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ABSTRACT
We use Bayesian convolutional neural networks and a novel generative model of Galaxy Zoo vol-
unteer responses to infer posteriors for the visual morphology of galaxies. Bayesian CNN can learn
from galaxy images with uncertain labels and then, for previously unlabelled galaxies, predict the
probability of each possible label. Our posteriors are well-calibrated (e.g. for predicting bars, we
achieve coverage errors of 11.8% within a vote fraction deviation of 0.2) and hence are reliable for
practical use. Further, using our posteriors, we apply the active learning strategy BALD to request
volunteer responses for the subset of galaxies which, if labelled, would be most informative for train-
ing our network. We show that training our Bayesian CNNs using active learning requires up to
35-60% fewer labelled galaxies, depending on the morphological feature being classified. By combin-
ing human and machine intelligence, Galaxy Zoo will be able to classify surveys of any conceivable
scale on a timescale of weeks, providing massive and detailed morphology catalogues to support
research into galaxy evolution.

Key words: galaxies: evolution – galaxies: structure – galaxies: statistics – methods:
statistical – methods: data analysis

1 INTRODUCTION

Galaxy Zoo was created because SDSS-scale surveys could
not be visually classified by professional astronomers
(Lintott et al. 2008). In turn, Galaxy Zoo is being gradually
outpaced by the increasing scale of modern surveys like DES
(Flaugher 2005), PanSTARRS (Kaiser et al. 2010), the Kilo-
Degree Survey (de Jong et al. 2015), and Hyper Suprime-
Cam (Aihara et al. 2018).

Each of these surveys can each image galaxies as fast
or faster than those galaxies are being classified by vol-
unteers. For example, DECaLS (Dey et al. 2018) contains
(as of Data Release 5) approximately 350,000 galaxies suit-
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able for detailed morphological classification (applying r <
17 and petroR90_r1 > 3 arcsec, the cuts used for Galaxy
Zoo 2 in Willett et al. 2013). Collecting 40 independent vol-
unteer classifications for each galaxy, as for Galaxy Zoo 2
(Willett et al. 2013), would take approximately five years at
the current classification rate. The Galaxy Zoo science team
must therefore both judiciously select which surveys to clas-
sify and, for the selected surveys, reduce the number of in-
dependent classifications per galaxy. The speed at which we
can accurately classify galaxies severely limits the scale, de-
tail, and quality of our morphology catalogues, diminishing
the scientific value of such surveys.

1 petroR90_r is the Petrosian radius which contains 90% of the

r -band flux
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The next generation of surveys will make this speed
limitation even more stark. Euclid2, LSST3 and WFIRST
4 are expected to resolve the morphology of unprecedented
numbers of galaxies. This could be revolutionary for our
understanding of galaxy evolution, but only if such galax-
ies can be classified. The future of morphology research
therefore inevitably relies on automated classification
methods. Supervised approaches (given human-labelled
galaxies, predict labels for new galaxies) using convolu-
tional neural networks (CNNs) are increasingly common
and effective (Cheng et al. 2019). CNNs outperform pre-
vious non-parametric approaches (Dieleman et al. 2015;
Huertas-Company et al. 2015), and can be rapidly adapted
to new surveys (Domı́nguez Sánchez et al. 2019a) and to
related tasks such as light profile fitting (Tuccillo et al.
2017). Unsupervised approaches (cluster examples without
any human labels) also show promise (Hocking et al. 2015).

However, despite major progress in raw performance,
the increasing complexity of classification methods poses
a problem for scientific inquiry. In particular, CNNs are
‘black box’ algorithms which are difficult to introspect and
do not typically provide estimates of uncertainty. In this
work, we combine a novel generative model of volunteer re-
sponses with Monte Carlo dropout (Gal et al. 2017a) to cre-
ate Bayesian CNNs that predict posteriors for the morphol-
ogy of each galaxy. Posteriors are crucial for drawing sta-
tistical conclusions that account for uncertainty, and so in-
cluding posteriors significantly increases the scientific value
of morphology catalogues. Our Bayesian CNNs can predict
posteriors for surveys of any conceivable scale.

Limited volunteer classification speed remains a hurdle;
we need to collect enough responses to train our Bayesian
networks. How do we train Bayesian networks to perform
well while minimising the number of new responses required?
Recent work suggests that transfer learning (Lu et al. 2015)
may be effective. In transfer learning, models are first
trained to solve similar tasks where training data is plen-
tiful and then ‘fine-tuned’ with new data to solve the task
at hand. Results using transfer learning to classify new
surveys, or to answer new morphological questions, sug-
gest that models can be fine-tuned using only thousands
(Ackermann et al. 2018; Khan et al. 2018) or even hundreds
(Domı́nguez Sánchez et al. 2019b) of newly-labelled galax-
ies, with only moderate performance losses compared to the
original task.

Each of these authors randomly selects which new
galaxies to label. However, this may not be optimal. Each
galaxy, if labelled, provides information to our model; they
are informative. Our hypothesis is that all galaxies are infor-
mative, but some galaxies are more informative than others.
We use our galaxy morphology posteriors to apply an active
learning strategy (Houlsby et al. 2011): intelligently select-
ing the most informative galaxies for labelling by volunteers.
By prioritizing the galaxies that our strategy suggests would,

2 15,000 deg2 at 0.30′′ half-light radius PSF from 2022,

Laureijs et al. 2011
3 18,000 deg2 to 0.39′′ half-light radius PSF from 2023,
LSST Science Collaboration et al. 2009
4 2,000 deg2 at 0.12′′ half-light radius PSF from approx. 2025,

Spergel et al. 2013

if labelled, be most informative to the model, we can create
or fine-tune models with even fewer newly-labelled data.

In the first half of this work (Section 2), we present
Bayesian CNNs that predict posteriors for the morphology
of each galaxy. In the second (Section 3), we simulate using
our posteriors to select the most informative galaxies for
labelling by volunteers.

2 POSTERIORS FOR GALAXY
MORPHOLOGY

A vast number of automated methods have been used
as proxies for ‘traditional’ visual morphological classifi-
cation. Non-parametric methods such as CAS (Conselice
2003) and Gini (Lotz et al. 2004) have been com-
monly used, both directly and to provide features
which can be used by increasingly sophisticated ma-
chine learning strategies (Scarlata et al. 2007; Banerji et al.
2010; Huertas-Company et al. 2011; Freeman et al. 2013;
Peth et al. 2016). Most of these methods provide imperfect
proxies for expert classification (Lintott et al. 2008). The
key advantage of CNNs is that they learn to approximate
human classifications directly from data, without the need
to hand-design functions aimed at identifying relevant fea-
tures (LeCun et al. 2015). CNNs work by applying a series
of spatially-invariant transformations to represent the in-
put image at increasing levels of abstraction, and then in-
terpreting the final abstraction level as a prediction. These
transformations are initially random, and are ‘learned’ by it-
eratively minimising the difference between predictions and
known labels. We refer the reader to LeCun et al. (2015)
for a brief introduction to CNNs and to Dieleman et al.
(2015), Lanusse et al. (2018), Kim & Brunner (2017) and
Hezaveh et al. (2017) for astrophysical applications.

Early work with CNNs immediately surpassed non-
parametric methods in approximating human classi-
fications (Huertas-Company et al. 2015; Dieleman et al.
2015). Recent work extends CNNs across different sur-
veys (Domı́nguez Sánchez et al. 2019a; Khan et al. 2018)
or increasingly specific tasks (Domı́nguez Sánchez et al.
2018; Tuccillo et al. 2017; Huertas-Company et al. 2018;
Walmsley et al. 2018). However, these previous CNNs do not
account for uncertainty in training labels, limiting their abil-
ity to learn from all available data (one common approach
is to train only on ‘clean’ subsets). Previous CNNs are also
not designed to make probabilistic predictions (though they
have been interpreted as such), limiting the reliability of
conclusions drawn using such methods (see Appendix A).

Here, we present Bayesian CNNs for morphology classi-
fication. Bayesian CNNs provide two key improvements over
previous work:

(i) We account for varying (i.e. heteroskedastic) uncer-
tainty in volunteer responses

(ii) We predict full posteriors over the morphology of each
galaxy

We first introduce a novel framework for thinking
about Galaxy Zoo classifications in probabilistic terms,
where volunteer responses are drawn from a binomial
distribution according to an unobserved (latent) parameter:
the ‘typical’ response probability (Section 2.1). We use
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Figure 1. The Galaxy Zoo web interface as shown to volunteers.

This screenshot shows the first question in the decision tree: is
the galaxy smooth or featured?

this framework to construct CNNs that make probabilistic
predictions of Galaxy Zoo classifications (Section 2.2).
These CNNs predict a typical response probability for
each galaxy by maximising the likelihood of the observed
responses. By maximising the likelihood, they learn effec-
tively from heteroskedastic labels; the likelihood reflects the
fact that more volunteer responses are more indicative of
the ‘typical‘ response than fewer responses. To account for
the uncertainty in the CNN weights, we use Monte Carlo
dropout (Gal et al. 2017a) to marginalise over possible
CNNs (Section 2.3). Our final predictions (Section 2.7) are
posteriors of how a typical volunteer would have responded,
had they been asked about each galaxy. These can then be
used to classify surveys of any conceivable scale (e.g. LSST,
Euclid), helping researchers make reliable inferences about
galaxy evolution using millions of labelled galaxy images.

2.1 Probabilistic Framework for Galaxy Zoo

Galaxy Zoo asks members of the public to volunteer as ‘citi-
zen scientists’ and label galaxy images by answering a series
of questions. Figure 1 illustrates the web interface.

We aim to make a probabilistic prediction for the re-
sponse of a typical volunteer. To do this, we need to model
how each volunteer response is generated. Formally, each
Galaxy Zoo decision tree question asks Ni volunteers to view
galaxy image xi and select the most appropriate answer Aj

from the available answers {A}. This reduces to a binary
choice; where there are more than two available answers
(|{A}| > 2), we can consider each volunteer response as either
Aj (positive response) or not Aj (negative response). We can
therefore apply our model to questions with any number of
answers.

Let ki j be the number of volunteers (out of Ni) observed
to answer Aj for image xi . We assume that there is a true
fraction ρi j of the population (i.e. all possible volunteers)
who would give the answer Aj for image xi . We assume that
volunteers are drawn uniformly from this population, so that
if we ask Ni volunteers about image xi , we expect that the

distribution over the number of positive answers ki j to be
binomial:

ki j ∼ Bin(ρi j ,Ni ) (1)

p(ki j |xi j ,Ni ) =
(
Ni

ki

)
ρ
ki j
i j

(1 − ρi j )Ni−ki j (2)

This will be our model for how each volunteer response
ki j was generated. Note that ρi j is a latent variable: we only
observe the responses ki j , never ρi j itself.

2.2 Probabilistic Prediction with CNNs

Having established a novel generative model for our data,
we now aim to infer the likelihood of observing a particular
k for each galaxy x (for brevity, we omit subscripts).

Let us consider the scalar output from our neural net-
work f w (x) as a (deterministic) prediction for ρ, and hence
a probabilistic prediction for k:

p(k |x,w) = Bin(k | f w (x),N ) (3)

For each labelled galaxy, we have observed k positive
responses. We would like to find the network weights w such
that p(k |x,N ) is maximised (i.e. to make a maximum likeli-
hood estimate given the observations):

max
w

[p(k |x,w)] = max
w

[Bin(k | f w (x),N )] (4)

= max
w

[log
(
N
k

)
+ k log f w (x) + (N − k) log(1 − f w (x))] (5)

The combinatorial term is fixed and hence our objective
function to minimise is

L = k log f w (x) + (N − k) log(1 − f w (x)) (6)

We can create a probabilistic model for k by optimis-
ing our network to make maximum likelihood estimates
ρ̂ = f w (x) for the latent parameter ρ from which k is drawn.

In short, each network w predicts the response proba-
bility ρ that a random volunteer will select a given answer
for a given image.

2.3 From Probabilistic to Bayesian CNN

So far, our model is probabilistic (i.e. the output is the pa-
rameter of a probabilistic model) but not Bayesian. If we
asked N volunteers, we would predict k answers with a pos-
terior of p(k |w) = Bin(k | f w (x),N ) (where f w (x) is our net-
work prediction of ρ for galaxy x). However, this treats the
model, w, as fixed and known. Instead, the Bayesian ap-
proach treats the model itself as a random variable.

Intuitively, there are many possible models that could
be trained from the same training data D. To predict the
posterior of k given D, we should marginalise over these
possible models:

p(k |x,D) =
∫

p(k |x,w)p(w |D)dw (7)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/stz2816/5583078 by Lancaster U

niversity user on 28 O
ctober 2019



4 M. Walmsley et al.

We need to know how likely we were to train a particular
model w given the data available, p(w |D). Unfortunately, we
don’t know how likely each model is. We only observe the
single model we actually trained.

Instead, consider dropout (Srivastava et al. 2014).
Dropout is a regularization method that temporarily re-
moves random neurons according to a Bernoulli distribu-
tion, where the probability of removal (‘dropout rate’) is a
hyperparameter to be chosen. Dropout may be interpreted
as taking the trained model and permuting it into a differ-
ent one (Srivastava et al. 2014). Gal (2016) introduced the
approach of approximating the distributions of models one
might have trained, but didn’t, with the distribution of net-
works from applying dropout:

p(w |D) ≈ q∗ (8)

removing neurons according to dropout distribution q∗. This
is the Monte Carlo Dropout approximation (hereafter MC
Dropout). See Appendix B for a more formal overview.

Choosing the dropout rate affects the approximation;
greater dropout rates lead the model to estimate higher un-
certainties (on average). Following convention, we arbitrarily
choose a dropout rate of 0.5. We discuss the implications of
using an arbitrary dropout rate, and opportunities for im-
provement, in Section 4.

Applying MC Dropout to marginalise over models (Eqn.
7):

p(k |x,D) =
∫

p(k |x,w)q∗dw (9)

In practice, following Gal (2016), we sample from q∗

with T forward passes using dropout at test time (i.e. Monte
Carlo integration):

∫
p(k |x,w)q∗dw ≈

1
T

∑
t

p(k |x,wt ) (10)

Using MC Dropout, we can improve our posteriors by
(approximately) marginalising over the possible models we
might have trained.

To demonstrate our probabilistic model and the use of
MC Dropout, we train models to predict volunteer responses
to the ‘Smooth or Featured’ and ‘Bar’ questions on Galaxy
Zoo 2 (Section 2.5).

2.4 Data - Galaxy Zoo 2

Galaxy Zoo 2 (GZ2) classified all 304,122 galaxies from the
Sloan Digital Sky Survey (SDSS) DR7 Main Galaxy Sam-
ple (Strauss et al. 2002; Abazajian et al. 2009) with r < 17
and petroR90_r5 > 3 arcsec. Classifying 304,122 galaxies
required ∼ 60 million volunteer responses collected over 14
months.

GZ2 is the largest homogenous galaxy sample with re-
liable measurements of detailed morphology, and hence an
ideal data source for this work. GZ2 has been extensively
used as a benchmark to compare machine learning methods

5 petroR90_r is the Petrosian radius which contains 90% of the

r -band flux

for classifying galaxy morphology. The original GZ2 data re-
lease (Willett et al. 2013) included comparisons with (pre-
CNN) machine learning methods by Baillard et al. (2011)
and Huertas-Company et al. (2011). GZ2 subsequently pro-
vided the data for seminal work on CNN morphology classi-
fication (Dieleman et al. 2015) and continues to be used for
validating new approaches (Domı́nguez Sánchez et al. 2018;
Khan et al. 2018).

We use the ‘GZ2 Full Sample’ catalogue (hereafter ‘GZ2
catalogue’), available from data.galaxyzoo.org. To avoid the
possibility of duplicated galaxies or varying depth imaging,
we exclude the ‘stripe82’ subset.

The GZ2 catalogue provides aggregate volunteer re-
sponses at each of the three post-processing stages: raw vote
counts (and derived vote fractions), consensus vote fractions,
and redshift-debiased vote fractions. The raw vote counts
are simply the number of users who selected each answer.
The consensus vote fractions are calculated by iteratively re-
weighting each user based on their overall agreement with
other users. The debiased fractions estimate how the galaxy
would have been classified if viewed at z = 0.03 (Hart et al.
2016). Unlike recent work (Domı́nguez Sánchez et al. 2018;
Khan et al. 2018), we use the raw vote counts. The redshift-
debiased fractions estimate the true morphology of a galaxy,
not what the image actually shows. To predict what volun-
teers would say about an image, we should only consider
what the volunteers see. We believe that debiasing is better
applied after predicting responses, not before. We caution
the reader that our performance metrics are therefore not
directly comparable to those of Domı́nguez Sánchez et al.
(2018) and Khan et al. (2018), who use the debiased frac-
tions as ground truth.

2.5 Application

2.5.1 Tasks

To test our probabilistic CNNs, we aim to predict volunteer
responses for the ‘Smooth or Featured’ and ‘Bar’ questions.

The ‘Smooth or Featured’ question asks volunteers ‘Is
the galaxy simply smooth and rounded, with no sign of
a disk?’ with (common6) answers ‘Smooth’ and ‘Featured
or Disk’. As ‘Smooth or Featured’ is the first decision tree
question, this question is always asked, and therefore every
galaxy has ∼ 40 ‘Smooth or Featured‘ responses7. With N
fixed to ∼ 40 responses, the loss function (Eqn. 6) depends
only on k (for a given model w).

The ‘Bar’ question asks volunteers ‘Is there a sign of
a bar feature through the center of the galaxy?’ with an-
swers ‘Bar (Yes)’ and ‘No Bar’. Because ‘Bar’ is only asked
if volunteers respond ‘Featured’ and ‘Not Edge-On’ to pre-
vious questions, each galaxy can have anywhere from 0 to
40 total responses – typically around 10 (Figure 2). This
scenario is common; only 2 questions are always asked, and

6 ‘Smooth or Featured’ includes a third ‘Artifact’ answer. How-

ever, artifacts are sufficiently rare (0.08% of galaxies have ‘Arti-

fact’ as the majority response) that predicting ‘Smooth’ or ‘Not
Smooth’ is sufficient to separate smooth and featured galaxies in

practice
7 Technical limitations during GZ2 caused 26,530 galaxies to have

N < 36. We exclude these galaxies for simplicity.
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Figure 2. Mean responses (N ) by GZ2 question. Being the first
question, ‘Smooth or Featured’ has an unusually high (∼ 40) num-

ber of responses. Most questions (6 of 11), including ‘Bar’, are
only asked for ‘Featured’ galaxies, and hence have only ∼ 10 re-

sponses. Training CNNs while accounting for the label uncertainty

caused by low N responses is a key goal of this work.

most questions have N << 40 total responses (Figure 2).
Building probabilistic CNNs that learn better by appreciat-
ing the varying count uncertainty in volunteer responses is a
key advantage of our design. We achieve this by maximising
the likelihood of the observed responses given our predicted
‘typical’ response and N (Section 2.2).

2.5.2 Architecture

Our CNN architecture is shown in Figure 3. This architec-
ture is inspired by VGG16 (Simonyan & Zisserman 2015),
but scaled down to be shallower and narrower in order to fit
our computational budget. We use a softmax final layer to
ensure the predicted typical vote fraction ρ lies between 0
and 1, as required by our binomial loss function (Equation
6).

We are primarily concerned with accounting for label
uncertainty and predicting posteriors, rather than maximis-
ing performance metrics. That said, our architecture is com-
petitive with, or outperforms, previous work (Section 2.7.1).
Our overall performance can likely be significantly im-
proved with more recent architectures (Szegedy et al. 2015;
He et al. 2015; Huang et al. 2017) or a larger computational
budget.

2.5.3 Augmentations

To generate our training and test images, we resize the orig-
inal 424x424x3 pixel GZ2 png images shown to volunteers
into 256x256x3 uint88 matrices and save these matrices in
TFRecords (to facilitate rapid loading). When serving train-
ing images to our model, each image has the following trans-
formations applied:

8 Unsigned 8-bit integer i.e. 0-255 inclusive. After rescaling, this
is sufficient to express the dynamic range of the images (as judged
by visual inspection) while significantly reducing memory require-

ments vs. the original 32-bit float flux measurements.

Figure 3. The CNN architecture used throughout. The input im-

age, after applying augmentations (Section 2.5.3), is of dimension
128x128x1. The first pair of convolutional layers are each of di-

mension 128x128x32 with 3x3 kernels. We then max-pool down to

a second pair of convolutional layers of dimension 64x64x32 with
3x3 kernels, then again to a final pair of dimension 32x32x16 with

3x3 kernels. We finish with a 128-neuron linear dense layer and a

2-neuron softmax dense layer.

(i) Average over channels to create a greyscale image
(ii) Random horizontal and/or vertical flips
(iii) Rotation through an angle randomly selected from 0◦

to 90◦ (using nearest-neighbour interpolation to fill pixels)
(iv) Adjusting the image contrast to a contrast uniformly

selected from 98% to 102% of the original contrast
(v) Cropping either randomly (‘Smooth or Featured’) or

centrally (‘Bar’) according to a zoom level uniformly selected
from 1.1x to 1.3x (‘Smooth or Featured’) or 1.7x to 1.9x
(‘Bar’)

(vi) Resizing to a target size of 128x128(x1)

We train on greyscale images because colour is often
predictive of galaxy type (E and S0 are predominantly red-
der, while S are bluer, Roberts & Haynes 1994) and we wish
to ensure that our classifier does not learn to make bi-
ased predictions from this correlation. For example, a galaxy
should be classified as smooth because it appears smooth,
and not because it is red and therefore more likely to be
smooth. Otherwise, we bias any later research investigating
correlations between morphology and colour.

Random flips, rotations, contrast adjustment, and
zooms (via crops) help the CNN learn that predictions
should be invariant to these transformations - our predic-
tions should not change because the image is flipped, for
example. We choose a higher zoom level for ‘Bar’ because
the original image radius for GZ2 was designed to show
the full galaxy and any immediate neighbours (Willett et al.
2013) yet bars are generally found in the center of galax-
ies (Kruk et al. 2017). We know that the ‘Bar’ classification
should be invariant to all but the central region of the im-
age, and therefore choose to sacrifice the outer regions in
favour of increased resolution in the centre. Cropping and
resizing are performed last to minimise resolution loss due
to aliasing. Images are resized to match our computational
budget.

We also apply these augmentations at test time. This
allows us to marginalise over any unlearned invariance using
MC Dropout, as part of marginalising over networks (Sec-
tion 2.3). Each permuted network makes predictions on a
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uniquely-augmented image. The aggregated posterior (over
many forward passes T) is therefore independent of e.g. ori-
entation, enforcing our domain knowledge.

2.6 Experimental Setup

For each question, we randomly select 2500 galaxies as a
test subset and train on the remaining galaxies (follow-
ing the selection criteria described in Section 2.4). Unlike
Domı́nguez Sánchez et al. (2018) and Khan et al. (2018), we
do not select a ‘clean’ sample of galaxies with extreme vote
fractions on which to train. Instead, we take full advantage of
the responses collected for every galaxy by carefully account-
ing for the vote uncertainty in galaxies with fewer responses
(Eqn 6).

For ‘Smooth or Featured’, we use a final training sample
of 176,328 galaxies. For ‘Bar’, we train and test only on
galaxies with Nbar ≥ 10 (56,048 galaxies). Without applying
this cut, we find that models fail to learn; performance fails
to improve from random initialisation. This may be because
galaxies with Nbar < 10 must have kfeatured < 10 and so
are almost all smooth and unbarred, leading to increasingly
unbalanced typical vote fractions ρ.

Training was performed on an Amazon Web Services
(AWS) p2.xlarge EC2 instance with an NVIDIA K80 GPU.
Training each model from random initialisation takes ap-
proximately eight hours.

Using the trained models, we make predictions ρ̂ for
the typical vote fraction ρ of each galaxy in the test subsets.
We then evaluate performance by comparing p(k | ρ̂,N ), our
posterior for k positive responses from N volunteers, with
the observed k from the N Galaxy Zoo volunteers asked.

2.7 Results

We find that our probabilistic CNNs produces posteriors
which are reliable and informative.

For each question, we first compare a random selection
of posteriors from either 1 or 30 MC Dropout forward passes
(i.e. 1 or 30 MC-dropout-approximated ‘networks’). Figures
4 and 5 show our posteriors for ‘Smooth or Featured’ and
‘Bar’, respectively.

Without MC Dropout, our posteriors are binomial.
The spread of each posterior reflects two effects. First,
the spread reflects the extremity of ρ̂ that previous au-
thors have expressed as ‘volunteer agreement’ or ‘con-
fidence’ (Dieleman et al. 2015; Domı́nguez Sánchez et al.
2018). Bin(k | ρ̂,N ) is narrower where ρ̂ is close to 0 or 1. Sec-
ond, the spread reflects N , the number of volunteers asked.
For ‘Smooth or Featured’, where N is approximately fixed,
this second effect is minor. For ‘Bar’, where N varies signifi-
cantly between 10 and ∼ 40, the posteriors are more spread
(less precise) where fewer volunteers have been asked.

With MC Dropout, our posteriors are a superposition
of Binomials from each forward pass, each centered on a dif-
ferent ρ̂t . In consequence, the MC Dropout posteriors are
more uncertain. This matches our intuition - by marginalis-
ing over the different weights and augmentations we might
have used, we expect our predictions to broaden.

Given that each single network is relatively confident
and the MC-dropout-marginalised model is relatively un-
certain, which should be used? We prefer posteriors which

Table 1. Calibration results for predicting the probability that
v ± ε fraction of volunteers respond ‘Smooth’, with and without

applying MC Dropout.

Max Error ε Coverage Error without MC Coverage Error with MC

0.02 49.6% 16.5%
0.05 38.5% 13.4%

0.10 26.1% 9.4%

0.20 7.9% 5.4%

are well-calibrated i.e. which reflect the true uncertainty in
our predictions.

To quantify calibration, we introduce a novel method;
we compare the predicted and observed vote fractions k

N
within increasing ranges of acceptable error. We outline this
procedure below.

Choose some maximum acceptable error ε in predicting
each vote fraction v = k

N . Over all galaxies, sum the total
probability (from our predicted posteriors) that vi = v̂i ± ε

for each galaxy i. We call this the expected count: how many
galaxies the posterior suggests should have v within ε of the
model prediction v̂. For example, our ‘Bar’ model expects
2320 of 2500 galaxies in the ‘Bar’ test set to have an observed
v within ±0.20 of v̂.

Cexpected =

Ngalaxies∑
i

j<k̂+N ε∑
j>k̂−N ε

p( j | ρ̂i ,Ni ) (11)

Next, over all galaxies, count how often vi is within that
maximum error vi = v̂i ± ε . We call this the ‘actual’ count:
how many galaxies are actually observed to have vi within
ε of the model prediction v̂i . For example, we observe 2075
of 2500 galaxies in the ‘Bar’ test set to have vi within ±0.20
of v̂.

Cactual =

Ngalaxies∑
i

j<k̂i+N ε∑
j>k̂i−N ε

δ(ki − j) (12)

For a perfectly calibrated posterior, the actual and ex-
pected counts would be identical: the model would be correct
(within some given maximum error) as often as it expects
to be correct. For an overconfident posterior, the expected
count will be higher, and for an underconfident posterior,
the actual count will be higher.

We find that our predicted posteriors of volunteer votes
are fairly well-calibrated; our model is correct approximately
as often as it expects to be correct. Figure 7 compares the
expected and actual counts for our model, choosing ε be-
tween 0 and 0.5. Tables 1 and 2 show calibration results
for our ‘Smooth’ and ‘Bar’ models, with and without MC
Dropout, evaluated on their respective test sets. Coverage
error is calculated as:

Coverage error =
Cexpected − Cactual

Cactual
. (13)

For both questions, the single network (without using
MC Dropout) is visibly overconfident. The MC-dropout-
marginalised network shows a significant improvement in
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Figure 4. Posteriors for k of N volunteers answering ‘Smooth’ to the question ‘Smooth or Featured?’). Each row is a randomly selected
galaxy. Overplotted in red is the actual k measured from N ∼ 40 volunteers. The left column shows the galaxy in question, as presented

to the network (following the augmentations described in Section 2.5.3). The central column shows the posterior predicted by a single
network (black), while the right column shows the posterior marginalised (averaged) over 30 MC-dropout-approximated ‘networks’ (green)
as well as from each ‘network’ (grey). While the posterior from a single network is fixed to a binomial form, the marginalised posteriors

from many ‘networks’ can take any form. The posterior from a single network is generally more confident (narrower); we later show that
a single network is overconfident, and many ‘networks’ are better calibrated.

calibration over the single network. We interpret this as ev-
idence for the importance of marginalising over both net-
works and augmentations in accurately estimating uncer-
tainty (Section 2.3).

When making precise predictions, the MC-dropout-
marginalised network remains somewhat overconfident.
However, as the acceptable error ε is allowed to increase,
the network is increasingly well-calibrated. For example, the
predicted probability that v±0.02 (i.e. ε = 0.02) k of N volun-
teers respond ‘Bar’ is over-estimated by ∼ 45%. In contrast,
the predicted probability that k ± 0.2 (i.e. ε = 0.2) of N vol-

unteers respond ‘Bar’ is ∼ 10% of the true probability. We
discuss future approaches to further improve calibration in
Section 4.

A key method for galaxy evolution research is to
compare the distribution of some morphology parame-
ter across different samples (e.g. are spirals more com-
mon in dense environments, Wang et al. 2018, do bars fuel
AGN, Galloway et al. 2015, do mergers inhibit LERGs,
Gordon et al. 2019, etc.) We would therefore like the dis-
tribution of predicted ρ̂ and k̂, over all galaxies, to approx-
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Figure 5. As for Figure 4, but showing posteriors for k of N volunteers answering ‘Bar (Yes)’ to the question ‘Bar?’. Unlike ‘Smooth or
Featured’, N varies significantly between galaxies, and hence so does the spread (uncertainty in k) and absolute width (highest possible

k) of the posterior.

Table 2. Calibration results for predicting the probability that
v ± ε fraction of volunteers respond ‘Bar’, with and without ap-
plying MC Dropout.

Max Error ε Coverage Error without MC Coverage Error with MC

0.02 92.2% 45.5%
0.05 85.5% 42.4%

0.10 57.8% 29.2%

0.20 22.6% 11.8%

imate the observed distribution of ρ9 and k. In short, we

9 The ‘observed’ ρ is approximated as ρproxy =
k
N , which has

would like our predictions to be globally unbiased. Figure 8
compares our predicted and actual distributions of ρ and k.
We find that our predicted distributions for ρ and k match
well with the observed distributions for most values of ρ and
k. Our model appears somewhat reticent to predict extreme
ρ (and therefore extreme k) for both questions. This may be
a consequence of the difficulty in predicting the behaviour
of single volunteers. We discuss this further in Section 4.

Reliable research conclusions also require that
model performance should not depend strongly on
non-morphological galaxy parameters (mass, colour, etc).
For example, if a researcher would like to investigate

a similar distribution to the true (latent, unobserved) ρ over a

large sample.
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Figure 6. Relative importance of morphological (Features or
Disk, Bar, Spiral) and non-morphological (Petro B/A, Mag, etc.)

features for BCNN performance. Morphology fractions are the
(human-reported) k

N values from Galaxy Zoo 2. Petro B/A 50

and Petro B/A 90 measure the axial ratios at 50% and 90% of

the half-light radius. Mag is the estimated B magnitude. Sersic
mass is the approximate stellar mass, estimated from the single-

component Sersic fit flux. Petro θ is the (r -band) Petrosian radius.

Redshift is measured spectroscopically. The effect of each compo-
nent is additive and independent; for example, the measured effect

of spiral features does not include the effect of being featured in

general. BCNN performance varies much less from the effect of
non-morphological features than from morphological features.

correlations between galaxy mass and bars, it is impor-
tant that our model is equally able to recognise bars in
high-mass and low-mass galaxies. To check if our model
is sensitive to non-morphological parameters, we use an
Explainable Boosting Machine (EBM) model (Lou et al.
2012; Caruana et al. 2015). EBM aim to predict a target
variable based on tabular features by separating the impact
of those features into single (or, optionally, pairwise) effects
on the target variable. They are a specific10 implementation
of Generalised Additive Models (GAM, Hastie & Tibshirani
1990). GAM are of the form:

g(y) = f1(x) + ... + fn (xn ) (14)

where g is identity for regression problems and f i is any
learnable function. For EBM, each f i is learned using gradi-
ent boosting with bagging of shallow regression trees. They
aim to answer the question ‘What is the effect on the target
variable of this particular feature alone?’ We train an EBM
to predict the surprise11 of our ‘Bar’ model when making test
set predictions (Section 2.6), using the human-reported mor-
phologies and key non-morphological parameters reported in
the NASA Sloan Atlas (v1.01, Albareti et al. 2017).

The interested reader can find our full investigation at
www.walmsley.dev/2019/bias, recorded as a Jupyter Note-
book. Figure 6 shows the key result; the relative importance
of each feature on BCNN model surprise. We find that per-
formance variation with respect to non-morphological pa-
rameters is much smaller than variation with respect to

10 https://github.com/microsoft/interpret
11 Recall that we quantify surprise as the likelihood of our pre-

diction given the observed votes k
N (Eqn 3).
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(b) Calibration for ‘Bar’

Figure 7. Calibration of CNN-predicted posteriors, showing the
expected vs. actual count of galaxies within each acceptable max-

imum vote fraction error range (ε). Our probabilistic model is

fairly well-calibrated (similar expected and actual counts), with
a significant improvement from applying MC Dropout.

morphology. Our network performs better on smooth galax-
ies and unbarred galaxies (plausibly because there are more
training examples of such galaxies to learn from). Inclination
is the non-morphological parameter with the strongest effect
on performance, and this effect is approx. 3.5-4x weaker than
the effect of either smoothness or barredness above. We are
therefore confident that our model introduces no new major
biases with respect to key non-morphological parameters.

2.7.1 Comparison to Previous Work

The key goals of this paper are to introduce probabilistic
predictions for votes and (in the following section) to ap-
ply this to perform active learning. However, by reducing
our probabilistic predictions to point estimates, we can also
provide conventional predictions and performance metrics.

Previous work has focused on deterministic predictions
of either the votes (Dieleman et al. 2015) or the majority re-
sponse (Domı́nguez Sánchez et al. 2018; Khan et al. 2018).
While differences in sample selection and training data pre-
vent a precise comparison, our model performs well at both
tasks.

When reducing our posteriors to the most likely vote
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(b) Distribution of k and ρ for ‘Bar’

Figure 8. Comparison between the distribution of predicted or
observed ρ and k over all galaxies, for each question. Upper: com-

parison for ‘Smooth or Featured’. Lower: comparison for ‘Bar’.

The observed ρ is approximated as ρproxy =
k
N The distributions

of predicted ρ and k closely match the observed distributions,

indicating our models are globally unbiased. The only significant

deviation is near extreme ρ and k , which our models are ‘reluc-
tant’ to predict.

count k̂, we achieve a root-mean-square error of 0.10 (ap-
prox. ±3 votes) for ‘Smooth or Featured’ and 0.15 for ‘Bar’.
We can also reduce the same posteriors to the most likely
majority responses. Below, we present our results in the
style of the ROC curves in Domı́nguez Sánchez et al. (2018)
(hereafter DS+18, Figure 9) and the confusion matrices in
Khan et al. (2018) (hereafter K+18, Figure 10) using our re-
duced posteriors. We find that our model likely outperforms
Domı́nguez Sánchez et al. (2018) and is likely comparable
with Khan et al. (2018).

Overall, these conventional metrics demonstrate that
our models are sufficiently accurate for practical use in
galaxy evolution research even when reduced to point es-
timates.

3 ACTIVE LEARNING

In the first half of this paper, we presented Bayesian CNNs
that predict posteriors for the morphology of each galaxy. In
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(a) ROC curve for the ‘Smooth or Featured’ question.
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(b) ROC curve for the ‘Bar’ question.

Figure 9. ROC curves for the ‘Smooth or Featured’ (above) and
‘Bar’ (below) questions, as predicted by our probabilistic model.

To generate scalar class predictions on which to threshold, we

reduce our posteriors to mean vote fractions. For comparison to
DS+18, we also include ROC curves of the subsample they de-

scribe as ‘high confidence’ – galaxies where the class probability

(for us, ρ̂) is extreme (1420 galaxies for ‘Smooth’, 1174 for ‘Bar’)

the second, we show how we can use these posteriors to select
the most informative galaxies for labelling by volunteers,
helping humans and algorithms work together to do better
science than either alone.

CNNs, and other deep learning methods, rely on vast
training sets of labelled examples (Simonyan & Zisserman
2015; Szegedy et al. 2015; Russakovsky et al. 2015; He et al.
2015; Huang et al. 2017). As we argued in Section 1, we
urgently need methods to reduce this demand for labelled
data in order to fully exploit current and next-generation
surveys.

Previous approaches in morphology classification
have largely used fixed datasets of labelled galaxies ac-
quired prior to model training. This is true both for
authors applying direct training (Huertas-Company et al.
2015; Domı́nguez Sánchez et al. 2018; Fischer et al. 2018;
Walmsley et al. 2018; Huertas-Company et al. 2018) and
those applying transfer learning (Ackermann et al. 2018;
Pérez-Carrasco et al. 2018; Domı́nguez Sánchez et al.
2019b). Instead, we ask: to train the best model, which
galaxies should volunteers label?
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Figure 10. Confusion matrices for ‘Smooth or Featured’ (upper

row) and ‘Bar’ (lower row) questions. For comparison to K+18,
we also include confusion matrices for the most confident predic-

tions (right column) Following K+18, we include the most con-

fident ∼ 7.7% of spirals and ∼ 9.3% of ellipticals (upper right).
Of the two galaxies where humans select ‘Smooth’ ( k

N > 0.5)
and the model selects ‘Featured’ (ρ̂ < 0.5), one is an ongoing

smooth/featured major merger and one is smooth with an imag-
ing artifact. Generalising (K+18 do not consider bars), we also

show the most confident ∼ 8% of barred and unbarred galaxies.

We achieve perfect classification for ‘Bar’.

Selecting the most informative data to label is known
as active learning. Active learning is useful when acquiring
labels is difficult (expensive, time-consuming, requiring ex-
perts, private, etc). This scenario is common for many, if not
most, real-world problems. Terrestrial examples include de-
tecting cardiac arrhythmia (Rahhal et al. 2016), sentiment
analysis of online reviews (Zhou et al. 2013), and Earth
observation (Tuia et al. 2011; Liu et al. 2017). Astrophysi-
cal examples include stellar spectral analysis (Solorio et al.
2005), variable star classification (Richards et al. 2012), tele-
scope design and time allocation (Xia et al. 2016), redshift
estimation (Hoyle et al. 2016) and spectroscopic follow-up
of supernovae (Ishida et al. 2018).

3.1 Active Learning Approach for Galaxy Zoo

Given that only a small subset of galaxies can be labelled
by humans, we should intelligently select which galaxies to
label. The aim is to make CNNs which are just as accurate
without having to label as many galaxies.

Our approach is as follows. First, we train our CNN on
a small randomly chosen initial training set. Then, we repeat
the following active learning loop:

(i) Measure the CNN prediction uncertainty on all
currently-unlabelled galaxies (excluding a fixed test set)

(ii) Apply an acquisition function (Section 3.2) to select
the most uncertain galaxies for labelling

(iii) Upload these galaxies to Galaxy Zoo and collect vol-

unteer classifications (in this work, simulated with historical
classifications)

(iv) Re-train the CNN and repeat

Other astrophysics research has combined crowdsourc-
ing with machine learning models. Wright et al. (2017) clas-
sified supernovae in PanSTARRS (Kaiser et al. 2010) by ag-
gregating crowdsourced classifications with the predictions
of expert-trained CNN and show that the combined hu-
man/machine ensemble outperforms either alone. However,
this approach is not directly feasible for Galaxy Zoo, where
scale prevents us from recording crowdsourced classifications
for every image.

A previous effort to consider optimizing task assignment
was made by Beck et al. (2018), who developed a ‘decision
engine’ to allocate galaxies for classification by either hu-
man or machine (via a random forest). Their system assigns
each galaxy to the categories ‘Smooth’ or ‘Featured’ 12 ,
using SWAP (Marshall et al. 2016) to decide how may re-
sponses to collect. This is in contrast to the system presented
here which only requests responses for informative galaxies,
but (for simplicity) requests the same number of responses
for each informative galaxy. Another important difference
is that Beck et al. (2018) train their model exclusively on
galaxies which can be confidently assigned to a class, while
the use of uncertainty in our model allows learning to occur
from every classified galaxy.

This work is the first time active learning has been used
for morphological classification, and the first time in astro-
physics that active learning has been combined with CNNs
or crowdsourcing.

In the following sections (3.2, 3.3, 3.4), we derive
an acquisition function that selects the most informative
galaxies for labelling by volunteers. We do this by com-
bining the general acquisition strategy BALD (MacKay
1992; Houlsby et al. 2011) with our probabilistic model and
Monte-Carlo Dropout (Gal 2016). We then use historical
data to simulate applying active learning strategy to Galaxy
Zoo (Section 3.5) and compare the performance of models
trained on galaxies selected using the mutual information
versus galaxies selected randomly (Section 3.6).

3.2 BALD and Mutual Information

Bayesian Active Learning by Disagreement, BALD (MacKay
1992; Houlsby et al. 2011), is a general information-theoretic
acquisition strategy. BALD selects subjects to label by max-
imising the mutual information between the model param-
eters θ and the probabilistic label prediction y. We begin
deriving our acquisition function by describing BALD and
the mutual information.

We have observed data D = (xi , yi )ni=1. Here, xi is the
ith subject and yi is the label of interest. We assume there
are (unknown) parameters θ that model the relationship be-
tween input subjects x and output labels y, p(y |x, θ). We
would like to infer the posterior of θ, p(θ |D). Once we know
p(y |x, θ), we can make predictions on new galaxy images.

12 The actual categories used were ‘Featured’ or ‘Not Featured’
(Smooth + Artifact), but they argue that Artifact is sufficiently

rare to not affect the results.
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12 M. Walmsley et al.

The mutual information measures how much informa-
tion some random variable A carries about another random
variable B, defined as:

I[A,B] = H[p(A)] − Ep(B) H[p(A|B)] (15)

where H is the entropy operator and Ep(B) H[p(A|B)] is the
expected entropy of p(A|B), marginalised over p(B) (Murphy
2012)

We would like to know how much information each la-
bel y provides about the model parameters θ. We can then
pick subjects x to maximise the mutual information I[y, θ],
helping us to learn θ efficiently. Substituting A and B for x
and y:

I[y, θ] = H[p(y |x,D)] − Ep(θ |D )[H[p(y |x, θ)]] (16)

The first term is the entropy of our prediction for x given
the training data, implicitly marginalising over the possible
model parameters θ. We refer to this as the predictive en-
tropy. The predictive entropy reflects our overall uncertainty
in y given the training data available.

The second term is the expected entropy of our predic-
tion made with a given θ, sampling over each θ we might have
inferred from D. The expected entropy reflects the typical
uncertainty of each particular model on x. Expected entropy
has a lower bound set by the inherent difficulty in predicting
y from x, regardless of the available labelled data.

Confident disagreement between possible models leads
to high mutual information. For high mutual information,
we should be highly uncertain about y after marginalis-
ing over all the models we might infer (high H[p(y |x,D)]),
but have each particular model be confident (low expected
H[p(y |x, θ)] ). If we are uncertain overall, but each particular
model is certain, then the models must confidently disagree.

Throughout this work, when we refer to galaxies as in-
formative, we mean specifically that they have a high mutual
information; they are informative for the model. These are
not necessarily the galaxies which are the most informative
for science; any overlap will depend upon the research ques-
tion at hand. The scientific benefit of our approach is that
we improve our morphological predictions for all galaxies
using minimal newly-labelled examples.

3.3 Estimating Mutual Information

Rewriting the mutual information explicitly, replacing y

with our labels k and θ with the network weights w:

I[k,w] = H[
∫

p(k |x,w)p(w |D)dw]−
∫

p(w |D)H[p(k |x,w)]dw

(17)

Gal et al. (2017a) showed that we can use Eqn. 8 to
replace p(w |D) in the mutual information (Eqn. 17):

I[k,w] = H[
∫

p(k |x,w)q∗dw] −
∫

q∗H[p(k |x,w)]dw (18)

and again sample from q∗ with T forward passes using
dropout at test time (i.e. Monte Carlo integration):

I[k,w] = H[
1
T

∑
t

p(k |x,w)] −
1
T

∑
t

H[p(k |x,w)] (19)

Next, we need a probabilistic prediction for k, p(k |x,w).
Here, we diverge from previous work.

Recall that we trained our network to make probabilis-
tic predictions for k by estimating the latent parameter ρ

from which k is Binomially drawn (Eqn. 3). Substituting
the probabilistic predictions of Eqn. 3 into the mutual infor-
mation:

I[k,w] = H[
1
T

∑
t

Bin(k | f w (x),N )]−
1
T

∑
t

H[Bin(k | f w (x),N )]

(20)

Or concisely:

I[k,w] = H[〈Bin(k | f w (x),N )〉] − 〈H[Bin(k | f w (x),N )]〉 (21)

A novel complication is that we do not know N , the total
number of responses, prior to labelling. In GZ2, each subject
is shown to a fixed number of volunteers, but (due to the
decision tree) N for each question will depend on responses
to the previous question. Further, technical limitations mean
that even for the first question (‘Smooth or Featured’), N
can vary (Figure 2). We (implicitly, for clarity) approximate
N with the expected 〈N〉 for that question. In effect, we
calculate our acquisition function with N set to the value
that, were we to ask volunteers to label this galaxy, we would
expect N responses.

To summarise, Eqn. 21 asks: how much additional in-
formation would be gained about network parameters that
we use to predict ρ and k, were we to ask 〈N〉 people about
subject x?

3.4 Entropy Evaluation

Having approximated p(w |D) with dropout and calculated
p(k |x,w) with our probabilistic model, all that remains is to
calculate the entropies H of each term.

k is discrete and hence we can directly calculate the
entropy over each possible state:

H[Bin(k | f w (x),N )] = −
N∑
k=0

Bin(k | f w (x),N ) log[Bin(k | f w (x),N )]

(22)

For H[〈Bin(k | f w (x),N )〉], we can also enumerate over
each possible k, where the probability of each k is the mean
of the posterior predictions (sampled with dropout) for that
k:

H[〈Bin(k | f w (x),N )〉] =

−

N∑
k=0

〈Bin(k | f w (x),N )〉 log[〈Bin(k | f w (x),N )〉]
(23)

and hence our final expression for the mutual informa-
tion is:

I[k,w] =

−

N∑
k=0

〈Bin(k | f w (x),N )〉 log[〈Bin(k | f w (x),N )〉]

+

N∑
k=0

Bin(k | f w (x),N ) log[Bin(k | f w (x),N )]

(24)
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3.5 Application

To evaluate our active learning approach, we simulate ap-
plying active learning during GZ2. We compare the perfor-
mance of our models when trained on galaxies selected using
the mutual information versus galaxies selected randomly.
For simplicity, each simulation trains a model to predict ei-
ther ‘Smooth or Featured’ responses or ‘Bar’ responses.

For the ‘Smooth or Featured’ simulation, we begin with
a small initial training set of 256 random galaxies. We train
a model and predict p(k |ρ,N ) (where N is the expected num-
ber of volunteers to answer the question, calculated as the
mean total number of responses for that question over all
previous galaxies - see Figure 2). We then use our BALD
acquisition function (Eqn. 21) to identify the 128 most in-
formative galaxies to label. To simulate uploading the in-
formative galaxies to GZ and receiving classifications, we
retrieve previously collected GZ2 classifications. Finally, we
add the newly-labelled informative galaxies to our training
set. We refer to each execution of this process (training our
model, selecting new galaxies to label, and adding them to
the training set) as an iteration. We repeat for 20 iterations,
recording the performance of our model throughout.

We selected 256 initial galaxies and 128 further galaxies
per iteration, to match the training data size over which our
‘Smooth or Featured’ model performance varies. Our rel-
atively shallow model reaches peak performance on around
3000 random galaxies; more galaxies do not significantly im-
prove performance.

For the ‘Bar’ simulation, we observe that performance
saturates after more galaxies (approx. 6000) and so we dou-
ble the scale; we start with 512 galaxies and acquire 256
further galaxies per iteration. This matches previous re-
sults (and intuition) that ‘Smooth or Featured’ is an easier
question to answer than ‘Bar’. Identifying bars, particularly
weak bars, is challenging for both humans (Masters et al.
2012; Kruk et al. 2018) and machines (including CNNs,
Domı́nguez Sánchez et al. 2018).

To measure the effect of our active learning strategy,
we also train a baseline classifier by providing batches of
randomly selected galaxies. We aim to compare two acquisi-
tion strategies for deciding which galaxies to label: selecting
galaxies with maximal mutual information (active learning
via BALD and MC Dropout) or selecting randomly (base-
line). We evaluate performance on a fixed test set of 2500
random galaxies. We repeat each simulation four times to
reduce the risk of spurious results from random variations
in performance.

3.6 Results

For both ‘Smooth’ and ‘Bar’ simulations, our probabilistic
models achieve equal performance on fewer galaxies using
active learning versus random galaxy selection. We show
model performance by iteration for the ‘Smooth’ (Figure
11) and ‘Bar’ (Figure 12) simulations. We display three met-
rics: training loss (model surprise on previously-seen images,
measured by Eqn. 6), evaluation loss (model surprise on un-
seen images), and root-mean-square error (RMSE). We mea-
sure the RMSE between our maximum-likelihood-estimates
ρ̂ and ρproxy =

k
N as ρ itself is never observed and hence can-

not be used for evaluation. Due to the high variance in met-

rics between batches, we smooth our metrics via LOWESS
(Cleveland 1979) and average across 4 simulation runs.

For ‘Smooth’, we achieve equal RMSE scores with, at
best, ∼ 60% fewer newly-labelled galaxies (RMSE of 0.117
with 256 vs. 640 new galaxies, Figure 11). Similarly for ‘Bar’,
we achieve equal RMSE scores with, at best, ∼ 35% fewer
newly-labelled galaxies (RMSE of 0.17 with 1280 vs. 2048
new galaxies, Figure 12). Active learning outperforms ran-
dom selection in every run.

Given sufficient (∼ 3000 for ‘Smooth’, ∼ 6000 for ‘Bar’)
galaxies, our models eventually converge to similar perfor-
mance levels – regardless of galaxy selection. We speculate
that this is because our relatively shallow model architec-
ture places an upper limit on performance. In general, model
complexity should be large enough to exploit the informa-
tion in the training set yet small enough to avoid fitting
to spurious patterns. Model complexity increases with the
number of free parameters, and decreases with regulariza-
tion (Friedman et al. 2001). Our model is both shallow and
well-regularized (recall that dropout was originaly used as
a regularization technique, Section 2.3). A more complex
(deeper) model may be able to perform better by learning
from additional galaxies.

3.6.1 Selected Galaxies

Which galaxies do the models identify as informative? To
investigate, we randomly select one ‘Smooth or Featured’
and one ‘Bar’ simulation.

For the ‘Smooth or Featured’ simulation, Figure 13
shows the observed ‘Smooth’ vote fraction distribution, per
iteration (set of new galaxies) and in total (summed over all
new galaxies). Highly smooth galaxies are common in the
general GZ2 catalogue. Random selection therefore leads to
a training sample skewed towards highly smooth galaxies.
In contrast, our acquisition function is far more likely to se-
lect galaxies which are featured, leading to a more balanced
sample. This is especially true for the first few iterations; we
speculate that this counteracts the skew towards smooth in
the randomly selected initial training sample. By the final
training sample, featured galaxies become moderately more
common than smooth (mean ksmooth

N = 0.38). This suggests
that featured galaxies are (on average) more informative for
the model – over and above correcting for the skewed initial
training sample. We speculate that featured galaxies may be
more visually diverse, leading to a greater challenge in fitting
volunteer responses, more disagreement between dropout-
approximated-models, and ultimately higher mutual infor-
mation.

For the ‘Bar’ simulation, Figure 14 shows the ‘Bar’ vote
fraction distribution, per iteration and in total, as well as
the total redshift distribution. Again, our acquisition func-
tion selects a more balanced sample by prioritising (rarer)
barred galaxies. This selection remains approximately con-
stant (within statistical noise) as more galaxies are acquired.
With respect to redshift, our acquisition function prefers to
select galaxies at lower redshifts. Based on inspection of the
selected images (Figure 16), we suggest that these galaxies
are more informative to our model because such galaxies are
better resolved (i.e. less ambiguous) and more likely to be
barred.

We present the most and least informative galaxies
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14 M. Walmsley et al.

GZ2 ‘Smooth’ Active Learning Performance

Figure 11. Training loss (upper), evaluation loss (middle), and

RMSE (lower) of model performance on ‘Smooth or Featured’

during active learning simulations, by iteration (set of new galax-
ies). Vertical bars denote new iterations, where new galaxies are

acquired and added to the training set. Prior to 2000 training it-

erations, both the random selection (baseline) models and active
learning models train on only the initial random training set of
256 galaxies, and hence show similar performance. Around 2000

to 3500 iterations, after acquiring 128-256 additional galaxies,
the active learning model shows a clear improvement in evalu-

ation performance over the baseline model. We annotate in red

where each model achieves the maximal relative RMSE improve-
ment, highlighting the reduction in newly-labelled galaxies re-

quired (vertical bars = 128 new galaxies). Note that active learn-
ing leads to a dramatically higher training loss, indicating that

more challenging galaxies are being identified as informative and
added to the training set.

from the (fixed and never labelled) test subset for ‘Smooth’
(Figure 15 and Bar (Figure 16), as identified by our novel ac-
quisition function and the final models from each simulation.

4 DISCUSSION

Learning from fewer examples is an expected benefit of both
probabilistic predictions and active learning. Our models ap-
proach peak performance on remarkably few examples: 2816
galaxies for ‘Smooth’ and 5632 for ‘Bar’. With our system,

GZ2 ‘Bar’ Active Learning Performance

Figure 12. As with 11, but for the ‘Bar’ active learning sim-

ulations. Again, active learning leads to a clear improvement in

evaluation performance and a dramatically higher training loss
(indicating challenging galaxies are being selected). We annotate

in red where each model achieves the maximal relative RMSE im-

provement, highlighting the reduction in newly-labelled galaxies
required (vertical bars = 256 new galaxies).

volunteers could complete Galaxy Zoo 2 in weeks13 rather
than years if the peak performance of our models would be
sufficient for their research. Further, reaching peak perfor-
mance on relatively few examples indicates that an expanded
model with additional free parameters is likely to perform
better (Murphy 2012).

For this work, we rely on GZ2 data where N (the num-
ber of responses to a galaxy) is unknown before making a
(historical) classification request. Therefore, when deriving
our acquisition function, we approximated N as 〈N〉 (the
expected number of responses). However, during live appli-
cation of our system, we can control the Galaxy Zoo classi-
fication logic to collect exactly N responses per image, for
any desired N . This would allow our model to request (for
example) one more classification for this galaxy, and three
more for that galaxy, before retraining. Precise classification
requests from our model will enable us to ask volunteers ex-

13 For example, classifying ∼ 10,000 galaxies (sufficient to train
our models to peak performance) at the mean GZ2 classification

rate of ∼ 800 galaxies/day would take ∼ 13 days.
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Galaxy Classification with Active Learning 15

Figure 13. Distribution of observed ‘Smooth’ vote fraction p in
galaxies acquired during Galaxy Zoo ‘Smooth or Featured’ active

learning simulation. Above: Distribution of acquired p over all
iterations, compared against random selection. While randomly

selected galaxies are highly smooth, our acquisition function se-

lects galaxies from across the p range, with a moderate preference
towards featured. Below: Distribution of p by iteration, compared

against random selection (upper inset). Our acquisition function

strongly prefers featured galaxies in early (n <∼ 7) iterations, and
then selects a more balanced sample. This likely compensates for

the initial training sample being highly smooth.

actly the right questions, helping them make an even greater
contribution to scientific research.

We also hope that this human-machine collaboration
will provide a better experience for volunteers. Inspection
of informative galaxies (Figures 13, 14) suggests that more
informative galaxies are more diverse than less informative

Figure 14. Upper: Distribution of observed ‘Bar’ vote fraction p

in galaxies acquired during Galaxy Zoo ‘Bar’ active learning sim-

ulation. While randomly selected galaxies are highly non-barred,
the ‘Bar’ model selects a more balanced sample. Middle: Dis-

tribution of ‘Bar’ p by iteration, compared against random se-

lection (upper inset). Our acquisition function selects a similar
rho distribution at each iteration. Lower: Redshift distribution

of acquired galaxies over all iterations, compared against random

selection. The ‘Bar’ model selects lower redshift galaxies, which
are both more featured and better resolved (i.e. less visually am-

biguous).
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16 M. Walmsley et al.

(a) Galaxies with maximum mutual information for ‘Smooth or

Featured’

(b) Galaxies with minimum mutual information for ‘Smooth or

Featured’

Figure 15. Informative and uninformative galaxies from the (hidden) test subset, as identified by our novel acquisition function and the

final model from a ‘Smooth or Featured’ simulation. When active learning is applied to Galaxy Zoo, volunteers will be more frequently
presented with the most informative images (left) than the least (right).
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Galaxy Classification with Active Learning 17

(a) Galaxies with maximum mutual information for ‘Bar’ (b) Galaxies with minimum mutual information for ‘Bar’

Figure 16. As with Figure 15 above, but showing galaxies identified by the final model from a ‘Bar’ simulation.
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galaxies. We hope that volunteers will find these (now more
frequent) informative galaxies interesting and engaging.

Our results motivate various improvements to the prob-
abilistic morphology models we introduce. In Section 2.7, we
showed that our models were approximately well-calibrated,
particularly after applying MC Dropout. However, the cali-
bration was imperfect; even after applying MC Dropout, our
models remain slightly overconfident (Figure 7). We sug-
gest two reasons for this remaining overconfidence. First,
within the MC Dropout approximation, the dropout rate is
known to affect the calibration of the final model (Gal et al.
2017b). We choose our dropout rate arbitrarily (0.5); how-
ever, this rate may not sufficiently vary the model to ap-
proximate training many models. One solution is to ‘tune’
the dropout rate until the calibration is correct (Gal et al.
2017b). Second, the MC Dropout approximation is itself im-
perfect; removing random neurons with dropout is not iden-
tical to training many networks. As an alternative, one could
simply train several models and ensemble the predictions
(Lakshminarayanan et al. 2016). Both of these approaches
are straightforward given a sufficient computational budget.

We also showed the distribution of model predictions
over all galaxies generally agrees well with the distribution
of predictions from volunteers (i.e. we are globally unbiased,
Section 2.7). However, we noted that the models are ‘reluc-
tant’ to predict extreme ρ (the typical response probability,
Section 2.1). We suggest that this is a limitation of our gener-
ative model for volunteer responses. The binomial likelihood
becomes narrow when p (here, ρ) is extreme, and hence the
model is heavily penalised for incorrect extreme p estimates.
If volunteer responses were precisely binomially distributed
(i.e. N independent identically-distributed trials per galaxy,
each with a fixed p of a positive response), this heavy penalty
would correctly reflect the significance of the error. However,
our binomial model of volunteers is only approximate; one
volunteer may give consistently different responses to an-
other. In consequence, the true likelihood of non-extreme k
responses given ρ is wider than the binomial likelihood from
the ‘typical’ response probability ρ suggests, and the net-
work is penalised ‘unfairly’. The network therefore learns to
avoid making risky extreme predictions.

If this suggestion is correct, the risk-averse prediction
shift will be monotonic (i.e. extreme galaxies will have
slightly different ρ but still be ranked in the same order) and
hence researchers selecting galaxies near extreme ρ may sim-
ply choose a slightly higher or lower ρ̂ threshold. To resolve
this issue, one could apply a monotonic rescaling to the net-
work predictions (as we do in Appendix A), introduce a more
sophisticated model of volunteer behaviour (Marshall et al.
2016; Beck et al. 2018; Dickinson et al. 2019), or calibrate
the loss to reflect the scientific utility of extreme predictions
(Cobb et al. 2018). As predictions are globally unbiased for
all non-extreme ρ, and extreme ρ predictions can be cor-
rected post hoc (above), our network is ready for use.

Throughout this work, our goal has been to predict vol-
unteer responses at scale. These responses are known to
vary systematically with e.g. redshift (Willett et al. 2013;
Hart et al. 2016) and colour (Cabrera-Vives et al. 2018),
and hence require calibration prior to scientific analysis.
Unlike Domı́nguez Sánchez et al. (2018) and Khan et al.
(2018), who train on redshift-calibrated ‘debiased’ re-
sponses, we expect and intend to reproduce these system-

atics. We prefer to apply calibration methods to our pre-
dictions. A calibrated CNN-predicted catalogue will be pre-
sented as part of a future Galaxy Zoo data release.

Finally, we highlight that our approach is highly gen-
eral. We hope that Bayesian CNNs and active learning can
contribute to the wide range of astrophysical problems where
CNNs are applicable (e.g. images, time series), uncertainty
is important, and the data is expensive to label, noisy, im-
balanced, or includes rare objects of interest. In particu-
lar, imbalanced datasets (where some labels are far more
common than others) are common throughout astrophysics.
Topics include transient classification (Wright et al. 2017),
fast radio burst searches (Zhang et al. 2018), and exoplanet
detection (Osborn et al. 2019). Active learning is known
to be effective at correcting such imbalances (Ishida et al.
2018). Our results suggest that this remains true when ac-
tive learning is combined with CNNs (this work is the first
astrophysics application of such a combination). Recall that
smooth galaxies are far more common in GZ2 but featured
galaxies are strongly preferentially selected by active learn-
ing – automatically, without our instruction – apparently
to compensate for the imbalanced data (Figure 13). If this
observation proves to be general, we suggest that Bayesian
CNNs and active learning can drive intelligent data col-
lection to overcome research challenges throughout astro-
physics.

5 CONCLUSION

Previous work on predicting visual galaxy morphology with
deep learning has either taken no account of uncertainty or
trained only on confidently-labelled galaxies. Our Bayesian
CNNs model and exploit the uncertainty in Galaxy Zoo vol-
unteer responses using a novel generative model of volun-
teers. This enables us to accurately answer detailed morphol-
ogy questions using only sparse labels (∼ 10 responses per
galaxy). Our CNNs can also express uncertainty by predict-
ing probability distribution parameters and using Monte-
Carlo Dropout (Gal et al. 2017a). This allows us to pre-
dict posteriors for the expected volunteer responses to each
galaxy. These posteriors are reliable (i.e. well-calibrated),
show minimal systematic bias, and match or outperform
previous work when reduced to point estimates (for compar-
ison). Using our posteriors, researchers will be able to draw
statistically powerful conclusions about the relationships be-
tween morphology and AGN, mass assembly, quenching, and
other topics.

Previous work has also treated labelled galaxies as a
fixed dataset from which to learn. Instead, we ask: which
galaxies should we label to train the best model? We apply
active learning (Houlsby et al. 2011) – our model iteratively
requests new galaxies for human labelling and then retrains.
To select the most informative galaxies for labelling, we de-
rive a custom acquisition function for Galaxy Zoo based on
BALD (MacKay 1992). This derivation is only possible us-
ing our posteriors. We find that active learning provides a
clear improvement in performance over random selection of
galaxies. The galaxies identified as informative are gener-
ally more featured (for the ‘Smooth or Featured’ question)
and better resolved (for the ‘Bar’ question), matching our
intuition.
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As modern surveys continue to outpace traditional citi-
zen science, probabilistic predictions and active learning be-
come particularly crucial. The methods we introduce here
will allow Galaxy Zoo to produce visual morphology mea-
surements for surveys of any conceivable scale on a timescale
of weeks. We aim to launch our active learning strategy on
Galaxy Zoo in 2019.

ACKNOWLEDGEMENTS

MW would like to thank H. Domı́nguez Sanchez and M.
Huertas-Company for helpful discussions.

MW acknowledges funding from the Science and
Technology Funding Council (STFC) Grant Code
ST/R505006/1. We also acknowledge support from
STFC under grant ST/N003179/1. LF, CS, HD and
DW acknowledge partial support from one or more of
the US National Science Foundation grants IIS-1619177,
OAC-1835530, and AST-1716602.

This research made use of the open-source
Python scientific computing ecosystem, including SciPy
(Jones et al. 01 ), Matplotlib (Hunter 2007), scikit-learn
(Pedregosa et al. 2011), scikit-image (van der Walt et al.
2014) and Pandas (McKinney 2010).

This research made use of Astropy, a community-
developed core Python package for Astronomy
(The Astropy Collaboration et al. 2013, 2018).

This research made use of TensorFlow (Abadi et al.
2015).

All code is publicly available on GitHub at
www.github.com/mwalmsley/galaxy-zoo-bayesian-cnn
(Walmsley 2019).

APPENDIX A

CNN predictions are not (in general) well-calibrated prob-
abilities (Lakshminarayanan et al. 2016; Guo et al. 2017).
Interpreting them as such may cause systematic er-
rors in later analysis. To illustrate this problem, we
show how the CNN probabilities published in DS+18
(Domı́nguez Sánchez et al. 2018) significantly overestimate
the prevalance of expert-classified barred galaxies. We chose
DS+18 as the most recent deep learning morphology cat-
alogue made publicly available, and thank the authors for
their openness. We do not believe this issue is unique to
DS+18. We highlight this issue not as a criticism of DS+18
specifically, but to emphasise the advantages of using prob-
abilistic methods.

DS+18 trained a CNN to predict the probability that
a galaxy is barred (DS+18 Section 5.3). Barred galax-
ies were defined as those galaxies labelled as having any
kind of bar (weak/intermediate/strong) in expert catalogue
Nair & Abraham 2010 (N10). We refer to such galaxies as
Nair Bars. We chose to investigate this particular DS+18
model because it explicitly aims to reproduce the (expert)
N10 classifications, allowing for direct comparison of the pre-
dicted probabilities against the true labels.

We first show that these CNN probabilities are not well-
calibrated. We then demonstrate a simple technique to infer
probabilities for Nair Bars from GZ2 vote fractions. Finally,

Figure A1. Predictions for the total number of galaxies labelled
as ‘Bar’ by human expert N10 in test galaxy subset (correct an-

swer: 379). DS+18 overestimates the number of Nair Bars (559).
We find that GZ2 vote fractions from volunteers can be used to

make an improved estimate (396) with a rescaling correction cal-

culated via logistic regression (GZ2 Humans + LR). Applying the
same correction to the vote fractions predicted by the Bayesian

CNN in this work (MW+19) also produces an improved estimate

(372). By accurately predicting the vote fractions, and then ap-
plying a correction to map from vote fractions to expert responses,

we can predict what N10 would have said for the full SDSS sam-

ple.

we show that, as our Bayesian CNN estimates of GZ2 vote
fractions are well-calibrated, these vote fractions can be used
to estimate probabilities for Nair Bars. The practical ap-
plication is to predict what Nair & Abraham (2010) would
have recorded, had the expert authors visually classified ev-
ery SDSS galaxy.

We select a random subset of 1211 galaxies classified
by N10 (this subset is motivated below). How many barred
galaxies are in this subset? The DS+18 Nair Bar ‘probabil-
ities’ pi (for each galaxy i) predict

∑
i pi = 559 Nair Bars.

However, only 379 are actually Nair Bars (Figure A1). This
error is caused by the DS+18 Nair Bar ‘probabilities’ being,
on average, skewed towards predicting ‘Bar’, as shown by
the calibration curve of the DS+18 Nair Bar probabilities
(Figure A2).

How can we better predict the total number of Nair
Bars? GZ2 collected volunteer responses for many galaxies
classified by N10 (6,051 of 14,034 match within 5′′, after fil-
tering for total ‘Bar?’ votes Nbar > 10 as in Section 2.6). The
fraction of volunteers who responded ‘Bar’ to the question
‘Bar?’ is predictive of Nair Bars, but is not a probability
(Lintott et al. 2008). For example, volunteers are less able
to recognise weak bars than experts (Masters et al. 2012),
and hence the ‘Bar’ vote fraction only slightly increases for
galaxies with weak Nair Bars vs. galaxies without. We need
to rescale the GZ2 vote fractions. To do this, we divide
the N10 catalogue into 80% train and 20% test subsets and
use the train subset to fit (via logistic regression) a rescal-
ing function (Figure A3) mapping GZ2 vote fractions to
p(Nair Bar|GZ2 Fraction). We then evaluate the calibration
of these probabilities on the test subset, which is the subset
of 1211 galaxies used above. We predict 396 Nair Bars, which
compares well with the correct answer of 379 vs. the DS+18
answer of 559 (Figure A1). This directly demonstrates that
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Figure A2. Above: Comparison of calibration curves for each
predictive model. The calibration curve is calculated by binning

the predicted probabilities and counting the fraction of Nair Bars
in each bin. The fraction of Nair Bars in a given bin approximates

the true (frequentist) probability of each binned galaxy being a

Nair Bar. Points compare the predicted fraction of Nair Bars (x
axis) with the actual fraction (y axis) for 5 equally-spaced bins.

For well-calibrated probabilities, the predicted and actual frac-

tions are equal (black dashed line). Below: the distribution of
Nair Bar predictions from each model. DS+18 typically predicts

p ∼ 0.4 (below) and has a relatively poor calibration near p ∼ 0.4
(above), leading to a significant overestimate of the total number
of Nair Bars.

our rescaled GZ2 predictions are correctly calibrated over
the full test subset. The calibration curve shows no system-
atic skew, unlike DS+18 (Figure A2).

Since the GZ2 vote fractions can be rescaled to Nair
Bar probabilities, and the Bayesian CNN makes predictions
of the GZ2 vote fractions, we can also rescale the Bayesian
CNN predictions into Nair Bar probabilities using the same
rescaling function. The rescaled Bayesian CNN GZ2 vote
predictions correctly estimate the count of Nair Bars (372
bars predicted vs. 379 observed bars, Figure A1).

Finally, we note that if the research goal is simply to
identify samples of e.g. Nair Bars, one can do so by inter-
preting each prediction as a score (i.e. an arbitrary scalar,
as opposed to a probability). When interpreted as scores,
the rescaled GZ2 votes - both observed from volunteers and
predicted by the Bayesian CNN - outperform DS+18 in iden-
tifying Nair Bars at all thresholds (Figure A4). This may be
because our BCNN can learn to detect bars from the ex-
tensive GZ2 sample (56,048 galaxies with Nbar ≥ 10) be-
fore those predictions are rescaled to correspond to Nair
Bars, rather than DS+18’s approach of training only on
the much smaller set of galaxies (7000) directly labelled in
Nair & Abraham (2010).

Nair Bars are initially defined through repeated expert
classification (as close to ‘gold standard’ ground truth as ex-

Figure A3. The rescaling function used to map GZ2 vote frac-
tions to p(Nair Bar|GZ2 Fraction), estimated via logistic regres-

sion. This rescaling function is also used (without modifica-
tion) to map Bayesian CNN GZ2 vote fraction predictions to

p(Nair Bar|BCNN-predicted GZ2 Fraction)

Figure A4. Comparison of ROC curves for predicting Nair Bars
using each model.

ists for imaging data) and hence accurate automated iden-
tification of Nair Bars is directly useful for morphology re-
search.

APPENDIX B - THEORETICAL
BACKGROUND ON VARIATIONAL
INFERENCE

The general problem of Bayesian inference can be framed
in terms of a probabilistic model where we have some ob-
served random variables Z and some latent variables θ and
we wish to infer P(θ | Z ) after observing some data. Our
probabilistic model P(Z, θ) allows us to use Bayes rule to do

so; P(θ | Z ) = P(θ,Z )
P(Z ) =

P(Z |θ)p(θ)
P(Z ) . In the setting of discrim-

inative learning, the observed variables are the inputs and
outputs of our classification task X and Y , and we directly
parameterise the distribution P(y | x, θ) in order to make
predictions by marginalising over the unknown weights, that
is, the prediction for an unseen point x given training data
X is
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p(y | x,X,Y ) =
∫

p(y | x, θ)p(θ | X,Y )dθ (1)

While this is a simple framework, in practice the in-
tegrals required to normalise Bayes’ rule and to take this
marginal are often not analytically tractable, and we must
resort to numerical approaches.

While there are many possible ways to perform approx-
imate Bayesian inference, here we will focus on the frame-
work of variational inference. The essential idea of varia-
tional inference is to approximate the posterior P(θ | Z )
with a simpler distribution q(θ) which is ‘as close as possi-
ble’ to P(θ | Z ), and then use q in place of the posterior.
This can take the form of analytically finding the optimal
q subject only to some factorisation assumptions using the
tools of the calculus of variations, but the case that is rele-
vant to our treatment is when we fix q to be some family of
distributions qξ (θ) parameterised by ξ and fit ξ, changing
an integration problem to an optimisation one.

The measure of ‘as close as possible’ used in variational
inference in the Kullback-Leibler (KL) divergence, or the rel-
ative entropy, a measure of distance between two probability
distributions defined as

DKL (p : q) =
∫

p(x)(log p(x) − log q(x))dx (2)

The objective of variational inference is to choose the
q such that DKL (q(θ) : p(θ | X )) is minimised. Minimising
this objective can be shown to be equivalent to maximising
the ’log Evidence Lower BOund’, or ELBO,

L(q) = Eq (θ) − [log p(Y | X, θ)p(θ) − log q(θ)] (3)

The reason for the name is the relationship

log P(X ) = DKL (q(θ) : p(θ | X )) + L(q) (4)

which implies, since the KL divergence is strictly posi-
tive, that L provides a lower bound on the log of the evidence
P(X ), the denominator in Bayes rule above. By optimising
the parameters of q xi, with respect to L, one can find the
best approxmation to the posterior in the family of param-
eterised distributions chosen in terms of the ELBO.

The key advantage of this formalism is that the ELBO
only involves the tractable terms of the model, P(X | θ) and
P(θ). The expectation is over the approximating distribu-
tion, but since we are able to choose q we can make a choice
that is easy to sample from, and therefore it is straightfor-
ward to obtain a monte carlo approximation of L via sam-
pling, which is sufficient to obtain stochastic gradients of L
which can be used for optimisation. The integral over the
posterior on θ in the marginalisation step can likewise be
approximated via sampling from q if neccesary.

For neural networks, a common approximating distri-
bution is dropout (Srivastava et al. 2014). The dropout dis-
tribution over the weights of a single neural network layer is
parameterised by a weight matrix M and a dropout proba-
bility p. Draws from this distribution are described by

Wi j = Mi j z j (5)

where z j ∼ Bernoulli(p). Gal (2016) introduced ap-
proximating p(w |D), with a dropout distributions over the
weights of a network, and showed that in this case optimising
the standard likelihood based loss is equivalent to the vari-
ational objective that would be obtained for the dropout
distribution, so we may interpret the dropout distribution
over the weights of a trained model as an approximation to
the posterior distribution p(w | D).

We can use this approximating distribution as a proxy
for the true posterior when we marginalise over models to
make predictions;∫

p(k |x,w)p(w |D)dw ≈
∫

p(k |x,w)q∗dw (6)

A more detailed mathematical exposition of dropout as
variational inference can be found in Gal (2016).
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