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Abstract 

  

We consider a model-averaged forecast-based estimate of the output gap to measure economic 

slack in ten industrialized economies. Our measure takes changes in the long-run growth rate 

into account and, by addressing model uncertainty using equal weights on different forecast-

based estimates, is robust to different assumptions about the underlying structure of the 

economy. For all ten countries in the sample, we find that the estimated output gap has much 

larger negative movements during recessions than positive movements in expansions, suggesting 

business cycle asymmetry is an intrinsic characteristic of industrialized economies. Furthermore, 

the estimated output gap is always strongly negatively correlated with future output growth and 

unemployment and positively correlated with capacity utilization. It also implies a convex 

Phillips Curve in many cases. The model-averaged output gap is reliable in real time in the sense 

of being subject to relatively small revisions. 
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1. Introduction 

There is relatively little consensus in macroeconomics about how best to measure economic 

slack. Even settling on the output gap (i.e., the difference between actual and potential log real 

GDP for an economy) as the preferred measure, there remains the challenge of defining and 

calculating “potential”. Common decomposition methods that assume a linear structure for the 

economy, such as the widely-used Hodrick-Prescott (1997) (HP) filter, an unobserved 

components (UC) model with uncorrelated components (Clark, 1987), and a UC model with 

correlated components (Morley, Nelson, and Zivot, 2003), can lead to very different estimates of 

the output gap, as shown by, for example, Morley, Nelson, and Zivot (2003) or Perron and Wada 

(2016). A recent study by Hamilton (2018) also highlights several drawbacks of the HP filter, in 

particular the fact that it can generate cycles with spurious dynamics. Furthermore, there is a vast 

literature that documents a possible nonlinear structure for the economy (see, for example, 

Hamilton, 1989, Kim, 1994, Kim and Nelson, 1999, Kim, Morley and Piger, 2005, and Sinclair, 

2010). However, as we show in our analysis, formal hypothesis tests provide only mixed 

evidence that nonlinear models of aggregate output are preferable to linear models. Given a lack 

of strong evidence for a single empirical specification of the economy that outperforms all other 

models, we propose a model-averaged forecast-based estimate of the output gap as the 

appropriate measure of economic slack.  

In terms of the forecast-based approach adopted in this paper, it is based on the idea that the 

presence or absence of economic slack directly implies whether an economy can or cannot grow 

faster than its long-run average growth rate without necessarily leading to subpar growth in the 

future. In particular, if the optimal forecast of future output growth is above average, then output 

will be estimated to be below potential and vice versa. This approach implicitly defines 

“potential” as the stochastic trend of log real GDP and has its origins in the influential study by 

Beveridge and Nelson (1981, BN hereafter). 

Given a forecast-based approach to estimating the output gap, it is necessary to confront the 

question of how best to construct a reasonable forecast of future output growth. BN consider 

low-order ARMA models, which result in small output gaps, often with counterintuitive sign 

(e.g., the estimated gap is often positive during recessions). Motivated by the different results 

and mixed evidence for different models discussed above, as well as the forecasting literature 
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and recent studies on estimating the output gap by Garratt, Mitchell, and Vahey (2014) and 

Morley and Piger (2012), we consider model-averaged forecasts instead of relying on one 

particular time series model or class of models. Importantly, we follow Morley and Piger (2012) 

by including nonlinear time series models in the model set under consideration. Notably, this 

approach will not necessarily result in output gap estimates of counterintuitive sign as long as the 

model-averaged forecasts imply negative serial correlation in economic growth at longer 

horizons.  

For our analysis, we measure economic slack in ten industrialized economies, taking structural 

breaks in long-run growth into account.2 Our measure of economic slack is a modified version of 

the model-averaged estimate of the output gap used by Morley and Piger (2012) for US real 

GDP. In particular, while we consider the same broad set of both linear and nonlinear models 

from Morley and Piger (2012) with the addition of Hamilton’s (2018) model, we place equal 

weights on all models considered and we incorporate prior beliefs from previous analysis when 

conducting Bayesian estimation of model parameters. Given the diverse set of linear and 

nonlinear models, our simplified approach of using equal weights produces similar results to 

estimating optimal weights for the United States. However, equal weights and Bayesian 

estimation are much easier to implement for a broad range of economies than the more 

complicated approach to model averaging and maximum likelihood estimation of the nonlinear 

models taken in Morley and Piger (2012).3 

We have three main goals in this paper. First, we seek to demonstrate that a simpler version of 

the methods in Morley and Piger (2012) can replicate the results for US data, but is more broadly 

applicable to data for other countries and appears to work better than estimating model weights 

in many cases, especially for countries that have more limited data availability and shorter data 

samples. Second, we check whether the output gaps we obtain for a set of ten industrialized 

economies exhibit the expected patterns in terms of correlations with future output growth, 

inflation, and narrower measures of slack, while comparing these patterns with those for output 

                                                      
2 We are motivated to consider industrialized economies to determine whether there are any intrinsic characteristics 

for their output gaps, much like Levin and Piger (2006) investigated intrinsic characteristics for inflation rates in 

industrialized economies. 

3 GAUSS code for calculation of the model-averaged estimate of the output gap is available at 

https://sites.google.com/site/jamescmorley/research/code. 
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gaps obtained from other methods. Third, we consider whether the asymmetry in terms of much 

larger negative movements during recessions than positive movements in expansions found for 

the U.S. data is an intrinsic characteristic of business cycles for other industrialized economies. 

Our model-averaged estimate of the output gap produces a consistent picture of the business 

cycle across all ten industrialized economies under consideration. In particular, despite the fact 

that tests for nonlinearity give mixed statistical evidence in favor of nonlinearity, there is clear 

empirical support for the idea that output gaps are subject to much larger negative movements 

during recessions than positive movements in expansions for all ten countries in the sample. This 

is an important finding because it suggests this form of business cycle asymmetry is not just a 

characteristic of the U.S. economy, but is intrinsic in industrialized economies more generally. 

We perform a simulation to demonstrate that this finding of asymmetry is not driven by the fact 

that we include nonlinear models in our set of models. In the case where the true data-generating 

process (DGP) is linear, the estimated output gap using our approach is symmetric. Furthermore, 

our estimated output gaps have strong negative forecasting relationships with future output 

growth in all cases and are closely related to narrower measures of slack given by the 

unemployment rate and capacity utilization. These results support the accuracy of the model-

averaged estimates in comparison with other estimates of the output gap. Results for a Phillips 

curve relationship with inflation are more mixed, but there is evidence in favor of a convex 

relationship for a number of economies, arguing against the imposition of a linear relationship 

when estimating output gaps, such as is done by Kuttner (1994) and in many other studies. 

Finally, using real-time data for the United States, we show that the model-averaged output gap 

also produces reliable estimates in real time in the sense of being subject to relatively small 

revisions. 

The rest of this paper is organized as follows. Section 2 discusses the data, including the possible 

presence of structural breaks in long-run growth for each economy. Section 3 motivates the 

model-averaging approach by demonstrating the sensitivity of the estimate of the output gap to 

the time series model under consideration. Section 4 presents the empirical models and methods 

used in the analysis. Section 5 reports the results first for the benchmark U.S. case and then for a 

group of other industrialized economies. Section 6 discusses the performance of the model 

averaged output gap in real time. Section 7 concludes. 
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2. Data  

We consider macroeconomic data for the United States (US) and nine other industrialized 

economies: Australia (AU), Canada (CA), France (FRA), Germany (DEU), Italy (IT), Japan (JP), 

Korea (KR), New Zealand (NZ), and the United Kingdom (UK). Our sample was selected with 

the intention of examining a representative set of industrialized economies. In particular, we 

include the large to medium-sized G7 economies, an additional medium-sized economy with 

many similar characteristics to the G7 economies (i.e., Australia), a somewhat smaller economy 

that also has many similar characteristics to the G7 economies (i.e., New Zealand), and an 

emergent medium-sized industrialized economy that has undergone several structural changes, 

but has reliable data (i.e., Korea). Data series for real GDP, the price level, the unemployment 

rate, and capacity utilization were sourced from OECD databases and from relevant national data 

sources. See Table A.1 in the appendix for full details. 

For quarterly real GDP, we use the seasonally-adjusted series and construct quarterly growth 

rates by taking first differences of 100 times the natural logs of the levels. The sample periods for 

quarterly growth rates are listed in Table 1 and real GDP (100 time the natural log) for all 

countries is plotted in Figure 1. 

For the price level, we use the core PCE deflator for the United States, core CPI for Canada, 

Germany, France, and the United Kingdom, and headline CPI for the remaining economies. 

These choices were determined by a general preference for core measures, but only when they 

are available for a relatively long sample period in comparison to real GDP. We calculate 

inflation as the year-on-year percentage change in the price level and then construct 4-quarter-

ahead changes in inflation. The relevant sample periods based on common availability of both 

real GDP, price level data, the unemployment rate data, and capacity utilization are listed in 

Table 3 in the next section. 

In addition to sample periods for the real GDP growth rate data, Table 1 reports estimated 

structural break dates for long-run growth rates—i.e., expected growth in the absence of shocks. 

Perron and Wada (2009) argue that it is crucial to account for a structural break in the long-run 

growth rate of US real GDP when measuring economic slack for the US economy using 

unobserved components models. They impose a break date of 1973Q1 based on the notion of a 
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productivity growth slowdown at that time. Similarly, Perron and Wada (2016) show that that the 

popular Hodrick-Prescott (HP) filter is sensitive to the treatment of structural breaks and to 

outliers. In particular, they show that that accounting for structural breaks can lead to very 

different inference about the output cycle in G7 economies. Thus, we allow for structural breaks 

in long-run growth rates. The full structural break test results are presented in Table A.2 in the 

appendix.  

When applying Bai and Perron’s (1998, 2003) sequential testing procedure for structural breaks 

in the mean growth rate of US real GDP, we do not detect any break in the early 1970s. Instead, 

we find the estimated break date is 2000Q3. This break is significant at the 1% level and 

corresponds to a reduction in the mean growth rate. There is only weak evidence in favor of a 

second structural break in 1973Q1 (p-value is 0.13). However, following much of the literature, 

including Perron and Wada (2009, 2016), and acknowledging the possibility of weak power in 

finite samples, we also allow for a second structural break in 1973Q1.4 We discuss the 

consequences of imposing different break dates and demonstrate that our results are robust to 

using a more agnostic approach based on dynamic demeaning rather than imposing structural 

breaks in the supplemental online appendix.  

 It also turns out also to be important to account for structural breaks in long-run growth for the 

other economies as well. With the exception of Australia and New Zealand, we find structural 

breaks for all other economies. The estimated break dates and the corresponding sequence of 

mean growth regimes are reported in Table 1. We find evidence of one structural break for 

Canada, France, Italy, Korea, and the UK and evidence in favor of two structural breaks for 

                                                      
4 Following much of the applied literature, we consider trimming of 15% of the sample from its end points and 

between breaks for admissible break dates. But even when using 5% trimming, we find no evidence of an additional 

structural break for the US in the mid-1970s at the 10% level. As discussed in more detail in the supplemental online 

appendix, not allowing for a second break in 1973 leads to estimates of output slack that are very strongly at odds 

with measures of slack from the previous literature and with more narrowly defined measures of slack, such as the 

unemployment rate. Given the broad evidence in favor of a break in 1973 from the previous literature, we impose a 

second break in 1973Q1. In general, we find that it is more problematic to underestimate than to overestimate the 

number of structural breaks when calculating forecast-based output gaps. Specifically, forecast-based output gaps 

can display permanent movements that proxy for large structural breaks in growth rates when these are not directly 

accounted for, while accounting for smaller or possibly misspecified structural breaks tends to have little impact on 

forecast-based output gaps. Furthermore, as shown in the supplemental online appendix, our results are robust when 

we use a more agnostic approach where the growth rates are calculated using rolling window averages rather than 

imposed break dates.  
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Germany and Japan.5 To account for structural breaks in subsequent analysis, the output growth 

series are mean-adjusted based on the estimated average growth rate in each regime until there is 

no remaining evidence of additional breaks.6   

3. Motivation 

We motivate the model-averaging approach to measuring economic slack described in the next 

section by first considering forecast-based estimates of the output gap based on two commonly 

used models and a very recent approach proposed by Hamilton (2018). In particular, we consider 

an AR(1) model, Harvey and Jaeger’s (1993) unobserved components (UC) model that 

corresponds to the commonly used Hodrick-Prescott (HP) filter with a smoothing parameter of 

1,600 (denoted UC-HP hereafter), and Hamilton’s (2018) regression based filter. The AR(1) 

model is estimated for quarterly real GDP growth and the output gap is estimated using the BN 

decomposition for an AR(1) model. The UC-HP model is estimated for 100 times the natural 

logs of quarterly real GDP and the output gap is estimated using the Kalman filter, while 

Hamilton’s (2018) model is estimated using a linear regression for 100 times the natural log of 

quarterly real GDP. Although it is specified in terms of log levels, the UC-HP model provides an 

                                                      
5 The regression model for testing structural breaks includes only a constant. The evidence for structural breaks is 

generally weaker when allowing for serial correlation. In addition, the p-value for the test statistics for the second 

structural break in Germany in 1991Q2 was only significant at the 0.11 level. Similarly, the test statistics for the 

structural break in the UK in 1973Q1 was only significant at the 0.15 level. The OEDC series for German real GDP 

is adjusted for the reunification level shift, but there is still evidence, albeit somewhat weak, in favor of a slope shift. 

However, previous studies for Germany that use a different set of empirical models (see, inter alia, Klinger and 

Weber, 2016, and Perron and Wada, 2016) find evidence of a break in the early 1990s following the reunification. In 

addition, when using year-on-year growth rates, we find stronger evidence in favor of a structural break in the UK 

and of second structural break in Germany. For the UK, when the 1973Q2 break is not taken into account, almost all 

measures of slack considered here imply that the UK output gap was below trend from 1973Q1 throughout 2016Q1. 

We therefore impose a structural break in the UK in 1973Q1 and a second structural break in 1991Q2 for Germany. 

All other breaks reported in Table 1 were significant at the 10% level.  Allowing for additional structural breaks led 

to model-averaged estimates of the output gap that are very similar to those reported in the paper.  

6 Of course, in this paper the timing of the structural breaks is determined ex-post. If a structural break occurred 

towards the end of the sample, and one was concerned with obtaining forecasts for future values of the output gaps 

estimates, a structural break at the end of the sample would make real time-forecasts imprecise and potentially 

incorrect. However, this is not something that is unique to our approach. All common estimates of the output gap 

would be affected by a structural break towards the end of the sample (see, for example, De Jong and Sakarya, 

2016). Compared to linear models, including models where the output trend is specified as a random walk partially 

mitigates this problem because the breaks in trend could be proxied as large negative shocks to the trend. Given our 

key question of whether the business cycles exhibit asymmetric behavior, we believe the best approach to fully 

evaluate the asymmetric behavior is based on the full information set, and therefore our benchmark specification is 

one that uses the revised data with imposed breaks. However, as shown in section 6 and in the supplemental online 

appendix, our estimates are robust to using a more agnostic approach that uses rolling window averages for the 

average growth rates, and the model averaged output gap estimates are reliable when using real time data.  
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implicit forecast of future output growth, with the Kalman filter calculating the long-horizon 

conditional forecast of future output at each point of time.  

Figure 2 plots the estimated output gaps based on the AR(1), the UC-HP, and the Hamilton 

models for real GDP. The top panel presents the results for US real GDP. As discussed in 

Morley and Piger (2012) for US data, the AR(1) and UC-HP estimates are very different from 

each other, with the output gap based on the AR(1) model being of small amplitude and positive 

during NBER-dated recessions, while the output gap based on the UC-HP being of much larger 

amplitude and negative during NBER-dated recessions. At first sight, it might seem obvious that 

the UC-HP output gap would be preferable, especially given its more intuitive relationship with 

recessions and ease of implementation.  However, multiple studies (for example, Cogley and 

Nason, 1995, De Jong and Sakarya, 2016, Perron and Wada, 2016, and Hamilton, 2018) find that 

the Hodrick-Prescott filter can create large spurious cycles when no actual cycle is present in the 

underlying data-generating process. Hamilton (2018) proposes an alternative regression-based 

approach that entails a regression of the variable at date 𝑡 + ℎ (where ℎ = 8 for quarterly data) 

on the four most recent values as of date 𝑡  as a robust approach to detrending that achieves the 

objectives sought by the HP filter without its drawbacks. However, the AR(1) model fits the data 

much better than the UC-HP and the Hamilton regression gap model by any standard metric used 

for model comparison, including AIC and SIC.7, 8 

                                                      
7 We follow the approach in Morley and Piger (2012) to ensure the adjusted sample periods are equivalent for all 

models under consideration. For the linear and nonlinear AR models discussed below, this involves backcasting 

sufficient observations based on the long-run growth rate to condition on in estimation. For the UC models 

discussed below, it involves placing a highly diffuse prior on the initial level of the stochastic trend and evaluating 

the likelihood for the same observations as for the models of growth rates. In the case of the US when comparing the 

models, for example, the AIC for the AR(1) model is -357.207 and the AIC for the UC-HP model is -599.478, where 

the AIC is rescaled as in Davidson and MacKinnon (2004) such that larger values are preferred. Similarly, the HPD 

log-likelihoods for the AR(1) model is -414.01, whereas the HPD log likelihood for the UC-HP model is -679.67.  

8 The Hamilton model is not directly comparable to the AR(1) models as the left-hand-side variable is the level of 

output rather than the growth rate. However, if the true model is an AR(1) process, 𝑦𝑡 − 𝑦𝑡−1 = 𝑐 +
𝜙(𝑦𝑡−1 − 𝑦𝑡−2) + 𝜖𝑡 which implies that 𝑦𝑡 = 𝜇 + (1 + 𝜙)𝑦𝑡−1 − 𝜙𝑦𝑡−2 + 𝜖𝑡.  Iterating backwards recursively for 

𝑦𝑡+ℎ, we get 𝑦𝑡+ℎ = 𝜇̃ +
1−𝜙ℎ

1−𝜙
𝑦𝑡 − 𝜙

1−𝜙ℎ

1−𝜙
𝑦𝑡−1 + 𝑐𝑡̃ , where 𝜇̃ is a compound term for the mean. The log likelihood 

for the unrestricted model is -698.749 and the (conventional) BIC is 5.389 and the AIC is 5.349. If we estimate a 

restricted version of the Hamilton model where the coefficients on 𝑦𝑡 ,  𝑦𝑡−1 are restricted using the estimated 𝜙̂ =
0.34 for an AR(1) model for Δ𝑦𝑡 , the log likelihood is -705.76, and the (conventional unscaled) BIC and AIC are 

5.378 and 5.311 respectively, indicating that the information criteria would again prefer an AR(1) model, albeit not 

as strongly as in the HP filter case. Furthermore, for the unrestricted Hamilton model, we could not reject the null 

that the coefficients were equal to the coefficients implied by the AR(1) model (p-value 0.493). 
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Furthermore, as pointed out by Nelson (2008), the notion of an output gap as a measure 

economic slack directly implies that it should have a negative forecasting relationship with future 

output growth. Specifically, when the economy is above trend and the output gap is positive, 

future growth should be below average as the economy returns to trend and vice versa. 

Motivated by the analysis in Nelson (2008), we calculate the correlation between a given 

estimate of the output gap and the subsequent 4-quarter output growth.9 Table 2 reports these 

correlations and, consistent with the findings in Nelson (2008), the correlation for the US output 

gap based on the AR(1) model is negative, while the correlation for the UC-HP model is 

positive. This result directly suggests that the output gap based on the AR(1) model provides a 

more accurate measure of economic slack than a UC-HP model, even if its relationship with 

recessions seems counterintuitive.  

The remaining panels of Figure 2 plot the estimated output gaps based on the AR(1), UC-HP, 

and Hamilton gaps for real GDP data for the other nine industrialized economies in our sample. 

The estimates make it clear that the very different implications of the different models for the 

estimated output gap are not just a quirk of the US data. As in the US case, the output gap based 

on the AR(1) model is always smaller in amplitude than the output gap based on the UC-HP and 

Hamilton models and often of the opposite sign. The correlation results for these other 

economies in Table 2 are a bit more mixed, but the correlation with future output growth is still 

negative for more of the AR(1) and Hamilton model output gaps than for the UC-HP model 

output gaps. While the correlation of the Hamilton gap with future output growth is also 

negative, formal model comparisons, including comparisons based on AIC or SIC, still favor the 

AR(1) model.  

                                                      
9 Nelson (2008) considers regressions that capture the correlation between a given estimate of the output gap and 1-

quarter-ahead US output growth. Our results for the US data are qualitatively similar to his even though we consider 

4-quarter-ahead output growth, which arguably provides a better sense of forecasting ability at a policy-relevant 

horizon. Also, Nelson (2008) conducts a pseudo out-of-sample forecasting analysis by estimating models and output 

gaps using data only up to when the forecast is made (it is a pseudo out-of-sample forecast because the data are 

revised, although Orphanides and van Norden (2002) find that using revised or real-time data matters much less than 

incorporating future data in estimation of the output gap at any point in time). However, even though we use the 

whole sample to estimate models, we are implicitly using data only up to when the forecast is made to estimate 

output gaps. This is straightforward for the Harvey and Jaeger (1993) UC-HP model, which directly allows for 

filtered inferences, as opposed to the traditional HP filter, which is a two-sided filter, explaining why Nelson (2008) 

considers the out-of-sample forecasting analysis when evaluating the forecasting properties of the output gap based 

on the traditional HP filter. 
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More favorable to the UC-HP model is the forecasting relationship between the competing 

model-based output gaps and future inflation. Table 3 reports correlations between output gap 

estimates and other macroeconomic variables, including the subsequent 4-quarter changes in 

inflation. Consistent with most conceptions of the Phillips curve, the correlation is always 

positive for the UC-HP model output gap, larger than the correlation for the Hamilton gap for 6 

out of the 10 economies, and very close in magnitude to the correlations of the Hamilton gap for 

the remaining 4 cases. By contrast, it is negative for 8 out of 10 economies when considering the 

AR (1) model output gap. 

Taken together, these results in Tables 2 and 3 suggest that the empirical evidence that a single 

forecast-based or regression-based estimate of the output gap provides a particularly accurate 

measure of economic slack is mixed at best. Put another way, even if we restrict ourselves only 

to three widely-used linear models, there is considerable uncertainty about the appropriate 

measure of economic slack. The AR(1) model fits the data better and its corresponding output 

gaps generally provides better forecasts of future real GDP growth. But the UC-HP model and 

the Hamilton output gaps are more consistent with widely-held beliefs about the relationship 

between economic slack and recessions and generally provide a better forecast of future changes 

in inflation.   

Given the fact that the AR(1), the UC-HP model, and the Hamilton gap model are linear, a 

natural question that arises is whether accounting for any potential nonlinearities would provide 

a better measure of the business cycle and economic slack. While nonlinear models are more 

highly parametrized, there is some evidence that nonlinear models fit US output growth better 

than the corresponding linear AR(p) models (see, for example, Hamilton, 1989, or Kim, Morley, 

and Piger, 2005). Table A.3 in the appendix presents the results of the Carrasco, Hu, and 

Ploberger (2014) test for a test for Hamilton (1989) and bounceback Markov-switching models 

with normal and t-distributed errors versus a linear AR(2) model and a Monte-Carlo based 

likelihood ratio (LR) test for a depth-based bounceback model versus an AR(2) model (these 

models are discussed in more detail in the next section). Again, the results are inconclusive in 

many cases, with the test statistics being right around the threshold critical values in many cases 

and the results being sensitive to the assumptions about the distribution of the disturbances.  
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These mixed results for different models motivate the methods outlined in the next section. In 

particular, drawing from an insight going back at least to Bates and Granger (1969) that 

combined forecasts can outperform even the best individual forecast, we follow and simplify the 

approach in Morley and Piger (2012) by constructing a model-averaged estimate of the output 

gap with equal weights over a range of linear and nonlinear forecasting models.  

4. Methods 

Our methods build on the approach to estimating a model-averaged output gap (MAOG) 

developed in Morley and Piger (2012) for US real GDP. Relative to the earlier study, we 

consider a few important modifications that make the approach easier to consider for data for 

other economies, and that, in some cases as discussed below, lead to improved estimates of the 

output gap when it comes to coherence with other measures of economic slack. 

As background for our approach, we define the output gap, 𝑐𝑡 , as the deviation of log real GDP,  

, from its stochastic trend, , as implied by the following trend/cycle process: 

 𝑦𝑡 = 𝜏𝑡 + 𝑐𝑡, (1) 

 𝜏𝑡 = 𝜏𝑡−1 + 𝜂𝑡
∗, (2) 

 𝑐𝑡 = ∑ 𝜓𝑗ωt−j
∗∞

𝑗=0 , (3) 

where 𝜓0 = 1, 𝜂𝑡
∗ = 𝜇 + 𝜂𝑡  and  𝜔𝑡

∗ = 𝜔̅ + 𝜔𝑡, with  𝜂𝑡 and 𝜔𝑡 
 following martingale difference 

sequences. The trend, 𝜏𝑡, is the permanent component of 𝑦𝑡  in the sense that the effects of the 

realized trend innovations, 𝜂𝑡
∗, on the level of the time series are not expected to be reversed. By 

contrast, the cycle, 𝑐𝑡 , which captures the output gap, is the transitory component of 𝑦𝑡  in the 

sense that the Wold coefficients, 𝜓𝑗, are assumed to be absolutely summable such that the 

realized cycle innovations, 𝜔𝑡
∗ , have finite memory. The parameter 𝜇  allows for non-zero drift 

in the trend, while the parameter  𝜔̅  allows for a non-zero mean in the cycle, although the mean 

of the cycle is not identified from the behaviour of the time series alone, as different values 

for  𝜔̅  all imply the same reduced-form dynamics for  Δ𝑦𝑡, with the standard identification 

assumption being that  𝜔̅ = 0. 

yt t
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The optimal estimate (in a minimum mean-squared-error sense) of trend for a range of 

trend/cycle processes as in (1)-(3), including those with regime-switching parameters, can be 

calculated using the regime-dependent steady-state (RDSS) approach developed in Morley and 

Piger (2008). The RDSS approach involves constructing long-horizon forecasts using a given 

time series model to capture the dynamics of the process. Importantly, the long-horizon forecasts 

are conditional on sequences of regimes and then marginalized over the distribution of the 

unknown regimes. Specifically, the RDSS measure of trend is 

𝜏̂𝑡
𝑅𝐷𝑆𝑆 ≡ ∑{𝜏̂𝑡

𝑅𝐷𝑆𝑆(𝑆̃𝑡) ∗ 𝑝𝑀(𝑆̃𝑡|Ω𝑡)}

𝑆̃𝑡

 
(4) 

𝜏̂𝑡
𝑅𝐷𝑆𝑆( 𝑆𝑡̃) = lim{𝐸𝑀[𝑦𝑡+𝑗|{𝑆𝑡+𝑘 = 𝑖∗}𝑘=1 

𝑗
, 𝑆𝑡̃, Ω𝑡] − 𝑗 ∗ 𝐸𝑀[Δ𝑦𝑡|{𝑆𝑡 = 𝑖∗}−∞

∞ )}
𝑗→∞

       (5) 

where  𝑆𝑡̃ = {𝑆𝑡, … , 𝑆𝑡−𝑚}′ is a vector of relevant current and past regimes for forecasting a time 

series, 𝑝𝑀(∗) is the probability distribution with respect to the forecasting model, 𝑆𝑡  is an 

unobserved state variable that takes on N discrete values according to a fixed transition matrix, 

and 𝑖∗  is the “normal” regime in which the mean of the transitory component is assumed to be 

zero. The choice of “normal” regime 𝑖∗ is necessary for identification. Meanwhile, for a given 

forecasting model with Markov-switching parameters, the probability weights in (4), 𝑝𝑀(𝑆𝑡̃|Ω𝑡),  

can be obtained from the filter given in Hamilton (1989). Note that the RDSS trend simplifies to 

the BN trend in the absence of regime switching. 

In practice, the correct model for the dynamics of the time series process is unknown. Thus, we 

consider a range of models. Like Morley and Piger (2012), we focus on univariate models of real 

GDP, which in our case include the AR(1), UC-HP, and Hamilton (2018) models discussed in 

the previous section. As is evident from Figure 2, these univariate models capture a range of 

possibilities about the nature of the output gap. Also, univariate analysis allows us to test 

multivariate relationships rather than assume the answer a priori. The benefits of this approach 

for the relationship with inflation in particular will become evident when the results are 

presented below. 

All of the models we consider allow for a stochastic trend in real GDP, which is motivated by 

standard unit root and stationarity tests, even when allowing for structural breaks in long-run 
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growth. The results for all of the countries for pre-tests that entail standard unit root tests 

(Augmented Dickey-Fuller and Elliott-Rothenberg-Stock point-optimal Dickey Fuller), the 

standard stationarity tests (Leybourne and McCabe, 1992, and the KPSS test proposed by 

Kwiatkowski et al., 1992), and the unobserved-components based stationarity test from Morley, 

Panovska, and Sinclair (2017) are presented in Table A.4 in the appendix.10 This is important 

because many off-the-shelf methods such as linear detrending, traditional HP filtering, and 

Bandpass filtering produce large spurious cycles when applied to time series with stochastic 

trends (see Nelson and Kang, 1981, Cogley and  Nason, 1995, Murray, 2003, and Hamilton, 

2018). By contrast, as long as the models under consideration avoid overfitting the data, the 

forecast-based approach will not produce large spurious cycles. 

We consider linear AR(p) models of orders p = 1, 2, 4, 8, and 12, the linear UC-HP model due to 

Harvey and Jaeger (1993), the Hamilton (2018) model, linear UC0 and UCUR models with 

AR(2) cycles from Morley, Nelson, and Zivot (2003), the nonlinear bounceback (BB) models 

from Kim, Morley, and Piger (2005) with BBU, BBV, and BBD specifications and AR(0) or 

AR(2) dynamics, the nonlinear UC0-FP model with an AR(2) cycle from Kim and Nelson 

(1999), and the nonlinear UCUR-FP model with an AR(2) cycle from Sinclair (2010).11  

The linear and nonlinear AR(p) models are specified as follows: 

 𝜙(𝐿)(Δ𝑦𝑡 − 𝜇𝑡) = 𝑒𝑡 (6) 

                                                      
10 Based on the Monte Carlo analysis in Morley, Panovska, and Sinclair (2017), we consider the bootstrapped p-

values for all stationarity tests to correct for potential size distortions in finite samples. 

11 As a minor modification from Morley and Piger (2012), we drop the linear AR(0) models and nonlinear Markov-

switching model from Hamilton (1989) with AR(0) and AR(2) dynamics. In the former case, the output gap is 

always zero by construction, so its inclusion merely serves to shrink the model-averaged output gaps towards zero. 

In the latter case, the output gap is linear by construction, so its inclusion as a nonlinear model puts additional prior 

weight on a linear output gap. As demonstrated below, dropping these models has very little practical impact on the 

model-averaged estimate of the output gap for US real GDP. If the Hamilton (1989) model is included in the set of 

models, the correlation between the MAOG computed using equal weights that includes the Hamilton Model and the 

MAOG that does not include the Hamilton (1989) model is 0.99. Furthermore, as shown in Table A.4, the Carrasco 

et al. (2014) bootstrap test for Markov-Switching parameters cannot reject the null of no switching for all economies 

except New Zealand, Italy, and Australia, with p-values higher than 10% in all cases except for Italy. However, the 

null of linearity can be strongly rejected in favor of the BBD model for those three economies. The null of linearity 

can also be rejected in favor of the BBU model for Germany, Japan, Korea, New Zealand, and the UK, and in favor 

of the BBD model for all economies except Italy and New Zealand. Therefore, our set of models does not lose 

empirical relevance by excluding the Hamilton (1989) model.  
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 𝜇𝑡 = 𝜇(𝑆𝑡, … , 𝑆𝑡−𝑚), (7) 

where 𝜙(𝐿) is pth order. We consider versions of the AR(p) models with Gaussian errors (i.e., 

𝑒𝑡~𝑁(0, 𝜎𝑒
2) or Student t errors (i.e., 𝑒𝑡~𝑡(𝜈, 0, 𝜎𝑒

2). For the nonlinear AR(p) models, 𝑆𝑡 = {0,1}  

is a Markov state variable with fixed continuation probabilities Pr[𝑆𝑡 = 0|𝑆𝑡−1 = 0] = 𝑝00  and 

Pr[𝑆𝑡 = 1|𝑆𝑡−1 = 1] = 𝑝11. In the linear case, 𝜇𝑡 = 𝜇, while there are three different 

specifications of 𝜇𝑡  in the nonlinear case that correspond to the BB models developed by Kim, 

Morley, and Piger (2005): 

1.  “U”-Shaped Recessions (BBU) 

 𝜇𝑡 = 𝛾0 + 𝛾1𝑆𝑡 + 𝜆 ∑ 𝛾1𝑆𝑡−𝑗
𝑚
𝑗=1 ,  (8) 

2. “V”-Shaped Recessions (BBV) 

 𝜇𝑡 = 𝛾0 + 𝛾1𝑆𝑡 + (1 − 𝑆𝑡)𝜆 ∑ 𝛾1𝑆𝑡−𝑗
𝑚
𝑗=1 ,  (9) 

3. Recovery based on “Depth” (BBD) 

 𝜇𝑡 = 𝛾0 + 𝛾1𝑆𝑡 + 𝜆 ∑ (𝛾1 + Δ𝑦𝑡−𝑗)𝑆𝑡−𝑗
𝑚
𝑗=1 ,  (10) 

where the state 𝑆𝑡 = 1 is labeled as the low-growth regime by assuming 𝛾1 < 0. Following Kim, 

Morley, and Piger (2005), we assume 𝑚 = 6. See the original study for the full motivation of 

these specifications. 

The linear and nonlinear UC models are based on (1)-(3), with the following parametric 

specification of the transitory component in (3): 

 𝜙(𝐿)𝑐𝑡 = 𝜔𝑡
∗, (11) 

where   𝜔̅ = 0  for the linear UC0 and UCUR models and   𝜔̅ = 𝜏𝑆𝑡 for the nonlinear UC0-FP 

and UCUR-FP models, with the state 𝑆𝑡 = 1  labelled by assuming 𝜏 < 0 . The shocks to the 

trend and cycle are Gaussian (i.e., 𝜂𝑡~𝑁(0, 𝜎𝜂
2), 𝜔𝑡~𝑁(0, 𝜎𝜔

2 ) ), for the UC0 and UC0-FP 

models and (𝜂𝑡, 𝜔𝑡)′~𝑁(0, Σ𝜂𝜔), for the UCUR and UCUR-FP models). Given an AR(2) cycle, 

the covariance for the UCUR and UCUR-FP models is identified (see Morley, Nelson, and 

Zivot, 2003). 
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Bayesian estimates for these models are based on the posterior mode. Importantly, the prior for 

bounceback coefficient has zero mean, implying a prior mean of zero for the output gap. The 

prior for the mean of the transitory shock for the UC-FP models has a negative mean, but this has 

very little impact on the prior mean of the model-averaged output gap given the small weight on 

any given model. The prior on the AR coefficients keeps them in the stationary region. Finally, 

the prior for the continuation probabilities is centered at 0.95 for the expansion regime and 0.75 

for the other regime. This is calibrated based on the results for US data in Morley and Piger 

(2012). The details of the priors for the various model parameters are set out in Table A.5 in the 

appendix. 

In practice, given parameter estimates, we use the BN decomposition or, in the case of the UC 

models, the Kalman filter to estimate the output gap for the linear models. We use a linear 

regression for the Hamilton (2018) model. Note that the filtered inferences from the Kalman 

filter are equivalent to the BN decomposition using the corresponding reduced-form of the UC 

model, while the BN decomposition is equivalent to the RDSS approach in (4)-(5) in the absence 

of regime-switching parameters. To estimate the output gap for the nonlinear forecasting models, 

we use the RDSS approach or, in the case of the nonlinear UC models, the Kim (1994) filter, 

which combines the Kalman filter with Hamilton’s (1989) filter for Markov-switching models. 

For the nonlinear models, we follow Kim and Nelson (1999) and Sinclair (2010) by assuming the 

“normal” regime 𝑖∗ = 0, which corresponds to an assumption that the cycle is mean zero in 

expansions. 

Finally, the MAOG is calculated as follows:  

 𝑐𝑡 = ∑ 𝑐𝑖,𝑡 ∗ Pr (𝑀𝑖)
𝑁
𝑖=1 , (12) 

where i indexes the N models under consideration, 𝑐𝑖,𝑡  is the estimated output gap for model i, 

𝑀𝑖 is an indicator for model i, and Pr (𝑀𝑖) denotes the weight placed on model i. In contrast to 

Morley and Piger (2012), who consider weights based on SIC to approximate Bayesian model 

averaging (BMA), we place equal weight on all models with 𝑐𝑖𝑡 =
1

𝑁
, where 𝑁 is the total 

number of models under consideration. Given 14 linear models (five linear AR models with two 

types of errors, three linear UC models, and Hamilton’s regression model) and 14 nonlinear 
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models (two nonlinear AR models with three BB specifications and two types of errors and two 

nonlinear UC models), the weight on each model is 3.57%. 

Although a number of models receive nontrivial weight based on the SIC approximation of BMA 

when considering the US data in Morley and Piger (2012), this is not always the case for other 

economies. For example, a simple AR(0) (i.e., random walk model for levels) model would 

receive all weight for Australian real GDP both based on SIC and on log scores if it were 

included in the model set. However, such a model implies the output gap is always exactly zero 

by construction (not just zero on average), which clearly runs contrary to widely and strongly 

held beliefs.  In the case of Japan, an AR(1) model would receive all weight for Japanese real 

GDP based on SIC and on log scores weights, and it also received all the weight at all points in 

time when we considered a more general specification where the weights were selected 

optimally using the SIC approximation and allowed to vary over time. As shown in Figure 2, this 

would imply that the largest deviation of Japanese output from its long-run trend over the last 60 

years was about 0.02 percentage points, and that output in Japan was increasing during the Asian 

financial crisis. Similarly, BMA places all of the weight on an AR(1) model for Italy, which 

would imply that the Italian economy was substantially above potential during the Global 

Financial Crisis. As shown in detail in Tables 2 and 3, the simple model with fixed equal weights 

performs well for all economies, and in many cases we found it outperformed models with 

statistically optimal weights both when it came to matching more narrow measures of slack, and 

much more importantly, when it came to the link with future output growth.  

The problem of BMA putting too much weight (from a forecasting perspective) on one model 

has been highlighted by Geweke and Amisano (2011). They find that linear pooling of models 

produces better density forecasts than BMA and discuss the calculation of optimal weights for 

linear pooling of models. However, as long as the model set is relatively diverse, applying equal 

weights to models works almost as well as optimal weights and is much easier to implement in 

practice. Thus, we take this simple approach of using equal weights for the reasonably diverse 

set of linear and nonlinear models discussed above.12 In general, even though in this study we 

                                                      
12 To be specific, we place equal weights on all models used here. Because the nonlinear models nest linear 

dynamics in their parameter space, there is still more implicit prior weight on linear than nonlinear dynamics, 

although this is addressed somewhat by the somewhat informative priors for parameters in the nonlinear models. 
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focus on industrialized economies, being aware of potential problems when BMA puts too much 

weight on one model and leads to counterintuitive estimates could be particularly important in 

cases when researchers are estimating output gaps for countries where the previous literature is 

relatively scarce and the researchers do not have additional information about the shape of the 

business cycle or do not have additional data or only have limited data about unemployment 

rates or other measures of economic activity. 

The other major modification from Morley and Piger (2012) mentioned above is that models are 

estimated using Bayesian methods instead of maximum likelihood estimation (MLE). This 

allows incorporation of informative priors in the estimation. The priors we used here are not 

particularly strong, with estimates based on the posterior mode virtually identical to MLE for 

many of the models.13 However, for economies with relatively short samples for real GDP or 

other quirks in the data such as large outliers, there appears to be some tendency for MLE of the 

UC models and the nonlinear models to overfit the data. By incorporating more informative 

priors about the persistence of the autoregressive dynamics or the persistence of Markov-

switching regimes based on US estimates from Morley and Piger (2012), we are able to avoid 

problems associated with shorter samples and outliers, while obviating the need to undertake a 

long, protracted search for the best model specifications for each economy.14  

5. Results 

We first consider the United States as a benchmark case in order to provide perspective on the 

impact of the modifications to Morley and Piger (2012) described in the previous section, as well 

as providing context for the results for other countries.  

                                                      
13 The AR(1) and UC-HP models discussed in previous section were estimated using the posterior mode. But the 

estimated output gaps for these models are indistinguishable from those based on MLE. For example, for the US 

data, the correlation between the Bayesian and MLE output gaps is >0.999999. 

14 In principle, this setup would also make it possible to apply the approach outlined in this paper even given severe 

data limitations or a desire to impose tighter priors based on strongly held beliefs. For example, in an earlier version 

of this study, Morley (2014) estimated the output gap for a set of 13 economies in the Asia and Pacific, many with 

very short sample periods and extreme outliers. In terms of imposing tighter priors on characteristics such as the 

smoothness of trend, see the approaches outlined in Harvey, Trimbur, and van Dijk (2007) for UC models and 

Kamber, Morley, and Wong (2018) for AR models. However, given the strong evidence for a volatile stochastic 

trend in Morley, Panovska, and Sinclair (2017) and in Table A.4 in the appendix, we avoid imposing smoothness 

priors as it could potentially lead to spurious cycles. 
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To begin, we compare the updated MAOG based on the US real GDP data described in Section 

2, equal weights, and Bayesian estimation to the original MAOG reported in Morley and Piger 

(2012) based on a shorter sample period, a different vintage of data, BMA weights, and MLE. 

We also consider an updated MAOG based on BMA weights and MLE for the full sample. 

Figure 3 plots these three MAOGs together. The most noticeable thing is their similarity, with 

the major finding in Morley and Piger (2012) of a highly asymmetric shape holding for the 

updated MAOGs. The correlation between the updated MAOG based on BMA weights and MLE 

and the updated MAOG based on equal weights and Bayesian estimation is 0.95.  

The impact of incorporating prior information about parameters may be obscured in Figure 3 

given that the priors were calibrated in part based on previous estimates for US data. However, it 

is important to emphasize that the asymmetric shape of the output gap is in no way driven by the 

priors on the nonlinear models. As already discussed, because the nonlinear models nest linear 

dynamics in their parameter space, there is still more implicit prior weight on linear than 

nonlinear dynamics. Furthermore, the priors for the Markov-switching parameters favor regime 

shifts in the mean growth rate corresponding to business cycle phases, along the lines of 

Hamilton (1989), but there is no prior that shocks have more temporary effects in recessions than 

in expansions. However, to further illustrate that our estimation approach does not lead to 

spurious findings of nonlinearity, we perform a simulation experiment where we use a linear 

data-generating process calibrated to US data, and we apply our approach to estimating the 

output gap as deviations from the long-run trend. Figure 4 makes this clear by applying the 

modified approach to data simulated from a simple random walk with drift.15 For this data, the 

true output gap is always zero. The estimated average MAOG is not always zero, but, unlike 

what would be the case for the HP filter given a random walk, the spurious cycle is quite small in 

magnitude relative to the US MAOG, and it is smaller on average than the Hamilton regression-

based cycle. The main thing to note, however, is that the fluctuations are symmetric around zero. 

Thus, any finding of asymmetry for the MAOGs reflects the data, not the incorporation of prior 

information in estimating model parameters.16 

                                                      
15 The drift and standard deviation of shocks are both set to 1, which is a surprisingly reasonable calibration for 100 

times the natural logs of quarterly US real GDP. 

16 In the simulation, when we use BMA weights, almost all of the weight is correctly assigned on the AR(1) model 

with very small amplitude and persistence (consistent with the true DGP that has no cycle). However, the average 
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As displayed in Figure 3, our results indicate that there is little remaining economic slack for the 

US economy at the end of the sample. This result is consistent with the Federal Reserve’s views 

(see, for example, Yellen, 2015). These results, however, turn out to be sensitive to allowing for 

a structural break in long-run growth in 2000Q3. As discussed in detail and illustrated in Figure 

A.S.1 in the supplemental online appendix, assuming no change in the long-run growth, the US 

economy appears to still be below trend at the end of the sample. Given uncertainty about the 

structural break, it could make sense to average across these two scenarios, which would still 

imply the economy remains slightly below trend at the end of the sample, although not by as 

much as in the no break case. If we assume that the US economy was at trend at the end of the 

sample, this would clearly imply that recessions can permanently shift the trend path of output 

downwards, which is the implication of many forecasting models for US real GDP, including 

low-order AR(p) models, Hamilton’s (1989) Markov-switching model, and, to some extent, the 

bounceback models of Kim, Morley, and Piger (2005).  In a recent paper, Huang, Luo, and Startz 

(2016) find that recessions prior to 1984 can be described as U-shaped, but recessions after 1984 

can be better described using Hamilton’s (1989) L-shaped model, where recessions are driven by 

permanent negative shocks.  Figure 5 plots the estimated trend in US real GDP based on the 

model-averaged output gap. A permanent negative effect of the Great Recession of the trend path 

is quite evident for this estimate of trend and is much larger than for previous recessions.17  

One way to judge the plausibility of the US economy being at trend at the end of the sample is to 

compare the US MAOG to other narrower measures of slack. Figure 6 plots the US MAOG 

against the US unemployment rate and US capacity utilization. Similar to the findings in Morley 

and Piger (2012), there is a clear relationship between the MAOG and these variables. More 

supportive of relatively little remaining slack at the end of the sample is the simple fact that the 

MAOG in the no break case would imply relatively fast growth and downward pressure on 

                                                      
MAOG cycle has a small amplitude and persistence and it does not create a spurious cycle with a large amplitude or 

spurious evidence of nonlinearity.  

 
17 Allowing for one structural break in 1973Q1 leads to similar results. Similarly, allowing for a structural break in 

2000Q3 but not in 1973Q1 leads to an estimated MAOG that is large and negative during the 1990-1991 recession 

and very deep during 2001 recession, which is at odds with previous estimates of output slack, and with more 

narrow measures of slack, such as unemployment and capacity utilization, where both the 1990 and 2001 recession 

were relatively shallow. This further motivates our inclusion of a structural break in 1973Q1. We discuss these 

results in detail in the supplemental online appendix.  
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inflation in the period immediately after the Great Recession. In particular, returning to Tables 2 

and 3, the US MAOG has a negative correlation of -0.33 with future output growth and positive 

correlation of 0.49 with future changes in inflation. These results are much stronger than those 

for the output gaps based on the AR(1) and UC-HP models and stronger than those for the 

Hamilton gap and support the MAOG as a highly relevant measure of economic slack. But, 

given lacklustre growth and stable inflation after the Great Recession, these results also support 

the MAOG allowing for a structural break and the idea that the US economy is actually close to 

trend at the end of the sample, noting that the trend path is lower than before the recession, as 

suggested in Figure 5.  

In principle, additional information from capacity utilization, the unemployment rate, or inflation 

could be used in the construction of output gaps. However, the estimates of the output gap 

obtained from multivariate models depend crucially on the assumptions about the relationship 

between the output gap and, for example, the labor market cycle, and on the assumptions about 

the stability of these relationships over time. For example, Basistha and Nelson (2007) and 

Gonzalez-Astudillo and Roberts (2018) estimate models where the unemployment cycle directly 

depends on the output cycle (and on inflation in Basistha and Nelson’s model). In both cases the 

estimated output cycles that have large amplitude and large persistence. On the other hand, 

Sinclair (2009) estimates a bivariate UC model for output and unemployment where the shocks 

to the trend and the cycle for output and the unemployment rate are allowed to be correlated, but 

does not impose other links, and finds that most of the movements in output are driven by shocks 

to the permanent component.  

There is also substantial evidence in favour of time-variability in the link between the narrower 

measures of slack and the output cycle. Panovska (2017) finds strong evidence that link between 

the output cycle and the labor market cycle changed abruptly in the mid 1980s. Similarly, 

Berger, Everaet and Vierke (2016) find very substantial time variation in the link between the 

unemployment cycle and the output cycle when using an unobserved components model. 

Similarly, the literature about whether one should impose a restriction that positive shocks to the 

output trend (productivity shocks) affect labor markets positively or negatively is also very large 

(see, for example, Barnichon, 2010).  
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 Given the fact that we report the correlations with the more narrow measures of slack to simply 

assess whether the measure of slack is reasonable and the fact that the empirical evidence on the 

stability in the links between the output gaps and other variables is quite conflicting, using a 

wide set of univariate models is a more agnostic approach than using a multivariate model that 

directly imposes a strong link between output and another variable, especially because our 

sample includes countries with various degrees of labor market rigidities, approaches to 

monetary policy conduct, and industrial compositions. 

Having demonstrated how the modified approach works in the benchmark US case, at least when 

allowing for structural breaks in long-run growth, we now calculate MAOGs for the remaining 

G7 economies, Australia, New Zealand, and Korea. 

Figure 7 plots the estimated output gaps for the nine other economies. For all cases considered, 

the output gaps are highly asymmetric, similar to the US results. Specifically, they take on much 

larger negative values than positive ones. The only possible exception is Italy, where the output 

fluctuations are relatively more symmetric, but there is still strong evidence that the contractions 

in 1969 and 2008-2009 caused highly asymmetric movements. The ubiquity of this form of 

business cycle asymmetry across the ten economies under consideration strongly suggests that it 

is an intrinsic characteristic in industrialized economies, not just a feature of the US economy in 

particular. This is a potentially important result for theory-based modelling of the business cycle, 

which tends to focus on linear dynamics for convenience, although there are many exceptions.18  

How plausible are the MAOGs as measures of economic slack? As with the US benchmark, we 

compare the MAOGs to other narrower measures of slack. The middle panel of Table 3 reports 

the correlation of each MAOG with the corresponding unemployment rate. For comparison, we 

also report correlations for output gaps based on AR(1), UC-HP, and the Hamilton model. 

Corresponding to an Okun’s Law relationship, the MAOG has the most negative correlation with 

                                                      
18 For example, Diebold, Schorfheide, and Shin (2017) find that incorporating nonlinearities in the exogenous 

driving processes and allowing for stochastic volatility in a DSGE model markedly improves the density forecast 

performance of the model. Auroba, Bocola, and Schorfheide (2013) highlight the fact that asymmetric wage and 

price adjustments lead to inherent nonlinearity in DSGE models, and argue in favor of using a nonlinear time-series 

model to evaluate the performance and predictive ability of DSGE models. Guerrieri and Iacoviello (2016) find that 

collateral constraints in a DSGE model lead to macroeconomic asymmetries—in particular, when constraints are 

slack, expanding wealth makes small contribution to consumption growth, but tightened constraints can sharply 

exacerbate recessions. 
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the unemployment rate in all 10 cases (including the US benchmark), with many of the 

correlations being quite large in magnitude. Meanwhile, the bottom panel of Table 3 reports the 

corresponding correlations with capacity utilization. The MAOG has the most positive 

correlation with capacity utilization in 6 out of 10 cases and has positive correlations in all of the 

other cases. 

Overall, the strong coherence with other measures of slack lends credence to the MAOGs. The 

coherence is particularly notable given that the MAOGs are estimated using only univariate 

models of real GDP. At the same time, the MAOGs provide a broad and useful measure of slack, 

even when unemployment rate or capacity utilization data are distorted as pure measures of slack 

by long-run structural factors. 

Much more importantly, revisiting Table 2, the MAOGs provide a stronger signal about future 

economic growth than the three other output gap estimates for all of the countries in our sample. 

This result provides the most direct support of the MAOGs as measures of economic slack based 

on the definition considered in this paper. It also confirms the possibility that output growth can 

be somewhat predictable even when standard model comparison metrics would select a random 

walk model, as the SIC would in the case of Australia. 

Looking back at Table 3, the results for the MAOGs in terms of correlation with future changes 

in inflation are more mixed. The MAOGs provide a stronger signal than the UC-HP or Hamilton 

model output gap in only 4 of the 10 cases (including the US benchmark) and the Hamilton gap 

provides stronger signal than the other models for France and the United Kingdom. However, a 

correlation coefficient may be too simplistic as a measure of the relationship between the output 

gap and inflation. Figure 8 displays a scatterplot of the MAOG (x-axis) against the subsequent 4-

quarter change in inflation (y-axis). For many of the countries there is a clear nonlinear, convex 

Phillips Curve relationship between the output gap and future changes in inflation that would 

only be partially captured by a correlation coefficient. The same convex relationship as for the 

US data is evident for Australia, France, Japan, and Korea. For some of the other cases, such as 

Canada and New Zealand, the Phillips Curve relationships look more linear. However, a clear 

implication of Figure 8 is that it is important not to impose a linear (or any other) specification 

for the Phillips Curve relationship a priori, as is done in some other approaches to estimating 

output gaps (e.g., Kuttner, 1994). In particular, if the imposed relationship were incorrectly 
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specified, then the resulting output gap estimate would necessarily be distorted and could not be 

used to determine a better specification of a Phillips Curve relationship. The convexity of the 

Phillips Curve in some cases argues against imposing a linear specification. Also, there is some 

evidence that the relationship between the output gap and inflation has evolved over time, with 

many of the observations of stable inflation following large negative output gaps corresponding 

to the recent Global Financial Crisis. Consistent with Lucas’s (1976) famous critique that 

reduced-form Phillips Curve relationships should change with policy regimes, this apparent 

breakdown in the previous pattern near the end of the sample could be due to an anchoring of 

inflation expectations (see IMF, 2013) and argues strongly against imposing a fixed relationship 

with inflation when estimating the output gap.  

6. Robustness: Revision Properties and Comparison with Other Output Gaps 

6.1 Revision Properties 

Given our key question of whether business cycles exhibit asymmetric behaviour, we believe the 

best approach to evaluation is based on the full information set. Therefore, our benchmark 

analysis made use of the longest available samples with revised data. However, output gaps are 

very frequently used for policy analysis and it is important to evaluate the performance of 

estimates in real time. This is particularly important in light of the studies by Orphanides and van 

Norden (2002) and Nikolsko-Rzhevskyy (2011), which show that popular methods of estimating 

the output gap are unreliable in real time both for the US and for other economies, respectively.  

To evaluate the real-time performance of the MAOG, we compare it to the three other 

benchmark models considered in the previous subsections. In particular, we compare estimates 

obtained using real time data for the US case, for which real-time series are readily available. We 

use the real-time dataset from the Federal Reserve Bank of Philadelphia, and extract real GDP 

from the Core Variables/ Quarterly Observations/ Quarterly Vintages subset.   

We note that it would be difficult to detect structural breaks in real time and allowing for breaks 

as done in our benchmark example was only feasible from an ex-post basis. To address this, we 

use dynamic demeaning as in Kamber, Morley, and Wong (2018). In particular, we demean the 
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data using a backward-looking rolling 40-quarter average growth rate. The deviations from the 

mean were constructed as follows: 

Δ 𝑦𝑡̃ = Δ𝑦𝑡 −
1

40
∑ Δ𝑦𝑡−𝑖.

39

𝑖=0

          (13) 

We use 40 quarters to smooth over the effects of business cycle fluctuations on average growth. 

As shown in the supplemental online appendix in Figure A.S.2, the MAOG estimates from the 

model with imposed breaks and from the model with dynamic demeaning have virtually identical 

patterns, extremely similar magnitude, and are very highly correlated, with the correlation 

coefficient being 0.997.  

Figure 9 plots the real-time and the revised estimate of the AR(1) output gap, the UC-HP output 

gap, the Hamilton gap, and the MAOG. Table 4 reports the correlation between the revised and 

real-time estimate for each of the four benchmark gaps, the standard deviation of the revision, 

and the standard deviation of the revision scaled by the standard deviation of the output gap 

estimate. In short, the MAOG performs quite well in real time. The MAOG calculated using real 

time data is highly correlated with the MAOG calculated using revised data (correlation 0.97). 

This correlation is much higher than the correlation between the HP gap calculated using real 

time data and revised data (0.61) and slightly higher than the correlation between the real time 

and the revised version of the Hamilton gap (0.94).  Likewise, as also shown in Table 4, the 

standard deviation of the revisions is smaller for the MAOG than for the other output gap 

estimates. Notably, the MAOG captures the NBER recessions and turning points remarkably 

well both when using revised data and when using real time data.  

6.2 Comparison with Official Output Gap Estimates 

Given the wide use of non-statistical estimates of the output gap, such as, for example, the 

production-function-based CBO and OECD output gaps, it is of interest to examine how the 

MAOG behaves in comparison with these estimates.  

Different official production-function-based estimates (for example, the CBO vs. the OECD 

estimates) of the output gap can display very different patterns both it terms of amplitude and 

persistence of the output gap and when it comes to exhibiting asymmetry, and the patterns 
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depend on the assumptions used to specify the production function.  Figure 10 plots the OECD 

estimate for the US output gap, the CBO estimate for the output gap, and the MAOG. As shown 

in the figure, the CBO estimate has much larger amplitude than the other two gaps and does not 

exhibit any significant degree of asymmetry, with the correlation between the CBO gap and our 

MAOG estimate being 0.6.  By contrast, the OECD estimate, which is also estimated using a 

production function approach, has a smaller amplitude and exhibits asymmetry that is similar to 

the asymmetric pattern in the MAOG (the correlation between the OECD gap and the MAOG is 

0.8).19 

It is important to note too that both the CBO and the OECD gaps are subject to very heavy 

revisions. For example, Astudillo-Gonzalez (2017) points out that the CBO estimate of the 

output gap during the Great Recession got revised by as much as 2 percentage points. Of course, 

the CBO is only allowed to make projections under current law, with the projections usually 

using constant trend growth rates. A recent study by Coibion, Gorodnichenko, and Ulate (2017) 

also highlights that official cyclical estimates of output gaps are very sensitive to assumptions 

about changes in the trend growth and the nature of permanent shocks. 

7. Conclusions 

There is more uncertainty about the degree of economic slack than is commonly acknowledged 

in academic and policy discussions, which often treat the output gap as if were directly observed.  

Canova (1998) argues that this uncertainty has huge implications in terms of “stylized facts” 

about the business cycle used to motivate theoretical analysis.  

In light of this uncertainty about the degree of economic slack, we propose a model-averaged 

forecast-based estimate of the output gap. For all of the industrialized economies considered in 

our analysis, the model-averaged estimate is closely related to narrower measures of slack and, 

                                                      
19 Similarly, the OECD estimates of the output gap for the other G7 economies, for which data is readily available at 

quarterly frequency, tend to exhibit quite a bit of asymmetry, with negative movements being larger in magnitude 

but less persistent than positive movements. Our MAOG estimates also appear to match the turning points in the 

OECD estimates quite well. The correlations of these estimates with our MAOG estimates range from 0.6 for Italy 

to 0.8 for the US, with the UK being the only outlier with the correlation of only 0.4. The full set of results is 

available from the authors upon request.  
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consistent with the notion of an output gap as a measure economic slack, has a strong negative 

forecasting relationship with future output growth. Most importantly, the model-averaged output 

gap estimates are all highly asymmetric. A simulation experiment where we estimate output gaps 

for linear models confirms that our findings of nonlinearity are not spurious or driven by the fact 

that we include nonlinear models in our set of models. In simulations where the true DGP is 

symmetric, our estimates are symmetric. This directly suggests that this particular form of 

business cycle asymmetry observed in the data is intrinsic in industrialized economies and 

should be addressed in theoretical models of the economy.20 

Evidence for a Phillips Curve relationship between the model-averaged output gap and inflation 

is more mixed. But the overall results strongly argue against imposing a linear relationship in 

estimating output gaps. As an example of why imposing a fixed relationship is so problematic, 

consider Stock and Watson (2009, 2010). Their analysis suggests that inflation is difficult to 

forecast using standard measures of economic slack, except when the estimated output gap (or 

unemployment gap) is large in magnitude. This directly suggests possible mismeasurement due 

to imposition of symmetry and/or a nonlinear Phillips Curve relationship (see Dupasquier and 

Ricketts, 1998, and Meier, 2010). Our measure of economic slack allows for a full investigation 

of the nature of the relationship between the output gap and inflation, including the possibility of 

nonlinearity.  

 

 

 

 

 

 

                                                      
20 As emphasized in Kiley (2013) and noted by many others, theory-oriented DSGE models imply reduced-form 

VAR, VECM, or VARMA models. Thus, forecast-based output gap estimates provide robust measures of economic 

slack across a wide range of different economic assumptions used to identify a structural model, at least as long as 

the reduced-form model or models used to calculate the optimal forecast capture the dynamics in the data (this point 

relates back to Sims, 1980—also see Fernandez-Villaverde et al., 2007). 
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Table 1 

Structural Breaks in Long-Run Growth Rates of Real GDP 

 Sample Period Break Dates Sequence of 

Growth Regimes 

United States 1947Q2-2016Q1 1973Q1, 2000Q3 H, M, L 

Australia 1959Q4-2015Q4 - - 

Canada 1960Q2-2015Q4 1974Q2 H, L 

France 1949Q2-2016Q1 1974Q2 H, L 

Germany 1960Q2-2016Q1 1973Q1, 1991Q2 H, M, L 

Italy 1960Q2-2016Q1 1974Q1 H, L 

Japan 1955Q2-2016Q1 1973Q1, 1991Q3 H, M, L 

Korea 1970Q2-2016Q1 1997Q3 H, L 

New Zealand 1977Q2-2016Q1 - - 

United Kingdom 1955Q2-2016Q1 1973Q2 H, L 
Notes: Estimated break dates are based on Bai and Perron’s (1998, 2003) sequential procedure. Breaks are significant at least at 10% level. “H”, 

“M”, “L” denote high, medium, and low mean growth regimes, respectively. 
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 Table 2 

Correlation with Subsequent 4-Quarter Output Growth 

 Sample Period AR(1) Model  

Output Gap 

UC-HP Model  

Output Gap 

Hamilton 

Filter  

Model-Avg. 

Output Gap 

United States 1947Q2-2015Q1 -0.15 0.08 -0.26 -0.33 

Australia 1959Q1-2014Q4 -0.04 -0.01 -0.03 -0.27 

Canada 1960Q1-2014Q4 -0.16 -0.18 -0.18 -0.27 

Germany 1960Q1-2015Q1 -0.07 -0.001 -0.17 -0.22 

France 1949Q1-2015Q1 -0.11 0.13 0.01 -0.16 

Italy 1960Q1-2015Q1 -0.18 0.03 -0.15 -0.34 

Japan 1955Q2-2015Q1 0.02 0.05 -0.02 -0.11 

Korea 1970Q2-2015Q1 -0.04 -0.03 -0.15 -0.20 

New Zealand 1977Q3-2015Q1 0.03 0.04 0.12 -0.21 

United Kingdom 1955Q2-2015Q1 0.21 -0.22 -0.26 -0.35 
Note: Bold denotes the most negative correlation for each economy. 
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Table 3 Correlation with Other Macroeconomic Variables 

 

 Correlation with Subsequent 4-Quarter Change in Inflation 
 Sample Period AR(1) Model 

Output Gap 

UC-HP Model 

Output Gap 

Hamilton Filter Model-Avg. 

Output Gap 

United States 1960Q1-2015Q1 -0.11 0.32 0.44 0.49 

Australia 1959Q4-2014Q4 0.20 0.35 0.30 0.38 

Canada 1960Q1-2014Q4 -0.25 0.44 0.41 0.35 

Germany 1963Q1-2015Q1 -0.21 0.49 0.09 0.12 

France 1971Q1-2015Q1 -0.17 0.11 0.20 -0.08 

Italy 1961Q1-2015Q1 -0.26 0.19 0.08 -0.29 

Japan 1961Q2-2015Q1 0.22 0.29 0.32 0.37 

Korea 1970Q2-2015Q1 -0.12 0.31 0.27 0.40 

New Zealand 1977Q3-2015Q1 -0.32 0.39 0.02 0.25 

United Kingdom 1957Q4-2015Q1 -0.14 0.22 0.26 0.17 
Note: Bold denotes the most positive correlation for each economy. 

 

 Correlation with the Unemployment Rate  
 Sample Period AR(1) Model 

Output Gap 

UC-HP Model 

Output Gap 

Hamilton Filter Model-Avg. 

Output Gap 

United States 1948Q1-2016Q1 0.05 -0.14 -0.57 -0.68 

Australia 1978Q1-2015Q4 0.06 -0.01 -0.36 -0.43 

Canada 1960Q1-2015Q4 -0.01 -0.02 -0.19 -0.34 

Germany 1991Q1-2016Q1 -0.03 -0.11 -0.27 -0.33 

France 1978Q1-2016Q1 -0.01 0.05 -0.14 -0.36 

Italy 1983Q1-2016Q1 -0.07 0.27 -0.11 -0.22 

Japan 1955Q3-2016Q1 0.02 -0.05 -0.11 -0.22 

Korea 1990Q1-2016Q1 -0.21 0.08 -0.69 -0.72 

New Zealand 1977Q3-2016Q1 0.00 0.19 0.40 -0.47 

United Kingdom 1983Q1-2016Q1 -0.16 0.20 -0.13 -0.42 
Note: Bold denotes the most negative correlation for each economy. 

 

 Correlation with Capacity Utilization  
 Sample Period AR(1) Model 

Output Gap 

UC-HP Model 

Output Gap 

Hamilton Filter Model-Avg. 

Output Gap 

United States 1967Q1-2016Q1 -0.08 0.27 0.62 0.52 

Australia 1989Q3-2016Q4 0.14 0.39 0.61 0.65 

Canada 1987Q1-2015Q4 -0.47 0.54 0.74 0.76 

Germany 1960Q1-2016Q1 -0.19 0.64 0.82 0.37 

France 1976Q1-2016Q1 -0.20 0.33 0.71 0.75 

Italy 1968Q4-2016Q1 -0.21 0.47 0.79 0.16 

Japan 1978Q1-2016Q1 0.17 0.39 0.65 0.58 

Korea 1980Q1-2016Q1 -0.26 0.37 0.57 0.74 

New Zealand 1977Q3-2016Q1 -0.25 0.28 -0.09 0.57 

United Kingdom 1985Q1-2015Q1 -0.26 0.56 0.60 0.66 
Note: Bold denotes the most positive correlation for each economy. 
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Table 4 

Summary Statistics: Gaps Estimated Using Real Time Data 

 AR(1) Model 

Output Gap 

UC-HP 

Model 

Output Gap 

Hamilton 

Filter 

Model-Avg.  

Output Gap 

Correlation 

with Revised 

Gap 

0.85 0.61 0.94 0.97 

SD Revision 0.34 1.31 1.02 0.43 

SD Scaled 

Revision 

0.63 1.02 0.49 0.42 

Note: Bold denotes the most positive correlation between the revised and the real-time estimate for each output gap, and the smallest value when 

comparing the standard deviations of the revisions. The scaled standard deviations were obtained by dividing by the standard deviation of the 

corresponding output gap. The sample period for calculation of revision statistics is 1970Q1-2016Q1.   
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Fig. 1 – Log real GDP 

 
Notes: From the top left and by row, the economies are US, Australia, Canada, Germany, France, Italy, Japan, 

Korea, New Zealand, and the United Kingdom. See Table 1 for details of the sample period for each economy. 
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Fig. 2 – Output gaps based on competing models of real GDP  

 
Note: The output gap for an AR(1) model is in blue (left axis), the output gap for a UC-HP model is in red (right 

axis), and the output gap obtained using Hamilton’s regression approach is in green (right axis). Top row is the US 

(NBER recessions shaded) and then from second row left, the plots are for Australia, Canada, Germany, France, 

Italy, Japan, Korea, New Zealand, and the UK, respectively. The horizontal axis runs from 1947Q2-2016Q1. See 

Table 1 for details of the available sample period for each economy.  
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Fig. 3 – Model-averaged output gap for US real GDP for different weighting schemes, estimation 

methods, and sample periods (NBER recessions shaded) 

 
Note: The model-averaged output gap for the 1947Q2-2016Q1 sample based on equal weights and Bayesian 

estimation is in blue, the model-averaged output gap for the 1947-2016Q1 sample based on BMA weights and MLE 

is red, and the model-averaged output gap for the vintage 1947Q2-2006Q4 sample from Morley and Piger (2012) 

based on BMA weights and MLE is in green. 
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Fig. 4 – Model-averaged output gaps for a simulated random walk 

 
Note: The model-averaged output gap for a simulated random walk of a sample length corresponding to the length 

of the observed sample for U.S. GDP is in black.  The output gap for a UC-HP model for the same simulated 

random walk is in red, the output gap obtained using Hamilton’s regression based approach is in green, and the 

output gap obtained using an AR(1) model is in blue (right axis). 
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Fig. 5 – Estimated trend in US real GDP based on model-averaged output gap adjusted for 

breaks in mean (NBER recessions shaded) 

 
Note: The trend estimate is calculated as the difference between 100 times log US real GDP and the US model-

averaged output gap for 1947Q2-2016Q1. 
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Fig. 6 – Model-averaged output gap for US real GDP and other measures of economic slack 

(NBER recessions shaded) 

 
Notes: In the top panel, the model-averaged output gap for US real GDP for 1948Q1-2016Q1 is in blue and the 

unemployment rate for the corresponding sample period is in red. The model averaged gap is on the right axis, the 

unemployment rate is on the left axis. In the bottom panel, the model-averaged output gap for US real GDP for 

1967Q1-2016Q1 is in blue and capacity utilization for the corresponding sample period is in red. The model 

averaged gap is on the right axis, the capacity utilization rate is on the left axis. 
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Fig. 7 – Model-averaged output gaps for real GDP from selected industrialized economies 

 
Notes: From the top left and by row, the economies are Australia, Canada, Germany, France, Italy, Japan, Korea, 

New Zealand, and the United Kingdom. The horizontal axis runs from 1947Q2-2016Q1. See Table 1 for details of 

the available sample period for each economy. 
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Fig. 8 – Phillips curves based on model-averaged output gaps 

 
Note: Notes: From the top left and by row, the economies are US, Australia, Canada, Germany, France, Italy, Japan, 

Korea, New Zealand, and the United Kingdom. See Table 1 for details of the sample period for each economy. 
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Fig. 9 – Model-averaged output gap for US real GDP with dynamic demeaning (NBER 

recessions shaded). Top left: Model Averaged Output Gap. Top Right: AR(1). Bottom left HP 

filter. Bottom right: Hamilton Gap. 
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Fig. 10 – OECD estimate of the US output gap (Blue), CBO estimate of the output gap (Red), 

and model-averaged output gap for US real GDP with dynamic demeaning (Green). NBER 

recessions shaded. 
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Appendix 

 

Table A.1 

Summary of Data and Data Sources 

Economy Gross Domestic 
Product 

Inflation Unemployment Capacity 

United States Quarterly, real, 

SAGDPC1 FRED 

Quarterly, SA 

JCXFE FRED 

Monthly, SA 

UNRATE FRED 

Monthly, SA 

TCU FRED 

AU Quarterly, real, SA 
OECD LNBRQSA 

(ABS) 

Quarterly, SA 
OECD 

 

Monthly, SA 
GLFSURSA, ABS 

Monthly, SA 
National bank survey 

NAB Data  

CA Quarterly, real SA 
OECD VOBARSA 

CPI, CPI Core 
Monthly (SA, NSA) 

 StatCan 

Monthly, SA 
OECD MEI  

 

Quarterly, SA 
StatCan (NAICS) 

Series Code 029-002 

DEU Quarterly, Real, SA 

OECD LBRQRSA 

CPI, CPI Core 

Monthly (SA, NSA) 
OECD MEI 

Monthly, SA 

OECD MEI 

Quarterly, SA 

OECD MEI 

FRA Quarterly, real, SA 

OECD LBRQRSA 

CPI, CPI Core 

Monthly (SA, NSA) 
OECD MEI 

Monthly, SA 

OECD MEI 

Quarterly, SA 

OECD MEI 

IT Quarterly, real, SA 

OECD VOBARSA 

CPI, CPI Core 

Monthly (SA, NSA) 

OECD MEI 

Monthly, SA 

OECD MEI 

Quarterly, SA 

OECD MEI 

JP Quarterly, Real, 

NSA 

Cabinet Office 

CPI, CPI Core 

Monthly, NSA 

OECD MEI 

Monthly, SA 

Cabinet Office 

Quarterly, SA 

Japan Ministry of 

Economy 

KR Quarterly, Real, SA 

OECD VOBARSA 

CPI, CPI Core 
(NSA, SA) 

OECD MEI 

Monthly, SA 

OECD MEI 

Quarterly, SA 

KOSTAT 

NZ Quarterly, Real, SA 

OECD VOBARSA 

CPI, CPI core 

NSA, SA 

Monthly, SA 

OECD MEI 

Quarterly, SA 

OECD MEI 

UK Quarterly, Real, SA 

OECD VOBARSA 

CPI, CPI Core, SA 

OECD MEI 

Monthly, SA 

OECD MEI 

Quarterly, SA 

Office of National 

Statistics (Business 
Tendency Survey) 

Notes: All monthly series were converted to quarterly frequency using arithmetic averages. The series that were not seasonally adjusted by the 

source were seasonally adjusted using the X12 filter. To facilitate comparison with previous studies, we had a preference for OECD VOBARSA 
GDP series, except when an alternative measure was available for a much longer sample. In all cases when we used a series other than the 

VOBARSA measure, the correlation with the VOBARSA measure for the overlapping sample periods was above 0.97. Similarly, we had a 

preference for the OECD Main Economic Indicator (MEI) harmonized unemployment rate, except when an alternative measure was available for 
a much longer sample. In the case of the US, the FRED series match the preferred OECD measures. 
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Table A.2 

Structural Break Tests 

Economy Number of 

breaks 

Break Dates  

(Test Statistics and significance 

level) 

US 1 (2) 2000Q3 

(19.10***) 

1973Q1 

(6.88) 

p-value =0.13 

Australia 0 - 

Canada 1 1974Q2 

(20.278***) 

France 1 1974Q2 

(65.82***) 

Germany 1 (2) 1973Q2 

(15.871***) 

 

1991Q2 

(4.95) 

p-value=0.11 

Italy 1 1974Q1 

(48.127***) 

Japan 2 1973Q2 

(131.695***) 

 

1991Q3 

(19.87***) 

Korea 1 1997Q3 

(26.07***) 

New 

Zealand 

0 - 

UK 0 (1) 1973Q1 

(6.07) 

p-value=0.15 
Notes: The table reports the results of the Bai-Perron (1998, 2003) sequential test. We consider trimming of 15% of the sample from 
its end points and between breaks for admissible break dates. The table reports the number of breaks, the estimated break date, and the 

test statistic with the significance level (three stars corresponds to significance at the 1% level, two stars corresponds to significance at 

the 5% level, and one star corresponds to significance at the 10% level). In the cases when the Bai-Perron test selected a smaller 
number of breaks than the number of breaks commonly imposed in the literature, we list the maximum number of breaks we 
considered in parentheses and the p-value for the additional break date below the test statistic. 
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Table A.3 

Tests for Markov Switching 
  Alternatives 

 Null L-shaped U-shaped Depth  

United States AR(2) 0.151 

(0.409) 

1.213 

2.516 

(0.166) 

4.272 

8.401 

(0.055) 

9.243 

 AR(2)-t 0.307 

(0.164) 

0.721 

1.373 

(0.161) 

2.797 

9.554 

(0.035) 

9.022 

Australia AR(2) 0.880 

(0.116) 

1.833 

0.197 

(0.688) 

3.270 

14.826 

(0.005) 

9.218 

 AR(2)-t 0.637 

(0.070) 

0.904 

0.020 

0.999 

2.814 

10.686 

(0.045) 

9.195 

Canada AR(2) 0.003 

(0.989) 

0.932 

1.914 

0.221 

3.516 

24.122 

(0.000) 

9.224 

 AR(2)-t 0.003 

(0.689) 

0.932 

1.914 

(0.221) 

3.516 

17.825 

(0.000) 

9.575 

Germany AR(2) 0.974 

(0.210) 

1.109 

3.688 

(0.030) 

3.376 

59.000 

(0.000) 

8.846 

 AR(2)-t 0.030 

(0.437) 

0.885 

6.250 

(0.000) 

2.2886 

108.344 

(0.000) 

10.756 

France AR(2) 0.001 

(1.000) 

1.223 

1.220 

(0.432) 

3.915 

2.803 

(0.825) 

27.829 

 AR(2)-t 0.000 

(1.000) 

1.507 

0.673 

(0.236) 

2.458 

50.794 

(0.000) 

9.826 

Italy AR(2) 1.962 

(0.035) 

1.736 

1.065 

(0.452) 

4.641 

1.827 

(0.800) 

10.903 

 AR(2)-t 0.057 

(0.462) 

1.356 

1.171 

(0.201) 

2.255 

0.473 

(0.960) 

10.732 

Japan AR(2) 0.492 

(0.146) 

1.353 

2.752 

(0.121) 

4.177 

36.310 

(0.081) 

54.323 

 AR(2)-t 3.774 

0.000 

1.315 

2.527 

(0.040) 

2.397 

15.378 

(0.011) 

10.137 

Korea AR(2) 0.027 

(0.389) 

1.172 

0.369 

(0.382) 

2.251 

17.964 

(0.290) 

27.062 

 AR(2)-t 0.026 

(0.527) 

1.449 

0.0940 

(0.537) 

3.896 

2.079 

(0.825) 

11.332 

New Zealand AR(2) 1.231 

(0.085) 

1.458 

0.138 

(0.758) 

4.036 

6.198 

(0.265) 

11.115 

 AR(2)-t 1.235 

(0.030) 

0.917 

0.206 

(0.462) 

2.157 

2.974 

(0.570) 

10.055 

 

United Kingdom AR(2) 0.001 

(1.000) 

1.158 

2.969 

(0.075) 

3.399 

16.000 

(0.002) 

9.914 

 AR(2)-t 0.001 

(1.000) 

0.993 

0.065 

(0.708) 

2.440 

6.592 

(0.260) 

11.464 

Notes: The test statistics for the L-shaped and U-shaped Recessions are based on Carrasco et al. (2014). The test statistics for the 

depth-based recovery alternatives are based on estimation using a grid for the continuous probabilities. All p-values (reported in 

parentheses) and 5% critical values (reported below p-values) are based on parametric bootstrap experiments with 499 simulations. All 
tests accounted for structural breaks in the long-run growth rate. 
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Table A.4 

Unit Root and Stationarity Tests 

 
 Test 

 Adjustment for structural 
breaks  

ADF 
(asymptotic p-

value) 

DF 
ERS* 

LMC 
(bootstrapped p-

value) 

KPSS 
(bootstrapped p-

value) 

MPS 
(bootstrapped p-

value) 

US 1973Q1, 2000Q3 -3.201 

(0.085) 

8.903 0.085 

(0.362) 

0.163 

(0.182) 

1.634 

(0.065) 

AU None 

 

-1.834 

(0.363) 

3.209 2.088 

(0.330) 

0.211 

(0545) 

10.876 

(0.015) 

CA 1974Q2 

 

-2.289 

(0.438) 

2.404 3.411 

(0.010) 

0.378 

(0.116) 

3.698 

(0.201) 

FRA 1974Q2 

 

-1.585 

(0.796) 

2.575 1.897 

(0.377) 

0.186 

(0.683) 

7.835 

(0.000) 

DEU 1973Q1, 1991Q2 

 

-2.696 

(0.239) 

2.889 2.564 

(0.025) 

0.274 

(0.055) 

12.440 

(0.000) 

IT 1974Q1 

 

0.525 

(0.993) 

2.686 1.502 

(0.151) 

0.318 

(0.729) 

3.080 

(0.101) 

JP 1973Q1, 1991Q3 

 

-3.147 

(0.098) 

2.461 0.063 

(0.603) 

0.152 

(0.357) 

0.030 

(0.537) 

KR 1997Q3 

 

-3.055 

(0.120) 

3.078 0.071 

(0.839) 

0.574 

(0.386) 

0.430 

(0.307) 

NZ None 
 

-2.618 
(0.273) 

4.072 1.573 
(0.261) 

0.182 
(0.407) 

6.432 
(0.100) 

UK 1973Q2 -2.448 

(0.353) 

2.981 1.225 

(0.256) 

0.139 

(0.708) 

12.294 

(0.005) 

Notes: The 5% asymptotic critical value for the DF-ERS unit root tests is -1.941. We also performed unit root and stationarity tests that allowed 
for structural breaks in the variance and unit root tests that did not allow for structural breaks in the long-term drift. The results for the different 

specifications that allow for breaks in the variance and specifications that do not allow for structural breaks in means are available upon request. 

Allowing for structural breaks in the variance did not alter the p-values of any of the tests substantially. 
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Table A.5 

Prior Distributions for Model Parameters 

 Parameter Description Model(s) Prior 

𝜇 
Unconditional mean 

growth 

All except  

UC-HP and BB 
𝑁(1,32) 

𝛾0 
Growth in expansion 

regime 
BB 𝑁(2.5,32) 

−𝛾1 Impact of other regime BB 𝐺𝑎𝑚𝑚𝑎(
15

2
,

5

2
) 

𝜆 Bounceback coefficient BB 𝑁(0,0.252) 

−𝜏 
Mean of transitory shocks 

in other regime 
UC-FP 𝐺𝑎𝑚𝑚𝑎(

15

2
,

5

2
) 

𝜙𝑗 AR parameter at lag j 
All except  

UC-HP 

𝑇𝑁 (0, (
0.25

𝑗
)

2

)
[|𝑧|>1,𝜙(𝑧)=0]

 

 

𝑝00 
Expansion regime 

continuation probability 

BB,  

UC-FP 
𝐵𝑒𝑡𝑎(1,20) 

𝑝11 
Other regime continuation 

probability 

BB,  

UC-FP 
𝐵𝑒𝑡𝑎(5,15) 

𝜈 
Degree of freedom for 

Student t errors 

All except  

UC  
𝐺𝑎𝑚𝑚𝑎(

1

2
,
0.1

2
) 

1

𝜎𝑒
,

1

𝜎𝜂
,

1

𝜎𝜔
   Precision for independent 

shocks 

All except  

UCUR and UCUR-FP 
𝐺𝑎𝑚𝑚𝑎 (

5

2
,
2

2
) 

Σ𝜂𝜔
−1  

Precision for correlated 

shocks 
UCUR and UCUR-FP 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(5,2 × 𝐼2) 

 

 

 


