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Abstract  24 

The fast development of a secondary aerosol layer was observed over megacities in eastern Asia 25 

during summertime. Within three hours, from midday to early afternoon, the contribution of 26 

secondary aerosols above the planetary boundary layer (PBL) increased by a factor of 3-5, and the 27 

coatings on the black carbon (BC) also increased and enhanced its absorption efficiency by 50%. This 28 

tended to result from the intensive actinic flux received above the PBL which promoted the 29 

photochemical reactions. The absorption of BC could be further amplified by the strong reflection of 30 

solar radiation over the cloud top across the PBL. This enhanced heating effect of BC introduced by 31 

combined processes (intensive solar radiation, secondary formation and cloud reflection) may 32 

considerably increase the temperature inversion above the PBL. This mechanism should be 33 

considered when evaluating the radiative impact of BC, especially for the polluted regions receiving 34 

strong solar radiation.    35 

Key words: Black carbon, absorption enhancement, heating rate, cloud reflection 36 

   37 

  38 



3 
 

1. Background 39 

The absorption of shortwave radiation, and consequential atmospheric heating effect, by black carbon 40 

(BC) has important impacts on the atmospheric radiative balance (Ramanathan and Carmichael, 41 

2008). In regions with high BC emissions, these climatic effects may be intensified by its strong lower 42 

atmosphere heating and surface dimming effect, which could alter the thermodynamic structure of 43 

the planetary boundary layer (PBL) (Babu et al., 2002; Ding et al., 2016). The absorption efficiency 44 

of BC, described as the absorption coefficient per unit mass of refractory BC (rBC), will be enhanced 45 

if coated with non-BC materials, through the lensing effect (Liu et al., 2017). In addition, the heating 46 

effect will depend on the actinic flux incidental on the BC particles, which could be significantly 47 

increased at higher altitudes, because less dimming will be caused by aerosol optical depth (Norris 48 

and Wild, 2009).  49 

It has been demonstrated in modelling studies that the absorption capacity of BC depends 50 

considerably on the location of the BC layer relative to the cloud layer, e.g. the absorption will be 51 

significantly enhanced if BC layer is above the cloud layer due to strong reflection by cloud top, 52 

whereas below the cloud layer the dimming effect will reduce the solar flux deposited on the BC 53 

(Jacobson, 2012; Nenes et al., 2002). The position of the BC layer relative to cloud could be crucial 54 

to determine its impact on cloud microphysics by heating at different levels (Johnson et al., 2004; 55 

Koch and Del Genio, 2010). This study presents the aircraft in-situ measurements, including the full 56 

aerosol size distribution and BC size-resolved mixing state, throughout the PBL (containing cloud 57 

layers) and lower atmosphere over a megacity in eastern China during summertime. The 58 

measurements of vertical profiles were conducted during different times of the day to reveal the 59 

diurnal evolution of the heating impact of BC. 60 

 61 

2. Measurements and data analysis  62 

2.1 Instrumentation and Data Processing  63 

The aircraft KingAir-350 was deployed (Liu et al., 2018) to conduct vertical profiles over three 64 

successive days in summertime (13th to 15th of July, 2018) over the Xuzhou megacity in Eastern China 65 

(Fig. 1a). Each flight will be referred to by the date (0713, 0714, and 0715) from now on. The 66 

meteorological parameters, including ambient pressure, temperature, relative humidity and wind 67 

speed/direction, were characterized in-situ by the AIMMS-20 (Aircraft Integrated Meteorological 68 

Measurement System, Aventech Research Inc), which was calibrated on an annual basis. The typical 69 
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aircraft speed was about 250 km h−1, and the ascent and descent rates during profiles were ∼2–5 ms−1. 70 

As shown in Fig. 1b, the morning (9am) and midday (11:30am) profiles were performed on 0713, 71 

while the midday (12:00pm) and early afternoon (14:00pm) profiles were on 0714 and 0715. Night 72 

flights were also performed on all three days. The profiles covered the time of the day receiving the 73 

most intensive solar radiation across the midday. HYSPLIT backtrajectory analysis (Draxler and Hess, 74 

1998) (Fig. 1a) using 1⁰ ×1⁰, 3-hourly GDAS1 reanalysis meteorology, was performed to track the 75 

airmass histories for all profiles. Two more flight campaigns conduced over Beijing in 2016 winter 76 

and 2012 summer (Fig. 1b) are introduced (Zhao et al., 2019) to only support the phenomenon 77 

observed here but the detailed radiative transfer calculation is not performed.  78 

A wing-mounted Passive Cavity Aerosol Spectrometer Probe (PCASP-100X, DMT Inc, USA) was 79 

used to measure the particle size distribution at diameter=0.12-2.5μm, at a time resolution of 1s. A 80 

wired heater on top of the inlet, and the dry sheath flow, assured the particles measured by the PCASP 81 

were in a dry state, with RH < 40% (Strapp et al., 1992). In addition, the aerosol inlet of the aircraft 82 

included a silicate dryer, so aerosol measurements inside the cabin were also dry. The particulate 83 

matter (PM1) used in this study is derived from the PCASP optically measured size distribution by 84 

assuming an average density of 1.5 g m-3 (Cross et al., 2007). The Aitken and accumulation mode 85 

particle at diameter=6-520nm was measured by an Engine Exhaust Particle Sizer (EPS, TSI inc.) with 86 

time resolution of 1s. The aerosol scattering cross section (Csca) and asymmetry parameter (g) for 87 

each size bin is calculated based on the PCASP-measured size distribution by assuming a refractive 88 

index 1.50+0i. A fast cloud droplet probe (FCDP, SPEC inc.) (O’Connor et al., 2008) was used to 89 

measure the droplet size distribution at ambient RH. All of the aerosol data in cloud was screened out, 90 

based on the FCDP measured liquid water content (LWC) >0.001g m-3, but the LWC is used to 91 

indicate the location of cloud layers. 92 

The physical properties of BC were characterized by a single particle soot photometer (SP2, DMT 93 

inc.) (Schwarz et al., 2006; Zhao et al., 2015). The SP2 is able to measure the rBC mass and associated 94 

coating for each rBC-containing particle. The BC core size is measured at 0.05-0.45μm and the 95 

remaining mass outside of the detectable range is obtained by a lognormal extrapolation (Fig. S4). As 96 

the actual coating thickness depends on both the rBC core and coated BC size, a metric of coating 97 

information in bulk, described as a mass ratio of coating/rBC, is used to represent the overall coating 98 

status of the particle ensemble during a given time period (Liu et al., 2014). Recent work shows this 99 

metric is able to represent the total mass of coatings associated with BC (Ting et al., 2018). The 100 

absorption cross section (Cabs, in m2) or Cabs normalized by rBC mass (MAC, in m2g-1) could be 101 

calculated based on measured rBC core size-resolved mixing state (an example given in Fig. S10b) 102 
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via core-shell mixing rule using BC refractive index of 1.95-0.79i (Bond and Bergstrom, 2006) and 103 

coating refractive index of 1.50-0i (Liu et al., 2015). 104 

Fig. S5 shows an example of all size distributions measured on 0714. The scattering coefficient (𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠) 105 

is obtained by integrating the number concentration (N(D)) and Csca for all PCASP bins; and the 106 

absorption coefficient (𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎) is the integration of Cabs and BC number concentration N(Dc) for all SP2 107 

BC core size bins (Dc up to 0.6μm will include >95% of the total rBC mass in this study). The sum 108 

of both gives the extinction coefficient, as expressed in Equation (1):  109 

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 = ∫ 𝑁𝑁(𝐷𝐷)𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠(𝐷𝐷)𝑑𝑑𝑑𝑑 +2𝑢𝑢𝑢𝑢
𝐷𝐷=0.12𝑢𝑢𝑢𝑢 ∫ 𝑁𝑁(𝐷𝐷𝑐𝑐)𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎(𝐷𝐷𝑐𝑐)𝑑𝑑𝐷𝐷𝑐𝑐

0.60𝑢𝑢𝑢𝑢
𝐷𝐷𝑐𝑐=0.08𝑢𝑢𝑢𝑢   (1). 110 

This calculation is performed for every 200m altitude bin using the mean PCASP size distribution. 111 

The single scattering albedo (SSA=𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠/𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒) and asymmetry parameter (g) are also obtained for 112 

each altitude bin. The aerosol optical depth - AOD(h) for each altitude bin (h) is obtained from the 113 

altitude-integrated 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(ℎ), as expressed in Equation (2):  114 

𝐴𝐴𝐴𝐴𝐴𝐴(ℎ) = 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(ℎ)∆ℎ  (2). 115 

The AOD, SSA and g as a function of altitude (Fig. S8) serve as inputs for the radiative transfer 116 

calculation given below.   117 

Micro-pulse lidars at 532nm (MPL-4B, Sigmaspace Co., USA), were located at Huaian and Hefei 118 

(marked as black dots in Fig. 1a) to monitor the temporal evolution of aerosol layer. A Wind-Profile-119 

Radar (Airda-3000, Airda Co., China) was located close to Xuzhou (34.402⁰N,118.017⁰E) to measure 120 

wind profiles.  121 

 122 

2.2 Calculation of BC absorption and heating rate  123 

The actinic flux spectrum (λ=250-2550nm) was calculated using the pseudo-spherical version of the 124 

Discrete Ordinates Radiative Transfer Code (DISORT), as implemented in the libRadtran software 125 

package (Emde et al., 2016). In this study, the aerosol AOD, SSA and g used are the in-situ measured 126 

parameters based on the PCASP and SP2 measurements (see above) and calculated at each λ. The λ-127 

dependent AOD is derived from the calculation based on the PCASP measurement, which is used as 128 

an input, expressed as:  129 

AOD(λ)/AOD(870)=0.16+20.6*exp(-0.0037*λ)  (3), 130 
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where AOD(λ)/AOD(870) is the ratio of AOD at specified λ over that at λ=870nm.  131 

The parametrization of cloud effect on actinic flux is according to (Hu and Stamnes, 1993) to convert 132 

the cloud microphysical properties to optical properties. The inputs used are the in-situ measured 133 

vertical profiles of LWC, and cloud cover set as 0.15 according to the aircraft camera (Fig. S5). For 134 

details of the settings for the radiative transfer calculation refer to Table S1. 135 

The absorption power of BC is then calculated as the actinic flux multiplied by absorption coefficient 136 

integrated over all λ and BC core sizes, expressed in Equation (4):  137 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = ∫ ∫ 𝐹𝐹𝑎𝑎𝑎𝑎(𝜆𝜆)2550𝑛𝑛𝑛𝑛
𝜆𝜆=250𝑛𝑛𝑛𝑛

800𝑛𝑛𝑛𝑛
𝐷𝐷𝑐𝑐=50𝑛𝑛𝑛𝑛

𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎,𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆,𝐷𝐷𝑐𝑐)𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟(𝐷𝐷𝑐𝑐)𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝑐𝑐 (4), 138 

where σabs,rBC is the BC mass absorption cross section (in m2 g-1), which is a function of incident λ 139 

and BC core size (Dc), MrBC is the rBC mass concentration at each Dc bin (in μg m-3), multiplying 140 

both to obtain the absorption coefficient of rBC (in Mm-1), and the actinic flux (Fac, in mWm-2) is 141 

calculated from the DISORT radiative transfer module. Integrating over all wavelengths (λ=250-142 

2550nm) and Dc range (50-800nm) gives the BC absorption power in unit volume of air (in mW m-143 
3). The absorption power deposition efficiency (Peff) is the Pabs normalized by rBC mass in mW/(μg 144 

rBC). 145 

 146 

3. Results  147 

Fig. 2 schematically shows the mechanism this study will illustrate, which is the enhanced heating 148 

rate of BC above the PBL, resulting from combined effects of enhanced secondary formation, BC 149 

coatings and cloud reflection on actinic flux at this layer. These are in detail discussed in the following. 150 

For guidance, besides main figures, in the supplement, Fig. S1 and S2 shows the temporal evolution 151 

of wind profiles and aerosol extinction respectively; Fig. S3 shows MODIS cloud and AOD images; 152 

Fig. S4 shows measured typical size distribution; Fig. S5, S6 shows the vertical profiles of 153 

meteorological parameters, particle number concentrations and BC-related properties, respectively. 154 

3.1 Meteorology  155 

The flights from 13th-15th July followed very close to the same route (Fig. 1a). The flight region was 156 

about 200km away from the coast of the East Ocean and is influenced by sea-land breezes in 157 

summertime. The top of PBL could be determined by the aircraft in-situ measured temperature 158 

inversion and stable potential temperature (Fig. S5), with the dash lines showing the height of the 159 
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PBL (PBLH). Radar wind profiles (Fig. S1) showed diurnal variation of wind shear which also 160 

reflected the PBLH. In the PBL the oceanic easterly air flow dominated, and above the PBL was 161 

continental southwesterly airmass. The PBLH increased from ~0.5km to ~1.1-1.5km from morning 162 

to early afternoon due to stronger convective mixing through daytime surface heating. At night the 163 

height of wind shear top was significantly lowered to be ~200m, consistent with the aircraft in-situ 164 

measured shallow temperature inversion for the post-sunset flight (Fig. S5). The high pressure centred 165 

over the East Ocean, evident in the 700hpa geopotential height (Fig. 1c), led to southwesterly 166 

continental transport to the flight location. During all three flight days the synoptic condition 167 

maintained a similar pattern. The backtrajectory analysis (Fig. 1a) showed that the measured air 168 

masses were transported about 50km (0.2⁰ in latitude) from the south to the flight region in three 169 

hours. The region within this distance was controlled by a similar synoptic system (Fig. 1c). This 170 

means the air masses observed at different time of the day (in 3 hours transport) could be generally 171 

deemed to have similar air mass origin and regional influence. The Beijing winter and summer 172 

campaigns also chose the flights without important regional transport or shift of sources, e.g. the 173 

variation of rBC mass loading was less than 20% in the lower free troposphere (Fig. S7), and the 174 

variation of rBC mass in the PBL was due to daytime boundary layer development when some rBC 175 

mass from ground sources could be transported upwards to higher level. The atmospheric processing 176 

is thus considered to be mainly at local scale for the results here.  177 

Persistent cloud layers were observed in 0714 and 0715 during Xuzhou campaign, principally thin 178 

layers of cumulus humilis, with cloud coverage of about 15-25% according to the aircraft camera and 179 

MODIS visible cloud images (Fig. S3). The FCDP-measured LWC (Fig. S5) indicates the location 180 

of cloud layer. The presence of these layers may partly reduce the visibility of MODIS AOD data on 181 

0714 and 0715 (Fig. S3), whereas on 0713 the cloud was not as intense thus AOD data is fully visible. 182 

 183 

3.2 Enhanced heating rate of BC above the PBL in early afternoon 184 

Fig. S6 shows the vertical profiles of aerosol number concentration for both Aitken and accumulate 185 

mode particle, PM1 mass concentration and effective diameter (Deff) at 120-800nm. Note that on 0713 186 

the daytime profiles were from morning (9am) to midday (11:30am), whereas on 0714 and 0715 they 187 

were from midday (12:00pm) to early afternoon (14:30pm). The development of the PBL led to 188 

uplifting of aerosol from the surface, coming with some dilution effect for certain days, i.e. reduced 189 

surface concentration. The residue layer was observed at night above the shallow inversion layer (not 190 

on 0715 as no observed inversion). On 0714 and 0715 there were notable increases in PM1 by a factor 191 
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of 3-5 above the PBL (Fig. S4c), which occurred in 2-3 hours from midday to early afternoon. This 192 

came with a decrease of Aitken mode particle number concentration (Fig. S6a) and considerably 193 

increased particle size (Fig. S6d) by 20%. This increase of particulate mass was less pronounced on 194 

0713 when profiles were conducted from morning to midday. This phenomenon was further validated 195 

by two lidar measurements away from the flight area with distance of about 170km and 270km 196 

respectively. As Fig. S2 showed, the extinction profile from lidar measurements at both locations 197 

featured with a fast developed PBL from 12:00 to 15:00, in addition there was an aerosol layer formed 198 

above the PBL during this time. This wide spatial consistency confirmed the regional nature of this 199 

phenomenon. Given this growth occurred during the period when solar radiation is most intense, it is 200 

inferred that aerosol growth within this layer may be driven by photochemical processing of gaseous 201 

precursors.  202 

Fig. 3a showed that there was no notable variation of rBC mass above the PBL from 12:00 to 14:30 203 

in both 0714 and 0715. The change in total particulate mass (PM1) normalized by the rBC mass could 204 

broadly reflect the formation of secondary aerosol mass, because rBC is always primary while the 205 

addition of extra PM1 mass will be mainly controlled by secondary formation (assuming the variation 206 

in the relative emission factors of other species is not significant in this relatively short experimental 207 

period). The consistent PM1/BC ratio in the PBL (Fig. 3b) at different times of the day suggested 208 

well-mixed primary and secondary sources, whereas a remarkable increase of PM1/rBC occurred 209 

above the PBL from midday to early afternoon by a factor of 3-5, and this was also consistent with 210 

the lidar-measured extinction across the region (Fig. S2).  211 

The coatings associated with rBC, indicated by the coating/rBC mass ratio (Fig. 3c), also increased 212 

by a factor of 3-5 similar to PM1/rBC from midday to early afternoon. The absorption efficiency of 213 

BC and the absorption enhancement relative to uncoated BC increased from 5% up to 50% (Fig. 3d). 214 

Both 0714 and 0715 showed consistent results whereas in 0713 this enhancement was not observed 215 

(Fig. S7) as the measurements were from morning to midday. The PM1/rBC and the coatings of BC 216 

above the PBL at night decreased compared to that in the early afternoon, consistent with the lidar 217 

extinction, and this in turn suggested the importance of solar radiation on the formation of secondary 218 

aerosol. There was an increase of RH from 60% to 70% on 0714 between profiles in midday and 219 

early afternoon, which was more likely from the moisture uplift through convective mixing as there 220 

was no obvious wind profile (Fig. 1) or air mass shift (according to backtrajectory analysis). This 221 

may cause more significant increase of PM1 and particle size (Fig. S6) compared to that on 0715, 222 

because more water molecular could also promote photochemical reactions and allow more semi-223 

volatile species to condense (Donahue et al., 2006). There was no obvious variation of RH on 0715 224 
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but still showed significant enhancement of secondary species, for which the sole photochemical 225 

reaction tended to dominate. There was no solar irradiance increase from morning to midday on 0713 226 

thus no obvious secondary species formed. The results over Beijing in summer ((Zhao et al., 2019), 227 

Fig. 2) also confirmed the strong enhancement of BC coatings above the PBL in 2-3 hours evolution 228 

time by a factor of 2-3 occurring in the early afternoon, however was at a lower scale compared to 229 

Xuzhou,  and this may result from a drier air mass (RH<60%, Fig. S5) in the FT for northern cities; 230 

whereas in Beijing winter this enhancement was significantly reduced with coating enhancement less 231 

than a factor of 1.5 or even decreased from midday to early afternoon (Fig. 4), which may be due to 232 

the reduced solar radiation and enhanced AOD dimming effect in winter (given the winter flights 233 

were conducted during a heavily polluted period with surface rBC mass loading >4μg m-3). A recent 234 

study conducted over Korea (Lamb et al., 2018) also indicated some enhanced coating thickness of 235 

BC above the PBL (in Fig. 4b at about 800hpa compared to 100hpa), whereas the mixing state of BC 236 

at higher altitude was more influenced by synoptic conditions. The enhanced coating of BC above 237 

the boundary layer therefore tends to be a general phenomenon for the site where intensive solar 238 

radiation is received above the PBL. 239 

The observations here showed strong enhancements for secondary formation, BC coatings and 240 

absorption above the PBL in the hours with most intense solar radiation, however these enhancements 241 

were less pronounced in the PBL. This could be caused by strong photochemical activities above the 242 

PBL, while the increased aerosol optical depth may have a significant optical shielding effect in the 243 

PBL (Prabha and Hoogenboom, 2009; Streets et al., 2006). Radiative transfer calculations (Fig. S9) 244 

show that direct solar irradiance was reduced, especially within the PBL, by adding the measured 245 

aerosol loadings, whereas the downward diffuse irradiance was enhanced above the PBL due to 246 

increased particle size. The overall actinic flux thus showed significant enhancement above the PBL, 247 

compared to within the PBL, due to the aerosol loading (especially for the early afternoon in 0714 248 

and 0715). As Fig. 3b shows, the absolute absorbing power of BC was largely determined by the rBC 249 

mass loading, with heating rate 0.3-0.5 K/d in the PBL, while 0.1-0.18 K/d above the PBL. The power 250 

deposition efficiency (Peff, as normalized by rBC mass) depended on the absorption efficiency of BC 251 

(MAC). In the PBL, the clear-sky Peff 6-8mW/(μg rBC)  was broadly within that measured in a North 252 

American city 7±2.5mW/(μg rBC) (Schwarz et al., 2009). Corresponding with the increase of BC 253 

coatings from midday to early afternoon, the Peff showed an enhancement of up to 30% from ~7.0 to 254 

9.5 mW/(μg rBC) above the PBL from midday to early afternoon.  255 

The presence of cloud layers above the PBL further altered the irradiance, i.e. enhancing the dimming 256 

at lower level but increasing the reflectance above the cloud layer (Fig. 5a). The thin cloud layer in 257 
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this study was mainly cumulus humilis with 15-25% cloud cover and LWC 0.1-0.3 g m-3. The cloud 258 

layer enhanced the Fac above the PBL by 30% but weakened the Fac below the PBL by 15%. This 259 

study finds the Peff  above the PBL will be further enhanced by 10% if considering the cloud coverage 260 

of 15% (Fig. 5c). Note that the cloud fraction is only an approximate estimate here but the Fac will be 261 

further amplified if more cloud coverage. The absorption enhancement due to cloud reflection was 262 

previously studied for the BC above oceanic stratocumulus (Johnson et al., 2004) but this study 263 

provides the direct evidence. It should be also noted that the patchy nature of the cloud layer (Fig. S3 264 

and S5) may have allowed aerosols or precursors to penetrate the cloud layer, in order to form a BC 265 

layer with significant secondary coatings above the cloud layer, which may explain the cases for this 266 

study.  267 

 268 

4. Discussion and Conclusion  269 

In this study, the fast formation of a secondary aerosol layer was observed during summertime: within 270 

three hours from midday to early afternoon, the contribution of secondary aerosol above the planetary 271 

boundary layer (PBL) increased by a factor of 3-5. This is likely due to the higher rates of 272 

photochemical processing at these altitudes, which is suppressed in the PBL due to dimming caused 273 

by the high AOD. The secondary species formed by this processing will condense on the BC and 274 

increase its coating content, leading to an enhancement of absorption efficiency by 50%. 275 

Consequently, the absorbing power deposited on the BC will be enhanced by combined effects of 276 

increased coatings and solar flux. These processes are schematically illustrated in Fig. 2. The results 277 

here are consistent with the chamber simulation study by (Peng et al., 2016) that a BC Eabs of ~50% 278 

occurred in 2-3 hours’ ageing time during pollution condition. In addition, the solar flux received 279 

above the PBL as in this study may be more intensive than that on the ground because of less AOD 280 

dimming effect in addition to the cloud reflection above the PBL. 281 

Cloud layers regularly form on top of the PBL in this region, and strong solar reflection by cloud top 282 

will significantly increase the actinic flux received by the BC above the cloud layer, further 283 

amplifying the amount of solar radiation absorbed by the BC. Given the strong solar radiation in 284 

summertime, all of these processes will occur in a short time scale. This strong heating effect of BC 285 

introduced by combining processes (intensive solar radiation, secondary coatings and cloud reflection) 286 

would considerably increase the temperature above the PBL, which may introduce feedback effects 287 

and accumulate more pollutants across this layer, further promoting the secondary formation. 288 

Previous study found the absorbing aerosols above the cloud may stabilize the underlying layer and 289 
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tend to enhance the cloud coverage below (Brioude et al., 2009), which may in turn enhance this 290 

feedback. This mechanism raised in this study should be considered when evaluating the BC heating 291 

effect at polluted region rich in BC and precursors, especially in summertime when solar radiation is 292 

strong. Further chemical measurements in gas and aerosol phase are also needed to elucidate the 293 

complex interactions over the top of the PBL.  294 

  295 
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Figures and captions  296 

 297 

 (a)                                                            (b) 298 

  299 

(c) 300 

 301 

 302 

Fig. 1. (a) Flight tracks (coloured by aircraft altitude), locations of lidars in Huaian and Hefei, and 303 
wind profile radar in Xuzhou (indicated by black dots). The black and grey lines show the 304 
backtrajectories initialized at altitudes of 1.5km (above the PBL) and 0.5km (in the PBL) respectively, 305 
each dot indicating a 1h time interval. (b) Flight tracks for Beijing 2012 summer and 2016 winter 306 
campaigns. c) geopotential height in the free troposphere (at 700hpa) for Xuzhou and Beijing, the red 307 
marker on each plot indicates the location of profiles.  308 
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 309 

 310 

 311 

Fig. 2. Schematics and image illustrating the enhancement of BC heating effect above the PBL, 312 
resulting from the combined effects of enhanced secondary formation, BC coatings and cloud 313 
reflection above the PBL.  314 

 315 

 316 
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  317 

318 

 319 

Fig. 3. Vertical profiles of BC-related properties during Xuzhou summer campaign. (a) rBC mass 320 
loading, (b) mass ratio of PM1/rBC, (c) mass ratio of coating/rBC (Mcoating/MrBC), and (d) BC mass 321 
absorption cross section (MAC550) and absorption enhancement all profiles in 0714 and 0715. The 322 
dash lines show the PBLH for each profile. The lines and error bars show mean±σ at each altitude 323 
bin. The large and small markers denote the planetary boundary layer (PBL) and free troposphere 324 
(FT) respectively.  325 

  326 
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 327 

Fig. 4. The ratio of Mcoating/MrBC in 2-3 hours processing (return profile divided by departure profile) 328 
for Xuzhou 2018 summer, Beijing 2016 winter and 2012 summer campaigns in (a). The large markers 329 
denote the PBL. The time in bracket denote the time of departure and return profiles for each flight. 330 
(b) shows the mean increase of Mcoating/MrBC in the PBL and FT respectively, deducted from the 331 
results shown in (a).  332 
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 333 

Fig. 5. The radiative transfer results during Xuzhou summer campaign. (a) actinic flux in the midday 334 
and early afternoon with and without cloud (the night flux is <106 mW m-2), with the blue lines 335 
showing the FCDP-measured LWC. (b) BC absorbing power and instantaneous heating rate. (c) 336 
Power efficiency deposited on BC, and its increasing rate in percentage from midday to early 337 
afternoon. The dash lines show the height of planetary boundary layer (PBLH). The bars on the right 338 
panels show the mean % enhancement of power efficiency within and above the PBL for clear-sky 339 
and with-cloud conditions respectively.  340 

 341 
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