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SUMMARY

We consider the weighted bootstrap approximation of the distribution of a class of M-estimators of
the GARCH (p, q) parameters. We prove that the bootstrap distribution, given the data, is a consistent
estimate in probability of the distribution of the M-estimator which is asymptotically normal. We propose
an algorithm for the computation of M-estimates which at the same time is software-friendly to compute 10

the bootstrap replicates from the given data. Our simulation study indicates superior coverage rates for
various weighted bootstrap schemes compared with the rates based on the normal approximation and the
existing bootstrap methods in the literature such as percentile t-subsampling schemes for the GARCH
model. Since some familiar bootstrap schemes are special cases of the weighted bootstrap, this paper thus
provides a unified theory and algorithm for bootstrapping in GARCH models. 15

Some key words: GARCH model; M-estimation; Weighted bootstrap.

1. INTRODUCTION

Consider the generalized autoregressive conditional heteroscedastic (GARCH) model of order (p, q) to
analyze the volatility or the instantaneous variability of a financial time series {Xt; 1 ≤ t ≤ n}. Here the
following representation of {Xt; t ∈ Z} is assumed: 20

Xt = σtεt, (1)

where {εt; t ∈ Z} are unobservable independent and identically distributed errors with symmetric distri-
bution around zero and

σt =
(
ω0 +

p∑
i=1

α0iX
2
t−i +

q∑
j=1

β0jσ
2
t−j

)1/2
, t ∈ Z, (2)

with ω0, α0i, β0j > 0, for all i, j. In this article, we show the asymptotic validity of a class of weighted
bootstrap approximations of the distributions of M-estimators of the parameter

θ0 = (ω0, α01, . . . , α0p, β01, . . . , β0q)
T

based on observations {Xt; 1 ≤ t ≤ n}. We propose an algorithm to compute M-estimators and their
bootstrapped versions. Finally, we provide empirical evidence that the weighted bootstrap has better per-
formance compared with those of the existing bootstrap schemes for GARCH models. Since our theo- 25

retical results on the asymptotic validity of weighted bootstrap estimators are proved under weak mo-
ment assumptions on errors, these are applicable to GARCH modeling of financial data where the quasi
maximum likelihood estimator (QMLE) is routinely used for estimating parameters, even though higher
moment assumptions for its asymptotics may not hold. Since some familiar bootstrap schemes are special
cases of the weighted bootstrap, our result and algorithm provide a unified theory and computation of such 30

schemes in GARCH models.
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Mukherjee (2008) derived theoretical properties and demonstrated usefulness of M-estimators as a bet-
ter alternative to the QMLE of the parameters of the GARCH model (1) and (2). See the references therein
for other works in this area. Although M-estimators are asymptotically normal, their finite-sample distri-
butions can be asymmetric. Consequently, confidence intervals based on the normality assumption do not35

have good coverage probabilities. Hence it is natural to explore the effectiveness of bootstrap procedures
to approximate the finite-sample distributions of various M-estimators of the GARCH parameters.

For bootstrap-related work in such models, we mention Hidalgo and Zaffaroni (2007) who considered
with-replacement bootstrap samples of standardized residuals and showed the first order consistency of
some bootstrapped test statistics for checking the validity of the autoregressive conditional heteroscedastic40

(ARCH)(∞) model. Linton, Pan and Wang (2010) discussed a log-transformed model of squared observa-
tions of semi-strong GARCH model with some assumptions on the log-transformed error distribution, and
investigated asymptotics of the least absolute deviation estimator. Hall and Yao (2003) and Linton, Pan
and Wang (2010) also considered percentile t-subsampling bootstrap of the QMLE based on residuals.
However, the weighted bootstrap is not subsumed by the residual bootstrap and other types of bootstrap45

discussed by these authors. Varga and Zempleni (2012) discussed the potential of the weighted bootstrap
to approximate the distribution of the QMLE of the GARCH parameters and provided some empirical
results for the ARCH(1) model that showed better performance of a particular weighted bootstrap, called
Scheme M in this paper, than the residual bootstrap. Our empirical study shows better performance of the
weighted bootstrap in comparison with existing bootstrap methods for the GARCH and related models in50

the literature for a wide spectrum of heavy-tailed as well as light-tailed error distributions.
Motivated by an algorithm proposed by Mak (1993) and applied later by Mak, Wong and Li (1997) in

the context of ARCH type models for computing the QMLE, we propose a new algorithm to compute M-
estimates in the GARCH model. We use a variant of this algorithm for computing bootstrap estimates as
it avoids re-computation of some core quantities in new bootstrap samples and enables fast computation.55

2. M-ESTIMATORS, WEIGHTED BOOTSTRAP AND ALGORITHM

Let ψ : IR→ IR be an odd function, that is, ψ(−x) = −ψ(x) for x > 0, which is differentiable at all
but a finite number of points and letH(x) := xψ(x), x ∈ IR. The functionH is called the ‘score function’
for the M-estimation in the scale model.

Following Mukherjee (2008), we define M-estimators as follows. From Lemma 2.3 and Theorem 2.1 of60

Berkes et al. (2003), σ2
t of (2) has the unique almost sure representation σ2

t = c0 +
∑∞
j=1 cjX

2
t−j , t ∈

Z , where {cj ; j ≥ 0} are defined in (2.7)-(2.9) of Berkes et al. (2003). Let Θ be a compact subset of
(0,∞)1+p × (0, 1)q . A typical element in Θ is denoted by θ = (ω, α1, . . . , αp, β1, . . . , βq)

T. Define the
variance function on Θ by

vt(θ) = c0(θ) +

∞∑
j=1

cj(θ)X
2
t−j , θ ∈ Θ, t ∈ Z, (3)

where the coefficients {cj(θ); j ≥ 0} are given in Berkes et al. (2003, Section 3) with the property65

cj(θ0) = cj , j ≥ 0, so that the variance functions satisfy vt(θ0) = σ2
t , t ∈ Z and

Xt = {vt(θ0)}1/2εt, 1 ≤ t ≤ n. (4)

Let {v̂t(θ)} be observable approximation of {vt(θ)} of (3) defined by

v̂t(θ) = c0(θ) + I(2 ≤ t)
t−1∑
j=1

cj(θ)X
2
t−j , θ ∈ Θ, 1 ≤ t ≤ n.

Then an M-estimator θ̂n is defined as a solution of the system of equations
n∑
t=1

[1−H{Xt/v̂
1/2
t (θ)}]{ ˙̂vt(θ)/v̂t(θ)} = 0, (5)
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where ˙̂vt(θ) is the first derivative of v̂t(θ). The QMLE corresponds to ψ(x) = x while the least abso-
lute deviation estimator corresponds to ψ(x) = sign(x). The asymptotic distribution of θ̂n was derived
in Mukherjee (2008) under various logarithmic moment conditions on the bounds of the increment of H 70

(Conditions SM1-SM3 described in the Supplementary material) and the following identifiability condi-
tion on the existence of a unique number cH > 0 such that

E{H(ε/c
1/2
H )} = 1. (6)

Define the score function factor

σ2(H) := 4 var{H(ε/c
1/2
H )}/[E{(ε/c1/2H )Ḣ(ε/c

1/2
H )}]2,

the matrix J := E{v̇1(θ0H)v̇T
1 (θ0H)/v21(θ0H)} and the transformed parameter

θ0H = (cHω0, cHα01, . . . , cHα0p, β01, . . . , β0q)
T.

Then the M-estimator θ̂n in (5) is asymptotically normal. As n→∞

n1/2(θ̂n − θ0H)→ N{0, σ2(H)J−1} (7)

in distribution.
We now consider the weighted bootstrap formulation for M-estimators. Let {wnt; 1 ≤ t ≤ n, n ≥ 1} be 75

a triangular array of non-negative random variables withE(wnt) = 1, such that for each n ≥ 1, {wnt; 1 ≤
t ≤ n} are exchangeable and independent of the data {Xt; t ≥ 1} and errors {εt; t ≥ 1}.

Based on these weights, a bootstrap estimate θ̂∗n is defined as a solution to the equation in θ
n∑
t=1

wnt[1−H{Xt/v̂
1/2
t (θ)}]{ ˙̂vt(θ)/v̂t(θ)} = 0.

Examples. From many different choices of bootstrap weights, we consider the following three schemes.
(i) Scheme M when (wn1, . . . , wnn) have a multinomial (n, 1/n, . . . , 1/n) distribution. Here θ̂∗n is the

M-estimator computed from the units sampled which is essentially the classic paired bootstrap. 80

(ii) Scheme E when wnt = (nEt)/
∑n
i=1Ei, where {Et} are independent and identically distributed

exponential random variables with mean 1. Here θ̂∗n is a weighted M-estimator with weights proportional
to Et, 1 ≤ t ≤ n. This is an example of Bayesian bootstrap; see Praestgaard and Wellner (1993, p. 2058).

(iii) Scheme U when wnt = (nUt)/
∑n
i=1 Ui, where {Ut} are independent and identically distributed

uniform random variables from U(1− a, 1 + a) where 0 < a ≤ 1. Under Scheme U, θ̂∗n is a weighted 85

M-estimator with weights proportional to Ut, 1 ≤ t ≤ n.
A number of other bootstrap methods in the literature are also special cases of the above bootstrap

formulation. This general formulation of weighted bootstrap offers a unified way of studying several
bootstrap schemes simultaneously.

In the following, E∗ and var∗ denote the expectation and variance with respect to the bootstrap distri- 90

bution and all convergence statements hold as n→∞. We assume that the weights satisfy the following
basic conditions (Conditions BW of Chatterjee and Bose 2005) where σ2

n = var∗(wnt) and k > 0 is a
constant:

E∗(wn1) = 1, 0 < k < σ2
n = o(n), corr∗ (wn1, wn2) = O(1/n), (8)

and the standardized weights {Wnt = (wnt − 1)/σn} satisfy the CLT condition:

sup{E∗(W 4
n1);n ≥ 1} <∞, E∗(W 2

n1W
2
n2)→ 1. (9)

Conditions (8) and (9) are satisfied by weights corresponding to the three schemes in the above examples 95

as discussed by Cheng and Huang (2010, p. 2891).
THEOREM 1. Assume that (8), (9), smoothness conditions SM1-SM4 and moment condition M1 de-

scribed in the Supplementary material hold. Then for almost all data, as n→∞

σ−1n n1/2(θ̂∗n − θ̂n)→ N{0, σ2(H)J−1} (10)
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in distribution.
Remark 1. Since 0 < 1/σn < 1/k, if the sequence 1/σn is bounded below by a positive number, the100

order of convergence of the bootstrap estimator is the same as that of the original estimator. A lower
bound of 1/σn exists for the bootstrap schemes M, E and U in the examples. The standard deviation of
the weights σn in the denominator of the scaling reflects the contribution of the corresponding weights.

We now develop an algorithm for efficiently computing the estimates for the bootstrap samples. Fol-
lowing on (5), define a function g of two arguments θ̃ and θ as the sum of conditional expectations

g(θ̃, θ) =

n∑
t=1

Eθ̃

(
[1−H{Xt/v

1/2
t (θ)}]{v̇t(θ)/vt(θ)} | {Xj , j ≤ t− 1}

)
,

where the conditional expectation is calculated under the true parameter θ̃ and for t = 1, the σ-field
{Xj , j ≤ t− 1} denotes the trivial σ-field. When θ̃ = θ and is equal to the true parameter θ0H ,105

g(θ̃, θ) =

n∑
t=1

E[1−H{Xt/v
1/2
t (θ0H)}]{v̇t(θ0H)/υt(θ0H)}

=

n∑
t=1

E[{1−H(εt/c
1/2
H )}{v̇t(θ0H)/υt(θ0H)}] = 0.

So we assume that a solution to
∑n
t=1[1−H{Xt/v

1/2
t (θ)}]{v̇t(θ)/vt(θ)} = 0 is close to the solution of

n∑
t=1

[1−H{Xt/v
1/2
t (θ)}]{v̇t(θ)/vt(θ)} = g(θ̃, θ).

Using a Taylor expansion of g as a differentiable function of θ̃ around θ and replacing vt(θ) by v̂t(θ),
we obtain the following recursive equation for computing the updated estimate θ̃ of θ̂n from the current
estimate θ.

θ̃ = θ − [2/E{εḢ(ε)}]
[ n∑
t=1

{ ˙̂vt(θ) ˙̂vt(θ)
T/v̂2t (θ)}

]−1 n∑
t=1

[1−H{Xt/v̂
1/2
t (θ)}]{ ˙̂vt(θ)/v̂t(θ)}.

Moreover the bootstrap estimate θ̂∗n can be computed by updating θ̃∗ from the current estimate θ using a
similar weighted recursive equation as follows.

θ̃∗ = θ − [2/E{εḢ(ε)}]
[ n∑
t=1

wnt{ ˙̂vt(θ) ˙̂vt(θ)
T/v̂2t (θ)}

]−1 n∑
t=1

wnt[1−H{Xt/v̂
1/2
t (θ)}]{ ˙̂vt(θ)/v̂t(θ)}.

(11)

3. SIMULATION

In our empirical study we aim (i) to assess the validity of (7) and (10) in practice by providing coverage
rates of the confidence intervals obtained through the asymptotic normal approximation and bootstrap110

approximations; and (ii) to provide some empirical evidence for the superior performance of the weighted
bootstrap over resampling methods such as percentile t-subsampling and residual bootstrap that are avail-
able in the bootstrap literature on GARCH models with heavy-tailed error distributions. In the Supple-
mentary material, we also analyze a recent data on the daily adjusted closing prices of the Nikkei 225
Index of the Japanese market to provide bootstrap estimates of the bias, mean squared error and variance115

of some M-estimators. Only two M-estimators, namely, the QMLE and least absolute deviation estima-
tor are computed in this limited simulation study. Extensive simulation using other M-estimators will be
reported elsewhere.
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We generate data from a GARCH (1, 1) model with parameters ω0 = 7.62× 10−6, α01 = 1.54×
10−1, β01 = 8.31× 10−1. We select such parameters since these are the QMLE of the Nikkei data when 120

a GARCH (1, 1) model is fitted.
For the error distribution, we choose Student’s t(d)-distribution with d degrees of freedom, where

d = 3, 4, 5,∞. Such choices cover a representative array of errors with d = 3, 4 corresponding to heavy-
tailed distributions (in the sense of having infinite 4-th moment) and d = 5,∞ corresponding to light-
tailed distributions. Similar error distributions were also considered for generating data while studying 125

subsampling schemes by Linton, Pan, and Wang (2010). Since with heavy-tailed distributions the algo-
rithm for computing the QMLE did not always converge for the generated data, coverage rates of the
QMLE are reported for light-tailed error distributions while the corresponding rates of the least absolute
deviation estimator are reported for all four error distributions.

The sample size for each dataset was n = 1000 and we considered B = 2000 bootstrap samples. Cov- 130

erage rates were computed based on R = 500 replicates.
We consider four types of bootstrap schemes. The first three types are discussed in Section 2. Type 1:

Scheme U with four possible equally-spaced values of a, namely, a = 0.25, 0.5, 0.75, 1. Type 2: Scheme
M. Type 3: Scheme E which is similar to Scheme U but based on exponential random variables.

Type 4: Percentile t-subsampling: Such bootstrap schemes were considered by Hall and Yao (2003) 135

and Linton, Pan and Wang (2010) for the QMLE. Hidalgo and Zaffaroni (2007) considered a special case
which may be called a percentile residual bootstrap. In the sequel, we will call them simply subsampling
or residual bootstrap. For this bootstrap, we define residuals by ε̃t = Xt/v̂

1/2
t (θ̂n), 1 ≤ t ≤ n and then

the centered residuals by ε̂t = ε̃t − n−1
∑n
t=1 ε̃t, 1 ≤ t ≤ n. Let the subsample size be m where m ≤ n.

The case m = n is the residual bootstrap. We generate B subsampling bootstrap M-estimates as follows. 140

For each b, 1 ≤ b ≤ B, we select a random sample of sizem from {ε̂t; 1 ≤ t ≤ n} and call it {ε̂∗t ; 1 ≤ t ≤
m}. We form a new set of data {X∗t , 1 ≤ t ≤ m} where X∗t = v̂

1/2
t (θ̂n)ε̂∗t and compute θ̂∗n as the b-th

subsampling bootstrap M-estimate based on {X∗t ; 1 ≤ t ≤ m}. This subsampling or residual bootstrap is
not a special case of the weighted bootstrap. We exhibit simulation results with subsampling sizem where
m = 0.6n, 0.7n, 0.8n and n. 145

For computing coverage rates under the normal approximation, we use Proposition 3.1 of Mukher-
jee (2008) to estimate the variance-covariance matrix of the limiting normal distribution needed for the
confidence intervals.

The coverage rates of the QMLE and least absolute deviation estimator are reported in Tables 1 and
2. The tables show that for Scheme U, the coverage rates for both QMLE and least absolute deviation 150

estimator are close to each other for different values of a and they are reasonably close to nominal values
especially for the intercept parameter ω. Similar comments apply for Scheme M and Scheme E with good
coverage rates for both QMLE and least absolute deviation estimator and for all error distributions con-
sidered in our study. Moreover, no scheme seems to dominate the other uniformly over various parameters
or error distributions in terms of coverage rate. 155

The coverage rates of the subsampling bootstrap are reasonable for heavy-tailed distributions but they
become increasingly poor for both α and β under light-tailed distribution such as t(5) or normal. This is
not surprising since such bootstrap schemes were proposed by Hall and Yao (2003) and Linton, Pan and
Wang (2010) for heavy-tailed error distributions. The coverage rate of the normal approximation is poor
even for the QMLE when the error distribution is normal. 160

All three weighted bootstrap schemes dominate subampling and residual bootstrap. Our simulation
study thus provides some empirical support to prefer the weighted bootstrap approximation over the sub-
sampling schemes or the normal approximation of the distribution of M-estimators when considering
GARCH models with a wide spectrum of heavy-tailed as well as light-tailed error distribution.

Compared with some other bootstraps in the literature for GARCH models, the weighted bootstrap is 165

computationally simpler. We can store the core quantities {[1−H{Xt/v̂
1/2
t (θ)}]{ ˙̂vt(θ)/v̂t(θ)}} while

computing M-estimates. After that, for each bootstrap replicate, one simply needs to generate weights and
solve the equation involving a weighted sum through iteration using (11). Each time, the initial estimate
for the iteration is taken to be the M-estimate θ̂n.



6 K. MUKHERJEE

Table 1. The coverage rates of different bootstrap schemes for the QMLE170

ω α β ω α β
95% nominal value 90% nominal value

t(5) dist. Scheme U a = 0.25 94.3 91.7 92.2 89.5 87.7 86.2
a = 0.5 96.2 91.5 92.0 91.9 86.8 86.6
a = 0.75 96.6 91.1 92.3 92.7 86.6 87.3
a = 1 96.8 90.8 92.7 93.4 86.1 88.1

Subsampling m = 600 87.9 92.0 96.3 84.6 86.5 93.6
m = 700 88.6 92.0 96.4 85.7 85.9 93.6
m = 800 88.6 92.7 96.6 85.9 85.8 93.3
m = 1000 89.9 92.1 96.4 86.4 84.2 92.1

Scheme M 94.6 89.1 90.0 90.9 84.5 85.9
Scheme E 93.1 88.2 89.3 89.7 83.6 84.7

Normal dist. Scheme U a = 0.25 90.8 93.3 93.0 80.6 89.9 87.6
a = 0.5 91.7 93.5 93.3 81.9 89.9 88.5
a = 0.75 92.6 93.2 94.0 83.2 89.8 88.9
a = 1 93.5 93.2 94.6 84.3 89.7 89.3

Subsampling m = 600 92.2 66.6 81.2 87.7 51.0 69.2
m = 700 92.4 59.7 76.2 88.8 45.4 62.6
m = 800 93.2 53.4 69.7 89.9 40.4 56.8
m = 1000 95.6 42.7 60.4 92.4 32.2 44.7

Scheme M 96.4 93.8 95.1 89.1 90.0 90.5
Scheme E 95.7 93.1 95.0 87.0 89.7 90.1
Normal approximation 68.6 92.4 86.4 61.4 87.8 80.2

Table 2. The coverage rates of different bootstrap schemes for the least absolute deviation estimator
ω α β ω α β
95% nominal value 90% nominal value

t(3) dist. Scheme U a = 0.25 95.0 90.4 92.2 90.4 87.3 87.3
a = 0.5 95.0 90.2 91.8 90.7 86.4 87.4
a = 0.75 94.9 90.0 92.0 90.0 86.0 87.2
a = 1 94.8 90.0 91.8 90.1 85.7 87.2

Subsampling m = 600 86.8 87.5 96.0 82.9 78.2 94.4
m = 700 86.1 87.8 96.4 81.8 77.7 95.2
m = 800 84.5 86.0 97.3 79.8 74.5 95.4
m = 1000 85.3 83.3 97.1 80.7 71.2 95.7

Scheme M 93.0 87.9 91.8 90.0 85.2 87.5
Scheme E 93.0 87.5 91.6 90.0 84.6 87.0

t(4) dist. Scheme U a = 0.25 96.3 90.9 92.4 91.6 86.2 87.7
a = 0.5 96.3 90.6 92.3 92.2 86.0 87.8
a = 0.75 96.7 89.7 92.4 92.7 85.5 87.7
a = 1 97.0 89.3 92.2 93.0 85.1 87.5

Subsampling m = 600 85.0 80.2 96.5 80.2 68.0 93.7
m = 700 85.7 77.1 96.4 81.7 66.1 93.9
m = 800 87.7 71.5 97.2 83.6 57.2 93.1
m = 1000 86.1 71.0 97.0 80.5 56.2 92.2

Scheme M 96.6 91.6 93.7 94.5 88.6 89.0
Scheme E 96.8 91.2 93.5 94.4 88.1 88.6

t(5) dist. Scheme U a = 0.25 95.9 93.6 93.6 90.7 88.6 88.7
a = 0.5 96.4 93.7 93.8 91.7 88.2 89.7
a = 0.75 96.4 93.4 94.4 92.3 88.2 90.0
a = 1 96.7 93.1 94.7 92.7 87.8 90.3

Subsampling m = 600 84.5 73.4 95.1 80.5 60.2 90.4
m = 700 85.8 70.7 93.9 81.5 56.1 87.7
m = 800 84.9 64.8 94.1 81.6 50.4 87.6
m = 1000 88.6 56.0 90.3 84.2 42.7 81.6

Scheme M 96.8 91.7 94.6 93.5 86.9 90.2
Scheme E 97.0 91.7 94.2 93.6 86.8 89.7

Normal dist. Scheme U a = 0.25 93.8 93.7 94.9 85.8 89.6 90.0
a = 0.5 94.8 93.5 95.1 87.0 89.1 90.2
a = 0.75 96.1 93.3 95.3 88.2 89.1 90.9
a = 1 96.9 93.3 95.6 89.6 89.3 91.4

Subsampling m = 600 90.5 52.7 81.4 85.9 40.6 69.0
m = 700 91.7 46.8 75.8 86.4 36.0 62.1
m = 800 91.9 40.9 70.4 87.4 31.6 57.1
m = 1000 93.0 32.6 62.1 88.8 25.4 45.8

Scheme M 97.7 93.2 95.7 92.1 90.1 91.2
Scheme E 97.6 92.9 95.4 91.6 90.0 90.9
Normal approximation 89.0 99.8 88.6 82.0 99.2 84.2

The subsampling bootstrap took a lot longer time than the weighted bootstrap because (a) for each
replicate, we need to consider a new set of data and (b) various resulting matrices associated with the new175

set of data for the computation of the QMLE and least absolute deviation estimator were not invertible.
Consequently, those samples were removed and new bootstrap samples were generated.
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4. OUTLINE OF PROOF

To derive the asymptotic distribution (10) of the estimator θ̂∗n defined by a root of a smooth function
of θ, we use a simple modification of a result of Klimko and Nelson (1978, Theorem 2.1, Corollary 2.1
and Theorem 2.2) as stated in the Supplementary material. Define ρ by ρ(x) =

∫ x
0
ψ(t)dt for x ≥ 0 and

ρ(x) = ρ(−x) for x < 0. Let

m̂t(θ) = ρ{Xt/v̂
1/2
t (θ)}+ (1/2) log v̂t(θ), M̂n(θ) =

n∑
t=1

m̂t(θ), M̂∗n(θ) =

n∑
t=1

wntm̂t(θ).

Since M̂∗n(θ̂∗n) = 0, we verify the conditions of the Klimko and Nelson Theorem for the criterion func-
tion M̂∗n which is a weighted sum of {m̂t(θ)}. We use following lemmas to show various convergence 180

properties of the weighted sums with respect to the bootstrap distribution.
Let {Kt} be a sequence of random variables of the formKt = C1t + C2tC3t + C4tC5tC6t + . . .where

the sequence of identically distributed random vectors {Ct; t ≥ 1} is defined by Ct = (C1t, C2t, . . .) with
Cit > 0 for all i ≥ 1 and E(log+ Ci1) <∞.

LEMMA 1. Let {Kt, 1 ≤ t ≤ n} be independent of {wnt} satisfying (8). Then for all 0 < ρ < 1, 185

σ−1n
∑n
t=1 wntρ

tKt converges almost surely.
The next lemma states the convergence of a bootstrap-weighted average when multiplied by infinitesi-

mal sequence of random variables.
LEMMA 2. Let {at} be a stationary ergodic sequence of random variables with E(|a1|) <∞. Let

{un} be a sequence of random variables (with un possibly dependent on {at, t ≤ n}) such that un = 190

op(1) and {un, at, 1 ≤ t ≤ n} is independent of {wnt, 1 ≤ t ≤ n}. Then (un/n)
∑n
t=1 wntat = op(1)

almost surely.
LEMMA 3. Let {at, 1 ≤ t ≤ n} be a sequence of second order stationary ergodic random variables

independent of {wnt; 1 ≤ t ≤ n} such that E(a1) = 0. Then (1/n)
∑n
t=1 wntat = op(1) almost surely.

Let V = ãJ where ã = E{(ε/c1/2H )Ḣ(ε/c
1/2
H )}/8 > 0. We verify conditions of the Klimko and Nelson 195

Theorem by showing that almost surely,

n−1
˙̂
M∗n(θ̂n) = op(1), (12)

(2n)−1
¨̂
M∗n(θ̂n)→ V, (13)

lim
n→∞

lim
δ→0+

sup{(nδ)−1| ¨̂
M∗n(θ)− ¨̂

M∗n(θ̂n)|; ‖θ − θ̂n‖ ≤ δ} <∞, (14)

(2σnn
1/2)−1

˙̂
M∗n(θ̂n)→ N{0, σ2(H) J−1}. (15)

We sketch the common approach for proving (12) - (15) by providing some details of the proofs of (12) 200

and (15) only but leave elaborate arguments for the Supplementary material. For (12), we show that

n−1 sup{| ˙̂
M∗n(θ)− Ṁ∗n(θ)|; θ ∈ Θ0} = op(1), (16)

n−1{Ṁ∗n(θ̂n)− Ṁ∗n(θ0H)} = op(1), (17)

n−1Ṁ∗n(θ0H) = op(1). (18)

In (16), the difference of two quantities involving vt(θ) and v̂t(θ) is bounded by quantities of the form

{ρtKt} and so | ˙̂
M∗n(θ)− Ṁ∗n(θ)| is bounded above by the {wnt}-weighted sum of {ρtKt} which by

Lemma 1 converges with respect to the bootstrap distribution. In (17), the difference of two quantities are
weighted smooth functions of the difference involving θ̂n and θ0H and hence goes to zero. Finally, (18)
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involves weighted sum {
∑n
t=1 wntat} that converges using Lemma 3. For (15), steps analogous to (16)

and (17) can be proved similarly and the final step involves showing the convergence in distribution

(2σnn
1/2)−1Ṁ∗n(θ0H)→ N{0, σ2(H) J−1}.

For this we verify conditions of Lemma 4.6 of Praestgaard and Wellner (1993) for the asymptotic normal-
ity of a weighted sum of the exchangeable random variables {wnt/σn; 1 ≤ t ≤ n} since with the function
h defined by h(x) = (1/2){1−H(x)},

(2σnn
1/2)−1Ṁ∗n(θ0H) = n−1/2

n∑
t=1

(wnt/σn)(1/2)h(εt/c
1/2
H ){v̇t(θ0H)/vt(θ0H)}.
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SUPPLEMENTARY MATERIAL

The Supplementary material contains details of the proof of Theorem 1 elaborating on the ‘Outline210

of proof’, proofs of the lemmas, more simulation results explaining the behaviour of the coverage prob-
abilities under the larger sample size n = 2500 for the GARCH (1,1) model, simulation results for the
GARCH (2,1) model and the computer programs and R-packages for the implementation of the bootstrap
methods.
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