinitesimally rigid placement, sequentially isostatic (in X) if it has a sequentially

isostatic placement and sequentially flexible (in X) otherwise. We shall not do the

same for the graph terms of rigidity, isostaticity and flexiblity due to reasons that will

become clear during this section.

We define a normed space X to be quasi-generic if for all finite graphs G the set

R(G) is an open dense subset of XV (G). If X is a quasi-generic space and there exists

a finite graph on two or more vertices which is rigid in X then X is a generic normed

space.

If X is a quasi-generic space then we note a few things immediately:

(i) For any finite set V , the set of generic placements of V is an open dense subset

of XV .

(ii) By Proposition 2.1.1, the set W(G) is open and R(G) = C(G) for any finite graph

G.

(iii) By Proposition 2.2.13, any finite rigid graph will have only full generic placements.

We conjecture that the following holds.

Conjecture 4.2.3. Every quasi-generic normed space is a generic normed space.

It follows from Theorem 1.3.20 and Theorem 3.4.2 that the conjecture holds in

dimension 2. Conjecture 4.2.3 is still open in higher dimensions, however.

Example 4.2.4. For q ∈ (1,∞) the normed space ℓd
q (see Example 1.1.5) is a quasi-

generic space by [38, Lemma 2.7]. By Proposition 1.3.25, ℓd
2 - the standard Euclidean

space - is generic. If q ̸= 2 then by a result in an upcoming paper [20], K2d is isostatic

in ℓd
q , thus ℓd

q is a generic space. These spaces are, in many ways, the motivating cases

for the study of rigidity in generic spaces.
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Example 4.2.5. Let X be a polyhedral normed space (see Example 1.1.13), then by

[34, Lemma 17 (ii)], X is not a quasi-generic space.

Example 4.2.6. Let X be a d-dimensional normed space for d ≥ 2 with a dual map

ϕ that is constant on some open set U of S1[0]. We may assume we chose U such that

for each x, y ∈ U , x+y
∥x+y∥ ∈ U . By Lemma 2.2.11, the complete graph K3 on {v1, v2, v3}

has an independent placement p in X and rank dfK3(p) = 3. Define the open set of

placements

O := {q ∈ W(G) : qv2 = qv1 + x, qv3 = qv2 + y, x, y ∈ U} ,

then for each q ∈ O, rank dfK3(q) = 2. It follows that O ⊂ R(K3)c, thus X is not a

quasi-generic space. It follows that all generic normed planes must be strictly convex.

We define a norm ∥ · ∥ : Rd → R to be analytic if it is an analytic function (see

Appendix B.3) when restricted to Rd \ {0}. By [63, Theorem (b)] and [67, Theorem

2.2.13], any norm ∥ · ∥ of Rd can be uniformly approximated by a sequence of analytic

norms (∥ · ∥n)n∈N such that

Isom(Rd, ∥ · ∥) = Isom(Rd, ∥ · ∥n).

We shall now prove that all analytic normed spaces are quasi-generic, thus giving a

large class of such spaces. The following uses methods similar to those given in [38,

Lemma 2.7].

Proposition 4.2.7. Let X := (Rd, ∥ · ∥) be a normed space where ∥ · ∥ is analytic.

Then X is a quasi-generic space.

Proof. If d = 1 the X is isometrically isomorphic to the Euclidean space (R, | · |), thus

X is quasi-generic. Suppose d > 1, then Rd \ {0} is connected. Choose a finite graph
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G and note that

W(G) :=
{
x ∈ XV (G) : xv ̸= xw for all vw ∈ E(G)

}
,

and W(G) is a connected open subset of XV (G).

Define {ei : i = 1, . . . , d} to be the standard basis of Rd. For any p ∈ W(G), define

the |E(G)| × d|V (G)| real matrix R̃(G, p) with entries ae,(v,i), where

ae,(v,i) :=


ϕv,w(ei), if e = vw ∈ E(G)

0, otherwise.

We note that rank R̃(G, p) = rank dfG(p). Define

n := sup
p∈W(G)

R̃(G, p)

and for each p ∈ W(G) define the finite set of n× n submatrices of R̃(G, p),

Φ(p) := {Φi(p) : i ∈ I}.

We note that each det Φi will be an analytic function on W(G), and for some j ∈ I,

det Φj is non-zero (as otherwise we will have a drop in rank). As each det Φi is an

analytic function with connected domain, then the set

V (det Φi) := {p ∈ W(G) : det Φi(p) = 0}

is negligible if and only if det Φi is non-zero (see Theorem B.3.6). We now note that

R(G) = W(G) \
(⋃

i∈I

V (det Φi)
)
,
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thus as det Φj is non-zero, R(G)c is a negligible closed set. It now follows R(G) is an

open dense set as required.

Following from Proposition 4.2.7, we make the immediate following conjecture.

Conjecture 4.2.8. Every analytic normed space is a generic space.

Example 4.2.9. While Example 4.2.6 shows that strict convexity can be seen to be

a necessary condition for a normed plane to be generic it is not sufficient. We shall

now construct a strictly convex and smooth normed space that is not generic (or even

quasi-generic). We define the smooth norm ∥ · ∥ for R2 where for any (x, y) ∈ R2

∥(x, y)∥ =


(|x|2 + |y|2)1/2 if |x| ≥ |y|

(|x|4 + |y|4)1/4 if |y| ≥ |x|.

For any (x, y) ∈ R2 this norm has dual map

ϕ((x, y)) =


((x, y), · ) if |x| ≥ |y|

1
(∥(x,y)∥4)2 ((x3, y3), · ) if |y| ≥ |x|

where ((a, b), · ) is the linear functional that maps (c, d) to (a, b).(c, d) = ac+ bd and

∥ · ∥4 is the standard ℓ4 norm. Since (R2, ∥ · ∥) is non-Euclidean then by Lemma 1.1.29,

dim Isom(X, ∥ · ∥) = 2.

We define C2(K4) to be the set of placements p := (pi(x), pi(y))4
i=1 of K4 in R2

where |pi(x) − pj(x)| > |pi(y) − pj(y)| for all 1 ≤ i < j ≤ 4 and C4(K4) to be the set

of placements of K4 in R2 where |pi(y) − pj(y)| > |pi(x) − pj(x)| for all 1 ≤ i < j ≤ 4.

We note that C2(K4) and C4(K4) are non-empty open subsets of W(K4).

As ℓ2
4 is a generic space then the set of isostatic placements of K4 in (R2, ∥ · ∥4)

is an open dense subset U of (R2)V (K4). It now follows that if p ∈ C4(K4) ∩ U then
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(K4, p) is independent in (R2, ∥ · ∥) also, thus all regular placements of K4 in (R2, ∥ · ∥)

are exactly the independent placements.

If we now however choose any placement p ∈ C2(K4) then we note that R(G, p) will

be exactly the rigidity matrix of (K4, p) in the Euclidean space (R2, ∥ · ∥2), thus for any

p ∈ C2(K4), (K4, p) is independent in (R2, ∥ · ∥2) if and only if (K4, p) is independent

in (R2, ∥ · ∥). As K4 is (2, 2)-tight then K4 is dependent in (R2, ∥ · ∥2), thus for all

p ∈ C2(K4), (K4, p) is dependent. As the regular placements of K4 in (R2, ∥ · ∥) are

exactly the independent placements then C2(K4) ⊂ R(K4)c. As R(K4)c contains an

open set, thus R(K4) is not dense in W(K4).

A notable property of quasi-generic spaces is that we may always approximate

non-generic placements by generic placements.

Corollary 4.2.10. Let (p, V ) be a countable placement in a quasi-generic space X.

Then the set of generic placements is a dense subset of XV in the box topology.

Proof. As the set of generic placements of a finite set S are dense in XS, this follows

from Proposition 4.1.2.

We define a property of frameworks (i.e. independence, rigidity, ect.) to be a generic

property (for finite graphs) if, given any finite graph G and any generic space X, the

property holds for all generic placements of G in X or no generic placements of G in

X. If for any finite or countably infinite graph G the property holds for all generic

placements of G or no generic placements of G then we define it to be a generic property

for infinite graphs. It follows from the definition that a generic property for infinite

graphs is a generic property for finite graphs.

As we can observe generic properties of graphs, generic spaces are the normed

spaces where the most “combinatorial” rigidity results hold. This is as we can solve

many rigidity related problems by observing only the graph of the framework for a

large class of placements.
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Proposition 4.2.11. The following are generic properties:

(i) Independence and dependence.

(ii) Infinitesimal rigidity and flexibility.

(iii) Continuous rigidity and flexibility.

(iv) Local rigidity and flexibility.

Proof. We shall fix our finite graph G and let p, q be generic placements of G. We

note that both (G, p) and (G, q) are regular, and by Proposition 2.1.6), both are also

constant.

(i): Suppose (G, p) is independent, then as (G, q) is regular then (G, q) is also

independent. By symmetry it follows that if (G, q) is independent then (G, p) is also

independent, thus the required result holds.

(ii): Suppose (G, p) is infinitesimally rigid, then by Proposition 2.2.13, both (G, p)

and (G, q) are full. As (G, q) is regular then

dim F(G, q) = dim F(G, p) = dim T (p) = dim T (q),

thus (G, q) is infinitesimally flexible. By symmetry it follows that if (G, q) is in-

finitesimally rigid then (G, p) is also infinitesimally rigid, thus the required result

holds.

(iii): This follows from (ii) and Theorem 2.1.5.

(iv): This follows from (ii) and Theorem 2.1.5.

Corollary 4.2.12. Independence and dependence are generic properties for infinite

graphs.

Proof. This follows from Proposition 4.2.1.
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4.2.2 Generic rigidity for infinite graphs

Lemma 4.2.13. Let G be a finite graph and p, q be completely well-positioned

placements of G in a normed space X. If p is generic and q is regular, then ⟨G⟩p ⊆ ⟨G⟩q,

with equality if q is also generic.

Proof. As both placements are regular, rank dfG(p) = rank dfG(q). If e ∈ ⟨G⟩p then by

Lemma 4.1.17, rank dfG(p) = rank dfG∪{e}(p). It now follows

rank dfG(q) ≤ rank dfG∪{e}(q) ≤ rank dfG∪{e}(p) = rank dfG(p) = rank dfG(q),

thus by Lemma 4.1.17, e ∈ ⟨G⟩q and ⟨G⟩p ⊆ ⟨G⟩q.

Lemma 4.2.14. Let p, q be independent, completely well-positioned placements of

a countable graph G in a normed space X. If p is generic, then ⟨G⟩p ⊆ ⟨G⟩q, with

equality if q is also generic.

Proof. We note that all subframeworks of (G, p) and (G, q) are regular as they are

independent, thus by Lemma 4.2.13 and CL5,

⟨G⟩p =
⋃

H⊂⊂G

⟨H⟩p ⊂
⋃

H⊂⊂G

⟨H⟩q = ⟨G⟩q

as required.

Theorem 4.2.15. Let p, q be generic placements of a countable graph G in a normed

space X, then ⟨G⟩p = ⟨G⟩q.

Proof. By Lemma 4.2.13, ⟨H⟩p = ⟨H⟩q for all H ⊂⊂ G. The result now follows from

CL5.

Let V be countable, then for any set E ⊂ E(KV ) and generic placements p, p′ of

V in a generic space X we have that ⟨E⟩p = ⟨E⟩p′ . If we fix the generic space X and

choose any generic placement p of V in X we may define the following:
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(i) The generic closure operator (for X); the map ⟨·⟩ : P(E(KV )) → P(E(KV ))

where ⟨E⟩ := ⟨E⟩p.

(ii) Independent edge sets of X; an edge set E ⊆ E(KV ) which is independent with

respect to p. We further define I(X) := Ip.

(iii) The closure of a graph (in X); for a graph G we define ⟨G⟩ := ⟨G⟩p.

We immediately note that the pair (E(KV ), I(X)) will be a finitary matroid.

Lemma 4.2.16. Let (p, V ) be a generic countably infinite placement in a generic

space X, then the following holds:

(i) (p, V ) is full.

(ii) (KV , p) is sequentially infinitesimally rigid.

Proof. (i): Choose any rigid finite graph G ⊂ KV in X, then (G, p|V (G)) is regular and

constant. By Proposition 2.2.13, p|V (G) is full, thus by Corollary 1.2.22, p is full.

(ii): As V is countable we may label V = {v1, v2, . . .} and define Vn := {v1, . . . , vn},

then ((KVn , p
n))n∈N is a complete tower of (KV , p). As X is generic then for some N ∈ N,

KVN
is rigid. By Corollary 2.3.3 and Proposition 2.2.13, (KVn , p

n) is infinitesimally

rigid for all n ≥ N , thus (KV , p) is sequentially infinitesimally rigid.

Theorem 4.2.17. The following are generic properties of infinite graphs:

(i) Independence and dependence.

(ii) Infinitesimal rigidity and flexibility.

(iii) Sequential infinitesimal rigidity and flexibility.

Proof. Fix a countably infinite graph G and let p, q be generic placements of G in a

generic space X. By Lemma 4.2.16 (i), p, q are full.
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(i): Lemma 4.2.12.

(ii): Suppose (G, p) is infinitesimally rigid. As (G, p) is infinitesimally rigid then by

Theorem 4.1.20, ⟨G⟩p = KV (G) and (KV (G), p) is infinitesimally rigid. As X is generic

and q is a generic placement then by Corollary 4.2.16, (KV (G), q) is infinitesimally

rigid. By Theorem 4.2.15, ⟨G⟩q = ⟨G⟩p = KV (G), thus by Theorem 4.1.20, (G, q) is

infinitesimally rigid also. It follows from symmetry that if (G, q) is infinitesimally rigid

then (G, p) is infinitesimally rigid also, thus both infinitesimal rigidity and flexibility

are generic properties for infinite graphs.

(iii): Suppose that (G, p) is sequentially infinitesimally rigid. As q is generic and

full then by Proposition 4.2.2, (G, q) is sequentially infinitesimally rigid. It follows from

symmetry that if (G, q) is sequentially infinitesimally rigid then (G, p) is sequentially

infinitesimally rigid also, thus both sequentially infinitesimal rigidity and flexibility are

generic properties for infinite graphs.

Motivated Theorem 4.2.17, for a generic space X we shall define a graph G to be

generically rigid (in X) if there exists some generic placement p such that G is (G, p) is

infinitesimally rigid, generically isostatic (in X) if there exists some generic placement

p such that G is (G, p) is isostatic, and generically flexible otherwise. For finite graphs

we note that as any generic placement is regular, a graph is rigid/isostatic if and only

if it is generically rigid/isostatic.

Corollary 4.2.18. Let G be generically rigid in a generic space X and p a independent

placement of G in X where (KV (G), p) is infinitesimally rigid. Then G is generically

isostatic and (G, p) is isostatic.

Proof. Let q be a generic placement of G. By Theorem 4.2.17, (G, q) is isostatic, thus

G is generically isostatic. By Lemma 4.2.14,

KV (G) = ⟨G⟩ ⊂ ⟨G⟩p ⊂ KV (G),
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thus the result holds by Theorem 4.1.20.

Corollary 4.2.19. Let G be a countable graph and p a independent full placement

of G in a generic space X. Then G is sequentially isostatic if and only if (G, p) is

sequentially isostatic.

Proof. Suppose G is sequentially isostatic. Let q be a generic placement of G, then

by Theorem 4.2.17, (G, q) is sequentially isostatic with complete sequentially isostatic

tower ((Gn, qn))n∈N. Let ((Gn, pn))n∈N be the corresponding complete tower of (G, p),

then ((Gn, pn))n∈N is independent. By Proposition 2.2.13, ((Gn, pn))n∈N is isostatic as

required.

It follows from Propositon 4.2.2 that if G has a sequentially infinitesimally rigid

placement then every generic placement of G is sequentially infinitesimally rigid.

However, there exist countably infinite graphs with infinitesimally rigid placements

that are not generically rigid. An example is the framework described in Figure 6; it is

an isostatic framework with a graph that is not generically isostatic.

4.3 Combinatorial rigidity of countable graphs

4.3.1 Rigidity and independence in normed planes

We now wish to obtain some combinatorial rigidity results for graphs in normed planes

for countably infinite graphs, similar to Theorem 1.3.20 and Theorem 3.4.2. To do

so we shall need to alter our definition for towers of frameworks so as to remove the

requirement of specific placements.

A tower (of graphs) is a sequence (Gn)n∈N of finite graphs where Gn ⊂ Gn+1 for all

n ∈ N. Given a graph G we define a tower (Gn)n∈N to be a tower of G if Gn ⊂ G for all

n ∈ N. A tower (Gn)n∈N of G is vertex-complete if ∪n∈NV (Gn) = V (G), edge-complete
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if ∪n∈NE(Gn) = E(G) and complete if it is both vertex-complete and edge-complete.

For k, l ∈ N, we define a tower to be (k, l)-sparse if each Gn is (k, l)-sparse, and

(k, l)-tight if each Gn is (k, l)-tight; we note that a countably infinite graph will be

(k, l)-sparse if and only if it contains a (k, l)-sparse complete tower.

We can immediately give a combinatorial result regarding graph sparsity.

Lemma 4.3.1. Let G be a countable graph, X a normed plane and k ∈ {2, 3}, where

k = 3 if X is Euclidean and k = 2 if X is non-Euclidean. If G is independent then G

is (2, k)-sparse. If X is generic then the reverse also holds.

Proof. Let p be an independent placement of G and choose any H ⊂⊂ G. By

Proposition 4.1.10, (H, q) ⊂⊂ (G, p) is independent, thus by applying either Theorem

1.3.20 or Theorem 3.4.2 (depending on if X is Euclidean or non-Euclidean) we see that

H is (2, k)-sparse as required.

Suppose X is generic and G is (2, k)-sparse and let p be a generic placement of G.

Choose any H ⊂⊂ G, then by either Theorem 1.3.20 or Theorem 3.4.2 (depending

on if X is Euclidean or non-Euclidean), (H, p|V (H)) is independent. As this holds for

any finite subframework of (G, p) then be Proposition 4.1.10, (G, p) is independent as

required.

For Theorem 4.3.12 we will need the following lemmas.

Lemma 4.3.2. Let H ( G be finite (2, k)-tight graphs for some fixed k ∈ {2, 3}. Then

there exists a vertex v0 ∈ V (G) \ V (H) such that dG(v0) = 2 or 3.

Proof. Fix k ∈ {2, 3}. We first note that as H ̸= G and both are (2, k)-tight then

V (G) \ V (H) ̸= ∅.

Suppose that for all v ∈ V (G) \ V (H), dG(v) ≥ 4. Define

∂H := {vw ∈ E(G) : v ∈ V (H), w /∈ V (H)}.
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As G is (2, k)-tight it is connected, thus |∂H| > 0. By the Hand Shaking Lemma,

|E(G)| − |E(H)| = 1
2

∑
v∈V (G)

dG(v) − 1
2

∑
v∈V (H)

dH(v)

= 1
2

∑
v∈V (G)\V (H)

dG(v) + 1
2 |∂H|

≥ 1
24|V (G) \ V (H)| + 1

2 |∂H|

> 2|V (G)| − 2|V (H)|.

However, as H and G are (2, k)-tight then |E(G)| − |E(H)| = 2|V (G)| − 2|V (H)|, a

contradiction.

Remark 4.3.3. The above method will work for (2, 1)-tight graphs also, however it

will fail for (2, 0)-tight graphs. This is as we can no longer guarantee that G will be

connected, and thus we can have ∂H = ∅. It is not just the method that fails however;

we note Lemma 4.3.2 fails in the k = 0 case for H = K5 and G = K5 ⊔K5, the disjoint

union of two K5 graphs.

Lemma 4.3.4. Let G,H be finite (2, 2)-tight graphs where G ∪H is (2, 2)-sparse and

V (G) ∩ V (H) ̸= ∅. Then G ∪H and G ∩H are (2, 2)-tight.

Proof. As G ∩H ⊂ G ∪H, G ∩H is (2, 2)-sparse. We now note

|E(G ∩H)| = |E(G)| + |E(H)| − |E(G ∪H)|

≥ 2(|V (G)| + |V (H)| − |V (G ∪H)|) − 2

= 2|V (G ∩H)| − 2,

thus G ∩H is (2, 2)-tight. It now follows

|E(G ∪H)| = |E(G)| + |E(H)| − |E(G ∩H)|

= 2(|V (G)| + |V (H)| − |V (G ∩H)|) − 2

= 2|V (G ∪H)| − 2,
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as required.

Lemma 4.3.5. Let G be a finite (2, k)-tight graph for some fixed k ∈ {2, 3}, v1 ∈ V (G)

and NG(v1) = {v2, v3, v4} for distinct vertices v2, v3, v4 ∈ V (G). Suppose that v1 does

not lie in a K4 subgraph of G, then (G−v1)+vivj is (2, k)-tight for some 2 ≤ i < j ≤ 4.

Proof. If k = 3 this follows by [30, Lemma 2.1.4], while if k = 2 this follows by [53,

Lemma 3.1].

Lemma 4.3.6. [53, Lemma 3.3] Let G be a finite (2, 2)-tight graph with complete

subgraph KV ⊂ G for some set V := {a, b, c, d} ⊂ V (G). Suppose that there is

no vertex v ∈ V (G) \ V connected to more than one vertex of V . Then for each

j ∈ {a, b, c, d} the graph G′ is (2, 2)-tight, where V (G′) := (V (G) \ V ) ∪ {j} and E(G′)

is the set:

{vw ∈ E(G) : v, w ∈ V (G′)} ∪ {jw : w /∈ V, iw ∈ E(G) for some i ∈ V \ {j}}.

Let G be a finite (2, 2)-tight graph. We define a sequence T of graphs

T4 ⊂ T5 ⊂ . . . ⊂ Tn

to be a (2, 2)-simplex sequence of G (or a simplex sequence) if

(i) V (Tn) = {v1, . . . , vn},

(ii) |V (Ti)| = i and V (Ti) = {v1, . . . , vi} for 4 ≤ i ≤ n,

(iii) T4 ∼= K4,

(iv) E(Ti+1) := E(Ti) ∪ {vi+1vi, vi+1vi−1}.
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We define a simplex sequence T = (Ti)n
i=4 to be maximal if there is no vertex in

V (G) \ V (Tn) that is attached to both vn−1 and vn. Simplex sequences are based on

triangle sequences (see [53, Definition 3.5]).

Lemma 4.3.7. Let G be a finite (2, 2)-tight with a simplex sequence T = (Ti)n
i=4.

Then the following holds:

(i) Ti is (2, 2)-tight for all i = 4, . . . , n.

(ii) Either T is maximal or there exists Tn+1, . . . , Tn+m such that (Ti)n+m
i=4 is a maximal

simplex sequence.

(iii) If H ⊆ Tn is (2, 2)-tight, then either H is a single vertex or H = Tk for some

4 ≤ k ≤ n.

(iv) If H ⊆ G is (2, 2)-tight and |V (H) ∩ V (Tn)| > 1, then for some 4 ≤ k ≤ n,

H ∩ Tn = Tk.

(v) If T is maximal, there exists no vertex v ∈ V (G) \ {vn−2} that shares an edge

with both vn−1 and vn.

Proof. (i): As Ti+1 is formed from Ti by performing a 0-extension and K4 is (2, 2)-tight,

this follows from Proposition 3.4.1.

(ii): As G is finite, this follows immediately.

(iii): We note that if we remove any edge or vertex from Ti we either obtain a

(2, 3)-sparse graph or Ti−1. The result now follows immediately.

(iv): By Lemma 4.3.4, H ∩ Tn is (2, 2)-tight. The result now follows from (iii).

(v): Suppose there exists v ∈ V (G) \ {vn−2} that shares an edge with both

vn−1 and vn. If v /∈ V (Tn) then T is not maximal, thus v ∈ V (Tn) \ {vn−2}. Let

F = Tn ∪ {vvn−1, vvn}, then Tn ( F ⊂ G. By (i), Tn is a spanning (2, 2)-tight

subgraph of F , thus F is not (2, 2)-sparse, contradicting the (2, 2)-sparsity of G.
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Lemma 4.3.8. [53, Lemma 3.4] Let G be a finite (2, 2)-tight graph with complete

subgraph KV ⊂ G for some set V := {w0, w1, w2} ⊂ V (G). Suppose that:

(i) There exists no vertex v ∈ V (G) \ V connected to both w1 and w2.

(ii) There exists no (2, 2)-tight subgraph F ⊂ G where w1, w2 ∈ V (F ) but w0 /∈ V (F ).

Then the graph H ′ is (2, 2)-tight, where

V (G′) := V (G) \ {w2},

E(G′) := {vw ∈ E(G) : v, w ̸= w2} ∪ {vw1 : v /∈ V, vw2 ∈ E(G)}.

The following two lemmas give the same result to [37, Proposition 4.6 and Propo-

sition 4.9], however we do not use a minimality argument on the set of all pairs of

graphs (H,G) with H ⊂ G and no Henneberg construction from H to G.

Lemma 4.3.9. Let H ( G be (2, k)-tight graphs for some k ∈ {2, 3}. Then there

exists a (2, k)-tight graph G′ ⊃ H such that either:

(i) k = 3 and G is either a 0-extension or 1-extension of G′.

(ii) k = 2 and G is either a 0-extension, 1-extension, vertex split or vertex-to-K4

extension of G′.

Proof. By Lemma 4.3.2, there exists a vertex v1 ∈ V (G) \ V (H) with dG(v) ∈ {2, 3}.

We shall now discuss the various case and prove for each one we can construct the

required graph G′.

First suppose dG(v0) = 2. Let G′ := G \ {v1}. Then G′ ⊃ H, G′ is (2, k)-tight and

G is a 0-extension of G′ as required.

Now suppose that dG(v1) = 3 with neighbours v2, v3, v4 and define V := {v1, v2, v3, v4}.
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Suppose G[V ] ̸= KV . By Lemma 4.3.5, there exists 2 ≤ i < j ≤ 4 such that

G′ := (G \ {v1}) ∪ {vivj} is (2, k)-tight. We note that G′ ⊃ H and G is a 1-extension

of G′ as required.

Now suppose G[V ] = KV . As KV is (2, 2)-tight we note that we must have that

k = 2. As v1 /∈ V (H) we have that H ∩KV is either the empty graph or a copy of K1,

K2 or K3. If V (H) ∩ V ̸= ∅ then by Lemma 4.3.4, H ∩ KV
∼= K1 as K2, K3 are not

(2, 2)-tight.

Suppose there is no vertex in V (G) \ V that shares an edge with more than one of

V . By Lemma 4.3.6, we may define a (2, 2)-tight graph G′ as described with j chosen

to be the vertex of V that lies in V (H); if no vertex of V lies in H we may choose

j to be any of V . We note that G is a vertex-to-K4 extension of G′ and G′ ⊃ H as

required.

Now suppose that there is a vertex v5 in V (G)\V that shares an edge with more than

one of V ; by relabelling we may assume that v5 shares an edge with v3, v4. We note that

(KV , KV ∪{v5}) is a simplex sequence, thus by Lemma 4.3.7 (ii), there exists a maximal

simplex sequence T := (Ti)n
i=4 with the ordered list of vertices {v1, . . . , vn} (note that

T4 = KV and T5 = KV ∪{v5}). As v1 /∈ H, by Lemma 4.3.7 (iv), |V (H) ∩ Tn| ≤ 1.

By Lemma 4.3.7 (v), there is no vertex except vn−2 that shares an edge with both

vn−1 and vn. Define w0 := vn−2, and let w1 = vn−1, w2 = vn if vn−1 ∈ V (H) and

w1 = vn, w2 = vn−1 otherwise. By Lemma 4.3.8 we have a (2, 2)-tight graph G′ as

described. We now note that G is a vertex split of G′ and G′ ⊃ H as required.

Lemma 4.3.10. Let H ⊂ G be finite (2, k)-tight graphs for some fixed k ∈ {2, 3}.

Then there exists a sequence H1, . . . , Hn of (2, k)-tight graphs such that:

(i) H1 = H and Hn = G,

(ii) H ⊂ Hi for all 1 ≤ i ≤ n,



4.3 Combinatorial rigidity of countable graphs 169

(iii) Hi+1 is a either a 0-extension or 1-extension of Hi for all 1 ≤ i ≤ n− 1 if k = 3,

or,

(iv) Hi+1 is a either a 0-extension, 1-extension, vertex split or vertex-to-K4 extension

of Hi for all 1 ≤ i ≤ n− 1 if k = 2.

Proof. This follows from applying Lemma 4.3.9 to each pair H ⊂ Hi to obtain Hi−1.

Lemma 4.3.11. Let H ⊂ G be finite isostatic graphs in a normed plane X and let

q be an independent placement of H in general position in X. Then there exists an

independent placement p of G in general position so that p|V (G) = q.

Proof. Fix k = 3 if X is Euclidean and k = 2 if X is non-Euclidean. By either Theorem

1.3.20 or Theorem 3.4.2 (depending on if X is Euclidean or non-Euclidean), H and

G are (2, k)-tight. Let H1, . . . , Hn be the sequence of (2, k)-tight graphs described in

Lemma 4.3.10. By Lemma 3.3.2, Lemma 3.3.4, Lemma 3.3.6 and Lemma 3.3.8, there

exists a sequence q1, . . . , qn of isostatic placements in general position of H1, . . . , Hn

respectively so that q1 := q and qi|V (H) = q for each 1 ≤ i ≤ n. We now define

p := qn.

Theorem 4.3.12. Let G be a countable graph, X a normed plane and k ∈ {2, 3},

with k = 3 if X is Euclidean and k = 2 if X is non-Euclidean. Then the following are

equivalent:

1. G is sequentially rigid in X.

2. G contains a vertex-complete (2, k)-tight tower.

Proof. Suppose G has a sequentially infinitesimally rigid placement p in X, then there

exists a sequentially infinitesimally rigid vertex-complete tower ((Gn, pn))n∈N of (G, p).

For each n ∈ N let (F n, pn) be a spanning isostatic subframework of (Gn, pn). Let
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(H1, p1) := (F 1, p1). Suppose we now have spanning isostatic subframeworks

(H1, p1), . . . , (Hn, pn)

for some n ∈ N so that H1 ⊂ . . . ⊂ Hn. As (E(KV (Gn+1)), Ipn+1) is a matroid and

|E(Hn)| < |E(Fn+ 1)| then there exists a graph Hn+1 such that

Hn ⊂ Hn+1, |E(Hn+1)| = |F n+1|, (Hn+1, pn+1) is isostatic.

By induction we obtain a vertex-complete sequentially isostatic tower ((Hn, pn))n∈N

of G. By either Theorem 1.3.20 or Theorem 3.4.2 (depending on if X is Euclidean or

non-Euclidean), (Hn)n∈N is a vertex-complete (2, k)-tight tower of G.

Now suppose G contains a vertex-complete (2, k)-tight tower (Gn)n∈N; without loss

of generality we may assume that |V (G1)| ≥ 3. By either Theorem 1.3.20 or Theorem

3.4.2 (depending on if X is Euclidean or non-Euclidean), each Gn is isostatic in X.

Let p1 be an isostatic placement of G1 in general position (Lemma 1.2.5). By Lemma

4.3.11, there exists a sequence (pn)n∈N such that pn is an isostatic placement Gn in

general position and pm|V (Gn) = pn for all n ≤ m. Then ((Gn, pn))n∈N is an sequentially

isostatic tower. By letting pv := pn
v for v ∈ V (Gn) ⊂ V (G) we have that ((Gn, pn))n∈N

is a complete tower of the well-positioned placement (G, p), thus (G, p) is sequentially

isostatic as required.

4.3.2 Rigidity and independence in generic normed planes

We shall now strengthen Theorem 4.3.12 for generic placements in generic normed planes.

Here we can make much stronger statements due to the inherently “combinatorial

nature” of generic spaces. We remind ourselves that both infinitesimal rigidity and

sequential infinitesimal rigidity are generic properties for infinite graphs.
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Let H ⊂ G be finite graphs and X a generic space. We say H is relatively rigid in

G if KV (H) is rigid and ⟨G⟩ =
〈
G ∪KV (H)

〉
, and we say H has a rigid container in G

if there exists a rigid graph H ′ with H ⊂ H ′ ⊂ G.

Lemma 4.3.13. Let H ⊂ G be finite graphs and X be a generic normed plane, where

|V (H)| ≥ 2 if X is Euclidean and |V (H)| ≥ 4 otherwise. Then H is relatively rigid in

G if and only if H has a rigid container in G.

Proof. As X is a normed plane then by Theorem 1.3.20 and Theorem 3.4.2, a graph is

isostatic if and only if it is (2, k)-tight, where k = 3 if X is Euclidean and k = 2 if X is

non-Euclidean. We now note that the proof is identical to the proof of [38, Theorem

3.6].

The following is an extension of [38, Theorem 1.1] and [38, Theorem 4.1].

Theorem 4.3.14. Let G be a countable graph and X a generic normed plane. Let

k = 3 if X is Euclidean and k = 2 is non-Euclidean, then the following are equivalent:

(i) G is generically rigid in X.

(ii) G is sequentially rigid in X.

(iii) G contains a vertex-complete (2, k)-tight tower.

Proof. By applying either Theorem 1.3.20 or Theorem 3.4.2 (depending on if X is

Euclidean or non-Euclidean) and Corollary 4.1.8 to a generic placement of G we have

that (iii) ⇒ (ii) ⇒ (i).

(i) ⇒ (ii): Let p be any generic placement of G, then (G, p) is infinitesimally

rigid, and by Theorem 4.1.7, there exists a vertex-complete relatively infinitesimally

rigid tower ((Gn, pn))n∈N. By Lemma 4.3.13, there exists a sequence (Hn)n∈N so that
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Fig. 4.1 The infinite double banana graph, based on [38, Figure 2]. Every finite
subframework is flexible, however the graph is infinitesimally rigid for any generic
placement.

Gn ⊂ Hn ⊂ Gn+1 and each Hn is rigid. It now follows ((Hn, p|V (Hn)))n∈N is a vertex-

complete sequentially infinitesimally rigid tower of (G, p) and so (G, p) is sequentially

infinitesimally rigid as required.

(ii) ⇒ (iii): This follows from Theorem 4.3.12.

Theorem 4.3.14 can only be applied to generic placements, see Figure 6 for an

example of an isostatic framework with no (2, 3)-tight tower. It also fails to hold in

Euclidean 3-space, as can be seen by the counter-example in Figure 4.1.
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v0

v1

v2
v3

v4

Fig. 4.2 An infinitesimally flexible independent framework (G, p) in the Euclidean
plane that is continuously rigid. The sequence {pv1 , pv2 , . . .} converges to pv0 . We may
choose pv0 , pv1 , pv2 , . . . so as to be an algebraically independent set, thus we can assume
(G, p) is also generic.

4.4 Continuous rigidity for countable frameworks

4.4.1 Continuous rigidity for countable generic frameworks

in generic spaces

We would naively hope that Theorem 2.1.5 would extend to infinite independent

frameworks. Unfortunately, we can construct frameworks in normed planes with open

sets of smooth points that are continuously rigid, independent - even generic if the

normed plane is generic - but infinitesimally flexible, see Figure 4.2.

If continuous rigidity does not imply infinitesimal rigidity, then does infinitesimal

rigidity imply continuous rigidity? We have more luck with this direction, especially

for sequentially infinitesimally rigid frameworks, although there are still many open

questions.

For the following we define a tower to be constant and/or regular if each framework

in the sequence is constant and/or regular.
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Theorem 4.4.1. Let (G, p) be a framework in a normed space X. Suppose (G, p)

contains a vertex-complete sequentially infinitesimally rigid tower that is constant,

then (G, p) is continuously rigid.

Proof. Suppose α := (αv)v∈V (G) with αv : (−δ, δ) → X is a finite flex of (G, p) and let

((Gn, pn))n∈N be a vertex-complete sequentially infinitesimally rigid tower of (G, p). We

note that α|V (Gn) must also be a finite flex of (Gn, pn) for each n ∈ N. By Theorem 2.1.5,

α|V (Gn) is trivial for each n ∈ N, thus for all t ∈ (−ϵ, ϵ) and all n ∈ N, α(t)|V (Gn) ∈ Opn ,

i.e. there exists for each t ∈ (−δ, δ) and n ∈ N some isometry hn
t ∈ Isom(X) so that

hn
t .p

n = α(t)|V (Gn).

Define for each t ∈ (−ϵ, ϵ) and n ∈ N the set Hn
t of such isometries g where

g.pn = α(t)|V (Gn), then we note Hn
t = hn

t Stabp. By Corollary 1.2.11, Hn
t is compact.

We note that for n ≤ m, Hm
t ⊆ Hn

t , and so as Hn
t ̸= ∅ for all n ∈ N, there exists

ht ∈ ∩n∈NH
n
t . We now note ht.p = α(t), thus α is trivial as required.

Corollary 4.4.2. Suppose (G, p) is sequentially infinitesimally rigid in a normed space

X with an open set of smooth points, then (G, p) is continuously rigid.

Proof. By Proposition 2.1.1, every regular framework will be constant. Since (G, p) is

sequentially infinitesimally rigid it contains a sequentially infinitesimally rigid tower. As

this tower will be regular (and so constant), the result follows from Theorem 4.4.1.

Corollary 4.4.3. Suppose (G, p) is infinitesimally rigid and generic in a generic normed

plane X, then (G, p) is continuously rigid.

Proof. By Theorem 4.3.14, (G, p) is sequentially rigid. The result now follows from

Corollary 4.4.2.

For our following results we are required to weaken continuous rigidity somewhat.
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Let (G, p) be a framework in a normed space X and α be a finite flex of (G, p). We

define α to be proper if there exists ϵ > 0 and v, w ∈ V (G) so that

∥αv(t) − αw(t)∥ ≠ ∥pv − pw∥

for all t ∈ (−ϵ, 0) ∪ (0, ϵ). We note that all proper finite flexes are non-trivial. If (G, p)

has no proper finite flexes then (G, p) is weakly continuously rigid. It is immediate

that continuous rigidity implies weak continuous rigidity, and for finite frameworks,

weak continuous rigidity and continuous rigidity are equivalent. We have the following

conjecture.

Conjecture 4.4.4. A framework is weakly continuously rigid if and only if it is

continuously rigid, or equivalently, a framework has a proper finite flex if it has a

non-trivial finite flex.

It is possible we would have to restrict to certain categories of frameworks (e.g. generic

frameworks, periodic frameworks) for the above conjecture. So far the conjecture holds

for all known examples.

Lemma 4.4.5. Suppose (G, p) is a finite generic framework in a normed space X with

an open set of smooth points, then there exists an open neighbourhood U of p such

that

f−1
G [fG(p)] ∩ U = f−1

⟨G⟩[f⟨G⟩(p)] ∩ U.

Proof. As (G, p) is generic then (G, p) and (⟨G⟩ , p) are regular, thus by Proposition

2.1.1, both are constant. By Lemma 4.1.19, F(⟨G⟩ , p) = F(G, p), thus it follows

from Lemma 2.1.4 that there exists an open neighbourhoods U ′ of p such that both

f−1
G [fG(p)] ∩ U ′ and f−1

⟨G⟩[f⟨G⟩(p)] ∩ U ′ are C1-submanifolds of XV (G)), and both have

tangent space F(G, p) at p.
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As

f−1
⟨G⟩[f⟨G⟩(p)] ∩ U ′ ⊆ f−1

G [fG(p)] ∩ U ′ ⊆ XV (G)

and both are C1-submanifolds of XV (G), the inclusion map

f−1
⟨G⟩[f⟨G⟩(p)] ∩ U ′ ↪→ f−1

G [fG(p)] ∩ U ′

is a C1-embedding, thus f−1
⟨G⟩[f⟨G⟩(p)] ∩ U ′ is a C1-submanifold of f−1

G [fG(p)] ∩ U ′. As

both have the same tangent space at p, there exists an open neighbourhood U of p

such that f−1
G [fG(p)] ∩ U = f−1

⟨G⟩[f⟨G⟩(p)] ∩ U as required.

Theorem 4.4.6. Suppose (G, p) is infinitesimally rigid and generic in a normed space

X with an open set of smooth points, then (G, p) is weakly continuously rigid.

Proof. Suppose there exists a proper flex α : (−δ, δ) → XV (G) of (G, p), then there

ϵ > 0 and v, w ∈ V (G) such that

∥αv(t) − αw(t)∥ ≠ ∥pv − pw∥

for all t ∈ (−ϵ, 0) ∪ (0, ϵ). Let ((Gn, pn))n∈N be a complete relatively rigid tower of

(G, p), then for each n ∈ N,

F(Gn+1, pn+1) = F(Gn+1 ∪KV (Gn), p
n+1).

As (G, p) is generic it is also completely well-positioned, thus by Lemma 4.1.19

〈
Gn+1

〉
p

=
〈
Gn+1 ∪KV (Gn)

〉
p
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for all n ∈ N. As ((Gn, pn))n∈N is a complete tower of (G, p), there exists m ∈ N such

that v, w ∈ V (Gm).

By Lemma 4.4.5, there exists an open neighbourhood U of pm+1 such that

f−1
Gm+1 [fGm+1(pm+1)] ∩ U = f−1

⟨Gm+1∪KV (Gm)⟩

[
f⟨Gm+1∪KV (Gm)⟩(pm+1)

]
∩ U.

As α|V (Gm+1) is a finite flex of (Gm+1, pm+1) it now follows that for some ϵ′ > 0,

∥αv(t) − αw(t)∥ = ∥pv − pw∥

for all t ∈ (−ϵ′, ϵ′), a contradiction.

Remark 4.4.7. Theorem 4.4.6 requires that our framework is generic; for instance,

figure 6 is shown in [38, Example 6.4] to be infinitesimally rigid but weakly continuously

flexible.

4.4.2 Continuous rigidity for countable algebraically generic

frameworks in Euclidean spaces

Let p be a finite placement in Rd, and define pv(i) to be the i-th coordinate of pv.

We define p to be algebraically generic if the set {pv(i) : v ∈ V, i = 1, . . . , d} is

algebraically independent over Q. If p is a countably infinite placement we define p

to be algebraically generic if every finite subplacement is algebraically independent.

We likewise define a framework (G, p) to be algebraically generic if p is algebraically

generic.

Lemma 4.4.8. Let |V | < ∞, then the set of algebraically generic placements in Rd is

a dense subset of (Rd)V with negligible complement.
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Proof. Fix k = |V |. Let F be the set of all polynomials f ∈ R[X1, . . . , Xdk] with

integer coefficients. We note that the set of algebraic placements is exactly

V (F ) := {x ∈ Rdk : f(x) = 0 for all f ∈ F},

thus the result holds as V (F ) is an algebraic set (see Corollary B.3.7).

Corollary 4.4.9. Let V be a countable set. Then the set of algebraically generic

placements of V are dense in (Rd)V with respect to the box topology.

Proof. This follows Lemma 4.4.8 and Proposition 4.1.2

Proposition 4.4.10. Let X := Rd have the standard Euclidean norm and (G, p) be

an algebraically generic framework in X. Then (G, p) is generic. Further, if (G, p) is

finite, then every placement q ∈ f−1
G [fG(p)] is regular, and f−1

G [fG(p)] is a C1-manifold

with dimension dim F(G, p).

Proof. To see that (G, p) is generic we apply [15, Proposition 3.1] to any finite subframe-

work. Suppose (G, p) is finite. By [15, Proposition 3.3], every point q ∈ f−1
G [fG(p)] is

regular. As X is Euclidean, every regular placement is well-positioned and constant,

thus by Proposition 1.2.7 and Lemma 1.2.8, fG is C1-differentiable on W(G) and

has constant rank at each point q ∈ f−1
G [fG(p)]. By Corollary 2.1.3, f−1

G [fG(p)] is a

C1-manifold with dimension dim F(G, p) as required.

For a framework (G, p) we shall denote by f−1
G [fG(p)]Γ the path-connected compo-

nent of the configuration space of (G, p) that contains p.

Lemma 4.4.11. Let X := Rd have the standard Euclidean norm. Suppose (G, p) is a

finite algebraically generic framework, then

f−1
G [fG(p)]Γ = f−1

⟨G⟩[f⟨G⟩(p)]Γ.
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Proof. By Proposition 4.4.10 and Lemma 4.1.16, both f−1
G [fG(p)]Γ and f−1

⟨G⟩[f⟨G⟩(p)]Γ

are smooth manifolds of equal dimension. We note immediately that f−1
⟨G⟩[f⟨G⟩(p)]Γ is a

closed C1-submanifold of f−1
G [fG(p)]Γ. Since both have the same dimension we also

have that f−1
⟨G⟩[f⟨G⟩(p)]Γ is an open smooth submanifold of f−1

G [fG(p)]Γ. As f−1
G [fG(p)]Γ

is connected then its only clopen non-empty subset is itself, hence the result holds.

Theorem 4.4.12. Suppose (G, p) is infinitesimally rigid and algebraically generic in

X := Rd with the standard Euclidean norm, then (G, p) is continuously rigid.

Proof. Since (G, p) is infinitesimally rigid, by Proposition 1.3.24, (G, p) is spanning.

Let α : (−δ, δ) → XV (G) be a finite flex of (G, p), then as (G, p) is spanning in a

Euclidean space, α is trivial if and only if

∥αv(t) − αw(t)∥ = ∥pv − pw∥

for all v, w ∈ V (G) and t ∈ (−δ, δ) by Proposition 1.1.33. By Theorem 4.1.7, there

exists a vertex-complete relatively infinitesimally rigid tower ((Gn, pn))n∈N of (G, p),

where we may assume (G1, p1) is spanning. Then for each n ∈ N,

F(Gn+1, pn+1) = F(Gn+1 ∪KV (Gn), p
n+1).

As (G, p) is algebraically generic it is also completely well-positioned, thus by Lemma

4.1.19

〈
Gn+1

〉
=
〈
Gn+1 ∪KV (Gn)

〉

for all n ∈ N.

By Lemma 4.4.11, for each n ∈ N,

f−1
Gn+1 [fGn+1(pn+1)]Γ = f−1

⟨Gn+1⟩[f⟨Gn+1⟩(pn+1)]Γ
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= f−1
⟨Gn+1∪KV (Gn)⟩[f⟨Gn+1∪KV (Gn)⟩(pn+1)]Γ

= f−1
Gn+1∪KV (Gn)

[fGn+1∪KV (Gn)(p
n+1)]Γ.

Choose any v, w ∈ V (G), then there exists n ∈ N such that v, w ∈ V (Gn). We now

note that α(t)|V (Gn+1) ∈ f−1
Gn+1∪KV (Gn)

[fGn+1∪KV (Gn)(pn+1)]Γ, thus

∥αv(t) − αw(t)∥ = ∥pv − pw∥

for all t ∈ (−δ, δ) as required.



Chapter 5

Further research and open

problems

The natural avenue of research would be to expand geometric rigidity theory in normed

spaces to other classical topics such as redundant and global rigidity [26], universal

rigidity [22], formation control [55] and periodic symmetry-forced rigidity [9]. We have

below a list of some other areas of research and open problems that stem from our

previous results.

5.1 Expanding Theorem 2.1.5 to a larger class of

frameworks

While Theorem 2.1.5 requires that a framework is constant, Theorem 1.3.19 only

requires that the framework is regular. For a large class of normed spaces, regular

implies constant - i.e. those with an open set of smooth points, see Proposition 2.1.1 -

however there do exist normed spaces without an open set of smooth points such as

Example 1.1.19.
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Some hope in how to remedy this can be seen in a paper by F. H. Clarke [14].

Given a Lipschitz function f : Rn → Rn he notes that by Rademacher’s theorem, f

is differentiable on a set U where U c is negligible. It follows we can define for each

x0 ∈ Rn the set Df(x) to be the convex hull of all linear operators T where there

exists a sequence of differentiable points (xn)n∈N such that xn → x as n → ∞ and

T = limn→∞ df(xn), i.e.

Df(x) := conv
{

lim
n→∞

df(xn) : xn ∈ U, xn → x as n → ∞
}
.

As noted in [14, Proposition 1], each Df(x) is a compact convex set, and if the map

df : U → Rn is continuous then Df(x) = {df(x)}. Using this generalisation, Clarke

forms a version of the Inverse Function Theorem for Lipschitz functions.

Theorem 5.1.1. [14, Theorem 1] Suppose Df(x0) has maximal rank i.e. for all

T ∈ Df(x0), T is bijective. Then there exists open neighbourhoods U and V of x0

and f(x0) respectively and Lipschitz function g : V → U such that g(f(u)) = u and

f(g(v)) = v for all u ∈ U and v ∈ V .

To be able to utilise Theorem 5.1.1 with the rigidity map we would need to natu-

rally extend the definition of regular and constant frameworks to non-well-positioned

frameworks. Some viable definitions would be as follows:

(i) A finite framework (G, p) is regular if DfG(p) has maximal rank i.e. for all

T ∈ DfG(p) and S ∈ DfG(q) for some q ∈ XV (G), rank T ≥ rankS

(ii) A finite framework (G, p) is constant if there exists an open neighbourhood U of

p and k ∈ N such that for all q ∈ U and T ∈ DfG(q), rank T = k.

We would then also define a framework to be infinitesimally rigid if for all T ∈ DfG(p),

kerT = T (p) and independent if for all T ∈ DfG(p), T is surjective. Using these

definitions we would make the following conjectures.
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Conjecture 5.1.2. If (G, p) is regular then (G, p) is constant.

Conjecture 5.1.3. Let (G, p) be a constant finite framework in X, then the following

are equivalent:

(i) (G, p) is infinitesimally rigid in X,

(ii) (G, p) is locally rigid in X,

(iii) (G, p) is continuously rigid in X.

It is possible that Conjecture 5.1.2 will fail but we can still apply Theorem 5.1.1 to

obtain a similar result, in which case we conjecture the following.

Conjecture 5.1.4. Let (G, p) be a regular finite framework in X, then the following

are equivalent:

(i) (G, p) is infinitesimally rigid in X,

(ii) (G, p) is locally rigid in X,

(iii) (G, p) is continuously rigid in X.

Much of the work required would be towards obtaining some version of the Constant

Rank Theorem for Lipschitz functions. This would allow us to obtain a Lipschitz

manifold, a topological manifold where we require each chart is a Lipschitz map; this

is a weaker condition than C1-manifolds but stronger than topological manifolds.

5.2 Infinitesimal rigidity in linear metric spaces

All of the theory we have used is for finite dimensional normed spaces, however there

is no reason that we cannot extend the ideas presented to a larger class of spaces;

namely (finite dimensional) linear metric spaces, spaces (Rn, d) where addition and
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scalar multiplication are continuous. Any such space will be a Hausdorff topological

vector space and all Hausdorff topological vector spaces of the same dimension are

TVS isomorphic (i.e. there exists a bijective linear homeomorphism between any two).

This implies there will exist a bijective homeomorphism from (Rn, d) to Rn with the

standard Euclidean topology.

Example 5.2.1. A motivating example would be (Rn, dq), where q ∈ (0, 1) and

dq(x, y) :=
n∑

i=1
|x(i) − y(i)|q

for all x = (x(1), . . . , x(n)), y = (y(1), . . . , y(n)) ∈ Rn. The metric is differentiable

at all values with no zero coordinate, and the set of isometries is identical to any

n-dimensional non-Euclidean ℓq-normed space, so we may talk about infinitesimal

rigidity with no issues.

There would be two main objectives:

(i) Extending Theorem 2.1.5 to linear metric spaces.

(ii) Obtaining a combinatorial theory similar to Theorem 1.3.20 and Theorem 3.4.2

for linear metric planes.

To work on either objective we would need to know what it means for a metric to

“differentiable”. Some possibilities are given in [7], though fortunately for linear metric

spaces all are equivalent, bar a version of Gâteaux differentiation which they all imply.

We would also wish for the smooth points of our metric to have a negligible

complement. This does not seem to be immediately true, however if we restrict to

linear metric spaces that are Lipschitz equivalent to the Euclidean normed space of

the same dimension (i.e. there exists a bijective Lipschitz map between them that has

Lipschitz inverse) then this will be automatic.
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Much of the differential geometry of linear metric spaces would need to be under-

stood, especially the isometries of a given space. If (Rn, d) is translation-invariant

(d(x + z, y + z) = d(x, y) for all x, y, z ∈ Rn) then we can show that Isom(Rn, d)

is a closed subgroup of the affine maps on Rn in the topology of pointwise conver-

gence, see [13, Theorem 1] for more details. We cannot say the same if (Rn, d) is not

translation-invariant, though it is possible that some similar result exists.

For Objective (i) we would need to show two things. Firstly, we would wish to

show that given a “suitably nice” placement, the configuration space is some kind of

manifold in a neighbourhood of the placement. After that, we would need to prove

that the orbit of any placement is a submanifold of the configuration space, after which

we can use basic differentiable geometry to prove our required result.

Regarding Objective (ii), we would wish to break this down into set cases. We

would conjecture the following.

Conjecture 5.2.2. Let (R2, d) be a linear metric plane. Then Isom(R2, d) is a smooth

manifold of dimension k ∈ {0, 1, 2, 3}.

If Conjecture 5.2.2 was true, and we have a good idea of what infinitesimal rigidity

is in a given linear metric plane, we would further conjecture the following.

Conjecture 5.2.3. Let (R2, d) be a linear metric plane with dim Isom(R2, d) = k for

k ∈ {0, 1, 2, 3}. Then G is minimally rigid in (R2, d) if and only if G is (2, k)-tight.

This highlights the more interesting properties at play for graphs in a linear metric

plane, especially if they lack translation-invariance.

It is worth noting the work of Stacey and Mahoney [65], who generalised Euclidean

rigidity by replacing normed spaces with isometry groups to smooth manifolds with a

Lie group acting on them. Although this research would not be the same, both draw

from the wish to generalise to more unusual geometries.
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Fig. 5.1 (Left) Unit ball of ℓ∞-normed plane; (right) a framework in ℓ∞-normed plane
that is infinitesimally rigid but contains no (2, 2)-tight vertex-complete tower.

5.3 Open problems regarding countable frameworks

5.3.1 Edge partitions

We direct the reader to Figure 5.1 as an example of an infinitesimally rigid, but

not sequentially infinitesimally rigid, framework in the ℓ∞-normed plane. The red

edges have edge support functional (x, y) 7→ x and the blue edges have edge support

functional (x, y) 7→ y, for any (x, y) ∈ R2 (see [34] for more details).

Figure 5.1 is an interesting example, as in it leads us to believe that rather

than looking at density counts as a necessary condition to whether a graph has an

infinitesimally rigid placement, we should instead consider tree partitions. We first

define the following for Conjecture 5.3.1.

Let k, l ∈ N. A graph G has a lTk-partition if there exists l edge-disjoint trees

T1, . . . , Tl ⊂ G such that every edge of G lies in exactly one of the trees and every

vertex of G lies in exactly k of the trees. A lTk-partition is proper if for every finite

set U ( V ,

l∑
i=1

|{H ⊆ G[U ] ∩ Ti : H is a connected component of G[U ] ∩ Ti}| ≥ l.
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Fig. 5.2 A graph with a proper 3T2-partition but contains no (2, 3)-tight tower. It
was shown in [37] that the above does have an infinitesimally rigid placement in the
Euclidean plane

The two types of partition we shall be interested in are 3T2-partitions and 2T2-

partitions. We note that every 2T2-partition is proper and a 2T2-partition is equivalent

to the graph containing exactly two edge-disjoint spanning trees. For a finite graph G

the following holds:

(i) G has a proper 3T2-partition if and only if G is (2, 3)-tight ([17, Theorem 1]).

(ii) G has a 2T2-partition if and only if G is (2, 2)-tight (Corollary 3.4.5).

It is not so difficult to show that if a graph contains a (2, k)-tight tower then it has

a proper kT2-partition for k ∈ {2, 3}, thus if G has a sequentially isostatic placement,

by Theorem 4.3.12, G has a proper 3T2-partition. The reverse, however, is not true;

for a counter-example we note that Figure 5.1 has a 2T2-partition, however it does not

contain a (2, 2)-tight tower. Another example is given in Figure 5.2; while the graph has

a proper 3T2-partition it does not contain a (2, 3)-tight tower. Both examples, however,

have an infinitesimally rigid placement in the ℓ∞-normed plane and the Euclidean

plane respectively. This leads to the following conjecture.

Conjecture 5.3.1. Suppose (G, p) is a countably infinite isostatic framework in normed

plane X, then the following holds:

(i) If X is Euclidean then G has a proper 3T2-partition.



188 Further research and open problems

(ii) If X is non-Euclidean then the edges of G can be partitioned into 2 edge-disjoint

spanning trees.

If this holds to be true, we would also wish for the following, much stronger,

conjecture to hold.

Conjecture 5.3.2. Let G be a countable graph and X a normed plane, then the

following holds:

(i) If X is Euclidean, G has an isostatic placement in X if and only if G has a proper

3T2-partition.

(ii) If X is non-Euclidean, G has an isostatic placement in X if and only if G can be

partitioned into 2 edge-disjoint spanning trees.

It is possible that we would need to restrict ourselves to generic spaces, however

the hope would be that this is not the case.

5.3.2 Sequences of graph operations

The following questions stem from research by Derek Kitson and Stephen Power [39].

We shall define a graph operation sequence to be a sequence of graphs (Gn)n∈N so

that Gn+1 is obtained by applying a finite sequence of graph operation to Gn; just

0-extensions and 1-extensions if X is Euclidean, or 0-extensions, 1-extensions, vertex

splitting and vertex-to-K4 if X is non-Euclidean.

Let G have a sequentially isostatic placement in a normed plane X and let k =

dim Isom(X) ∈ {2, 3}. We note from the proof of Theorem 4.3.12 that there exists a

graph operation sequence (Gn)n∈N such that each graph is (2, k)-tight; we shall call

this a (2, k)-tight sequence. The obvious question is, if given a (2, k)-tight sequence, do

we have a good idea of its “limit” and what can we say about such a graph?
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Fig. 5.3 A (2, 3)-tight sequence with the graph given in Figure 6 as the limit.

Suppose we have graph operation sequence (Gn)n∈N. We can define the limit to be

the graph G with

V (G) :=
⋃

n∈N
V (Gn), E(G) :=

⋃
N∈N

⋂
n≥N

E(Gn);

we may define V (G) as such since V (Gn) ⊂ V (Gn+1) for all n ∈ N.

For each edge e ∈ E(Gn) we define an edge sequence to be a sequence of edges

(ei)∞i≥n such that ei ∈ E(Gi), en = e and ei+1 is either ei or one of the edges that

replaces ei during some graph operation move between Gi and Gi+1. If every edge

sequence converges (i.e. is eventually constant) then we define (Gn)n∈N to be edge

stable.

We will require edge stability to be a property if we wish to say anything about

the limit; for instance if we take G1 to be any (2, k)-tight graph and obtain Gn+1 from

Gn by applying 1-extensions to every edge of Gn, then (Gn)n∈N is not edge stable

and G ∼= (N, ∅), a graph with only has infinitesimally flexible placements. It follows

from Lemma 4.3.10 that any (2, k)-tight tower is an edge stable (2, k)-tight sequence,

however not every edge stable (2, k)-tight sequence has a limit G that contains a

(2, k)-tight tower, see Figure 5.3 for an example. We instead conjecture the following.

Conjecture 5.3.3. Let (Gn) be an edge stable graph operation sequence with limit

G, X a normed plane and k := dim Isom(X). Then G has an infinitesimally rigid

placement in X if and only if (Gn)n∈N is a (2, k)-tight sequence.
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It is yet again possible that we would need to restrict ourselves to generic spaces,

however the hope would be that this is not the case.



Appendix A

Background on manifolds and

matroids

A.1 Manifolds

We shall outline some of the more crucial ideas involving manifolds here, however we

refer the reader to [47] for more background on the topic.

A.1.1 Basic definitions

We are reminded for this section that only finite dimensional normed spaces are

considered, however many of the definitions and results carry through with little

amount of changes to infinite dimensional Banach spaces; see [47] for more detail.

Let S be any set. A chart of S is a pair (U, φ) such that U ⊂ S, φ : U → X (for

some normed space X) is injective and φ(U) is open in X; we define dimX to be the

dimension of (U, φ), or dim(U, φ) for short. Given k ∈ N ∪ {0,∞}, a Ck-atlas of S is a

set A = {(Ui, φi) : i ∈ I} of charts of S such that ⋃i∈I Ui = S and for any i, j ∈ I with

Ui ∩ Uj ̸= ∅ (i.e. the charts (U1, φ1) and (U2, φ2) intersect non-trivially), the bijective
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map

φj,i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj), x 7→ φj ◦ φ−1
i (x)

is a Ck-diffeomorphism. It follows from Brouwer’s theorem for invariance of domain [44,

Theorem 1.18] that if (U1, φ1) and (U2, φ2) intersect non-trivially then dim(U1, φ1) =

dim(U2, φ2).

For k ∈ N∪{0,∞}, we define that two Ck-atlases A1 and A2 of S are Ck-equivalent

if A1 ∪ A2 is a Ck-atlas of S also. As this forms a equivalence relation on the set of all

possible atlases of S, we define a Ck-differential structure of S to be any equivalence

class D of Ck-equivalent Ck-atlases of S. It follows that given a Ck-atlas A of S we

may generate a unique differential structure DA from A.

We define a Ck-manifold to be a pair M := (S,D) where D is a Ck-differential

structure of the set S; if k = 0 we define M to be a topological manifold and if k = ∞

we define M to be a smooth manifold. Given a Ck-manifold M = (S,D), we may define

the maximal atlas of M to be the Ck-atlas

AD := {A : A ∈ D}.

We shall often by abuse of notation refer to S as M and a chart (U, φ) ∈ M if (U, φ)

lies in the maximal atlas of M .

We may now define a topology on M by defining U ⊂ M to be open if and only

if (U, φ) ∈ AD. We note that for any path-connected connected component C ⊂ M ,

if (Ui, φi) for i = 1, 2 are charts with Ui ⊂ C, then dim(U1, φ1) = dim(U2, φ2). If all

charts have dimension d then we define M to be d-dimensional.

Proposition A.1.1. Let M be a connected Ck-manifold, then M is a path-connected

Ck-manifold.
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Proof. Choose x ∈ M and let C be the path-connected component of M containing x.

Choose any y ∈ C and y′ ∈ M \ C and any charts (U, φ), (U ′, φ′) ∈ M containing y

and y′ respectively. As φ(U) and φ′(U ′) are open we may without loss of generality

assume that both are convex. For any z ∈ U we may define the line L : [0, 1] → φ(U)

with L(t) := tφ(z) + (1 − t)φ(y). As φ−1 ◦L is a continuous path from y to z, it follows

that z ∈ C, thus U ⊂ C. By a similar method we note that U ′ ⊂ M \ C. Since y, y′

were chosen arbitrarily it follows that C and M \ C are open, thus C is a clopen set.

As M is connected, C = M as required.

Remark A.1.2. We have at no point assumed that our manifolds will be Hausdorff

or separable. Fortunately, all of the manifolds mentioned in this body of text lie inside

some separable metric space, thus the Hausdorff property and separability may be

assumed.

Example A.1.3. Define the equivalence relation ∼ on R × {0, 1} with (x, 0) ∼ (x, 1)

if x ̸= 0. We now define the line with two ends, the topological manifold S :=

R × {0, 1}/ ∼ with the inherited topology. The line with two ends is not Hausdorff as

any neighbourhood of (0, 0) contains a neighbourhood of (0, 1).

Example A.1.4. We define the long line to be the set S := [0, 1) × R. For any two

points z1 := (x1, y1) and z2 := (x2, y2) in S, we define z1 < z2 if y1 < y2 or y1 = y2 and

x1 < x2. This is a total ordering on S and so can be used to generate a topology for S.

Under this topology, S is a topological manifold, however it is not separable.

A.1.2 Tangent spaces

Let M be a Ck-manifold for k ∈ N ∪ {∞} and let each γi : (ai, bi) → M for i ∈ {1, 2}

be a C1-differentiable path, i.e. for any point t ∈ (a, b) and any chart (U, φ) ∈ M that

contains γi(t), the map φ ◦ γi is C1-differentiable (as a map between normed spaces).
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Suppose γ1 and γ2 pass through x ∈ M i.e. x := γ1(t1) = γ2(t2) for some t1 ∈ (a1, b1)

and t2 ∈ (a2, b2). Then γ1, γ2 are tangent at x if there exists a chart (U, φ) ∈ M

containing x such that (φ ◦ γ)′(t1) = (φ ◦ γ)′(t2); if this holds for one chart then it will

hold for all charts that contain x, see [47, Proposition 3.3.2].

As this is a equivalence relation on all the C1-differentiable paths γ passing through

a point x ∈ M , we define the equivalence classes [γ]x of all C1-differentiable paths that

pass through x that are tangent with γ at x. We now define the tangent space of M at

x to be the set

TxM := {[γ]x : γ passes through x}

and the tangent bundle

TM := {[γ]x : x ∈ X, γ passes through x}

Remark A.1.5. Let (U, φ) ∈ M be a Ck-chart at x ∈ M with φ : U → X. Choose

y ∈ X and define the smooth path

c : (−δ, δ) → φ(U), t 7→ φ(x) + ty,

then φ ◦ c is a C1-differentiable curve that passes through x, and (φ ◦ c)′(0) = y. We

can similarly prove that every element [γ]x can be associated to some vector y ∈ X

given a map φ [47, Lemma 3.3.4]. It follows that TmM is a linear space that is linearly

isomorphic to X.
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A.1.3 Maps between manifolds

Let M and N be Ck-manifolds. We define a map f : M → N to be Ck-differentiable

if for all x ∈ M and chart (V, ψ) of N with f(x) ∈ N there exists a chart (U, φ) of

M such that x ∈ U , f(U) ⊂ V and ψ ◦ f ◦ φ−1 is Ck-differentiable on U ; in fact, we

need only show that for each x ∈ M this holds for a single chart (V, ψ) with f(x) ∈ V

[47, Proposition 3.2.6]. If f is bijective with Ck-differentiable inverse then f is a

Ck-diffeomorphism.

Remark A.1.6. If M and N are normed spaces we note that f : M → N is Ck-

differentiable as a map between manifolds if and only if it is Ck-differentiable as a map

between normed spaces.

Given a Ck-differentiable map f : M → N we may define for each x ∈ M the map

df(x) : TmM → Tf(m)M, [γ]m 7→ [f ◦ γ]f(m).

The map is well defined (see [47, Lemma 3.3.5]) and also linear (this follows from

methods similar to Remark A.1.5); from this it follows that df(x)(TxM) is a linear

subspace of Tf(x)N . We define the following properties for f :

(i) f is a submersion if df(x) is surjective for all x ∈ M .

(ii) f is an immersion if df(x) is injective for all x ∈ M .

(iii) f is a local diffeomorphism if it is both a submersion and an immersion.

If f is a local diffeomorphism then at any point x ∈ M there exists neighbourhoods

U and V of x and f(x) respectively so that f |VU is a Ck-diffeomorphism [47, Theorem

3.5.1]; further, if f is a bijective local diffeomorphism then f is a Ck-diffeomorphism.
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A.1.4 Submanifolds

Given a Ck-manifold M , a set N ⊂ M is a Ck-submanifold of M if for all x ∈ N ,

there exists a chart (U, φ) of M such that x ∈ U and φ has the submanifold property,

i.e. φ : U → X × Y for some normed spaces X, Y , and

φ(U ∩N) = φ(U) ∩ (X × {0}).

The submanifold N is itself a Ck-manifold with differential structure generated by the

Ck-atlas

{(U ∩N, φ|N) : U ∩N ̸= ∅, (U, φ) ∈ M and has the submanifold property};

further, the topology generated will be the relative topology of N ⊂ M [47, Proposition

3.2.2]. We notice immediately that any open subset of a manifold will trivially be a

submanifold.

Example A.1.7. Let Mn be the linear space of n× n matrices with real coefficients,

and let GLn be the subset of Mn of invertible matrices. As the determinant map

det : Mn → R is continuous and GLn = Mn \ det{0} then GLn is an open subset of

Mn, thus GLn is a smooth submanifold of Mn.

Proposition A.1.8. Let M be a Ck-manifold for k ∈ N ∪ {∞} and N,N ′ a Ck-

submanifolds of M . Then the following hold:

(i) The inclusion map ι : N ↪→ M is a Ck-differentiable immersion and a closed map.

(ii) If dimN = dimM then N is an open subset of M .

(iii) If N ⊂ N ′ then N is a Ck-submanifold of N ′.
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Proof. (i): We must first prove ι is a Ck-differenitable map. Choose a point x ∈ X

and a chart (V, ψ) such that ι(x) = x ∈ V . As N is a submanifold we may choose a

chart (U, φ) ∈ M that contains x with the submanifold property such that U ⊂ V . It

now follows that the map (restricted to φ(U ∩N)) ψ ◦ ι ◦ φ−1 = ψ ◦ φ−1, thus as M is

a manifold, ψ ◦ ι ◦ φ−1 (restricted to φ(U ∩N)) is a Ck-differentiable map.

As ι is an inclusion map it is automatically closed. We now note that for each

x ∈ N , d(ι)(x)([γ]x) = [γ]x, thus ι is an immersion also.

(ii): Suppose dimN = dimM . We note that ι is a submersion also as dimTxN =

dimTxM for all x ∈ N . Choose any point x ∈ N , then there exists a chart (U, φ) ∈ M

that contains x with φ : U → X × Y such that

φ(U ∩N) = φ(U) ∩ (X × {0}).

Since dimN = dimM then dimX × {0} = dimX × Y , thus Y = {0}. This implies

(U, φ) is a chart of N , thus U is an open neighbourhood of x in N as required.

(iii): The inclusion map from N to N ′ can be seen to be an immersion, thus the

result follows.

Remark A.1.9. Let X be a normed space. For each x, y ∈ X we can define the

smooth path

γy : (−1, 1) → X, t 7→ x+ ty.

We can now define a linear isomorphism

I : X → TxX, y 7→ [γy]x.
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The map I gives us a natural way to embed the tangent spaces of each point of X

inside X as a subspace. Further, for any Ck-submanifold M of X with x ∈ M , by

Proposition A.1.8 (i), ι is an immersion, thus we can embed the tangent space TxM

into X as a linear subspace under the unique injective linear map I−1 ◦ dι(x).

A.2 Matroids

A.2.1 Finite matroids

Definition A.2.1. A matroid is a pair M = (S, I) where S is a finite set and I ⊂ P(S)

is a set where the following holds:

(i) I1: ∅ ∈ I.

(ii) I2: If I1 ⊂ I2 and I2 ∈ I then I1 ∈ I.

(iii) I3: If I1, I2 ∈ I and |I1| < |I2| then there exists e ∈ I2 such that I1 ∪ {e} ∈ I.

We define any set in I to be independent and any set not in I to be dependent.

We may also define the following combinatorial structures for a matroid (S, I):

(i) Any maximally independent subset of S (with respect to set inclusion) is a base.

(ii) Any minimally dependent subset of S (with respect to set inclusion) is a circuit.

(iii) The rank function is the map r : P(S) → N ∪ {0} where

r(A) := max {|I| : I ⊂ A, I ∈ I} .

(iv) The closure operator is the map ⟨·⟩ : P(S) → P(S) where

⟨A⟩ := {x ∈ S : x ∈ A or I ∪ {x} /∈ I for some independent I ⊂ A} .
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There are many equivalent definitions for a matroid, in the sense that the combi-

natorial structures defined will generate the same set of independent sets. Here we

outline a few.

Definition A.2.2. A matroid is a pair M = (S,B) where S is a finite set and B ⊂ P(S)

is a set where the following holds:

(i) B1: B ̸= ∅.

(ii) B2: If B1, B2 ∈ B and e ∈ B1 \ B2 then there exists f ∈ B2 \ B1 such that

(B1 \ {e}) ∪ {f} ∈ B.

We define any set in B to be a base, and define any subset of a base to be independent

and any set that is not a subset of a base to be dependent.

Definition A.2.3. A matroid is a pair M = (S, C) where S is a finite set and C ⊂ P(S)

is a set where the following holds:

(i) C1: ∅ /∈ C.

(ii) C2: If C1, C2 ∈ C and C1 ⊂ C2 then C1 = C2.

(iii) C3: If C1, C2 ∈ C, C1 ̸= C2 and e ∈ C1 ∩ C2 then there exists C3 ∈ C such that

C3 ⊂ (C1 ∪ C2) \ {e}.

We define any set in C to be a circuit, and define any set that does not contain a circuit

to be independent and any set that contains a circuit to be dependent.

Definition A.2.4. A matroid is a pair M = (S, r) where S is a finite set and

r : P(S) → N ∪ {0} is a function where the following holds:

(i) R1: For all A ⊆ S, 0 ≤ r(A) ≤ |A|.

(ii) R2: If A ⊆ B ⊆ S then r(A) ≤ r(B).
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(iii) R3: For all A,B ⊆ S,

r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

We define r to be the rank function, and define any A ⊆ S to be independent if

r(A) = |A| and dependent otherwise.

Definition A.2.5. A matroid is a pair M = (S, ⟨·⟩) where S is a finite set and

r : P(S) → P(S) is a map where the following holds:

(i) CL1: For all A ⊆ S, A ⊆ ⟨A⟩.

(ii) CL2: For all A ⊆ S, ⟨⟨A⟩⟩ = ⟨A⟩.

(iii) CL3: For all A ⊆ B ⊆ S, ⟨A⟩ ⊆ ⟨B⟩.

(iv) CL4: For all A ⊆ S and e, f ∈ S \ ⟨A⟩, if e ∈ ⟨A ∪ {f}⟩ then f ∈ ⟨A ∪ {e}⟩.

We define ⟨·⟩ to be the closure operator, and define any A ⊆ S to be independent if

e /∈ ⟨A \ {e}⟩ for all e ∈ A and dependent otherwise.

Theorem A.2.6. Let S be a finite set. Then the following holds:

(i) [57, Theorem 1.2.3] Let (S,B) be a matroid as defined in Definition A.2.2. If I is

the set of independent sets then (S, I) is a matroid as defined in Definition A.2.1

with B as its set of bases.

(ii) [57, Theorem 1.1.4] Let (S, C) be a matroid as defined in Definition A.2.3. If I is

the set of independent sets then (S, I) is a matroid as defined in Definition A.2.1

with C as its set of circuits.

(iii) [57, Theorem 1.3.2] Let (S, r) be a matroid as defined in Definition A.2.4. If I is

the set of independent sets then (S, I) is a matroid as defined in Definition A.2.1

with r as its rank function.



A.2 Matroids 201

(iv) [57, Theorem 1.4.4] Let (S, ⟨·⟩) be a matroid as defined in Definition A.2.5. If

I is the set of independent sets then (S, I) is a matroid as defined in Definition

A.2.1 with ⟨·⟩ as its closure operator.

Theorem A.2.7. Let (S, I) be a matroid as defined in Definition A.2.1. Then the

following holds:

(i) [57, Corollary 1.2.5] If B is the set of bases of (S, I) then (S,B) is a matroid as

defined in Definition A.2.2. Further, the independent sets of (S,B) are exactly

the independent set of (S, I).

(ii) [57, Corollary 1.1.5] If C is the set of circuits of (S, I) then (S, C) is a matroid as

defined in Definition A.2.3. Further, the independent sets of (S, C) are exactly

the independent set of (S, I).

(iii) [57, Corollary 1.3.4] If r is the rank function of (S, I) then (S, r) is a matroid as

defined in Definition A.2.4. Further, the independent sets of (S, r) are exactly

the independent set of (S, I).

(iv) [57, Corollary 1.4.6] If ⟨·⟩ is the closure operator of (S, I) then (S, ⟨·⟩) is a matroid

as defined in Definition A.2.5. Further, the independent sets of (S, ⟨·⟩) are exactly

the independent set of (S, I).

A.2.2 Infinite matroids

There are many ways of extending matroids to infinite sets. The two most common

are finitary matroids and B-matroids. We shall only describe finitary matroids, the

stronger property out of the two, and we refer the reader to [11].

Definition A.2.8. A finitary matroid is a pair M = (S, I) where S is a set and

I ⊂ P(S) is a set where the following holds:
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(i) I1: ∅ ∈ I.

(ii) I2: I ∈ I if and only if for all J ⊂⊂ I, J ∈ I.

(iii) I3: If I1, I2 ∈ I and |I1| < |I2| < ∞ then there exists e ∈ I2 such that I1∪{e} ∈ I.

We define any set in I to be independent and any set not in I to be dependent.

We may also define the following combinatorial structures for a finitary matroid

(S, I):

(i) Any maximally independent subset of S (with respect to set inclusion) is a base.

(ii) Any minimally dependent subset of S (with respect to set inclusion) is a circuit.

(iii) The closure operator is the map ⟨·⟩ : P(S) → P(S) where

⟨A⟩ := {x ∈ S : x ∈ A or I ∪ {x} /∈ I for some independent I ⊂ A} .

Similar to matroids, there are many equivalent definitions for a finitary matroid.

Here we outline a few.

Definition A.2.9. A finitary matroid is a pair M = (S, C) where S is a set and

C ⊂ P(S) is a set where the following holds:

(i) C1: ∅ /∈ C.

(ii) C2: If C1, C2 ∈ C and C1 ⊂ C2 then C1 = C2.

(iii) C3: If C1, C2 ∈ C, C1 ̸= C2 and e ∈ C1 ∩ C2 then there exists C3 ∈ C such that

C3 ⊂ (C1 ∪ C2) \ {e}.

(iv) C4: Every set in C is finite.
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We define any set in C to be a circuit, and define any set that does not contain a circuit

to be independent and any set that contains a circuit to be dependent.

Definition A.2.10. A finitary matroid is a pair M = (S, ⟨·⟩) where S is a set and

r : P(S) → P(S) is a map where the following holds:

(i) CL1: For all A ⊆ S, A ⊆ ⟨A⟩.

(ii) CL2: For all A ⊆ S, ⟨⟨A⟩⟩ = ⟨A⟩.

(iii) CL3: For all A ⊆ B ⊆ S, ⟨A⟩ ⊆ ⟨B⟩.

(iv) CL4: For all A ⊆ S and e, f ∈ S \ ⟨A⟩, if e ∈ ⟨A ∪ {f}⟩ then f ∈ ⟨A ∪ {e}⟩.

(v) CL5: ⟨A⟩ = ⋃
B⊂⊂A ⟨B⟩.

We define ⟨·⟩ to be the closure operator, and define any A ⊆ S to be independent if

e /∈ ⟨A \ {e}⟩ for all e ∈ A and dependent otherwise.

Theorem A.2.11. Let S be any set. Then the following holds:

(i) Let (S, C) be a matroid as defined in Definition A.2.3. If I is the set of independent

sets then (S, I) is a matroid as defined in Definition A.2.1 with C as its set of

circuits.

(ii) Let (S, ⟨·⟩) be a matroid as defined in Definition A.2.5. If I is the set of

independent sets then (S, I) is a matroid as defined in Definition A.2.1 with ⟨·⟩

as its closure operator.

Proof. (i): We first check the independence axioms:

• I1: By C1, ∅ /∈ C. As the only subset of ∅ is itself, ∅ ∈ I.
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• I2: Suppose I ∈ I, then I contains no circuits. It follows that for any subset

J ⊂⊂ I, J can also not contain a circuit, thus J is also independent.

Now suppose that for all J ⊂⊂ I, J ∈ I, but I is not independent. Then I

contains a circuit C. By C4, C is a finite subset of I, thus C is independent. As

C ⊂ C and C is a circuit, we obtain a contradiction as required.

• I3: The proof is identical to the finite matroid case, see [57, Theorem 1.1.4].

Let C be a circuit of the finitary matroid (S, I), then C is a minimally dependent

subset. Due to how we defined our independent sets, this implies any proper subset of

C does not contain an element of C while C does, thus C ∈ C as required. Now choose

a circuit in (S, C), then C is dependent in (S, I). By C2, all proper subsets of C are

independent in (S, I), thus C is a circuit of (S, I).

(ii): We first check the independence axioms:

• I1: As ∅ contains no elements it is trivially an independent subset of (S, ⟨·⟩).

• I2: Suppose I ∈ I but there exists J ⊂⊂ I such that J is not independent. Then

there exists e ∈ J such that e ∈ ⟨J \ {e}⟩. We now note by CL3,

e ∈ ⟨J \ {e}⟩ ⊂ ⟨I \ {e}⟩ ,

a contradiction.

Now suppose that for all J ⊂⊂ I, J ∈ I, but I /∈ I. Then there exists

e ∈ ⟨I \ {e}⟩. By CL5, there exists J \ {e} ⊂⊂ I \ {e} such that e ∈ ⟨J \ {e}⟩,

thus J is not independent. However J ⊂⊂ I, a contradiction.

• I3: The proof is identical to the finite matroid case, see [57, Theorem 1.4.4].
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Let ⟨·⟩′ to be the closure operator generated by the finitary matroid (S, I). By

Theorem A.2.6 (iv) ⟨A⟩′ = ⟨A⟩ for all finite sets, thus by CL5 applied to both closure

operators, ⟨·⟩′ = ⟨·⟩ as required.

Theorem A.2.12. Let (S, I) be a matroid as defined in Definition A.2.1. Then the

following holds:

(i) If C is the set of circuits of (S, I) then (S, C) is a matroid as defined in Definition

A.2.3. Further, the independent sets of (S, C) are exactly the independent set of

(S, I).

(ii) If ⟨·⟩ is the closure operator of (S, I) then (S, ⟨·⟩) is a matroid as defined in Defi-

nition A.2.5. Further, the independent sets of (S, ⟨·⟩) are exactly the independent

set of (S, I).

Proof. (i): We first check the circuit axioms (however, we shall prove C4 before C3):

• C1: This follows from I1.

• C2: This follows as the circuits are exactly the minimally dependent subsets.

• C4: Suppose A is infinite and dependent, then by I4, there exists a finite

dependent subset A′ ⊂⊂ A. It now follows A is not a minimally dependent subset

as required.

• C3: As C4 holds then all circuits are finite. The result now follows from the

same method employed in [57, Lemma 1.1.3].

Suppose I is an independent set in the finitary matroid (S, C), then I contains no

circuits C ∈ C. If I is dependent in (S, I) then I would contain a circuit, thus I is

independent in (S, I). Now suppose I is a dependent set in the finitary matroid (S, C),

then there exists C ∈ C such that C ⊂ I. By C4, C is finite, thus by I2 I is dependent

in (S, I).
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(ii): We note that CL1-C4 hold for ⟨·⟩ restricted to the finite subsets of S, thus if

C5 holds then CL1-C4 hold also.

CL5: Choose A ⊂ S and e ∈ ⟨A⟩ \ A, then there exists an independent set I ⊂ A

where I ∪ {e} /∈ I. By I2, there exists a dependent set J ∪ {e} ⊂⊂ I ∪ {e} and J ∈ I.

By definition, e ∈ ⟨J⟩, thus e ∈ ⋃
B⊂⊂A ⟨B⟩. Now choose e ∈ B for some B ⊂⊂ A,

then there exists an independent set I ⊂ B where I ∪ {e} /∈ I. As I ⊂ A then e ∈ ⟨A⟩

as required.

Define I ′ to be the independent subsets of (S, ⟨·⟩). By Theorem A.2.7 (iv), I, I ′

have the same finite sets. By applying I2 to both we have that I = I ′.

While the following proposition is immediate for matroids, it requires slightly more

thought for finitary matroids.

Proposition A.2.13. [11, Corollary 4.4] Let (S, I) be a finitary matroid and A ⊂ S.

Then A contains an independent subset I such that if J ⊂ A is independent and I ⊂ J

then I = J .
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Miscellaneous results

B.1 Matrices with vector values

For any normed space we shall denote Mn×m(X) to be the set of all n×m matrices

A = (ai,j) 1≤i≤n
1≤j≤m

where ai,j ∈ X for all i, j; for this section we shall refer to matrices with upper case

letters and their entries to be the corresponding lower letter.

For A ∈ Mn×m(X∗) we may define the linear maps

TA : Xm → Rn, (xj)m
j=1 7→

 m∑
j=1

ai,j(xj)
n

i=1

and

T ∗A : Rn → (X∗)m, (yi)n
i=1 7→

(
n∑

i=1
yiai,j

)m

j=1
.
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Given a normed space X and m ∈ N we shall define the map

⟨·, ·⟩ : Xm × (X∗)m → R, ((xj)m
j=1, (fj)m

j=1) 7→
〈
(xj)m

j=1, (fj)m
j=1

〉
:=

m∑
j=1

fj(xj).

Lemma B.1.1. Let X be a normed space, A ∈ Mn×m(X∗) and ⟨·, ·⟩ be the standard

inner product of Rn. Then for all x := (xj)m
j=1 ∈ Xm and y := (yi)n

i=1 ∈ Rn,

⟨TA(x), y⟩ = ⟨x, T ∗A(y)⟩ .

Proof. We observe that

⟨TA(x), y⟩ =
〈 m∑

j=1
ai,j(xj)

n

i=1

, (yi)n
i=1

〉
=

n∑
i=1

m∑
j=1

yjai,j(xj),

and

⟨x, T ∗A(y)⟩ =
〈

(xj)m
j=1,

(
n∑

i=1
yiai,j

)m

j=1

〉
=

n∑
i=1

m∑
j=1

yjai,j(xj).

We define a matrix A ∈ Mn×m(X) to have row independence if the set

{(ai,j)1≤j≤m ∈ Xm : i = 1, . . . , n}

is linearly independent.

Lemma B.1.2. Let X be a normed space and A ∈ Mn×m(X∗). Then A has row

independence if and only if T ∗A is injective.

Proof. We note that y ∈ kerT ∗A if and only if y is a linear dependence on the rows of

A, thus A has row independence if and only if T ∗A is injective.
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Proposition B.1.3. Let X be a normed space and A ∈ Mn×m(X∗). Then A has row

independence if and only if TA is surjective.

Proof. Suppose A has row independence but TA(Xm) ̸= Rn, then we may choose

z ∈ Rn such that ⟨TA(x), z⟩ = 0 for all x ∈ Xm. By Lemma B.1.1, ⟨x, T ∗A(z)⟩ = 0 for

all x ∈ Xm, thus TA(z) = 0. However, by Lemma B.1.2, T ∗A is injective, a contradiction.

Now suppose TA is surjective but A does not have row independence. By Lemma

B.1.2, T ∗A is not injective, thus there exists z ∈ Rn such that T ∗A(z) = 0. By Lemma

B.1.1, it follows that ⟨TA(x), z⟩ = 0 for all x ∈ Xm. As TA is surjective, there exists

w ∈ Xm such that TA(w) = z. However, ⟨z, z⟩ ≠ 0, a contradiction.

B.2 Negligible sets and complete Haar measures

on normed spaces

Let S be any set and Σ(S) a set of subsets of S, then Σ(S) is a σ-algebra if the following

holds:

(i) S ∈ Σ(S).

(ii) If A ∈ Σ(S) then X \ A ∈ Σ(S).

(iii) If (An)n∈N is a sequence in Σ(S) then ⋃n∈NAn ∈ Σ(S).

A measure is a map m : Σ(S) → [0,∞] such that the following holds:

(i) m(∅) = 0.

(ii) For a sequence (An)n∈N in Σ(S) with Ai ∩ Aj = ∅ for all i ̸= j,

m

⋃
n∈N

An

 =
∑
n∈N

m(An).
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Let X be a normed space and define B(X) to be the set of Borel sets of X, sets

formed by the countable union and intersections of open and closed sets. By definition,

B(X) is a σ-algebra. A function m : B(X) → [0,∞] is a regular (Borel) measure if

the following holds:

(i) m is inner regular, i.e. for any S ∈ B(X),

m(S) = sup {m(C) : C ⊂ S, C is a compact set } .

(ii) m is outer regular, i.e. for any S ∈ B(X),

m(S) = inf {m(O) : S ⊂ O, O is an open set } .

A regular measure m is a Haar measure of X if it also has the following properties:

(i) (Finiteness on compact sets) If C ⊂ X is compact then m(C) < ∞.

(ii) (Positivity on open sets) If O ⊂ X is open then m(O) > 0.

(iii) (Translation invariance) For all S ∈ B(X) and x ∈ X, m(S + x) = m(S).

By [67, Theorem 1.4.2], there exists a Haar measure m on any normed space X; further,

by [67, Theorem 1.4.3], if m′ is another Haar measure on X, there exists λ > 0 such

that m′ = λm. It follows that we may consider the unique (up to scalar multiplication)

Haar measure m on any given normed space X.

Define for some Haar measure m the sets

B0(X) := {S ∈ B(X) : m(S) = 0}

N(X) := {N ⊂ X : N ⊂ S for some S ∈ B0(X)} .
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As m is unique up to scalar multiplication, the sets B0(X) and N(X) are independent

of our choice of Haar measure. By letting A△B be the symmetric difference of two

sets, we may extend B(X) to a larger set

B(X) := {S ⊂ X : S△S ′ ∈ N(X) for some S ′ ∈ B(X)} .

The set B(X) is the smallest σ-algebra that contains B(X) ∪N(X).

We may now extend m to the complete Haar measure m : B(X) → [0,∞], the

measure on B(X) where given S ∈ B(X) with S△S ′ ∈ N(X) for some S ′ ∈ B(X),

m(S) = m(S ′). This definition is well-defined; if S△S ′′ ∈ N(X) also for some

S ′′ ∈ B(X), then

S ′△S ′′ ⊂ (S△S ′) ∪ (S△S ′′) ∈ N(X),

and so it follows that m(S ′) = m(S ′′). It is immediate that S ∈ N(X) if and only if

m(S) = 0. The complete Haar measure will have positivity and invariance, and for

any S ∈ B(X),

m(S) = sup {m(C) : C ⊂ S, C is a compact set }

= inf {m(O) : S ⊂ O, O is an open set } .

It follows immediately that a set S ⊂ X will lie in N(X) if and only if there exists a

sequence of open sets (An)n∈N such that S ⊂ An and m(An) → 0 as n → ∞.

Example B.2.1. For Rd, we define the Lebesgue measure to be the complete Haar

measure d where d([0, 1]d) = 1.

For the following results (Lemma B.2.2, Corollary B.2.3 and Corollary B.2.4) it is

sufficient to show the result holds for Haar measures.
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Lemma B.2.2. Let m be a complete Haar measure on a normed space X and

g ∈ GA(X). Then there exists C > 0 such that m(g(S)) = Cm(S) for all S ∈ B(S).

Proof. We note that the measure mg : B(X) → [0,∞] with mg(S) = m(g(S)) is also a

Haar measure of X, thus there exists C > 0 such that mg = Cm.

For a basis e1, . . . , ed of a normed space X we define the unit box

Box := conv
{

d∑
i=1

σiei : σi ∈ {0, 1}
}
.

Corollary B.2.3. Let m be a complete Haar measure on a d-dimensional normed

space X. If S ∈ B(S) and λ > 0 then m(λS) = λdm(S).

Proof. Choose a basis e1, . . . , ed of X and define Box accordingly. As m has invariance,

m(Box) = m

 n−1⋃
k1=0

. . .
n−1⋃
kd=0

 1
n

Box +
d∑

j=1
kjej


=

n−1∑
k1=0

. . .
n−1∑
kd=0

m
( 1
n

Box
)

= ndm
( 1
n

Box
)
,

thus m(n−1 Box) = n−dm(Box) for all n ∈ N. By a similar method we see that

m(nBox) = nm(Box) for all n ∈ N, thus m(λBox) = λdm(Box) for all rational λ > 0.

As m is outer regular, m(λBox) = λdm(Box) for all λ > 0. The result now follows

from Lemma B.2.2.

Corollary B.2.4. Let m be a complete Haar measure of a normed space X and

g ∈ Isom(X). Then m(g(S)) = m(S) for all S ⊂ B(X).

Proof. As m is translation invariant, we may assume g is linear. As T (B1[0]) = B1[0]

then m(g(B1[0])) = m(B1[0]). The result now follows from Lemma B.2.2.

Lemma B.2.5. Let X be a normed space and C a compact set that lies in a hyperplane

Y of X, then m(C) = 0.
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Proof. Let d := dimX, e1, . . . , ed ∈ X be a basis and m be a complete Haar measure

of X. Define the closed set

S :=
{

d−1∑
i=1

aiei : 0 ≤ ai ≤ 1 for all i = 1, . . . , d− 1
}
.

By Lemma B.2.2, we may assume C ⊂ S. It now follows that if m(S) = 0 then the

result holds.

Define for each n ∈ N ∪ {0} the open sets

Sn :=
{

d∑
i=1

aiei : |ad| < 1
2n
, |ai| < 2 for all i = 1, . . . , d− 1

}
.

Also define the bijective linear transform T : X → X with

T (
d∑

i=1
aiei) =

d−1∑
i=1

aiei + ad

2 ed,

then Sn = T n(S0). Since S0 is compact then m(S0) < ∞. By Lemma B.2.2, there

exists some C > 0 such that m(Sn) = Cnm(S0). As

(
S1 + 1

2ed

)
∪
(
S1 − 1

2ed

)
⊂ S0,

(
S1 + 1

2ed

)
∩
(
S1 − 1

2ed

)
= ∅

then C < 1, thus m(Sn) → 0 as n → ∞. As S ⊂ Sn and m is outer regular, m(S) = 0

also.

Theorem B.2.6. Let X be a normed space with complete Haar measure m. For any

set S ⊂ X, the following are equivalent:

(i) S is negligible in X.

(ii) m(S) = 0.
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Proof. (i) ⇒ (ii): Suppose S is negligible and choose any ϵ > 0. Let c := m(B1(0)).

As S is negligible, there exists a sequence (xn)n∈N in S and (rn)n∈N in (0,∞) such that

such that ∑n∈N r
d
n <

ϵ
c

and

S ⊂ O :=
⋃

n∈N
Brn(xn).

By Corollary B.2.3,

m(O) ≤
∑
n∈N

crd
k < ϵ.

As m is outer regular it follows that m(S) = 0.

(ii) ⇒ (i): Suppose m(S) = 0 and choose any ϵ > 0. Choose a basis e1, . . . , ed of X

and define Box accordingly. Fix δ > 0 such that Box ⊂ Bδ(0). As m(S) = 0 and m is

outer regular, there exists an open set O such that S ⊂ O and m(O) < ϵm(Box)
δd . For

each n ∈ N define the sets

Xn :=
{

d∑
i=1

ai

2n
ei : ai ∈ Z for all i = 1, . . . , d

}
,

Bn :=
{ 1

2n
Box +x : x ∈ O ∩Xn,

( 1
2n

Box +x
)

⊂ O
}
,

B :=
A ∈

⋃
n∈N

Bn : A is not a proper subset of any B ∈
⋃

n∈N
Bn


We now note 3 things:

(i) B is a countable set.

(ii) For A,B ∈ B, A ∩B has measure zero (Lemma B.2.5).

(iii) O = ⋃
A∈B A.

This implies that m(O) = ∑
A∈Bm(A).
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As B is countable we may define a sequence (rn)n∈N in (0,∞) and a sequence

(xn)n∈N in O such that

B = {rn Box +xn : n ∈ N} ,

thus

O =
⋃

n∈N
(rn Box +xn) ⊂

⋃
n∈N

Bδrn(xn).

By Corollary B.2.3,

∑
n∈N

rd
nm(Box) =

∑
n∈N

m (rn Box +xn) = m(O) < ϵm(Box)
δd

,

thus

∑
n∈N

(δrn)d < ϵ

as required.

Proposition B.2.7. Let X be a normed space. Then the following hold:

(i) If (Sn)n∈N is a sequence of negligible sets then S := ⋃
n∈N Sn is negligible.

(ii) If S is negligible then X \ S is dense in X.

Proof. Let m be a complete Haar measure of X.

(i): By Theorem B.2.6, m(Sn) = 0 for each n ∈ N, thus m(S) = 0. By Theorem

B.2.6, S is negligible.
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(ii): Suppose X \ S is not dense in X, then there exists x ∈ X and r > 0 such that

Br(x) ⊂ S. By positivity we note that

m(S) ≥ m(Br(x)) > 0.

However, by Theorem B.2.6, m(S) = 0, a contradiction.

Lemma B.2.8. Let X be a normed space. Then every proper affine subspace of X is

negligible.

Proof. This follows by Lemma B.2.5 and Proposition B.2.7 (i).

Proposition B.2.9. Let M be a n-dimensional Ck-submanifold of a d-dimensional

normed space X, where k ∈ N ∪ {∞} and n < d. Then M is negligible.

Proof. Choose any point x ∈ S. As M is a submanifold of X, there exists an open

neighbourhood Ux of x in X, an open set U ⊂ Rd and a diffeomorphism φ : Ux → U

such that the restriction

φ′ : Ux ∩M → U ′ := U ∩ (Rn × {0}d−n), y 7→ φ(y)

is well-defined. By Lemma B.2.8, set R×{0}n−1 is negligible in Rd, thus by [47, Lemma

3.6.1],

φ−1(Rn × {0}d−n ∩ U ′) = Ux ∩M

is negligible.

As {Ux : x ∈ M} is a cover of M and X is paracompact then there exists a countable

set S such that M = ⋃
x∈S Ux ∩M . By Proposition B.2.7 (i), M is negligible.

Proposition B.2.10. Let P : Rd → Rk be the projection P ((xn)d
n=1) := (xn)k

n=1.

Then the following holds:
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(i) If S ⊂ Rk is negligible then P−1[S] is negligible in Rd.

(ii) If S ⊂ Rd is a subset such that Sc is negligible then P (S)c is negligible in Rk.

Proof. Let md and mk be the Lebesgue measure of Rd and Rk respectively. By Theorem

B.2.6, we need only show the sets have measure zero.

(i): As P is continuous then P−1[S] ∈ B(X). We note that if

Sn := S × [n, n+ 1]d−k

then P−1[S] = ⋃
n∈Z Sn. We note thatmd(S×[n, n+1]d−k) = mk(S), thusmd(P−1[S]) =

0.

(ii): By Proposition B.2.7 (i) and possible translation, it follows we may assume that

S ⊂ [0, 1]d. We may further assume that S has the property that if (x, a) ∈ Rk × Rd−k

lies in S for some a ∈ [0, 1] then (x, b) ∈ S for all b ∈ [0, 1] as this will not change

the value of mk(P (S)). We note immediately that mk(P (S)) = md(S) = 1, thus

mk(P (S)c) = 0.

B.3 Zero sets of algebraic and analytic functions

For this section we shall assume Rd has the standard Euclidean norm.

Define N0 := N ∪ {0}. For any k = (ki)d
i=1 ∈ Nd

0 and x = (xi)d
i=1 ∈ R, we define

|k| :=
d∑

i=1
ki, k! := k1! . . . kd!, xk := xk1

1 . . . xkd
d .

Let U ⊂ Rd be an open set. A function f : U ⊂ Rd → R is analytic if for each point

z ∈ U there exists a set (ak)k∈Nd
0

and r > 0 such that for all x ∈ Br(x),

f(x) :=
∑

k∈Nd
0

ak(x− z)k,
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where the summation is absolutely convergent.

For an open set U ⊂ Rd we define the following:

(i) The zero set f in U

VU(f) := {x ∈ U : f(x) = 0}.

(ii) The sets

RU(f) := {x ∈ U : f(x) = 0, df(x) ̸= 0}, SU(f) := VU(f) \RU(f).

We will denote V (f) := VRd(f) (and similarly R(f) and S(f)) for brevity. Given a set

F of analytic functions with the same domain U we may define the analytic set

VU(F ) := {x ∈ U : f(x) = 0 for all f ∈ F}.

Likewise, we denote V (F ) := VRd(F ) for brevity, and if each of F is an algebraic

function we define V (F ) to be an algebraic set.

We define for each k ∈ N0 the k-th partial derivative at x ∈ U by

∂kf := ∂j1

∂xj1
1
. . .

∂jdf(x)
∂xjd

d

.

If the map f is smooth (as shall be shown in the following result) the order in which

we apply the partial derivatives does not matter [61, Theorem 9.41].

Proposition B.3.1. [41, Proposition 1.6.3] Let f is analytic and for z ∈ U suppose

f(x) = ∑
k∈Nd

0
ak(x − z)k for all x ∈ Br(z). Then for each j ∈ Nd

0 (including (0)d
k=1),
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the map ∂jf : U → R is well-defined, smooth and analytic, where for all x ∈ Br(z),

∂jf(x) =
∑

k∈Nd
0

(k + j)!
k! ak+j(x− z)k.

Lemma B.3.2. Let U ⊂ Rd be open set and let f : U → Rd be the analytic function

with f(x) := ∑
k∈Nd

0
ak(x− z)k for some z ∈ U . Then f is uniformly zero on U if and

only if ak = 0 for all k ∈ N0.

Proof. If ak = 0 for all k ∈ N0 then it is immediate that f = 0. Suppose f is uniformly

zero on U but there exists aj ≠ 0 for some j ∈ N0. As f is uniformly zero on U ,

then for each k ∈ N0 and x ∈ U , ∂kf(x) = 0. We note that ∂jf(z) = j!aj ̸= 0, a

contradiction.

Lemma B.3.3. Let U ⊂ Rd a connected open set and f : U ⊂ Rd → R be a non-zero

analytic function. Then

VU(f) ⊂
⋃

k∈Nd
0

RU(∂kf).

Proof. Suppose there exists z ∈ VU (f) with z /∈ RU (∂kf) for all k ∈ Nd
0. It follows from

Proposition 1.1.6 that ∂kf(z) = 0 for all k ∈ Nd
0. As f is analytic there exists there

exists a set (ak)k∈Nd
0

and r > 0 such that for all x ∈ Br(x), f(x) := ∑
k∈Nd

0
ak(x− z)k.

By Proposition B.3.1, ∂jf(z) = j!aj ̸= 0, a contradiction.

Lemma B.3.4. Let U ⊂ Rd a connected open set and f : U ⊂ R → R be a non-zero

analytic function. Then RU(f) is negligible.

Proof. As f can be extended to a complex analytic function on some complex open

set Ω, the result follows from [62, Theorem 10.18].

Lemma B.3.5. Let U ⊂ Rd a connected open set and f : U ⊂ Rd → R be a non-zero

analytic function. Then RU(f) is negligible.



220 Miscellaneous results

Proof. If d = 1 then by Lemma B.3.4, VU (f) has a countable set of zeroes, thus RU (f)

is negligible. Suppose d > 1. We note that RU(f) is a non-empty open subset of

VU(f) (as SU(f) is closed) and rank df(x) = 1 for all x ∈ RU(f), thus by Corollary

2.1.3, RU(f) is a 1-dimensional submanifold of Rd. By Proposition B.2.9, RU(f) is

negligible.

Theorem B.3.6. Let U ⊂ Rd a connected open set and f : U ⊂ Rd → R be a non-zero

analytic function. Then VU(f) is negligible.

Proof. By Lemma B.3.3,

VU(f) ⊂
⋃

k∈Nd
0

RU(∂kf).

By Lemma B.3.5, each RU(∂kf) is negligible, thus VU(f) is negligible also.

Corollary B.3.7. Let V be an algebraic set in Rd where V ̸= Rd, then V is negligible.

Proof. By definition, there exists a set F of algebraic functions such that V (F ) = V .

We now note that

V =
⋂

f∈F

V (f) ⊂ V (f),

thus by Theorem B.3.6, V is negligible.
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