SoS-centric Middleware Services for Interoperability in
Smart Cities Systems

Frederico Lopes, Stefano Loss Altair Mendes, Thais Batista
Department of Computing and
Applied Mathematics
Federal University of Rio
Grande do Norte
Natal - Brazil

altairbomendes@agmail.com

Metropole Digital Institute
Federal University of Rio
Grande do Norte
Natal - Brazil

fred@imd.ufrn.br,
momoloss10@gmail.com

Rodger Lea
School of Computing and
Communications
Lancaster University, UK

rodger@comp.lanc.ac.uk

thais@ufrnet.br

ABSTRACT

Modern cities are supported by many IT systems managed by
distinct public and private agents. Such legacy systems are often
incompatible since, in general, they use old, dependent and non-
standardised technologies. This results in an environment in
which there is no interoperability among smart city systems,
preventing richer and more interesting applications to be used by
citizens, companies, and city administration. An alternative to
solve the lack of interoperability is the adoption of a System-of-
Systems (SoS) approach. A SoS is a set of independent and
heterogeneous constituent systems that interoperate to accomplish
a global mission. The collaboration among such constituent
systems enables a SoS to offer new functionalities that cannot be
provided by any of these systems working as individual entities.
The goal of this paper is to propose SoS-centric middleware
services to support the management and execution of SoS in
Smart Cities environments in a dynamic, transparent and scalable
way. The proposed services, once integrated into a smart city
platform, support interoperability among different systems
operating in a city. Moreover, this paper also presents a
motivational case study to make it clear the issues that must be
addressed when multiple independent systems are brought
together to provide a new Smart City service or application.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems — distributed applications.

D.2.12 [Software Engineering]|: Interoperability

Keywords
System-of-Systems (SoS); Interoperability; Middleware; Smart
Cities.

1.INTRODUCTION

Nowadays, there are a lot of IT systems (for traffic management,
smart grid, efficient buildings, healthcare, public safety, among
others areas) deployed in cities that collaborate to make cities
smarter. However, many of those systems originate from different

© 2016 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

SmartCities '16, December 12-16, 2016, Trento, Italy

©2016 ACM. ISBN 978-1-4503-4667-2/16/12...$15.00

DOI: http://dx.doi.org/10.1145/3009912.3009917

RIGHTS LI

providers, are managed by distinct public and private agents, often
on their own computational infrastructure, and work in isolation.
In addition, such systems are often incompatible since in general
they use old, dependent and non-standardised technologies. This
results in an environment in which there is no interoperability
among the systems and no holistic comprehension of the smart
solutions, hampering the goal of fully addressing the urban
development challenges.

The lack of integration brings some problems, for example, how
distinct, heterogeneous, fully decentralized and independent
systems can closely collaborate with each other to achieve
application goals. Despite the wide range of middleware [1, 2, 3,
4, 5, 6] providing sophisticated abstractions to develop smart city
applications, in general, they do not fully address the requirements
presented in this document. For instance, some middleware
focuses on loT environments and in others abstractions for smart
city [1, 2, 3]. Others middleware focuses on the integration of
public and private cloud platforms for smart cities environments
[4, 5] rather than interoperability. In contrast, OverStar [6] does
have a strong focus on interoperability but its generality fails to
address Smart City situations.

In fact, the plethora of systems for making cities smarter can be
regarded as a SoS, and can be supported by well-known SoS
approaches that support different heterogeneous, stand-alone and
largely independent constituent systems, that need to interoperate
to achieve a common goal [7, 8]. In SoS scenarios, the
cooperation between many systems offer emergent behaviour that
cannot be provided by a constituent system in isolation and thus
offers a promising approach to support Smart City systems
interoperability.

While there has been significant research into SoS middleware [9,
10, 11] these works have not addressed the needs, and
complexities of Smart Cities.

The goal of this paper is to propose SoS-centric middleware
services to support the creation, composition, deployment, and
execution of SoS in Smart Cities environments. The SoS-centric
approach presented in this work aims at supporting
interoperability among different systems operating in the city by
providing a set of services and tools to allow, in a dynamic,
transparent and scalable way, the management of SoS in the smart
cities environments. Once developed, the proposed middleware
will enable smart cities systems to talk to each other to provide
richer and more interesting applications to solve city issues and
provide better services to citizens.

2.BACKGROUND

This section presents some important concepts to allow the
understanding of this paper. Section 2.1 discusses about
interoperability. Section 2.2 presents SoS concepts.

2.1.Interoperability

According to IEEE [12], systems interoperability is “the capacity
of two or more systems or components to exchange information
and use the information exchanged”. Interoperability involves
much more than making systems communicate with each other, it
requires significant effort to reach some degree of semantic
compatibility and common interpretation among the interoperable
systems, regarding exchanged data and messages [13]. Another
definition, stated by [14], is that “interoperability is the ability of
organizations and users to utilize the interconnectivity co-
exhibited by the systems that serve them, in order to cooperate
and collaborate, carry out business or operational transactions, and
share and exchange goods and information”.

Interoperability can be achieved in two ways [13]: (i) systems can
natively include interoperability issues in their designs; or (ii)
systems can be retrofitted. The first option is easier and less
expensive. However, considering that smart cities systems usually
are proprietary systems and that they are often owned by distinct
organizations, in general, they are developed in an isolated way
without considering interoperability in their design.

Conversely, while the second option (retrofitting) is a tractable
task, it requires enormous effort since: (i) it affects many aspects
of the existing systems (for instance, external APIs, user interface,
use of standards and communication protocols, and so on), and (ii)
it involves understanding a broad range of systems, which is a
hard task for developers. Unfortunately, this second option is
currently the only viable option to interoperate existing smart
cities systems.

2.2. System-of-Systems (SoS)

SoS can be defined as a set of independent and heterogeneous
constituent systems that interoperate to accomplish a global
mission [15, 16]. This mission can only be achieved with the
contribution of each system that constitutes the SoS, that is, it
cannot be performed by only one of its systems. The collaboration
among such constituent systems enables a SoS to offer new
functionalities that cannot be provided by any of these systems
working as individual entities, the so-called emergent behaviour.
Besides emergent behaviour, there are other intrinsic
characteristics that make SoS distinct from other distributed
complex and large-scale systems, such as (i) the operational and
managerial independence of constituent systems, which provide
their own functionalities even when they do not cooperate within
the scope of the SoS and can be managed independently from it,
and (ii) the evolutionary development of the SoS, which may
evolve over time to respond to changes on its execution
environment, on the constituent systems, or on its own mission.
Together, these characteristics have posed a set of challenges
mainly related to the development, dynamicity, and evolution of
SoS, thereby making traditional system engineering processes no
longer suitable for constructing these systems [16].

2.2.1.Missions in the context of SoS

SoS missions are typically viewed as features or a set of tasks to
be performed by constituent systems [17]. Such missions are
categorized into two types: individual missions and global
missions. Considering that in a SoS, each constituent system is
independent from any other system, individual missions refer to

RIGHTS LI N ""l}

the features or tasks performed by each constituent system
isolated. Such missions are related to a specifically constituent
system. In turn, global missions are related to new features and/or
functionalities achieved by the integration of SoS’s systems.
Global missions are dependent of a set of constituent systems, and
it is not possible to achieve global missions considering the
contribution of only one constituent system.

Figure 1 presents a conceptual model of missions in SoS [17],
showing the relationship among concepts related to missions in
SoS. It is possible to observe that SoS is composed by many
constituent systems. SoS accomplishes global missions, whereas
constituent systems accomplish individual systems and contribute
to global missions. Missions have tasks, priorities, and
parameters. Moreover, emergent behaviours are those behaviours
created by the cooperation between constituent systems of a SoS.
Missions are indirectly related to such emergent behaviours.

2.2.2.Interoperability through SoS

According to the SoS concept, there is a strong relationship
between SoS and interoperability since this is one of SoS main
characteristics. Global missions are achieved by interoperability
among constituent systems, resulting in emergent behaviours
created by such interoperability.

Once a specific system participates in a SoS, it is necessary to
ensure that the system can exchange and understand data,
messages, and policies of the other constituents systems of the
same SoS. This implies the need for models, protocols, services,
and tools to support the development of systems interoperability
through a SoS approach.

P System

collaborates

C ctivi
Constituent system o —
2 1

enables

=

accomplishes accomplishes

contributes to

‘ ‘
1.0 e =
[Individual mission ﬁ
! enables
B Tt
is refined into confributes executes
i [l 1 1 1
1
has
1 has ot is refined into
has.
Constraint
: A e
has Task
Trigger [Tosk |
| Trigoer | ‘
uses
| Houristic | o

Figure 1. Relationship among SoS concepts [17]

Emergent

behavior

10 is related to

=

3.MOTIVATING CASE STUDY

In order to better understand the issues that must be addressed
when multiple independent systems are brought together to
provide a new Smart City service or application, we have studied
a motivational case study, composed of three distinct and
independent systems, related to the process of waste collection
and management. Typically, such systems are owned by different
(public or private) organizations and have already been developed
using distinct technologies. The purpose of this case study is to
motivate the creation of some abstractions and services to
facilitate the interoperability among systems in smart cities
environments.

To better understand how to build a new service composed of
multiple independent city systems, we explore three distinct
approaches: (i) Non-interoperable systems — where existing
systems are not capable to exchange data automatically. (ii) A
loosely coupled approach - a naive solution to provide direct
interoperability between systems using specific adapters for each
pair of systems, allowing their interactions. (iii) Smart City
platform — this approach uses some form of Smart City platform
to act as an orchestration platform for the distinct city systems.

It should be noted that to facilitate the analysis, we have not used
actual city systems, rather we have modelled and, where needed,
built our own versions of existing systems.

3.1. An overview of the garbage management

service in a non-interoperable approach

This subsection presents the three systems developed in this case
study, in which each system is an isolated legacy system. It means
that, in this first approach, there is no any type of interoperability
among them.

System 1, owned by the City Hall department responsible for
collecting the garbage produced in the whole city, is in charge of
monitoring the quantity of waste inside each garbage container.
Specifically, this system monitors the occupation level and the
weight of waste inside the container. To achieve this functionality,
each container has a balance weight and level sensors. All data
(weight and occupation level) collected by the sensors are
periodically sent, via wireless communication, to the system
server. Thus, the server can store that data in the system database.
It was developed in PHP and relates each garbage container to a
unique identification, geographic location and the type of waste
(e.g. plastic, organic, paper, glass, etc.) that it stores. Moreover,
since each container stores only one specific type of waste, one
collection point could be associated to more than one container.

System 2, called Eco-Feedback system, is responsible for
calculating and presenting statistical information about the waste
production in the city. Owned by a local non-governmental
organization (NGO) focused on environmental conservation, this
Java Web-based system provides data about the waste production
considering many granularity levels. For example, data related to
waste produced per capita, considering his/her neighbourhood,
city region, whole city, etc. This system also reports the most
produced waste type in the last week. The data processed by such
a system is entered by a system operator of the NGO and provided
weekly by the City Hall department responsible for collecting the
garbage. This data is delivered in a spreadsheet document,
resulting in a manual process to insert such data in the second
system. Besides being a manual and error-prone strategy, this
process makes real-time data visualization impossible. Moreover,
the statistical information produced by the system is public and
can be viewed by all citizens on the second system's Web page.

The last independent system (System 3) is responsible for
managing the routes of the garbage trucks. Under the
responsibility of the private company that provides garbage
collecting service to the City Hall, this system was developed in
the C++ programming language and it does not provide external
communication with others systems. Its main function is to define
garbage truck routes to collect the garbage from across the city.
The system associates a route to a specific truck and each truck
collects one or more types of waste or recyclable material. Truck
routes are static since their definition is directly dependent on the
manager's decision that creates the routes according to him/her

RIGHTS LI M K4y

feelings and experience. Thus, route definition is not based on
real-time or statistical quantity of waste in each collection point.
Once created, routes are printed and delivered to the truck drivers.
This is not the most productive way to collect the garbage since
the truck can visit sites without garbage to be collected or might
be full before completing the route. Obviously, this is not a good
strategy but it still used by many cities.

3.2 A loosely coupled approach to system

integration

The systems previously described are completely independent and
owned by distinct organizations. Moreover, they use different
technologies and each one has very specific and well-defined
functions. Although useful, some of those systems work with out-
dated data since they work in an isolated way. Moreover, the data
feeding process in the second and third systems is made in a
manual way. These characteristics result in an error-prone
environment since they can use out-dated data. Another important
and negative aspect of this first approach is that, isolated, they
cannot be integrated to the smart city ecosystem. This is an
important drawback since the smart city platform could facilitate
data processing, data analysis, data sharing, etc. To overcome this
drawback, it was necessary to develop new software components
(bridges) to achieve integration among the aforementioned
systems, in which each bridge interconnects pair of systems. To
achieve this, the bridge's developer has to consider and understand
characteristics of both systems.

This new case study’s approach included three bridges: (i) bridge
to interconnect System [and System 2, in which System 1
provides, to System 2, data about the quantity of waste in each
collection point; (ii) bridge that provide the same data to System 3;
and (iii) bridge that provides statistical data from System 2 to
System 3. Each bridge has the responsibility of automatically
delivering data from one system to another system. Moreover,
System 1 and System 2 also provide REST APIs. This is necessary
since such systems were developed using distinct technologies.
Figure 2 presents such bridges and the REST APIs.

e NewReq.1-
Automatic data
collector

o NewReq.2 - Allows collecting data
Creation of routes from sensors s1/S2 System 2:
dynamically T T T T T TTTTTTTT Bridge Eco-Feedback
¢ New Req.3 -

I
I
|
Real time status of i
all containers |
|
|
I

Allows collecting

System 1: o
statistical data

Garbage

Containers

| $1/S3 Service
" Bridge

L

Allows collecting data
from sensors

Figure 2. Systems directly integrated through APIs and
bridges among them.

This new version of our case study directly implemented three
new functionalities: (i) automatic data collection in System 2 and
System 3; (ii) dynamic creation of truck routes; and (iii) status
information of each waste container in real time. It is important to
mention that the creation of these new functionalities may not be

possible without the integration of those three systems. Thus, it
means that system integration really can add important value for
the environment they are engaged on. Although this solution is
relatively simple to be developed, it is clear that there are some
considerable difficulties in its development. For instance, it is
necessary that the bridges’ developers know some details of each
integrated system. Other problem is the coupling between such
systems, making reusability difficult to be reached. Such problems
are better detailed in the Section 4.

3.3 Using a Smart City platform

A third approach to support interoperability between existing
Smart City systems in order to deliver new services or
applications is to leverage a Smart City platform. These platforms
[1, 3, 4, 5] have been developed in recent years with the goal of
making the development of new city services and application
easier. An example of this is the CityHub platform [3] developed
by one of the authors.

Integrating existing systems using a smart city platform allows the
systems to use sophisticated abstractions provided by those
platforms. However, integrating interoperable systems to a smart
city environment is not a trivial task. In addition, based on our
knowledge in the area, the platforms currently available do not
fully address systems interoperability. Thus, it is necessary to
include some source code in the application side to simulate any
degree of interoperability.

For example, Figure 3 shows the CityHub platform which uses
CKAN to manage Open Data (static data) and an IoT platform
(WoTKiT [18]) to provide dynamic (sensors, etc.) data for smart
cities applications. CityHub offers a state of the art solution for
data integration in Smart Cities. If we were to use CityHub as a
basis for an SoS approach to building our Smart Garbage
application, it would require that these applications implement the
requirements within their source code. This is shown in Figure 3
by circles inside applications cubes, which would increase the
coupling of applications. However, this approach reduces the
reusability since new requirements deployed in a specific
application cannot be used by other applications. So, although this
3" approach, exploiting a Smart City platform for example
CityHub, does make it possible to build Smart City applications, it
is still more complex and less flexible than our proposed approach
of using a SoS-centric middleware.

4.LESSONS LEARNED

This section discusses some learned lessons from our experiences
trying a direct integration or a middleware platform approach for
building new services based on existing systems. More
specifically, we discuss problems related to systems
heterogeneity, lack of systems control by the integration
developer, systems changes issues, complexity to develop
applications and integration of those systems to smart cities
environments.

Lack of systems control. In addition to the systems
heterogeneity, typical systems deployed in the city are
independent and owned by distinct organizations, as SoS
constituent systems. Considering that the system control of each
system is concentrated on its owner, the developers of the systems
integration is strongly dependent of such systems owner. Thus,
there is a clear need of a change in the approach in the direction of
having well-defined standards and protocols to allow developers
to integrate such systems in an easy way. Such an approach is not
restricted to only provide systems APIs. Even more than that, it is

RIGHTS LI M Hiz

needed to provide new ways to support the integration developer
in the control of messages flows, constraints, missions, etc.
However, that support cannot undermine the integrity and
independence of such systems.

Change management. The organizations activities are dynamic
in nature. Thus, systems must be prepared for changes and
adaptations in the environment. However, in general, systems are
not designed to reflect such dynamism, resulting in serious
problems. For example, the solution illustrated in Figure 2
integrates three systems that were not prepared to interoperate.
Thus, since such three systems are now integrated, any new
change (the change in the requirements of a constituent system,
the emergence of a new systems or the exchange of one system
for an equivalent system) will require a large effort. For instance,
in case of substitution of the company responsible for garbage
collection for another company, it could be necessary to also
substitute the system responsible for generating the dynamic
routes for the system adopted by the new company. This type of
environmental changes will require unexpected efforts to adapt:
(i) bridges between the other two systems; (ii) features of the new
system; (iii) technologies used by new systems, among others.
Similarly, if the change occurs in any existing system, or if there
is a need of inserting a new system into the environment, it will be
necessary to create new bridges. The growth of this problem is
proportional to the growth of the number of systems to be
integrated and any changes will require a huge programming
effort, increasing the costs involved.

LABEL
Truck Drivers’ Dashboard ‘ O
App [0) App i)
Requirements that
are not provided by
original systems
| HyperCat Proxy l ® Apps code include

code lines regarding
to some not
supported
requirements by
systems...

o Truck Drivers’ App
— creation of
routes dynamically
Dashboard - real
time status of all
containers

Garbage
Containers
System

Eco-Feedback | Truck Routes
System System

Figure 3. Requirements implemented directly by
applications in a Smart City Environment.

High complexity when develop applications. Considering that
one specific application needs to use data and requirements
provided by many smart cities systems, the complexity in
developing such application is also a challenge. The reason is
because the application developer has to understand details of
each system. The problem is not the need of knowing how to use
the systems APIs, since nowadays many systems offers RESTful
APIs. The real problems are how to: (i) control the order of calls
for each system; (ii) know specific messages protocols adopted by
each system; (iii) handle data from distinct systems, sometimes
transforming data format from one system to another system;
among others. Thus, it is possible to observe that these problems
hamper the application development since the code necessary to
integrate such system is embedded and coupled within

applications. Consequently, applications have a low level of reuse,
high maintainability costs, and this problem grows in proportion
to the number of systems.

The challenges described above may be solved through some
specific middleware services and tools. They would be
responsible for creating, managing, and deploying the SoS to
integrate smart city systems. Moreover, middleware components
will abstract away some very complicated tasks, for example, take
the control of messages flowing among integrated systems.
Although, as a first impression, current Web Service compositions
solutions [19, 20] would be used to coordinate such messages
flow, our understanding is that, alone, such solutions are not
enough due to the full independence of smart cities systems. Such
middleware services have to support a higher level of abstraction,
considering messages flow, individual and global missions,
emergent behaviours, priorities, among others SoS characteristics.

5. PROPOSED SOLUTION

Taking into account the drawbacks of the integration approach
presented in Section 3.2 and Section 3.3, and the lessons learned
(Section 4), this section presents a new abstraction layer and some
middleware services to provide interoperability, based on the SoS
approach, among smart city systems. Such solution can be
integrated to smart cities platforms to provide an easier and
reusable way to create and reuse SoS. This approach maintains the
independence and goals (individual mission) of each constituent
system, while providing the conditions to the emergence of new
features and/or functionalities (global mission).

Concerning the global missions, it is important to mention that,
unlike the directly integrated approach (Section 3.2), a SoS
approach offers greater flexibility because new systems, once
developed, are available for future composition into other SoS.
Thus, the source code responsible for implementing global
missions should be consumed by smart cities applications as a
service. This strategy will improve the reusability of global
missions. For instance, Section 3.2 presented three new
functionalities of the integrated version (automatic data collect in
systems 2 and system 3; truck routes dynamically created; and
status of each wast container in real time). However, as showed in
Figure 2, those functionalities were implemented by bridges
and/or directly in the applications. In the SoS platform approach,
such functionalities are implemented as a new system, decoupling
functionalities from application-specific SoS.

Another advantage of this approach is the clear separation of
responsibilities among constituent system developer and SoS
developers. Taking into account that smart cities environments are
composed of a huge number of systems, systems developers
would be motivated to integrate their systems to the SoS platform
since it will allow those systems be a constituent system of SoS.

5.1.Interoperability requirements
This subsection discusses about some requirements to allow an
interoperability approach based on SoS.

(i)Integrating Systems into the Environment - In order to make it
easier to integrate a system in the SoS the developer of system
must: (i) implement an specific API to allow the communication
between the system to be integrated and its broker. The proposed
solution in this paper offers an abstract interface component to be
easily extended by constituent system’s developer; (ii) define the
individual missions of his system; and (iii) register his system in
the metadata repository of proposed solution.

RIGHTS LI M K4y

(ii)SoS Creation - Integration developers can create a new SoS
through a GUI and using systems’ metadata stored in a metadata
repository. In this phase, they can specify which are the SoS's
constituent systems, SoS’s global missions, SoS’s business rules,
SoS configuration, among others tasks. Each system can be a
constituent system of many SoS and each SoS has, at least, two
constituent systems.

(iii)SoS Management - Once created, all SoS are managed by the
SoS platform. This activity is responsible for: (i) deploy SoS; (ii)
make the constituent systems aware of the new SoS; (iii) update
the metadata repository including SoS metadata; (iv) end the SoS.

(iv)SoS Deployment - Each SoS, according to its global missions,
can interact (consume functionalities) of its constituent systems
and can include some new business rules. A good example of this
characteristic is the Route Creator Service presented in Figure 2,
since this service includes some source code directly related to the
systems integration. All new SoS have to be deployed in the
environment as a new system. Thus, the SoS would be able to be
consumed by applications.

(v)SoS Ending - When the SoS lifecycle ends, it is necessary to
make the constituent systems aware about the end of SoS
operation.

5.2.Architecture

This section proposes a middleware architecture that supports the
interoperability among systems, in the context of smart cities,
through a SoS approach. It also allows the creation, development,
management and tear-down of a SoS. Figure 4 shows the
proposed components integrated to the CityHub platform, smart
cities systems, and the applications.

Smart Citi LABEL
A:‘;l:.::: Truck Drivers’ Dashboard
Consumers App App . O
Requirements that
are not provided by
original systems
| HyperCat Proxy
CKAN WoTKiT
Middleware Metadata | -
Repository| -
Data Hub SoS Integration :

Integrated
Systems
Providers

Garbage
Garbage SoS
Containers
NEC

Eco-Feedback Ml Truck Routes
NEC System

Figure 4. Proposed Architecture.

Each system to be integrated to the environment, must have its
own Broker instance. Brokers are responsible for mediating the
communication between the smart city system and the
middleware. Internally, each broker includes sub-components to
support the communication with brokers of other systems and
with others middleware components. Brokers also have some sub-
components to control the SoS execution flow in a distributed and
choreographed way. Consequently, they have to be aware of all
SoS in which the system is participating. Thus, each broker has its

own repository to store metadata (SoS’s behaviours, global
missions, flows, RESTful APIs, etc.) about the SoS. It is
important to mention that even the SoS has a broker instance since
each SoS can offer new requirements to be mediated by CityHub
components, and consequently, those new requirements can be
consumed by applications through CityHub components.

The SoS Bus defines protocols to allow the communication among
brokers, SoS Manager and some CityHub components (CKAN and
WoTKiT). SoS Manager is the component responsible for
controlling the SoS creation, deployment and ending. It provides
metadata of systems integrated to the platform for the SoS
Composer GUI and deploys/withdraws SoS in the SoS Server as a
new system, always updating brokers of concerned systems. SoS
Composer is the GUI used by SoS developers to create and
administrate SoS. SoS developers can semantically or
syntactically describe SoS to be deployed in the environment.
Finally, Systems Metadata Repository stores metadata regarding
all constituent systems and SoS deployed in the platform
environment. That repository stores, for instance, the endpoints of
systems brokers, missions, among other information.

5.3.Next Steps

This work is still under development. Future work includes: (i)
designing the SoS abstractions; (ii) designing and developing each
component related to the SoS-centric middleware services; (iii)
select technologies to describe missions execution flow, to
communicate brokers with each other, to describe interfaces
between brokers and respective systems, to describe interfaces
between brokers and other smart cities platforms' components;
and (iv) to develop case studies in order to validate and evaluate
the SoS centric middleware services presented in this paper.

6.CONCLUSION

In Smart Cities environments it is expected that systems work
with others, exchanging data and features. However, it is not easy
to create conditions for an efficient exchange among those
systems since they are not usually designed to be integrated. Thus,
composing them to create a new complex system is a non-trivial
task. Moreover, the divergence of adopted technologies and the
need for knowledge about third-party systems complicate the
already difficult task of developing such interoperability.

This paper proposed a SoS-centric middleware services to support
the creation, deployment, execution and tear-down of SoS for
Smart Cities environments in a dynamic, transparent and scalable
way. The proposed services, once integrated to a Smart City
platform, support interoperability among different systems
operating in a city. Moreover, this paper also presented a
motivational case study to highlight the issues that must be
addressed when multiple independent systems are brought
together to provide a new Smart City service or application.

7.ACKNOWLEDGEMENT

This research was partially supported by Brazilian’s National
Counsel of Technological and Scientific Development (CNpQ)
and Smart Metropolis Project (IMD/UFRN/Brazil).

8.REFERENCES

1. Villanueva, F. J., Santofimia, M. J.,, Villa, D., Barba, J., and
Loépez, J. C. 2013. Civitas: The smart city middleware, from
sensors to big data. In Proc. of int.. conf. on IMIS, 445-450.

2. Delicato, F., Pires, P., Batista, T., Cavalcante, E., Costa, B.
and Barros, T. 2013. Towards an IoT ecosystem. In
Proceedings of the International Workshop on SESoS. 25-28.

RIGHTS LI M Hiz

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Lea, R. and Blackstock, M. 2014. CityHub: a cloud-based
IoT platform for Smart Cities. In International Conf. on
Cloud Computing Technology and Science, IEEE. 799-804.

Mitton, N., Papavassiliou, S., Puliafito, A. and Trivedi, K.
2012. Combining Cloud and sensors in a smart city
environment. EURASIP Journal on Wireless
Communications and Networking, 1-20.

Petrolo, R., Loscri, V., and Mitton, N. 2014. Towards a
Smart City based on Cloud of Things. WiMobCity -
International ACM MobiHoc Workshop on Wireless and
Mobile Technologies for Smart Cities. Philadelphia, USA.

Grace, P., Bromberg, Y. D., Réveillere, L., and Blair, G.
2012. Overstar: An open approach to end-to-end middleware
services in systems of systems. In ACM/IFIP/USENIX
International Conference on Distributed Systems Platforms
and Open Distributed Processing. Berlin, 229-248.

Maier, M. 1996. Architecting Principles for SoS. In Sixth
annual International Symposium of the International Council
on Systems Engineering. Boston, MA, 567-574.

Jamshidi, M. 2011. System of Systems Engineering:
Innovations for the Twenty- First Century. Vol 58.

Blair, G., Bromberg, Y., Coulson, G., Elkhatib, Y.,
Réveillere, L., Ribeiro, H., Riviére, E., and Taiani, F. 2015.
Holons:Towards a Systematic approach to composing SoS.

Coulson, G., Blair, G., Elkhatib, Y., and Mauthe, A. 2015.
The design of a generalised approach to the programming of
SoS. In WoWMoM. 1-6.

Curry, E. 2012. System of systems information
interoperability using a linked dataspace. In 7th International
Conference on System of Systems Engineering.101-106.

Dictionary of IEEE Standards Terms, Seventh Edition. 2000
New York, NY: IEEE.

Madni, A. M., and Sievers, M. 2014. Systems integration:
Key perspectives, experiences, and challenges. In
International Council on Systems Engineering. 37-51.

Mordecai, Y., and Dori, D. 2013. 6.5. 1 I5: A Model-Based
Framework for Architecting SoS Interoperability,
Interconnectivity, Interfacing, Integration, and Interaction. In
INCOSE International Symposium. 1234-1255.

Billaud, S., Daclin, N., and Chapurlat, V. 2015.
Interoperability as a key concept for the control and
evolution of the System of Systems (SoS). In International
IFIP Working Conf. on Enterprise Interoperability. 53-63.

Kazman, R., Schmid , K., Nielsen, C., and Klein, J. 2013.
Understanding Patterns for SoS Integration. Technical Note.

Silva, E., Cavalcante, E., Batista, T., Oquendo, F., Delicato,
F., and Pires, P. 2014. On the Characterization of Missions of
SoS. In Proceedings of the 2014 European Conference on
Software Architecture Workshops, ACM. 26.

Blackstock, M., and Lea, R. 2012. IoT mashups with the
WoTKit. In International Conference on the [oT.159-166.

Pautasso, C. 2009. Restful web service composition with
BPEL for REST. Data Knowledge Engineering. 851-866.

Hatzi, O., Vrakas, D., Nikolaidou, M., Bassiliades, N.,
Anagnostopoulos, D., and Vlahavas, 1. 2012. An integrated

approach to automated semantic web service composition
through planning. /EEE. 5(3),319-332.

