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Abstract 

Globally, sea levels are rising and continue to rise at an accelerating rate. 

Developments built near the coast are vulnerable from coastal flooding due to a direct 

rise in sea level and an increase in storm severity, persistence and frequency. As storm 

events become more prevalent and powerful they will consequently exacerbate the 

effects from rising sea levels and increase coastal flooding. It is therefore relevant for 

coastal managers to build and maintain a comprehensive understanding of the coast 

to predict what a future heightened sea level might bring. Building understanding at a 

time when resources are limited due to budget cuts is often difficult requiring cost-

effective monitoring approaches. Citizen Science is a rapidly developing research 

method whereby scientific projects utilise public input at one or more stages of the 

research process. CS projects can tackle scientific research which often cannot be done 

by scientists alone due to human, financial, time and spatial constraints. Alongside the 

benefits afforded to scientific research, CS projects help in building scientific 

understanding within the public domain. By increasing public understanding of the 

coastal environment, citizens become more empowered to contribute towards coastal 

decisions.  

This project takes on the framework defined by CS by engaging a community group 

with data collection methods for coastal monitoring. Focus is placed on the Structure-

from-Motion (SfM) photogrammetric workflow to build 3D models of the coastal 

environment using citizens and their personal standalone cameras or inbuilt 

smartphone cameras. This project aims to assess the accuracy of point clouds derived 

from citizen-derived imagery of a coastal environment and thus determine its 

potential as a source of data for coastal practitioners. It also aims to recognise the 
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response from participating members of the public towards the SfM imaging 

procedure. 
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1. Introduction 
 

In an age where climate change is having major influences on rates of sea level rise, 

the need for comprehensive understanding and preventative action is paramount. It 

is estimated that around 600 million people live in coastal areas that are less than 10 

m above sea level globally (United Nations, 2017). This equates to approximately 8% 

of the world’s population whom are most vulnerable to coastal flooding events. The 

events are likely to become more frequent, persistent and severe as global 

temperatures rise and the climate changes. As the climate changes and sea levels rise, 

there is a necessity to understand the coastal processes that shape our coastline, as 

these processes have direct and indirect impacts on developments near the sea. 

Erosional effects are often unwanted where there is land which holds economic value, 

and thus methods to mitigate them are usually sought after. Beaches act as energy 

sinks for incoming waves and thus greatly reduce the erosional effects caused by them, 

however, they themselves are subject to sediment loss through these hydro-

mechanical forces. It is therefore crucial to maintain and monitor beaches as they 

evolve. Government organisations aim to develop an understanding of not only the 

driving forces responsible, but the effects they have on coastal morphology. However, 

resources are often limited due to budget constraints and the implementation of 

research methods can be restricted by a lack of human resources. A newly re-emerged 

scientific research method – Citizen Science (CS) – can greatly enhance the scope and 

effectiveness of research where these restrictions are found.   

Citizen Science is the practice of involving citizens within the scientific research process 

to achieve goals set out by project leaders. CS projects are typically a collaboration 
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between experts and non-experts to gather information about the natural world. The 

degree of participation from citizens varies dramatically depending on the nature of 

the objectives set out by the project. Passive engagement methods can utilise 

resources owned by the public but not require the cognitive ability possessed by them, 

where more active approaches can lead to project objectives being constructed or 

shaped by the citizens themselves. A CS project can provide the ability to expand 

sensing coverage over much larger areas when compared traditional methods 

involving a few scientists -this is owed to the plentiful supply of human resources the 

public offers. Additionally, sensing frequency can be increased for same reason and 

data collection turnaround times greatly enhanced. CS projects do not just benefit the 

scientific community; they also increase the public understanding of science by 

engaging citizens directly with research and are crucial in developing confidence in 

scientific practices. 

In recent years, Citizen Science has experienced rapid growth; owed largely to 

advancements in technology providing internet-capable portable sensing devices to 

the public - smartphones. This thesis is purposed to provide insight into a potential 

new monitoring method that will engage citizens in data collection. Not only will an 

integrative method for public participation help support and fill knowledge gaps in 

existing coastal data, but it can also serve as a tool for empowering the public within 

coastal decision-making. It will identify the framework required to initialise a citizen-

led coastal monitoring solution using Structure-from-Motion (SfM) photogrammetry – 

a method that generates 3D point clouds from image datasets without requiring 

precise image locations and orientations - as a key tool in forming an enhanced 

understanding of the coast. The pilot study concentrates on the morphological setting 
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of the Fylde coast, northwest England whereby a segment of beach was selected as an 

illustrative setting of the Fylde coastline. A groyne cell situated along a section of beach 

in Cleveleys, Lancashire is used to analyse the feasibility of citizen-derived imagery as 

a source of data for coastal photogrammetry. To justify and prove the potential for 

citizen integration into coastal data collection, measures must first be taken to test the 

accuracy and repeatability of such an observation method.  

SfM has developed rapidly over recent years, with an accelerated uptake of the 

surveying method across scientific domains. A particularly relevant discipline is that of 

the geosciences, where SfM has become a well-established tool for the 

geomorphological analysis of varied environments operating at multiple scales. This 

makes it an especially useful tool, as coastal processes tend to operate across the 

small-, medium- and large-scales. SfM has been well-tested at a range of scales (James 

and Robson, 2012) however, there is not much insight into how the method performs 

as a data collection method when carried out by citizens in a coastal setting. 3D models 

produced from imagery collected by citizens require measures to be taken that ensure 

their validity and usefulness as a scientific resource. 

There have been numerous investigations into the accuracy and precision of SfM in 

the sciences when performed by experts, however, there has not been much 

application of the technique from non-experts. Traditionally, photogrammetry has 

usually been conducted by expert photogrammetrists, but with the development of 

new, robust algorithms that provide non-experts with a means to reconstruct 3D 

geometry, photogrammetry has experienced a rapid proliferation in users. Although it 

is recommended to have foundation knowledge of the mechanisms involved with the 
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SfM process, this thesis addresses the potential for community involvement where 

limited knowledge of the SfM pipeline is possessed. The community group involved 

with this study are The Rossall Beach Residents and Community Group, whose 

members proactively engage themselves with coastal-related issues. They were 

contacted through a small to medium enterprise (SME) – The Rabbit Patch Ltd. -  who 

have strong links with coastal practitioners in both governmental and public bodies. 

The Rabbit Patch were a project partner and aided with the programme design and 

recruitment. This study will identify the motivations, if any, that the coastal community 

group have towards the continued monitoring of the coast and their perceptions 

towards the incorporation of SfM in coastal monitoring.   

In this thesis 3D models produced from citizen-derived imagery were assessed for 

‘noise’ in point cloud products, geometry trueness and erroneous model alignment 

with real-world GPS coordinates. Data was collected during 2 field sessions taking 

place in the same groyne cell location, in consecutive months. The field sessions took 

place in September and October, when energetic sea conditions are known to 

accelerate erosional processes. Analysis was performed using two key programmes: 

Agisoft PhotoScan, (2018) for image matching, alignment, and dense reconstruction, 

and CloudCompare (Girardeau-Montaut, 2003) for cloud manipulation and digital 

elevation model (DEM) production. Measurements to test the accuracy of citizen-data 

utilised a prior visual assessment of imagery, self-calibrating bundle adjustments for 

intrinsic and extrinsic camera model solving, and ground control point (GCP) networks 

to provide RSME values for 3D geometry reconstructions. 2D analysis is conducted on 

imagery, prior to, and after image matching and alignments are made, and 3D analysis 

is conducted on sparse clouds – a result from the bundle adjustment procedure – and 
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dense clouds – a result from an algorithm built in a similar way to Multiview Stereo 

(MVS). Data products derived from initial cloud generation and RMSEs derived from 

GCPs not used in geometry reconstructions, are further analysed in CloudCompare and 

the statistical computing environment, RStudio (2015).   

The research objectives for this project are: (1) To assess the accuracy of point cloud 

products of a coastal environment derived from imagery collected by citizens, and (2) 

analyse the response from participating public members towards the SfM imaging 

procedure.
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2. Literature Review 
 

2.1. Monitoring Coastal Morphologies 
 

Coastal environments are areas highly dynamic if left without human intervention. 

This is often not the case however, where human interests conflict with natural ocean 

processes. Developments built near the sea and accompanying infrastructure are 

usually immoveable structures of economic value and thus are usually protected if 

economic value stored within assets outweighs the cost of defending them  An 

example of this is the £63 million Rossall Coastal Defence scheme along the Fylde coast 

in the northwest of England, which has been designed to protect 7500 properties and 

infrastructure (Visit Fylde Coast, 2018). Here, not only economic value was considered 

but social as well. Protection from the sea can come in a variety of forms both man-

made and natural: hard defences, such as concrete structures such as seawalls, and 

soft methods such as the managed retreat of land. These engineering projects are 

often costly and subject to critical review from scheme developers (Nazia, 2018). For 

hard-engineered projects this results in additional pressures being placed on ensuring 

the successful performance of sea structures. A poorly performing seawall can have 

negative effects on the safety of residences, commercial property and infrastructural 

developments whilst also damaging social perceptions of government spending 

(Garcia-Soto and van der Meeren, 2017). With current trends displaying an 

accelerating increase in global sea levels, concerns over coastal protection will only 

become worse if measures are not taken to dampen the unfavourable effects of 

heightened water levels (Williams, 2013). For these reasons, it is paramount that the 

coastal interface is diligently monitored.  
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In this section, these processes and the conflicts between the natural order of coastal 

reshaping and human development are reviewed, and a variety of monitoring 

methods are investigated. Consideration of existing coastal data such as large-scale 

periodic imaging from satellites, medium-scale airborne LiDAR, photogrammetric 

techniques and the labour-intensive beach profiling surveys are reviewed. 

 

2.2. Existing Topographic Coastal Data 

 

Topographic coastal data is sought after by governing authorities to provide evidence 

and justify the development of new shoreline management plans (SMP). Collected 

data needs to address a variety of issues across a range of temporal and spatial scales 

(Miles, 2014). A multitude of methods are used to attempt to understand and tackle 

problems posed by changing coastal environments; however, the data collected by 

each method is often used to serve different purposes. In this section, existing 

monitoring solutions are reviewed for their strengths and weaknesses as a 

topographical surveying method. Since the first remote sensing technologies were 

implemented, systems have been advanced and developed to produce high-accuracy, 

topographical data. Satellite imagery, LiDAR and the more traditional methods such as 

ground-based beach profiling are all technologically progressing with increasingly 

accurate sensing abilities and either directly or indirectly provide a means to calculate 

surface elevations. In recent years, this data has become increasingly available within 

the public domain.  

 



Lancaster Environment Centre  Student Number: 32290900 
 

8 
 

2.2.1. Satellite Imagery 
 

The periodicity of satellite orbits allows for the consistent and regular monitoring of 

the Earth’s surface which is beneficial to the consistent monitoring of areas. Satellites 

can host a huge variety of sensors to collect information about the Earth’s atmosphere, 

surface and subsurface. For topographic data collection satellites are widely used to 

gather images in full-colour and false-colour to provide a perspective usually 

unachievable. Due to the lack of atmospheric disturbance and little energy required 

for the maintenance of orbit paths, satellites provide a predictable source of Earth 

observation (EO) data – although weather effects such as clouds can often interfere, 

limiting useful data acquisition. Satellites provide the ability for large spatial coverages 

due to the speed of the spacecraft and the large distance to nadir and offer 

observations of areas inaccessible on foot. Although these factors provide unequalled 

coverage capabilities, they also limit the achievable spatial resolution which is much 

lower than that offered by many ground-based or close-range aerial sensing systems 

– ranging from 0.41m (commercially available) to 100s or 1000s of meters. Despite 

this, satellite data is often freely accessible within the public domain resulting in the 

increase of scientific research across fields and playing a fundamental role in a host of 

new scientific discoveries (Wulder et al., 2012). 

Coastal research has benefited from satellite imagery; however, local 

processes cannot be monitored through satellite imagery alone as usually these 

processes operate at scales below 10m—a resolution below that achievable by many 

of the freely available imaging satellites such as the Sentinel 2 constellation and the 

Landsat missions (ESA, 2013; USGS, 2018). Commercial imagery has yielded imagery 
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with pixel sizes down to 0.41 m using the panchromatic sensor (Satellite Imaging 

Corporation, 2007).  Resolutions of this precision can be used for fine-scaled changes 

in coastal environments, but still limit spatial observations and usually lack the 

frequency necessary for coastal research. A report produced by the Defence and Space 

sector of Airbus showed the ability to reveal morphological changes along La Salie 

beach on the French Atlantic coastline to an order of magnitude of 1m using the 0.5m 

panchromatic/pansharpened imagery provided by the Pléiades 1 satellites (Airbus 

Defence and Space, 2015). This demonstrates the capabilities of commercial imagery, 

though is not representative of medium-scale, freely available satellite data. 

As suggested by Cracknell (1999), it is fair to say that since the start of remote 

sensing (satellite data) there has been more success in other areas - meteorology, 

deep sea and land measurements—than there has been in the coastal zone. It has long 

been an area that often requires resolutions that are currently unachievable for space-

borne data. Where satellite spatial ground sampling distances are sufficient for coastal 

change detection, as exhibited in the La Salie Beach case study, the temporal scales 

and volume of data required is often insufficient. Revisit times of satellites are 

dependent on a few factors such as orbital radius, orbital inclination, the latitude of 

the study area, and the size/direction of the spacecraft’s sensor. To fully understand 

the coastal environment and the processes that shape them, systematic studies are 

often required, posing challenges for satellite imagery to be used as a successful 

monitoring solution for high frequency processes (Cracknell, 1999). This technology is 

rapidly developing, with lower orbital launch costs and thus higher frequency launches 

(Jones, 2018). 
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Stereo photogrammetry can be applied to space-borne imagery; however, 

digital surface models (DSMs) are limited by the imaging capabilities of the satellite 

and thus resolutions in the x, y and z dimensions are usually too low if derived from 

freely available sources. Another method to generate height information of is the 

‘waterline’ or ‘shoreline’ method. Surface topography can be calculated in the 

intertidal zone by utilising a combination of satellite imagery and nearby tidal data. 

This technique is used to build a series of contours by observing the shoreline position 

at differing tidal elevations (Liu et al., 2013; Lipakis et al., 2018). However, this method 

requires the assumption that the surface topography did not change between 

observations and that the demarcation line of land and water is well-defined.  

 

2.2.2. Airborne LiDAR 
 

An advantage that airborne LiDAR possesses is the ability to directly gain 3D 

information at a higher resolution than currently available by satellite systems without 

the need for cumbersome techniques such as the waterline method (Liu et al., 2013). 

Airborne LiDAR is a useful tool for monitoring volumetric changes along coastlines and 

provides medium-large coverage of the environment (Miles, 2014). This method does 

not share the same periodicity as satellite-derived data, and thus requires dedicated 

flights which are costly and result in restricted data availability due to fewer airborne 

surveys being flown. Nevertheless,  in recent years costs have been declining (Miles, 

2014), allowing for more frequent survey flights in some parts of the coast; airborne 

LiDAR conducted by the Environment Agency (EA) is currently performed on an annual 

basis in the northwest of England. Airborne LiDAR surveys tend to be less affected by 
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weather than satellite data as they operate at lower altitudes and thus can avoid cloud 

layers, however, surveys can be cancelled if weather conditions do not permit safe or 

useful flight. Typically, airborne LiDAR data offered by the EA achieves resolutions of 2 

m, 1 m, 0.5 m and 0.25 m ground sampling distance, although they do not state the 

achieved vertical accuracy. Due to the inaccessibility of detailed reports on the quality 

control, root-mean-square error values (RMSE) suggested by Miles (2013) are 

identified to be 0.12 m when compared to permanent features such as a road, and 

0.35 m when compared to spot heights afforded by Ordinance Survey (OS). These 

accuracy values provide useful information for medium-large-scale processes; 

however, they fail to identify finer spatial details. 

To fulfil finer-scaled monitoring, ground-based approaches are required, 

usually conducted by specialist surveyors. DEMs produced by Airborne LiDAR flown by 

the EA is freely available, and typically higher in resolution than that of the freely 

available satellite imagery. This therefore allows for finer coastal processes to be 

analysed, but would still have difficulty identifying localised erosional features such as 

toe scour. Earlie et al. (2015) utilise airborne LiDAR to assess rates of recession along 

rocky coastlines, with focus on the Cornwall coast. In this investigation, LiDAR data 

collection was carried out by the EA, who are responsible for the continuous airborne 

LiDAR-monitoring and provided yearly data over a 3-year period for 10 study sites 

within Cornwall. Although the EA conduct airborne LiDAR surveys annually, changes in 

the Cornish coastline occur annually, or multi-annually and thus a complete evolution 

is not understood. Here, it was possible to measure rates of coastal retreat to a 

precision of <0.1m year-1 and provide greater detail than historic measurements in 

specific areas, many of which are inaccessible on-foot therefore preventing ground-
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based monitoring. Surveys such as Terrestrial Laser Scanning (TLS) would have 

provided greater detail in 3D structure, however, methods like these are restricted by 

requiring access by foot. Despite this unrestricted access, airborne LiDAR does not 

cover the shorter temporal intervals and is difficult to link the observed changes with 

the driving conditions such as wave action.  

 

2.2.3. Beach Profiles 
 

Beach profile surveys have been performed since at least 1990 along the Fylde coast 

(Miles, 2014), and therefore provide long-term information on coastal dynamics. The 

surveys are typically conducted at approximately 500m intervals alongshore and occur 

twice a year (Wyre Borough Council, 2004). Current manual beach profiling 

measurements from Wyre Borough Council achieve an accuracy of ~±0.02 m in x/y/z 

using differential GNSS (dGNSS) equipment and can be assumed to have lower 

accuracies when grid surveys are carried out by mobile dGNSS or RTK GNSS surveys. 

Along the Fylde coast, beach profiling provides insight into the large-scale, long-term 

changes that shape the coastline. This data plays an important role in developing our 

understanding of the coastline, and hence is a fundamental data source in coastal 

strategy development needed for the continued protection of the coast. Although the 

cross-shore accuracies provide high-detail resolutions of beach topography, longshore 

resolutions are severely limited by human resources required to survey the many 

kilometres of coastline along the Fylde. The surveys provide useful information; 

however, they fail to monitor large portions of inter-profile beach. Additionally, 
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profiling requires the beach to be accessed by foot which may not always be possible 

and therefore requires monitoring by other means. 

To provide topographical coverage in areas currently not monitored, a 

combination of other monitoring methods is currently the common practice– such as 

previously mentioned satellite and LiDAR data. Beach profiles are useful for observing 

topographic cross-sections measuring hundreds of metres in length and can thus be 

used in the monitoring of large portions of the intertidal zone. An example where they 

are particularly useful is when analysing sand bar migrations (Miles, 2014). Along the 

Fylde coastline, sand bars (or runnels and ridges) operate over hundreds of metres 

with shallow inclines which shift over time as a result of tidal and wave-driven 

processes (Wyre Borough Council, 2004). They effect on-shore wave action and have 

long-term impacts on the morphology of the coastline. Although beach profiles work 

well in the detection and monitoring of these crests and troughs, they often miss 

nearshore local erosional features that occur around coastal structures due to their 2D 

linear nature. This is especially prevalent when erosional features are perpendicular 

to the shoreline—for example, rip currents caused by groyne-induced water 

divergence (Bradbury et al., 2012). An approach to increase the longshore resolution 

issue is required. 

To summarise the strengths and weaknesses for each method in coastal 

monitoring, Table 1 displays their primary characteristics. 
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Table 1 The primary factors of each monitoring method. 

Monitoring Method 
Spatial Resolution 
(m) 

Temporal 
Resolution Cost 

Weather 
Dependence 

Satellite (Optical) 0.4 - 1000s Days Free High 

Airborne LiDAR 0.1 - 10s Year/s High Medium 

Beach Profiles     

a) Cross-shore b) 0.1 - 10s 

Months Medium Low c) Long-shore d) 10s - 100s 

 

2.3 Coastal Monitoring using Structure-from-Motion 
 

Structure-from-Motion (SfM) is a technique used to extract measurements from 

images – it is a form of photogrammetry whereby 3D models are generated from 

multiple images taken from different viewpoints. The 3D models are generated in the 

form of point clouds – large collections of individual points, each of which represent a 

specific point in space – and are easily manipulated in data processing software. This 

ability to produce 3D models from images has become prevalent in the sciences due 

to its practicality. Studies with focus on the geomorphology of environments have 

experienced a new growth in photogrammetric surveys being incorporated into 

method design in recent years. This is due to comparatively recent developments in 

the workflow pipeline of SfM, opening low-cost, user-friendly photogrammetry to a 

host of new disciplines  (Micheletti et al., 2015b). SfM algorithms have been designed 

to be robust enough to handle data from most non-metric cameras, and process 

imagery that traditionally might not have been ideal. These new abilities allow for the 

application of SfM in environments which would have once been expensive to survey 

and would have required unwieldy equipment. 

Although SfM algorithms are robust, there is an optimum data capture method 

that should be followed in order to produce the best results. The surveyor should 
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collect as many images as possible of the scene, but 3 is the minimum number for the 

processing software to run. Ideally images should be taken in a converging manner 

and each image should be captured within a few meters of the last and contain at least 

60% overlap with previous images (Figure 1). The scene should be featureful, non-

reflective and be lit by diffuse lighting. The camera being operated should not use 

distorted lenses such as fish eye lenses as these require complex correction algorithms 

and can lead to error. The operator should also avoid using the zoom function which 

changes the focal length, use a fast shutter speed to minimise image blur, and set the 

sensitivity to a low ISO value to reduce image noise. Images that are collected in these 

conditions and in this fashion are more likely to undergo successful model generation.  

 

Figure 1 Imaging diagram for SfM data capture. (Agisoft, 2018) 

 

Essentially, SfM is a scale invariant monitoring method which can be applied to 

many surveying scenarios to generate high-resolution topographical data, as 

demonstrated on the small-, medium- and large-scale (James and Robson, 2012). SfM 
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builds geometry from multiple images taken of a scene/object using numerous 

software designed to perform the SfM procedure. The reconstruction process utilises 

algorithms often using, or based around, the Scale Invariant Feature Transform (SIFT) 

algorithm that detects features stable under light variation and changes in viewing 

angle. Descriptors are generated based on their local neighbourhoods (Hassaballah et 

al., 2016), and used to detect feature correspondences between images in order to 

align imagery accordingly. Algorithms determine the intrinsic and extrinsic parameters 

for the camera model per image and locates the camera’s position and orientation 

(James and Robson, 2012). Further refinement can be carried out by bundle 

adjustments using external points of known reference on which linear and non-linear 

geometry adjustments are made. 

The applicability of SfM to multiple scales renders it a useful tool generating 

data that can support lower resolution satellite imagery, lower horizontal and vertical 

resolution of many airborne LiDAR surveys and the large longshore distances between 

beach profiles. It also provides a platform that facilitates a potential for high temporal 

resolution due to the low-cost, low-bulk equipment required.  

Cameras, like LiDAR systems, can operate from a variety of platforms; satellite, 

plane, unmanned aerial vehicle (UAV)  (Westoby et al., 2015; Clapuyt et al., 2015; 

Brunier et al., 2016; James et al., 2017a) and ground-based systems (James and 

Robson, 2012; Micheletti et al., 2015b; Prosdocimi et al., 2015). A prominent, newly 

developing platform to enable photogrammetry is the drone. There are some 

significant differences between UAV photogrammetry and LiDAR.  UAV-based 

photogrammetry does not require the large, expensive UAVs currently necessitated 
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by LiDAR systems, but instead can collect imagery from lightweight, consumer-grade 

cameras mounted onboard UAVs. UAV photogrammetry has been demonstrated as a 

low-cost monitoring technique for measuring canopy heights and found that results 

showed a strong correlation to airborne LiDAR where tree density was low, however, 

where a closed tree canopy was present UAV measurements differed to height 

measurements collected in the field (Mlambo et al., 2017). The ability to perform these 

surveys at low altitude means that resolutions are greatly increased when compared 

to airborne or spaceborne imaging data. The resolutions obtained from SfM conducted 

onboard UAVs is similar if not slightly lower than ground-based SfM. Although UAVs 

are becoming increasingly public-owned, they have still not experienced the market 

saturation that smartphones have and are often limited in capability by restricted 

airspaces. They can also be affected by weather conditions such as high winds, and 

rain which could result in defective data or termination of the survey all together.   

Where wind speeds are strong enough to ground UAVs, research has been 

conducted in Kite-mounted SfM techniques. One study attempted to utilise katabatic 

wind flows in the Andes, which proved difficult for powered UAVs to maintain flight 

in, as a mechanism to perform kite SfM (Wigmore and Mark, 2018). It found that the 

accuracy of DEMs that were generated using this technique were similar to 1 m DEM 

produced by aerial LiDAR in the area. However, the point cloud density was much 

higher allowing for finer-scale features to be measured. The study shows the success 

of unpowered kite systems in bad weather; however, the systems still face the same 

limitations from restricted airspaces implemented by the International Civil Aviation 

Organisation (ICAO). 
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Images are processed to produce 3D point clouds, however, to enable a real-

world context georeferencing is needed which also serves as coordinate criteria for 

image alignment (James et al., 2017b). This usually requires the use of ground control 

points (GCPs) – identifiable features or targets that have a known position - to be used 

within scenery. If ground control is not established, then inertial measurement units 

(IMUs) attached to the camera can be used to measure camera orientation and 

relative positioning of the sensing device. Information collected from the IMU is run in 

parallel and combined with GNSS coordinate data for global positioning and 

correction. For ground-based photogrammetry, GNSS connectivity is often a problem 

if surveys are conducted in areas where obstructions to satellite connection are 

present (vegetation, buildings etc.). In a coastal environment this is usually not an issue 

due to the inherent nature of beach topography being free of restrictions from foliage 

and large man-made structures. If models do not need to be geographically 

referenced, then model scales can be determined by one or more known distance 

measurements within the scene, whereby distances that stretch across a large portion 

of the scene/object are best. 

SfM has now been incorporated into many geoscience applications and tested 

extensively in a variety of scenarios. A few studies to mention are those covering a 

medium-scale environment, a scale that this study addresses. James and Robson 

(2012), assessed a 3 m-high cliff face that spanned 50 m in length, located at 

Sunderland Point, Morecambe Bay, U.K. The cliff face was poorly sorted glacial till that 

was undergoing slumping and collapse causing it to retreat. Here 3D reconstructions 

produced RMSE of 0.037 m on the control points when a GCP distribution that 

encompass the whole scene was used as control. This is captures higher detail than 
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typical LiDAR surveys conducted by the EA along this section of coastline. In this study, 

an investigation was undertaken to determine the effects of GCP distribution on RMSE 

throughout the scene. The study highlights the sensitivity of geo-referencing when 

control is focused in one region – it displays the effect of extrapolated geometry away 

from the region encompassed by the control. 

Prosdocimi et al. (2015) utilise ground-based SfM in the post-event analysis of 

agricultural drainage networks. Here, they detail the benefits of a low-cost method for 

monitoring volumetric changes in the Veneto floodplain. The study involves imagery 

derived from standalone cameras and built-in smartphone cameras and compares 3D 

products against products derived from a benchmark TLS DEM in a medium-scale 

environment. The scene of interest measured 30 m in length, and TLS reconstructed 

geometry contained error values ~0.01 m in the x and y axes, and ~0.005 m in the z 

axis when compared to GCP targets. The distance-from-bank was only about 7 m which 

explains the low error values acquired in this study. Interestingly, in this study the 

device that generated the lowest deviation in DEM topography when compared to the 

TLS DEM was an iPhone 5, which produced an SDE value in the order of ~0.03 m in 

relation to the TLS DEM.  

These studies have shown SfM capabilities to perform beyond many of those 

currently achieved by other remote sensing methods. However, the extent of coverage 

which these studies have been tested on, do not achieve the same coverage as 

airborne or satellite remote sensing techniques, nor do they span the same cross-

shore extent as beach profiles do. The nearshore environment is an area most prone 

to sediment loss, primarily from longshore, wave-driven transport (Wyre Borough 
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Council, 2004), which causes large shifts in sediment volumes immediately in front of 

sea structures (30–50 m offshore). It is at this scale that ground-based SfM has been 

proven to work effectively.  

SfM has proven itself as a capable and scientifically useful 3D modelling. Due to 

the nature of the technique, low-bulk devices such as smartphones can be used to 

collect imagery which in turn allows for greater access to areas that would be 

inaccessible if using larger TLS instrumentation. The high-resolution imagery produced 

by present-day smartphones is able to generate point clouds with point spacings of 

<0.01 m. Additionally to this, data acquisition times are relatively quick when 

compared to the same high-resolution laser scanning times of TLS. Furthermore, 

because the SfM procedure enable the use of portable, consumer-grade devices such 

as smartphones with inbuilt cameras for coastal monitoring it is an accessible 

monitoring method to most people. It is here, that the domain of citizen science can 

greatly enhance coverage capabilities currently achieved by ground-based SfM
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2.4. The Coast in Context 
 

2.4.1. Citizen Science 

 

The collaboration between citizens and professional scientists in the field of scientific 

research is termed Citizen Science (CS). The extent to which citizens engage with the 

research can vary depending on the project goals and the framework setup by 

organisers. Government organisations are often symbiotic with scientific research and 

thus rely on their insight for strategy development across a range of domains. 

However, science is often limited by lack of human resources, and the failure to meet 

the scope of research needed for optimum decision-making. Additionally, if scientific 

research yields unfavourable outcomes, it often the scientific community who are 

blamed for negative effects. This is only exacerbated by the chasm between the public 

and governmental/scientific communities. Citizen science initiatives are beneficial to 

society as they promote public understanding of science. The level of scientific 

understanding has raised concerns from scholars and led to new incentives to 

revitalise positive perceptions towards science. Many citizen science projects not only 

benefit academic research and strategy developments, but also enhance society by 

increasing awareness of the importance of scientific research.  

It is here, that CS provides the potential to bridge the communication gap and 

empower citizens to become an integral part of decision processes. CS projects have 

become a prominent part of many areas of study including ecology, astronomy, 

palaeontology, archaeology and zoology (Lin et al., 2014; Anderson et al., 2002; 

Silvertown, 2009). CS projects have increased significantly since the dawn of a new 
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emergent technology – computing. The recent propagation of internet-connected 

smartphone technology has enabled a whole new domain of citizen-sensors (Haklay, 

2013). This utilises the inbuilt sensors on smartphone devices: cameras, GNSS, 

accelerometers as well as the ability to programme apps that enable a refined data 

collection procedure. For this study, the inbuilt cameras are primarily of use along with 

the internet-capability offered by them to transfer data wirelessly. 

 

2.4.2. Contributory Citizen Science 

 

There are numerous citizen science engagement models, each with a unique set of 

skills and purposes. For this study, the CS project follows a ‘contributory citizen 

science’ model. This model spans a myriad of levels of engagement within itself from 

passive to more active approaches for citizen engagement. These style projects are 

most often designed by scientists to achieve scientific goals, however, they require a 

contribution from citizens. The model spans in breadth from passive engagement, 

where the participants have little if any physical or cognitive involvement but instead 

utilises crowdsourced computing power, and more active approaches usually involving 

physical or cognitive activity. An active approach such as Volunteered Geographic 

Information (VGI) can utilise current GPS capabilities to allow citizens to become 

sensors to their local environment (Haklay, 2013). This approach by-passes any needs 

for cognitive ability, which from a scientific viewpoint, is easier to collect results from. 

Instead, only information about the instrument is needed (i.e. GPS accuracy etc.). 

Alternatively, participants can upload geographic information of an area via dedicated 

web-based platforms such as OpenStreetMap (OSM, Wikimapia, Google MyMaps, 
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Map Insight and Flickr (Goodchild, 2007; Senaratne et al., 2016). This is a relatively 

sparse method for data capture and usually encourages participation from anyone for 

any location, with no need for prior knowledge. To allow for this style of information, 

the users’ uploads are assessed by peers and against predetermined criteria to ensure 

the validity of data (ref).  

Another method utilising human cognitive ability is ‘distributed intelligence’ 

(Haklay, 2013) whereby the participants carry out relatively simple tasks which are 

often difficult to replicate using machine intelligence. This is the model for 

engagement that has provides the foundation of citizen-led coastal photogrammetry. 

These citizen science projects usually require some basic training, then the participant 

carries out simple data collection tasks. It is these tasks that require cognitive intellect 

to achieve goals. Image collection as a source of data for coastal photogrammetry 

requires the application of a predetermined technique, however, requires it to be 

applied to a dynamic setting. 

When coastal surveys are to be conducted by members of the public, there are 

two key groups to which survey objectives should be designed towards; active 

practitioner groups such as coastal community groups who regularly participate on 

coast related matters, and the wider public, who are a more dispersed a mixed social 

group. These groups can effectively address two scales in space and time; high-

resolution, medium coverage and semi-frequent monitoring, and the wider public low 

resolution, high coverage and continuous monitoring.  The two groups respond to 

information very differently, and the method of communication with them needs to 

be adapted to account for this. The active community groups are likely to already 
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possess a strong affiliation with the coast and therefore communication can be more 

relatable to the coastal environment, however objective and outcomes must be 

observable and understandable to maintain interest (see section 24). The wider public 

requires a broader approach to research objectives with simpler tasks to fulfil, but 

results do not have to be visible to the public. For this project, engagement with a 

coastal community group is the focus, as it provides a more thorough understanding 

of individual abilities and methods can be laterally translated for integration with the 

wider public. 

 

2.4.3. The Contextual Model 

 

If CS techniques are to be used in coastal monitoring, then special consideration 

towards social perceptions is needed to create an engaging framework for citizens to 

participate in. This section evaluates the effects of a contextual meaning that 

information has when being absorbed by the public and how it affects their 

perceptions towards scientific research. 

The contextual model refers to the understanding that individuals do not 

simply respond to information as empty containers, retaining the whole volume of 

data provided. Instead, it incorporates the idea that the efficiency at which 

information is absorbed can be largely affected by individual current social and 

psychological states (Lewenstein, 2003). These states are shaped by previous 

experiences in a cultural context and from personal circumstances. When relating this 

in a coastal context, research outcomes and objectives need to mean something within 
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peoples’ lives; loss of infrastructure, property damage and, commercial impacts all 

have effects on the residents’ lives. It is these experiences that have often shaped 

public perceptions of coastal risk and develops their ability to absorb information. The 

model also understands that the attitude towards science or information of any kind 

can be amplified or dampened depending on modern social systems and media. 

In a more general scenario, the 2016 Presidential Election was highly broadcast 

and has since been found to have had a huge increase in fake news in the 3-month 

prior run-up. These fake news stories are believed to have manipulated the public’s 

view on current affairs, thereby changing the way information is recognized (Alcott et 

al., 2018). This is argued to have enhanced/impaired contextual meaning of policies 

and future plans put forward by democratic parties in citizens’ lives. Although the 

extent to which misinformation affected the 2016 election in unknown (Alcott et al., 

2018), it highlights the importance of the psychology of individuals and how their 

reactions can be shaped as a result of experiences they have with their environment. 

The ability to influence society through contextual meaning can be used as a major 

tool for the distribution of scientific knowledge. 

A number of studies have identified how risk perception is greatly influenced 

by the context it has in personal lives and society. Krimsky and Plough (1998) reviewed 

a number of case studies whereby communities had been subject to water 

contamination. Although levels of contamination were of similar proportions, the 

reaction from the public differed between locations. Amongst other factors affecting 

their perception of risk, it was found that if residents discovered the contamination 

first and had to alert officials, then the following risk information received was often 
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met with distrusting perceptions. If, at the discovery of risk, other concerning issues 

are at play, then the response to risk can either be underestimated or overestimated, 

varying in magnitude and direction between social states. This is can be related to 

concerns over sea level rise, and government spending towards flood risk and disaster 

management in coastal areas. From these examples, it is suggested that by 

incorporating citizens within research, they would feel more empowered and 

therefore become a more integral part of the decision-making process. This would 

likely result in more confidence in scientific research from a more trusting public. 

  

2.4.4. Lay Expertise Model 

 

Citizens often contain large volumes of information that perhaps might have been 

overlooked by researchers or require long-term experience to understand and 

perceive. In areas of coastal development, citizens could hold information of their 

coastal environment that may be more applicable to a local setting. In this section, the 

lay expertise model is shown to have importance in the development of scientific 

study. 

The lay expertise model has often been a subset of the contextual 

understanding model due to its similar ideology. However, it has been, on occasion, 

reviewed as a separate model. The contextual model regards scientific knowledge as 

a valuable asset but understands the complexities involved in delivering it, whereas 

the lay expertise model assumes that local expertise can be as relevant as scientific 

knowledge.  
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In one scenario the U.S. AIDS treatment activists – a diverse group of ‘lay 

experts’ – were established, and carry on to this day, as a credible participant in 

knowledge construction. This brought with it changes in biomedical research, and the 

subsequent attributed practices. The lay knowledge was implemented by way of a 

bottom-up approach. The lay expertise had always been present, though not 

structured in a scientifically practical manner. To engage fully within the realms of 

biomedical research, treatment activists had to learn the language and culture 

possessed by medical science. By doing so, their credibility was constructed, and their 

lay expertise fused into decision-making. Although this example was reverse-

engineered by the lay people themselves, it signifies the success of unifying scientific 

and lay expertise into knowledge development. The same can applied in a coastal 

community – communities who are immersed within the region of study, often have 

knowledge that has just as much relevance as knowledge derived from the scientific 

community. Integration of this understanding of the coast can benefit researchers by 

enhancing project efficiency and providing unexpected insight into investigations.  

The lay expertise model is far from perfect, with itself being subject to criticism. 

Lewenstein (2003) identifies how the model favours local knowledge over the more 

reliable knowledge derived from the interworking engrained in the modern scientific 

system. For this reason, it can be described as “anti-science” (Lewenstein, 2003), and 

has been subject to dispute. This ideology is driven by the commitment to empowering 

local communities in decision-making. It is from this that participation within the data 

collection process is fundamental in engaging communities and, this being so, their 

local knowledge of the coastal environment can help frame an insightful and efficient 

project.   
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2.5. Validation of Citizen-Derived Data 
 

2.5.1. The Purpose of Coastal Photogrammetry 

 

The aim of citizen-led coastal photogrammetry is to have an additional source of data 

to those collected by existing monitoring methods. It is therefore apparent that 

accuracies of the 3D models obtained must be comparable with those obtained via 

traditional techniques. Also, this citizen-led method must be capable of providing 

useful information in regard to coastal processes in the small-, medium- and large-

scales. The method of ground-based photogrammetry offers capabilities in the small- 

to medium-scale coastal environment; however, when paired with the concept of 

citizen-led coastal photogrammetry, large-scale monitoring is possible, for example, 

combining multiple monitoring groups over different stretches of coastline. 

Along the Fylde coast, the primary losses of sediment are forced by longshore, 

wave-driven and tidal currents. However, cross-shore processes are equally 

important. As this an intertidal environment, shoaling, surf zone processes (e.g. wave 

breaking and resulting currents) and swash processes can take place immediately in 

front of sea structures and can extend out to 30–50 m offshore during storm events 

(Wyre Borough Council, 2004). The scouring around coastal structures such as seawalls 

and groynes take place at spatial scales of metres, however, smaller developing 

features can exhibit characteristics below <1 m (Bradbury et al., 2012). Scouring 

around groynes will take place along groynes at distances up to 100m. The artificial 

headlands on some seawalls along the Fylde coast are exposed to higher sediment 
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removal rates, and therefore experience lower beach levels and toe scour in these 

regions, again at several tenths of metres. This is a scale that is achievable from SfM 

surveying and has been performed by numerous researchers (James and Robson, 

2012; Westoby et al., 2012; Ružić et al., 2014; Prosdocimi et al., 2015; Pikelj et al., 

2018).  

 

2.5.2. Measuring Accuracy of Reconstructed Topography 

 

Accuracy is always important for any research project. However, the methods by which 

data quality is assessed are scrutinised in CS projects. Usually the aims of the project 

are to enable non-scientists to participate in at least one stage of the research process. 

Typically, this involves utilising imprecise, inaccurate data necessitating strict 

procedures to remove poor-quality data or implementing methods to prevent the 

production, or inclusion, of such information. In all scientific domains, accuracy plays 

a fundamental role in the validation of outcomes from a piece of research.  

In the geosciences, topographical surveys rely substantially on the accuracy of 

data and the precision yielded by the instrumentation used to acquire it. Image quality 

can vary substantially when performing SfM photogrammetry. Although SfM 

algorithms are robust to changes in light conditions, camera parameters and non-ideal 

scene conditions, it is still useful to remove any defective imagery before processing 

photosets within SfM-based software (Agisoft, 2016). Software such as Agisoft 

PhotoScan (Agisoft, 2018) enables self-calibrating bundle adjustment to define camera 

parameters and orientation. Lens adjustments are made to identify the best-fit camera 
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model for each photoset. James et al. (2017a) inspected imagery by first identifying 

any outliers from the resultant sparse point cloud generated after image alignment 

has been performed. Visual inspection was also performed on residual error post-lens 

calibration to identify any particularly large vector errors, or if there were systematic 

image residuals. The presence of systematic error would suggest a poorly matched 

camera model and could require further parameter adjustments. From here dense 

reconstructions and DEM generation can follow.  

The robust SfM procedure, ensure that as many sources of inaccuracy are 

removed. However, post validation of the 3D model is helpful to determine the 

deviation of model topography from real-world topography. The multitude of LiDAR 

applications and its longevity as a measuring tool has led to numerous studies being 

conducted utilising data retrieved from it as a benchmark. In a geomorphological 

context, some studies that empirically asses the accuracy of SfM photogrammetry 

include James and Robson (2012); Westoby et al. (2012); Prosdocimi et al. (2015); 

Clapuyt et al. (2015); Brunier et al. (2016). 

Prosdocimi et al. (2015) compares DEMs from imagery taken by a range of 

imaging devices: A Canon EOS 5D Mark III, Nikon D3000 and an iPhone 5 and compares 

them to a DEM derived from TLS. The TLS equipment location was georeferenced using 

dGNSS and from this, the point cloud data was automatically georeferenced. This style 

of comparison - once validation through cross-checking known check point data with 

targets on the TLS point cloud has been performed – allows for each point in the cloud 

data to substitute as a check point (Prosdocimi et al., 2015), and thus allows for a fuller 

comparison. The point clouds were subsampled to a minimum spacing of 0.02 m to 
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make the models computationally wieldy and comparable with the TLS cloud. From 

here, unwanted point cloud data was manually removed using the open-source cloud 

manipulation programme CloudCompare (Girardeau-Montaut, 2003). These clouds 

were later interpolated to a 0.1 m (in x and y) resolution grid DEM using the natural 

neighbours method (Sibson, 1981). Here, 0.1m x 0.1m columns contain one value only, 

therefore removing excess data and producing a single-layer comparable cloud 

(Prosdocimi et al., 2015). 

DEM comparison should be carried out in caution, however. James and Robson 

(2012), highlight the complications induced by the point cloud interpolation process. 

Although the resulting clouds produce a computationally more efficient and more 

wholesome comparison, issues can arise when comparing areas of high obliquity or 

vegetation cover. A coastal cliff located at Sunderland Point, Morecambe Bay, U.K. 

provided focus of study for analysis in the reconstruction process of 3D surfaces using 

a camera (James and Robson, 2012). Here, analysis was applied over different scales. 

Raw point cloud data showed differences in density and distribution. TLS data yielded 

a lower density but significantly more even distribution of points compared to those 

derived from SfM. High densities were focused around the vertical faces for the SfM 

clouds but lacked information around the crests of slumped material – areas with 

vegetation and high surface obliquity. TLS data did, however, return a more consistent 

spread of values within these SfM low-data regions. During the gridding process, large 

estimations were made on steep and vegetated surfaces, giving differences of up to 

0.6 m – an inaccurate representation of true error.  
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When assessing the accuracy of point cloud data without the aid of a 

benchmark cloud, it is useful to use targets or features with known geospatial 

coordinates or permanent in-situ features with known relative positions as check 

points. These check points serve as reference markers with ‘true’ coordinates, which 

in the case of Prosdocimi et al. (2015), can be assumed to be each individual point in 

the TLS cloud due to sensor georeferencing. Ground control points (GCPs) to be used 

in bundle adjustment optimisation should be ideally distributed throughout the scene 

with special focus to encompass the area of interest (Agisoft, 2016). James and Robson 

(2012) investigate the loss of accuracy in point cloud data when GCP distribution is 

biased towards certain regions of the scene. This is especially important when scene 

conditions and circumstances limit GCP distribution. When GCPs were limited to the 3 

most dispersed points (out of 8), it was found that the overall scale of the scene 

changed by 0.01% with RMSE increasing from 37 mm (using all GCPs) to 50 mm. When 

restricting GCP to just one end of the cliff, the scale changed by 0.17% and resulted in 

RMSE values increasing to 181 mm. This emphasises the importance of having well 

distributed GCPs and introduces the need to identify key thresholds in model accuracy 

for useful coastal monitoring.  

Another factor to consider is the quantity of GCPs within a survey. In 

geomorphology the process of GCP setup can be laborious and time consuming. James 

et al. (2017a) conducted research into the efficacy of increased GCPs in a study. In the 

Souss-Massa-Drâa region of Morocco, an investigation into the quality and quantity of 

GCPs was performed by UAV to understand the effects that GCP quantities has within 

a survey. A comparison between RMSE values derived from GCPs used as control and 

check points was performed. It was found that the two were inversely proportional to 



Lancaster Environment Centre  Student Number: 32290900 
 

33 
 

each other; as you increase the points used for control, the respective RMSE increases 

as they become more difficult to match in the bundle adjustment, however, the global 

model is better confined to a ‘real world’ form. Matching positions of the control 

becomes easier during bundle adjustment; however, global accuracies are less 

constrained and thus RMSE on the check points increases. James et al. (2017a) found 

that over a sample size of 30 GCPs, as you increase the number of GCPs used as control 

points the error on the check points becomes lower. However, it is evident that when 

50% of GCPs are used as control points, the magnitude of error plateaus and minimal 

further accuracy is achieved. This has important implications not only for the time 

required for survey preparation, but more specifically for the interests of this thesis, it 

can be used as guidance for determining the ideal number of GCPs in a given scenario 

– the researcher would have to account for additional non-uniform spatial distribution 

of GCPs caused by the unique properties of any given scene. 

In summary, SfM has the potential to be applied by the general public, however a 

strict framework and validation procedure would need to be implemented to ensure 

data quality. The ground control network should be appropriately designed to achieve 

suitable GCP distribution and quantity. With surveys conducted using either a 

configuration of GCPs, or a TLS survey, points of known coordinates can be established 

and used as reference for aligning point cloud data and measuring their respective 

accuracies. Where possible, a good framing of network control and a strict procedure 

for data filtering and quality assessment is required. This study aims to identify the 

quality of data derived from different devices and what effect on 3D reconstructions a 

change in control network structure has.
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3. Methodology 
 

3.1. The Volunteer Group and Study Site 
 

3.1.1. The Study Site 
 

The Fylde coast is a heavily defended coastline in northwest England, Lancashire. 

Historical developments of sea-side towns like Cleveleys close to the sea, require 

coastal defences. Several structure types were implemented along the coast in last 

100 years or so: seawalls, revetments and groynes. Along the 26km stretch of coast 

between the Model Yacht Pond, Fleetwood and Lowther Pavilion, Lytham, 17km is 

protected by a seawall with 6km being additionally reinforced with sediment trapped 

by groynes (Figure 2f). This stretch of coast is subject to a macrotidal regime whereby 

spring tidal ranges experienced here can be ~10m. The beach around Cleveleys is host 

to a mixture of sand shingle with Shingle being more present at lower chainages. This 

stretch of coastline has been monitored by the Wyre Borough Council, taking beach 

profiles along the whole stretch at least once and mostly twice per year since the early 

1990s (Miles, 2014).  In 2006, the new seawall was built to replace the deteriorated 

seawall, and new groynes were built along the Cleveleys frontage. A video-monitoring 

system was introduced to monitor interaction of new structures with the beach (de 

Alegria Arzaburu et al., 2007; Miles et al., 2013).  
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The Cleveleys frontage provided an ideal test site. When choosing the site, 

three considerations were taken into account: i) beach changes that are of particular 

concern to the local authority, namely beach lowering near structures; ii) that the area 

of interest has dimensions that are appropriate to allow for imaging in a semi-

convergent manner by foot and pose minimal risk to health; iii) that the area of interest 

has permanent features such as coastal structures, which are crucial to enabling the 

repeated georeferencing and comparison of derived models. A groyne cell measuring 

~65m by ~80m (including a stepped revetment) was chosen as a suitable site for 

testing the feasibility of the method, repeatability and accuracy. The seawall is curved 

resulting in two artificial headlands (Figure 3) resembling pocket beaches studies by 

(Pikelj et al., 2018).  It also allowed for the experimentation of different GCP 

Figure 2  A progressively zoomed map of the location of the groyne cell used for study (outlined in red). It is bounded 
by a seawall and two groynes (a-d). (f) A satellite image of the Fylde coast displaying the sea defence types (red-
seawall and groyne, orange-seawall only, purple- dunes). (a-d) - Ordnance Survey maps retrieved from 
digimap.edina.ac.uk (e-f) – Google Maps 

a b c 

d e 

f 
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configurations. Most importantly, this combination of groyne and seawall includes 

features that occur in numerous locations along the Fylde coast and other parts of UK.  

 

3.1.2. The Volunteer Group 
 

Members from the Rossall Beach Residents and Community Group were recruited for 

this study. The community group consists of 332 members on the social media 

platform Facebook, however, a group of 30-40 active members consistently take part 

in community events such as regular beach cleaning. The active members are ~30-70 

years old with a large number of them being retired. The group is chaired by the SME 

project partner, which made establishing a point of contact with the group easier. 

There are approximately an equal number of female and male members.  

It was decided to start with the active community group. This was preferred 

over the choice of the wider public as it is much easier to train a smaller group, 

assistance in the field could be provided more easily, and importantly, this group is 

more familiar with the beach. It is envisaged that once this group gains the necessary 

Figure 3 (a) An aerial image of the two artificial headlands. (b) An image taken from the northerly headland facing 
south. 

a b 
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skills for data collection, the data collection procedure can be taught to other 

members of the group.  

For this study, there were two data collection sessions conducted, each with 

differing numbers of participants present. Table 2 shows the participation number for 

each session – the number of participants decreases due to prior commitments and 

inclement weather. The first session hosted an additional indoor session prior to data 

collection. This was designed to build understanding in the SfM procedure.  

Table 2 The number of participants for each session (indoor and outdoor) and the dates they were conducted. 

 

 

3.2. The General SfM Workflow 
 

3.2.1. Image Collection 
 

The camera used to collect imagery should have a reasonably high resolution of 5 MP 

or more. To facilitate processing, the camera shouldn’t have an ultrawide angle or 

fisheye lens and it is recommended that focal lengths should fall within 20 – 80 mm in 

35mm equivalent (Agisoft, 2016). Lenses that have fixed zoom are preferred as they 

lead to more stable imagery taken.  

Cameras with adjustable settings (some smartphones do not allow full control 

of internal settings) were setup as to allow for the maximum likelihood of successful 

model generation. Images were captured using the maximum resolution of the device 

where possible (e.g. tiff) to avoid the introduction of unwanted noise. The ISO value 

Session No. of Volunteers – 
Indoor Activity 

No. of Volunteers – 
Outdoor Activity 

Date (dd.mm.yy) 

1 18 12 10.09.18 

2 N/A 5 25.10.18 
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determines the amplification of signal from the sensor in the imaging device – this was 

kept to a low value to minimise the amount of noise in the image (Brunier et al., 2016; 

Agisoft, 2016). The aperture value, or f-stop, was high (reducing the lens aperture size) 

to increase focal depth and help to ensure that the whole object/scene was in focus. 

Shutter speed was kept fast to remove unwanted motion blur where possible.  

Once the camera settings had been correctly set, the next step was to ensure 

the object/scene conditions were as ideal as possible. The area of interest (AOI) was 

ensured to be relatively textured, helping for feature detection later in processing 

(James and Robson, 2012; Agisoft, 2016; Brunier et al., 2016; Hassaballah et al., 2016). 

Objects that are reflective or transparent do not process well and therefore should be 

avoided or kept to minimum – water and water-logged sand were kept to a minimum. 

Diffuse lighting conditions (e.g. cloudy skies) helped reduce reflection and shadows 

which helped feature detection as to provide optimal results. Objects that are near to 

the observer in the foreground can confuse software during geometry reconstruction 

so where possible these were avoided. Moving objects result in less accurate 

reconstructions or even result in a failed SfM workflow (Agisoft, 2016) – to address 

this, cameras were pointed away from pedestrians and other moving objects.  

When capturing the imagery, as many photos as possible were taken of the 

scene. Is it better to have more photos than what might be required than too few. 

Effort was taken to minimise the number of blind zones in images as SfM software can 

only reconstruct geometry that is visible from at least two cameras. Images were 

ensured to contain the sufficient overlap between images as recommended by Agisoft 

– at least 60% - as feature detection algorithms require some extent of similarity 
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between images (Agisoft, 2016; James and Robson, 2012). The AOI took up most of 

the frame consistently between images within the photoset. In some cases, parts of 

the AOI were missing in some images, however, as they had been captured in at least 

two other images, they could still be reconstructed. When collecting the images, the 

images were parallel or converging towards the centre of the AOI to ensure the 

successful SfM workflow.  

 

3.2.2. Reconstructing 3D Geometry 
 

Once loaded into the SfM software the photoset needed to be aligned. Here, a Scale 

Invariant Feature Transform (SIFT) algorithm was run. These detect points in the 

source photos which are stable under lighting and viewpoint variations and generate 

descriptors for each point based on their local neighbourhood (Agisoft, 2016; 

Hassaballah et al., 2016).  Using these descriptors, correspondences across the 

photoset were detected. Algorithms then solved the camera intrinsic (internal camera 

characteristics) and the extrinsic (location and orientation of the camera with relation 

to the real world) parameters. As part of this process, the object coordinates of the 

features were derived resulting in the sparse point cloud. 

Using information derived during this sparse reconstruction step a denser point 

cloud was generated. SfM algorithms produced dense geometry by deconstructing 3D 

geometry into clusters using neighbourhood and camera parameter information from 

the SIFT process. This is called Cluster Multiview Stereo (CMVS) and was used as a 

precursor to the Patch-based Multiview Stereo (PMVS) algorithms (James and Robson, 

2012; Agisoft, 2016; Brunier et al., 2016). Here, each points local neighbourhood was 
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mapped and small details preserved whilst outliers – points too far from a reasonable 

surface – were discarded (Yao et al., 2018).  The resulting point cloud was much higher 

in density than the prior sparse cloud – this is called a dense point cloud.  

Dense point clouds are inherently large in file size due to the high detail that 

has been preserved. To make the dense point clouds more computationally 

manageable, they were interpolated to DEMs. This interpolation procedure resulted 

in a systematic grid of x,y coordinates to be established and z (or elevation) values to 

be estimated for each corresponding x,y location. There were a few different 

interpolation methods available, however, this study used nearest neighbour (Sibson, 

1981) interpolation. By subsampling the clouds to a lower density grid, the cloud size 

was dramatically reduced.  

 

3.2.3. Georeferencing 
 

To apply real world coordinates to a point cloud external measurements are required 

which were recorded through a GNSS survey conducted on non-moving features 

within the scene. These coordinates were used as an integral part of the geometry 

reconstruction process or used as check for model accuracy. Where there were 

permanent non-moving features present within the scene, a ground control point 

(GCP) network was setup as these were crucial for repeatability of SfM-derived results. 

GCPs were printed as targets with centroid positions that are visible across all, or most 

of, the photoset. The centroids were measured with high accuracy (±0.02 m) by dGNSS 

or RTK GNSS equipment (Harley et al., 2011). For each centroid a true coordinate was 

assigned to it. Following the creation of the sparse point cloud the geometry can be 
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georeferenced using the recorded GNSS coordinates. The GCP locations were 

identified within the uploaded imagery and a best-fit position was then calculated 

from the photogrammetry – In Agisoft’s photogrammetry software, Photoscan, these 

virtual points are called markers. The markers were then assigned the real-world 

coordinates recorded by the GNSS equipment (Agisoft, 2016). To best fit the markers 

the model geometry underwent rotation, translation and scaling which maintains a 

linear transformation (James and Robson, 2012; Prosdocimi et al., 2015). At least 3 

markers are required to align model geometry (to represent each x,y and z), however, 

in general more markers leads to a truer model position and orientation. 

GCPs that were not used in this transformation procedure were used as check 

points as they represent points which have not influenced the georeferencing. At this 

point, error values were stated for the global model as well as for each individual check 

point. These error values represent the average closeness of all check points (global 

error) and of each individual check point to the true GNSS coordinate. For a better fit, 

a non-linear transformation was applied to the model using bundle-adjustment 

algorithms that optimize model geometry (James and Robson, 2012; Prosdocimi et al., 

2015; Agisoft, 2016). This process still requires the use of markers in the 

reconstruction, and as error values were sought, check points were left out of the 

adjustments.   

 

3.3. Pilot Study: Hest Bank 
 

Before any sessions were conducted with any community members a pilot study was 

conducted to determine a suitable image capture technique for a shingle beach.  The 
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survey was conducted in Hest Bank, northwest England. The location consisted of a 

shingle beach and a drainage outlet pipe surrounded by rock armour (Figure 4). The 

scene consisted of two major type of surface roughness: fine-scale shingle features 

and large-scale rock armour features. 

 

Both these surfaces did not provide any issue during the SIFT step in the SfM workflow. 

A Canon EOS 450 D was used for imaging the scene with settings that best matched 

those recommended (Table 3). 

Table 3 Specifications for the Canon EOS 450D used for the pilot survey at Hest Bank. 

Device ISO Focal Length (mm) F-Stop Exposure 

Canon EOS 
450D 200 28 10 1/320 

 

Figure 4 Drainage outlet pipe, Hest Bank. Used as the scene for SfM image collection. 
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Images were collected in a converging manner around the AOI with image 

locations at around 1m apart (Figure 5). An individual image would not cover the entire 

scene, and thus 3-4 photos were taken at each spot. Weather conditions were cloudy, 

providing the optimal diffuse lighting required for SfM. The scene contained a small 

amount of running water beneath the opening of the drainage pipe which could have 

introduced some reflection, however, the diffuse lighting helped to reduce this.  

There were ~400 photos taken during this session along one plane (a circular 

perimeter around the scene). Although at each photo point the imagery was divergent, 

to encapsulate to whole scene, the overall survey was convergent.  

Processing of the imagery took in the order of hours as expected on a laptop 

with 16 Gb RAM and a Core-i7 processor. The dense point cloud was accurate and 

suggested the survey conducted with citizens should be spaced at 1m intervals, 

however, a convergent fully circular imaging procedure could prove difficult. This is 

Figure 5 The dense reconstruction of the drainage outlet. The blue rectangles show each camera position. 
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because the chosen groyne cell at Cleveleys would make it difficult to rotate through 

full 360 °. 

3.4. Volunteer SfM Sessions 
 

3.4.1. Building an Understanding of the Project 
 

The engagement of the citizen group with the data collection started with informative 

introductory workshops on in Session 1 and 2.   

Session 1: 

The aim of this first session was to inform the citizen group of the aims of the project 

and current understanding of coastal processes, and to find out the motivation and lay 

expertise of the group.  The 18 volunteers from the coastal group attended the 

workshop.  Facts about climate change and the relevance a rising sea level has on 

coastal communities were disseminated, as well as an introduction into the methods 

of coastal monitoring posed by this study. The workshop enabled community 

members to interact with the researcher and the project partner. The aim was to form 

two-way interaction between the researcher and community by understanding the 

knowledge already attained by participants and their motivations, if any, towards 

coastal monitoring.  

Next, a practical activity was conducted indoors to form familiarity with the 

image collection and processing. Information was provided on the technique for data 

capture, which, in theory, is transferable to large-scale scenery, although there are 

multiple hindrances that emerge as scale increases.  The aim for volunteers was to 

generate 3D point clouds of small-scaled objects. Large rounded pebbles from the 

shingle beach were used -- Imagery was taken across a range of smartphone devices 
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and was ingested by the freely available SfM software VisualSFM (Wu, 2011) on 

laptops hosting dual Core i5 processors with 4 GB RAM (Table 4) to yield 3D products. 

The participants were advised to take 50-60 images of the object taking care of image 

overlap and different angles of view. Five laptops were used to process the images. 

Table 4 Laptop specifications for 3D point cloud generation with the Rossall Beach Residents and Community 
Group. 

 

An additional benefit to VisualSFM is the real-time visual 3D reconstruction 

process. This helps public understanding of the mechanisms involved with the SfM 

pipeline and provides better understanding of the correct technique required for 

successful model generation. A concise set of instructions were designed and 

distributed among the participants prior to the outdoor session to facilitate useful 

image collection. They contained information on the ideal scene requirements, 

camera settings, imaging technique, data upload procedure and contact details for 

guidance. Objectives were set whilst on the beach for participants to follow and help 

and guidance were always available.   

Questionnaires were distributed to the participants (see Appendix 5 – 

Feedback Questionnaire 1) during the outdoor activity (see 3.4.3) to get feedback on 

usefulness of the indoor session, their confidence in the procedure and view towards 

the continued monitoring method. 

 

PC  CPU GPU CPU Clock  
Speed 

No. of Cores RAM Processor  
Architecture 

Dell Latitude 
E5430 

Core i5-
3210M 

N/A 2.5 GHz 2 4GB 64-Bit 
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Session 2: 

Feedback from the first session (see section 3.4.1) indicated that citizens did 

not find all parts of the indoor session interesting and relevant. For this reason, the 

indoor session was removed from activities conducted in the second session. Instead 

emphasis was focused on the technique for image capture rather than the method 

behind the processing of imagery. Visual and clear information packs had been created 

(Appendix 7 – SfM Instructions), informing the participants of a correct data collection 

procedure. Volunteers were handed information packs detailing the requirements for 

coastal photogrammetry.  

The second session hosted fewer participants than before; only 5 volunteers 

were present for this session. A talk was given on the beach, however, a consistent 

cold wind reduced time on the beach and thus the briefing did not span the same 

amount of time as the first session. A description of features that are indicative of 

coastal erosion was communicated and a demonstration of the image capture 

technique was performed by the researcher. Guidelines on how to take the images, 

Figure 6 The SfM process displaying (a) the real-time image alignment procedure with the associated sparse cloud 
and (b) the dense reconstruction. 
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what settings should be used, and the ideal scene conditions were all conveyed 

verbally and through the information packs provided.  

 

3.4.2. Georeferencing: GCP Network Configuration 
 

For easier comparison between the models produced by different participants 

and potential comparison with existing data, georeferencing was included. This 

required GCPs and thus positioning of targets or the marking of structures with visible 

yellow paint. The researcher placed GCPs prior to both sessions in a manner that best 

suits the recommendations from literature, although, an investigation into the 

effectiveness of non-conforming layouts is also performed. A conforming layout would 

suggest an enclosing distribution of GCPs around the scene/object of interest. GCPs 

were located throughout the scene, with efforts made to ensure coverage of the 

groyne cell in its entirety was accomplished. Usually measurements should not be 

made outside the area encompassed by the GCPs, as confidence in accuracies 

decrease substantially outside this zone (James and Robson, 2012). However, an 

investigation into the magnitude of error outside this area is implemented to 

determine rates of propagated error. Georeferencing can be achieved using a 

minimum of 3 targets, however confidence in cloud accuracies increases with GCP 

count (James and Robson, 2012). Hence here 67 GCPs were measured using an 

accurate dGNSS system. The dGNSS measurements were acquired using two Trimble 

R4 GNSS systems; one as a base receiver and the other as a rover (Figure 7). 
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Session 1: 

For the first session, ground control points were dispersed and relatively low 

in number. 17 GCPs were used for temporary placement on beach. Temporary 

cardboard targets measured 9cm/9cm for this session and were not laminated (Figure 

8). Although a total of 17 GCPs were effectively within the scene, not all could be used 

due to visual obstructions when viewing from beach level thus limiting data retrieval 

and inclusion within the point cloud generation process. Figure 8 shows how GCPs 

located on the sediment traced the shape of the stepped revetment, whilst concrete 

dividers were used for identifiable features on the steps of the revetment – these were 

retrospectively assigned from measurements acquired in session 2. 

 

 

 

Figure 7 (a) dGNSS base mounted on a tripod set to a calibrated height. (b) dGNSS rover mounted on a pole set to 
a calibrated height.  

a b 
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Session 2: 

For the second session GCPs were laid out in a similar fashion, however, the extent of 

GCP coverage was greater both spatially and in quantity. In this session 67 markers 

were measured in total: 25 on the seawall, 27 on beach sediment, and 15 along the 

groynes. GCPs were distributed evenly throughout the scene to allow for variations in 

control point and check point configurations to be input into the processing software 

(PhotoScan) for georeferencing. Placement of GCPs followed the curvature of the 

stepped revetment with spacings of ~5m east-west and ~8m north-south. Targets used 

as GCPs were matt-laminated A4 coded targets downloadable from PhotoScan (Figure 

9a). Due to the larger size used in this session, targets are more identifiable and were 

0.09 m 

Figure 8 (a) A GCP target measuring 0.09 m/0.09 m used within the survey. (b) GCP Locations superimposed onto 
a DEM produced. Some GCPs are within the area of interest however appear in areas showing no data. 

b 
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easily marked in PhotoScan. Targets used on the groynes were spray painted yellow 

dots around ~0.07 m in diameter (Figure 9b). Spray paint was selected over A4 targets 

to improve setup time and better visibility. Figure 9c shows the spatial distribution GCP 

targets within the scene.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The 67 GCPs were assigned into 8 configurations to test a multitude of different GCP 

scenarios. Each scenario plays on the different characteristics of the groyne cell: a) the 

seawall wall, b) the wooden groyne, c) the beach sediment. Figure 10 displays the 

various configurations used in this study. 

c 

Figure 9 (a) An A4 coded target for use as a GCP. (b) Groyne post with a yellow paint spot for use as a 
GCP. (c) GCP Locations from session 2 superimposed onto a DEM produced from an iPhone 6s. 
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Configuration Points 

Full Starting from with Point 1, every other point 

All Defence     +   

All Seawall      Points only 

High Seawall      Points only 

Mid Seawall      Points only 

Low Seawall      Points only 

All Groyne       Points only 

Low Groyne      Points only 

Figure 10 The groyne cell of interest. This 
figure shows the chosen configurations of 
GCP setup. The 'Full' configuration is a 
mixture of all types, starting from 'Point 1' 
and then every other point. 'All Defence' is 
constituted of all solid red and yellow circles. 
‘All Seawall’ is all solid red circles. ‘High 
Seawall’ is shown in solid red circles with a 
yellow perimeter. ‘Mid Seawall’ is shown in 
solid red circles with a blue perimeter. ‘Low 
Seawall’ is shown in solid red circles with a 
green perimeter. ‘All Groyne’ is constituted of 
all solid yellow circles. ‘Low Groyne’ is shown 
in solid yellow circles. 

High Seawall Only Points 

Sediment Only Points 

Low Groyne Only Points 

Mid Seawall Only Points 

Low Seawall Only Points 

Groyne Only Points 
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3.4.3. Image Collection on the Beach 
 

Session 1: 

Participation numbers for the outdoor activity of session 1 declined from 18 to 12. This 

was due to various commitments that participants had and could not stay for whole 

day. Nevertheless, the 12 volunteers who did participate in the outdoor session, 

engaged with the data collection, followed the correct procedure and showed great 

enthusiasm. 

They also coped well with a change in scale, from an indoor practice with a 

single object to a stretch of the beach. The data collection process here, refers to 

image capture on the beach.  

Images were captured in a semi-linear fashion along the beachfront facing east 

towards the stepped revetment to help avoid surface reflections from waterlogged 

sand or sea. For this reason, the images did not encapsulate the full 360° of the scene 

(Figure 11). This design setup intended for maximum groyne cell coverage using 

relatively few images per participant. The group was split into 4 sub-groups, covering 

different segment of the beach. Each group’s observation segment spanned ~20 m 

which covered the groyne cell (Figure 11). Images were collected at 1 m spacing facing 

the seawall, with 3 or more images taken at each location These had all different view 

angles. 
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Session 2: 

The second session hosted fewer participants than before, and thus a more in-depth 

engagement was able to be established. 5 volunteers were present for this session but 

due to better engagement there were more images collected by each participant.  For 

Figure 11 Segmented beach. Each colour represents a different segment of beach imaged. Green, purple and red 
segments were all successfully processed. Data for the blue section was not retrieved and thus no data was 
processed. 
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session 2, data collection was performed in a similar fashion to session 1, however, 

changes in imagery locations, orientation and quantity were made to improve on 

previous results. In this session the images were taken from the top of the stepped 

revetment facing west towards the sea (Figure 12). This was opted for to enable better 

view as images taken from the beach in session 1 were affected by presence of beach 

features e.g. berms/bars. Taking photos in this manner allowed for greater coverage 

of the scene from the respective viewpoints. Following the line of the seawall ensured 

that all participants follow the same track for capturing images.  

The 5 volunteers were split into two groups of 3 and 2 participants. Each group 

started collection imagery from opposite end of the groyne cell (north and south).  This 

was to reduce the chance of obstruction from volunteers within imagery. Citizens 

followed the same data collection procedure at 1m intervals, taking 3 or more images 

per location to cover the whole scene. Three of those participants had been present 

at the last session, so carried out the task with no issues. Two new participants did not 

require much assistance and performed the task efficiently after a few initial 

questions. Motivation from the volunteers was high, and the procedure was 

conducted as required despite a relatively strong persistent wind. The day was 

overcast and thus provided ideal light conditions for photogrammetry. Manual hard-

wired data collection was instigated for this session due to the low volume of data 

retrieved from the last session. 
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Due to larger photosets the groyne cell was encompassed fully and a more wholesome 

volume of data was acquired. Due to substantial model overlap between participants 

in this session, cloud comparisons were now able to be performed. Alongside this, the 

higher number of GCPs present enabled variations in their configurations to be 

evaluated.  

 

 

Figure 12 Area of coverage provided by each participant. Red and blue circles represent the starting point for each 
group. The red and blue lines display the route taken by each group. 
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3.4.4. Data Transfer 
 

Session 1: 

Upon completion of the outdoor session, participants were asked to transfer their 

collected photosets.  As part of the instructional package provided to those who 

attended the activities in session 1, details were provided on how to successfully 

transfer large image sets to members of the research team via the data transfer 

website wetransfer.com. This method required further participation of volunteers in 

their own time. It was necessary to send data via a data transfer website due to size 

constraints on files being sent from a typical email address. This added complexity to 

the transfer process which presented risks in further voluntary participation, and 

successful data transfer. 

Session 2: 

Data collected in session 2 was transferred immediately after the field session. This 

was to ensure the successful transfer of citizen data, rather than relying on the 

continued participation of volunteers. Data was transferred via micro usb data cables 

to a laptop near the study site. 

 

3.5. Assessing the Volunteer Session 
 

3.5.1. Image and Ground Control Quality 
 

Visual inspection of imagery was undertaken to identify obvious low-quality data; large 

zoom, incorrect focus, motion blur etc. Images with these characteristics were 
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removed from the photosets to enable successful processing and reducing potential 

sources of errors in the models.  

Due to the oblique nature of ground-based photogrammetry when observing 

gently sloping beaches, considerations into sources of human error when identifying 

centroids on GCP targets needs to be acknowledged. The software used in this study 

is Agisoft PhotoScan (Agisoft, 2018) and contains tools for the placement of markers 

at locations of GCPs (Figure 10) in the aligned images. This is used for removing 

markers with significantly large pixel error or spatial error. A value of 0.2 m was set as 

a threshold based on the resolution stated by the Environment Agency of a 0.25 m 

ground sampling distance (Environment Agency, 2018). 2D targets were preferred 

over the use of 3D targets for reasons of efficiency when measuring GNSS coordinates. 

This allowed for a greater number of total GCPs and therefore provided more flexibility 

when analysing the various GCP configurations.  

A small but noticeable human error was produced when measuring GCPs on 

the lower section of groyne. Recordings for the low points were made on a vertical 

surface, and thus actual GCP locations were shifted by the radius of the rover pole – 

0.015 m (Figure 13). Hence, GCP coordinates were corrected to account for an offset 

produced by the dGNSS rover pole diameter. Due to the north-south orientation of 

the Fylde coast, recorded GCP locations were easily corrected by changing the 

northing values only during post-processing. However, an incorrect measurement of 

the diameter of 0.01 m resulted in a 0.005 m semi-systematic error. The southern low 

groyne GCPs experienced a negative shift in northing by 0.005 m and the northern 
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groyne low GCPs experienced a positive shift by the same amount. These error values 

would cancel, and thus not affect the global model. 

 

 

 

 

 

 

 

 

 

3.5.2. Assessing the Accuracy of Image Alignment 
 

All images were processed using PhotoScan V.1.4.5 (Agisoft, 2018), which has robust 

algorithms that attempt to identify and construct camera models based on imagery 

ingested (Agisoft, 2018). Imagery was uploaded into the software and assigned the 

task of image matching and alignment. Here, PhotoScan identifies and tie points within 

imagery, estimates camera intrinsic and extrinsic parameters as well as projecting 

point coordinates and reconstructing surface geometry. It uses one camera model for 

each photoset, unless parameters are too discontinuous, for example large changes in 

focal length – in which case PhotoScan assigns a separate model. Focal length, 

0.03 m 

Figure 13 The rover pole measuring 0.03 m in 
diameter. 
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principal point coordinates, and the distortion parameters radial (K1, K2, K3) and 

tangential (P1, P2) are adjustment-enabled to minimise image residuals. 

Once the 3D geometry has been reconstructed, a sparse point cloud was 

qualitatively assessed for any visual defects. Points located in 3D space are usually in 

the order of tens of thousands of points. The sparse point cloud was used to identify, 

GCPs and the model was georeferenced. Accurate GNSS data points collected in the 

field are manually located within the images, but automatically guided by PhotoScan 

by using the tool “Guided marker” approach. The software translates, rotates and 

scales the model to best match marker placements with the coordinates assigned, but 

does not account for non-linear misalignments.  This is followed by optimisation of the 

model, in which the software utilises the GNSS data to perform non-linear corrections. 

Accuracy in model geometry is displayed as values of displacement between 

coordinates assigned to GCPs, which were not used for georeferencing and their GNSS 

coordinates. RMSE values are listed to describe the cloud’s overall accuracy; however, 

individual values are also important to assess how error differs spatially.  

In session 1, 23-75 photos were used for processing (Table 12). In session 2, 

photosets ranged from 331 images to 679 (Table 13) and were processed on a Dell XPS 

15 Laptop and a Dell Optiplex 790 with specifications listed in Table 5. 

Table 5 Computer processing specifications 

 

PC  CPU GPU CPU Clock  
Speed 

No. of 
Cores 

RAM Processor  
Architecture 

Dell XPS 15 
9560 

Core i7-
7700HQ 

NVIDIA 
GTX 1050 

2.8 GHz 4 16GB 64-bit 

Dell Optiplex 
790 

Core i7 - 
4790 

NVIDIA 
GTX 745 

3.6 GHz 4 16GB 64-bit 
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Sparse clouds were all done on the XPS 15 and dense cloud reconstructions were 

shared between the two computers. After image alignment was performed, the sparse 

clouds were assessed with respect to GCP coordinates. GCPs with excessive RMSE 

values were removed, as it was often due to inadequate marker placement due to 

oblique viewing angles and large distances in images meaning they were not 

representative of true GNSS coordinates.  

 

3.5.3. Assessing the Accuracy of Dense Reconstructions 
 

Once bundle adjustments were made to best-fit the model to GCPs, dense 

reconstruction could be performed in PhotoScan. Here, pre-set reconstruction 

parameters were selected to best suit the photoset and perform efficient and accurate 

dense point clouds without losing significant cloud quality (Table 6 and Table 7). These 

parameters govern the speed and quality at which 3D geometry is reconstructed.  

Table 6 Device Processing Parameters 

 

 

 

 

 

Table 7 Device Processing Parameters 

 

 

 

 

Session 1 

Device Quality Depth filtering 

CUBOT MAX High Aggressive 

CUBOT X15 High Aggressive 

iPhone 6s High Aggressive 

Galaxy S5 Neo High Aggressive 

Galaxy A5 High Aggressive 

Galaxy S5 High Aggressive 

Session 2 

Device Quality Depth filtering 

PL50 Medium Aggressive 

iPhone 6s Medium Aggressive 

CUBOT X15 Medium Moderate 

iPhone X Medium Moderate 

Galaxy S5 Medium Moderate 

EOS 450D Medium Moderate 
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For the purpose of this study, full-scaled imagery was not required for dense 

reconstructions and thus to maximise processing efficiency, a quality factor of medium 

was selected. This downscaled the images by a factor of 4 to enable efficient feature 

detection.  The depth filtering was also applied to remover outliers in the cloud, 

reducing the chance of these being included in the analysis stage.  For each data set, a 

different filter was used. An aggressive model was used first but if required long 

processing time (e.g. couple of days) it was replaced by a moderate depth filter.  

 

3.5.3.1. Cloud Preparations 

Upon successful completion of 3D geometry reconstruction, the models are inspected 

visually to identify any prominent defects. Excessive ‘noise’ generated during 

processing is visible in both the sparse and dense point clouds, however, it becomes 

more obvious after dense reconstruction. Where unwanted artefacts or objects are 

present, cropping can be performed in either PhotoScan or CloudCompare by using 

polygon selector tools to manually remove data. CloudCompare is useful if multiple 

clouds require cropping, and hence was chosen for cloud manipulations. Clouds were 

uploaded into the software and collectively selected, whereby data removal was 

efficiently performed and clouds with identical boundary limits were produced.  

To compare clouds, DEMs were generated in the x,y plane and sampled to 

uniform grids to ensure the data was computationally manageable. This was done 

through CloudCompare, as it provided a few options on the interpolation process. 

Despite models showing defects below the scene of interest, the elevation value 
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chosen for each cell was based on values with the average height and tested – this was 

achieved using the nearest neighbours method.  

 

3.5.3.2. Measuring the Effect of GCP Configurations 

By optimising geometry using different control point combinations, the extent of 

spatial error was tested. Configurations were selected to utilise GCPs on the beach and 

structure at first, and then just those on structures. In total, 67 GCPs in an area of 80 

m x 70 m were used. Although attempts were made to produce 8 GCP configuration 

models per device, not every model was successfully completed - Table 8 shows the 

successful GCP models generated. Those GCPs which were not used for 

georeferencing, were used as validation points. Table 9 shows the number of GCPs 

used as control and check points in each variation of GCP distribution. 

 

Table 8 Successful dense reconstructions for each device and their respective GCP configurations. Successful 
reconstructions are indicated by an ‘x’. 

 

 

 

 

 

 

Camera Full set 
of GCPs 

All 
Defence 

All 
Seawall 

High 
Seawall 

Mid 
Seawall 

Low 
Seawall 

All 
Groyne 

Groyne 
Low 

Samsung 
PL50 

x x x x x x x x 

iPhone 
6s 

x x x x x x x x 

CUBOT 
X15 

        

iPhone X x x x x x x x x 
Galaxy 
S5 

x 
       

EOS 
450D 

x 
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Table 9 GCP configurations and their respective control and check point counts. 

GCP Configuration Max Number of Control Points Check Points 

Full Distribution 53 14 

All Defences 40 27 

All Seawall 25 42 

High Seawall 9 58 

Mid Seawall 9 58 

Low Seawall 7 60 

All Groyne 15 52 

Low Groyne 10 57 

 

Additionally, the difference in DEMs obtained by using reduced set of GCPs and 

the DEM obtained by using ‘Full distribution’ GCPs was calculated. As there were no 

other measurements taken at the same time, it was decided that the most accurate 

cloud obtained from check-point validation should be used as the ‘benchmark’ for 

other comparisons to be made. The RMSE values were exported from PhotoScan or 

CloudCompare into R Studio for statistical analysis. Histogram analysis, kernel density 

plots, linear regression analysis and associated GCP distribution data were collated in 

R Studio. 

 

3.5.3.3. Measuring the Effect of Different Imaging Devices 

 

Matching DEMs obtained from images obtained with different mobile device allows 

for differences in models to be visualised and quantified. Each device had a different 

set of internal settings for: ISO values, focal lengths, f-stops and exposures. For 
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smartphones this is unable to be adjusted manually, and therefore tend to be camera 

specific in this study. For all devices, the exposure times vary within the photosets 

themselves; due to a fixed f-stop and ISO value. Summary of the devices used and their 

parameters are given in Table 10 for Session 1 and Table 11 for Session 2.  

CloudCompare was used for visual inspection of DEMs and to calculate DEMs’ 

difference (DoDs). Statistical analysis of elevation differences and spread of errors are 

undertaken using R Studio such as histograms analysis, and linear regression analysis. 

Table 10 Camera details displaying the various internal setups for session 1 

Device Type ISO Focal Length (mm) F-stop Exposure 

CUBOT MAX Smartphone 57 3.5 2.4 Varied 

CUBOT X15 Smartphone 60-66 3.5 2.2 Varied 

Samsung Galaxy A5 Smartphone 40 3.6 1.9 Varied 

Samsung Galaxy S5 Neo Smartphone 40 3.7 1.9 Varied 

Samsung Galaxy S5 Smartphone 40 4.8 2.2 Varied 

iPhone 6S Smartphone 25 4.15 2.2 Varied 

 

Table 11 Camera details displaying the various internal setups for session 2 

Device Type ISO Focal Length (mm) F-stop Exposure 

Samsung PL50 Camera 100 10.5 3.7 Varied 

iPhone 6s Smartphone 25 4.15 2.2 Varied 

CUBOT X15 Smartphone 60-66 3.5 2.2 Varied 

iPhone X Smartphone 16-20 6 2.4 Varied 

Galaxy S5 Smartphone 40 4.8 2.2 Varied 

EOS 450D DSLR 200 27 6.3 Varied 
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4. Results 
 

4.1. Evaluation of Session 1 
 

4.1.1. Summary of the Obtained Models 
 

From images obtained in the first session, 6 point clouds were successfully obtained. Five 

of these were based on images from the participants and one is from the researcher 

(Samsung Galaxy S5). This was lower than anticipated and was mainly due to data transfer 

problems as some participants did not send the data. However, all 6 models had successful 

camera parameters and geometry solved by Photoscan – parameters which allow for the 

projection of points in 3D space and therefore arising to a 3D model. About 23-75 images 

were used for reconstruction (Table 12). The models derived for each of the four beach 

sections (Figure 11) were successfully merged in CloudCompare. Table 12 gives a summary 

of devices used, number of images and derived dense point clouds. 

Table 12 Device specifications from session 1, images aligned, and dense point clouds generated from aligned images. 
Clouds reconstructed in PhotoScan. 

Device No. Images 

Aligned/Total Input 

Dense Point Cloud 

 

 

 

CUBOT MAX 

 

 

 

23/25 

 

 

 

 

CUBOT X15 

 

 

 

49/49 
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iPhone 6s 

 

 

75/75 

 

 

 

 

Samsung Galaxy S5 

Neo 

 

 

 

49/49 

 

 

 

 

 

Samsung Galaxy A5 

 

 

 

 

43/43 

 

 

 

 

 

Samsung Galaxy S5 

 

 

 

 

44/44 

 

  

 

Optimisation of image tie points (sparse point cloud) was not performed as many 

of the GCPs points were obscured by beach features such as berms and could not be 

identified. The effect of taking images from the beach, is clearly illustrated in the dense 

cloud points (Table 12 and Figure 14) where white patches show areas with no data. This is 

due to a presence of a high berm and a channel feature behind it. 

Due to missing data and GCPs being out of view, RMSE values between the 

reconstructed coordinates and true coordinates were not calculated. Instead qualitative 
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observations were made. There were few outliers in the dense clouds, but these were 

easily removed, and the segment clouds were successfully merged.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Several important lessons were learnt in this pilot study. GCPs need to be placed on 

the beach or surrounding man-made structures or natural rocks taking care that they are 

visible from all locations from which the images are taken. Also, it is much better to take 

images from higher-up locations than from the lower beach as it reduces oblique viewing 

Figure 14 Camera positions superimposed onto a DEM of the merged point clouds. Not all data was retrieved from 
each volunteer – hence a discontinuity in camera positions. The purple region outlined in red shows the area obstructed 
by the berm. 
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angles. A pole can provide another solution to reduce the oblique viewing angles and 

might need to be used where accessible elevated areas are not present.   

 

4.2. The Evaluation of Session 2: 3D Models 
 

4.2.1. Image and Tie Point Analysis 
 

Imagery from session 2 provided coverage of the whole scene. Photosets ranged from 331 

to 679 images (Table 13). The volume of data per participant had grown by an order of 

magnitude from Session 1, yielding far more flexibility for analysis. However, the alignment 

process was not straightforward for each device. 

 

Table 13 Devices from session 2, the number of images aligned, and the dense point clouds generated from the aligned 
images. Clouds were reconstructed in PhotoScan. 

Device No.  Images 
Aligned/Total Input 

Dense Point Cloud 

 

 

Samsung PL50 
(Digital 

Camera) 

 

 

358/358 

 

 

 

iPhone 6s 

 

 

332/332 
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iPhone X 

 

 

331/331 

 

CUBOT X15 679/679 N/A 

 

 

Samsung 
Galaxy S5 

 

 

 

394/394 

 

 

 

Canon EOS 
450D (DSLR) 

 

 

423/423 

 

 

Upon visual inspection of the imagery provided by the participants, there were no 

obvious defects in each of the datasets. Pedestrians and other participants did appear in 

images, but only a relatively small portion of the photos, which due to robustness of the 

PhotoScan (Agisoft, 2018), did not affect the models.  

Images obtained by all listed cameras, except the CUBOT X15, underwent successful 

image alignment with minimal human input into the procedure. Time spent on feature-
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detection-and-description generation and image alignment for these devices ranged from 

~21 minutes (331 images from the iPhone X) to ~1 hour and 38 minutes (358 images form 

the PL50). The same processing for the CUBOT X15 took 2 hours and 15 minutes (679 

images) but required manual intervention before full 3D geometry could be fully 

reconstructed. As the 3D reconstruction had not been fully successful, guided marker 

placement was not accessible through PhotoScan. This meant the visual input of markers 

in a sample selection of images from both the unsuccessful alignment and successful 

alignment to provide PhotoScan with a guide for feature detection. The alignment step was 

then re-run with these markers as guidance and the model geometry reconstruction was 

completed successfully.  

Tie points produced from the alignment stage did not appear to show any 

immediately obvious defects. A disperse number of tie points had been incorrectly 

generated in areas without features, but these appeared mainly in regions of imagery 

containing sky, where outliers are expected due to instrument sensitivity.  

Figure 15 shows average image residuals vectors derived by PhotoScan from each 

participant’s device. When visually inspecting average image residuals, some devices 

showed systematic errors, which reflect complex radial distortion patterns that could not 

be completely modelled by the 4-parameter-lens model in PhotoScan. Despite this, the 

models did not have immediately obvious visual defects.   Figure 15a shows that the PL50 

is the only camera to contain randomly distributed and orientated image residuals which 

suggests it is the model that has been most accurately calibrated. Figure 15a, b and f all 

display minimal residual error and therefore the PL50, iPhone6 and EOS 450D are assumed 

to be well calibrated. The remaining models show systematic errors and larger residual  
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errors magnitudes. Figure 15d shows larger residual error for CUBOT X15 than other 

camera model estimations and would therefore be expected to generate the least accurate 

model. A camera model with a large residual error would suggest that the model produced 

would be lower than that with a lower residual error. This is a photogrammetric cause for 

inaccuracies, however, more can be introduced further in the SfM workflow.   

 

Figure 15  Image residual vectors from each participant's device. These are representations of how each point on the image 
correlates to a real-world point (each axis is an arbitrary spatial axis with the scale shown in pixels). Different camera 
models can be applied and are usually radial. A well calibrated camera model should produce small and image residuals in 
a random distribution (caused by noisy photos). (a) PL50 (b) iPhone 6s (c) iPhone X (d) CUBOT X15 (e) Galaxy S5 (f) EOS 
450D. (a) Reprojection errors are random and concentrated around image regions with smooth/waterlogged features. (b), 
(c), (d), (e) and (f) show systematic reprojection errors suggesting an incorrect camera model. (a), (b), (c), (d) and (e) are 
all taken by participants. (f) was taken by the researcher. (a) and (f) are standalone cameras. 

a 

e 

f 

d 

b c 
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For some of the image collections, photos had been collected using the variable 

camera parameters. For example, the Samsung PL50 and iPhone X, focal lengths had been 

changed in a small proportion of images. However, SfM algorithms are robust towards 

minor image scale changes and hence the images were not rejected for matching and 

alignment  (Micheletti et al., 2015b). The effects to model accuracy were minimal. 

The problems with GCPs locations and their visibility were not present in session 2. 

However, there were some small issues with GCPs, which were corrected throughout the 

processing of images. While deploying and surveying 2D GCP targets made surveying more 

efficient, the 2D targets suffered from oblique viewing angles at the extremities of the area 

of interest (Figure 16). Oblique viewing angles combined with increasing distance from the 

camera made centroid detection difficult (see Figure 16 and Figure 18). 

 

 

 

 

 

 

 

 

 

 

c 

a b 

Figure 16 (a) An oblique image taken on an iPhone 6s showing the positions of 2 GCP targets. (b) and (c) GCP targets 
showing oblique pixelated centroids. 
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4.2.2. Optimisation and Tie Point Error 

 

To further refine geometry, non-linear corrections were made through bundle adjustment 

to minimise x, y and z error values on the control points. When GCPs with associated GNSS 

coordinates are inserted into the software, bundle adjustment attempts to best fit the 

model to the coordinates provided for the control as well as refining the camera model. 

From this, it yields an error value based on how closely the model fits the coordinates, 

which is an average of the RMSE values on each GCP. To assess global accuracy, check 

points must be established as an external comparison source. GCPs, for which the match 

between the model and affiliated GNSS coordinates had an RMSE of >0.2 m, were removed 

from point clouds and re-optimised. However, lower values were also removed if they 

appeared anomalous to the rest of the GCP error for a particular model. The GCPs removed 

for each device are listed in Table 14 with associated locations displayed in Figure 10. 

 

Table 14 GCPs removed from geometry calculations due to RMSE values beyond the threshold 

 

 

 

 

Device 
Groyne 
point ID 

Sediment/Seawall Point 
ID Total No. Removed 

PL50   1,5,7,10 4 

iPhone 6s   1 1 

iPhone X     0 

Galaxy S5   1,9,10,17,24,25,34,35 8 

EOS 450D 5 18 2 
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4.2.3. The Effect of GCP Configuration on Model Accuracy 
 

In this section models were produced from each GCP configuration listed in Table 8. The 

same procedure as described in 4.1.1 was followed for each configuration. The RMSE values 

for each configuration in are shown in Table 15. Each RMSE value in the table is an average 

across the full control point (points included in geometry calculations) or check point 

(points excluded from geometry calculations but used as a test of model accuracy) range 

of GCPs. The RMSE is a measure of how well a model is fitted to the recorded GCP 

coordinates in the real world. The values are not attributed to a single dimension but 

instead are magnitudes of error in any direction from the GNSS position to the nearest 

point on the DEM surface.  

Table 15 All device configurations and their respective average RMSE for control and check points 

 

 

 

 

 

 

 

 

 

 

 

Device Cloud Name Average Control RMSE (m) Average Check RMSE (m) 

PL50 Full Distribution 0.029 0.017 

  All Defences 0.032 0.019 

  All Seawall 0.039 0.026 

  High Seawall 0.040 0.038 

  Mid Seawall 0.033 0.034 

  Low Seawall 0.028 0.037 

  All Groyne 0.016 0.030 

  Low Groyne 0.015 0.030 

  Average 0.029 0.029 

iPhone 6s Full Distribution 0.035 0.036 

  All Defences 0.035 0.038 

  All Seawall 0.030 0.058 

  High Seawall 0.025 0.051 

  Mid Seawall 0.026 0.053 

  Low Seawall 0.034 0.058 

  All Groyne 0.021 0.073 

  Low Groyne 0.023 0.070 

  Average 0.029 0.055 
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For each dataset except Galaxy S5 and across all GCP configurations, average RMS 

error values were below ~0.03 m on the control. Optimisation yielded less accurate results 

Device Cloud Name Average Control RMSE (m) Average Check RMSE (m) 

iPhone X Full Distribution 0.034 0.036 

  All Defences 0.035 0.035 

  All Seawall 0.031 0.047 

  High Seawall 0.029 0.047 

  Mid Seawall 0.025 0.055 

  Low Seawall 0.031 0.039 

  All Groyne 0.019 0.051 

  Low Groyne 0.018 0.048 

  Average 0.028 0.045 

CUBOT X15 Full Distribution n/a n/a 

  All Defences n/a n/a 

  All Seawall n/a n/a 

  High Seawall n/a n/a 

  Mid Seawall n/a n/a 

  Low Seawall n/a n/a 

  All Groyne n/a n/a 

  Low Groyne n/a n/a 

  Average n/a n/a 

Galaxy S5 Full Distribution 0.053 0.044 

  All Defences 0.058 0.043 

  All Seawall 0.063 0.080 

  High Seawall 0.063 0.095 

  Mid Seawall 0.064 0.107 

  Low Seawall 0.038 0.097 

  All Groyne 0.037 0.063 

  Low Groyne 0.026 0.061 

  Average 0.050 0.074 

EOS 450D Full Distribution 0.039 0.037 

  All Defences 0.040 0.038 

  All Seawall 0.027 0.060 

  High Seawall 0.023 0.068 

  Mid Seawall 0.023 0.048 

  Low Seawall 0.022 0.054 

  All Groyne 0.030 0.055 

  Low Groyne 0.029 0.048 

  Average 0.029 0.051 

Average   0.040 0.051 
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for the Galaxy S5 with an average GCP control point RMS error of 0.05 m. Despite being 

significantly lower in accuracy than the models obtained using different cameras, the error 

values are still within the accuracy range required by many coastal monitoring 

programmes. Check point error for the PL50 matched the control error both displaying 

0.029 m; errors were ~0.05 m for the iPhone 6s, iPhone X, EOS 450D and 0.074 m for the 

Galaxy S5.   

As expected, accuracy increases with an increased number and a wider distribution 

of GCPs. In this case only 14 check points were used and 13 in case of the Galaxy S5. When 

only a few GCPs are used as check points there is a higher possibility that the RMS error is 

not an accurate representation of model fit. This was not the case here as accuracy was 

comparable to cases in literature with more check points. It is important to stress that not 

only do the number of control and check points affect the accuracy but also their location 

and configuration. An optimal distribution would require the GCP network to fully 

encompass the area of interest and preferably at multiple elevations. The Full Distribution 

model was chosen as a ‘benchmark’ for cloud comparisons due to consistently well-

optimised models.  

Next, the digital elevation models (DEMs) obtained from the sparse clouds derived 

using different GCPs configurations were compared. DEMs were obtained from cloud 

points interpolated to a 0.5 m grid for computationally efficiency. Using simple linear 

regressions, differences between elevations derived using different GCP configurations 

were investigated. Figure 17 shows comparisons for all models derived from images 

collected using Samsung PL50. Similar results are obtained for all other cameras and are 

given in Appendix 4. Points are densest around the regression line, indicating that the 
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elevations in models fit closely to each other. However, at closer inspection, the best fit is 

at medium and higher elevations which coincides with topography that is generally closer 

to GCPs. There are more discrepancies at lower elevations, on the beach due to the 

distance from the camera and the increasingly oblique views. Elevations from the model 

obtained using configurations of groyne only GCPs as control (in Figure 17 – ‘AllGroyne’ and 

‘GroyneLow’) tend to exhibit the lowest RMSE values with elevations from the model 

obtained using the “AllDefence” model. RMSE values range from ~0 m for ‘AllGroyne’ 

versus ‘AllDefence’ to 0.025 m for ‘Full’ versus ‘SeawallLow’.  

Figure 17 Sparse linear regressions of GCP configurations using the PL50 as an example. RMSE values are displayed 
for each respective plot.  Red lines display a perfect positive 1:1 correlation between the configurations. Minor 
deviations are evident towards lower elevations. 
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4.2.3.1. Evaluation of Dense Reconstructions 

 

After sufficient optimisation was performed for each device and its associated GCP 

configurations, dense reconstructions were carried out as described in 3.2.2. The PL50 and 

iPhone 6s completed dense reconstruction using aggressive depth filtering, however the 

iPhone X, Galaxy S5 and EOS 450D required moderate filtering to achieve reconstruction 

on the Full Distribution models only (Table 16). 

Table 16 A table showing details on the dense reconstruction. 

 

 

 

 

 

PL50 Points 18,036,823 

 Quality Medium 

 Depth filtering Aggressive 

 Depth maps generation time 2 hours 3 minutes 

 Dense cloud generation time 2 hours 33 minutes 

iPhone 6s Points 14,891,480 

 Quality Medium 

 Depth filtering Aggressive 

 Depth maps generation time 2 hours 4 minutes 

 Dense cloud generation time 3 hours 41 minutes 

iPhone X Points 24,144,329 

 Quality Medium 

 Depth filtering Moderate 

 Depth maps generation time 8 hours 16 minutes 

 Dense cloud generation time 4 hours 53 minutes 

Galaxy S5 Points 8,098,157 

 Quality Medium 

 Depth filtering Moderate 

 Depth maps generation time 1 hours 41 minutes 

 Dense cloud generation time 11 hours 29 minutes 

EOS 450D Points 21,806,115 

 Quality Medium 

 Depth filtering Moderate 
 Depth maps generation time 6 hours 45 minutes 

 Dense cloud generation time 8 hours 12 minutes 
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By producing DoDs between clouds that are optimised to different GCP 

configurations, a detailed inspection of topographical differences influenced by GCP 

distribution can be made. DEMs were derived in by the interpolation of dense clouds to a 

0.03 m grid using the nearest neighbours method. DEMs and DoDs are produced in 

CloudCompare. The models optimised by using the Full Distribution GCP configurations 

were used as benchmark models. 

The DoD of the models optimised with ‘Full Distribution’ and ‘Seawall Mid’ GCP 

configuration are shown in Figure 18. Other DoDs can be found in the Appendix 2. 

Comparisons showed a consistently close fit between the Full Distribution model and the 

All Defence model as expected due to their GCP count and distribution being similar.  

 

 

 

 

 

 

 

 

Models optimised using GCPs located on the groynes often displayed close matches 

to the Full Distribution model. The location and coverage rather than the number of GCPs 

is likely a greater influencing factor. Models show a consistently high elevation RMS error 

Seawall Mid 
Volume: 73.846 
Surface: 3,081.996 
---------------------- 
Added volume: 
(+)73.990 
Removed volume: 
(-)0.144 
---------------------- 
Matching cells: 98.1% 
Non-matching cells: 
ground = 1.0% 
ceil = 0.9% 
Average neighbors per 
cell: 
7.4 / 8.0 
 

Seawall Mid a b c 

Figure 18 (a) iPhone X DoD between the benchmark Full Distribution Model and the Seawall Mid model. (b) Shows the 
distance from the camera (red) to the GCP (yellow) (c) Shows an example of the oblique viewing angles for marker placement.  



Lancaster Environment Centre  Student Number: 32290900 
 

80 
 

when using the seawall in various GCP configurations (Table 18). Displacement in model 

topography based on Seawall GCPs are often found to show positive vertical error towards 

the south-western extents and less commonly to the north-western perimeter. Even in the 

cases of the models optimised using the ‘Seawall’ GCP configurations, a ±0.05 m vertical 

deviation is found at ~50 m from the seawall where imagery was captured. This results in 

the largest volumetric change of ~74 m³ (Figure 18a) when compared to the ‘Full’ 

distribution model. 

 There are likely two possibilities for the large displacements found in the seawall 

configurations; a) the GCPs do not enclose the area of interest and therefore geometry 

must be extrapolated outwards from known coordinates resulting in the model being tilted, 

and b) the targets attached to the seawall were often oblique and distant in imagery and 

therefore marker placement in PhotoScan was imprecise (Figure 18b and c). 

 

 

 

 

 

 

 

 

Figure 19 shows the elevation differences between the models optimised using ‘Full 

Distribution’ and ‘Groyne Low’ GCP configuration for iPhone X. Here the largest differences 

Groyne Low 
Volume: -20.730 
Surface: 2,679.797 
---------------------- 
Added volume: (+)1.835 
Removed volume: (-)22.565 
---------------------- 
Matching cells: 84.4% 
Non-matching cells: 
ground = 13.6% 
ceil = 2.0% 
Average neighbors per cell: 7.3 / 

8.0 

 

Groyne Low 

Figure 19 iPhone X DoD between the Full Distribution model and the Groyne Low model. 
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of -0.025m are found further inland. This results in the volume differences of -21 m³ (Figure 

19). A few patches displaying consistent differences ran along the seawall in areas 

containing washed up debris and foam. Due to the more exaggerated geometry of debris 

compared to the gently sloping beach, it is a potential that changes here are a result of 

displacement in the horizontal plane being represented as error in elevation.  

Table 17 A table displaying the difference in volumes between each GCP configuration. 

 

 

 

 

 

 

 

 

 

 

The volumes calculated for each GCP configuration comparison is shown in Table 

17. Each GCP configuration was compared to the ‘Full Distribution’ model for each 

respective device. It shows that the iPhone X had the largest volume difference out of the 

models that underwent successful dense reconstruction, and when averaged across both 

negative and positive elevation differences also displayed the largest change. 

 

Device 
GCP 
Configuration 

Volume Added 
(m3) 

Volume Removed 
(m3) 

PL50 All Defence 9.5 0.8 

  All Groyne 6.9 1 

  Groyne Low 1.4 3 

  All Seawall 40 0.2 

  Seawall High 18 7.8 

  Seawall Mid 35.7 0.2 

  Seawall Low 59 0.8 

iPhone 6s All Defence 2.3 4 

  All Groyne 6.1 1.4 

  Groyne Low 5.5 2.4 

  All Seawall 8.8 3.5 

  Seawall High 3.9 11 

  Seawall Mid 0.03 28.6 

  Seawall Low 22.8 2.4 

iPhone X All Defence 5 0.7 

  All Groyne 5.6 13.7 

  Groyne Low 1.8 22.6 

  All Seawall 14.1 0.3 

  Seawall High 45.3 0.2 

  Seawall Mid 73.8 0.1 

  Seawall Low 14.1 0.3 
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Elevations from the DEMs derived from dense clouds optimised by using different 

GCPs configurations were plotted against for linear regression analysis. In this case the 

clouds were interpolated on a 0.5m grid to make plotting more computationally 

manageable. Figure 20 (and Appendix 4) shows linear regression analysis for the PL50 

between dense clouds and unsurprisingly shows similarities with the plots for the sparse 

clouds in Figure 18. The dense clouds diverge at lower elevations, as seen also in the sparse 

linear regressions. There are also some more outliers, and this is not surprising as there are 

more points in the dense clouds affecting DEM interpolation.  
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Figure 20 Dense linear regressions of GCP configurations using the PL50 as an example.  RMSE values are displayed 
for each respective plot. Red lines display a perfect positive 1:1 correlation between the configurations. Minor 
deviations are evident towards lower elevations. 
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It seems evident that the largest differences usually occur between elevations 

models that utilise the ‘SeawallLow’ GCP configuration. Models compared to this typically 

show a higher RMSE, between 0.013 m and 0.03 m.  

A summary table to show the RMSE values derived from the statistical program R 

based off 0.5 m gridded DEMs shows the magnitude of error in the DoDs. RMSE values 

could only be generated for all configurations on data from three of the devices. This is 

because these were the only three which underwent successful dense reconstruction.  

Table 18 A summary table of RMSE derived from the dense linear regression analysis. Data here was based on the 0.5m 
grids for the PL50, iPhone 6s and iPhone X exported from CloudCompare. 

 

Device 
GCP 
Configuration RSME (m) 

PL50  All Defence 0.012 

  All Groyne 0.012 

  Groyne Low 0.005 

  All Seawall 0.02 

  Seawall High 0.016 

  Seawall Mid 0.019 

  Seawall Low 0.03 

iPhone 6s All Defence 0.006 

  All Groyne 0.004 

  Groyne Low 0.004 

  All Seawall 0.006 

  Seawall High 0.008 

  Seawall Mid 0.013 

  Seawall Low 0.013 

iPhone X All Defence 0.002 

  All Groyne 0.008 

  Groyne Low 0.02 

  All Seawall 0.015 

  Seawall High 0.017 

  Seawall Mid 0.026 

  Seawall Low 0.005 

 

The table shows the iPhone 6s to show the most consistently low RMSE, indicating that the 

models are least affected by a change in GCP configuration out of the three models tested.  
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4.2.4. The Effect of Different Devices on Model Accuracy 
 

Next the models derived from images collected by different cameras were compared. The 

models optimised using ‘Full Distribution’ were only compared by looking at errors at check 

points. These were investigated for sparse and dense clouds.  

 

4.2.4.1. Evaluating Tie Point Geometry 

 

Figure 21, 22 and 23 display histograms of errors in x, y and z coordinates respectively at 

check points for all cameras. When visualising the spread of error in the models, despite a 

small sample size, results display similarities to a normal distribution. On average errors 

across x, y and z coordinates seem to concentrate around 0 m for the PL50, suggesting the 

model is the most accurate. However, care needs to be taken as this is very small sample. 

The PL50 consistently yielded lower standard deviations than those of the other devices. 

The errors in coordinates for the Galaxy S5 show the widest spread (Figure 21 - 23). 

Interestingly, errors in z coordinates are narrowly distributed and centred around 0 m for 

all except the Galaxy S5 in-built camera. 
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Figure 21 ‘Full Distribution’ histograms displaying the spread of error in the x horizontal dimension for each device. The PL50 shows the 
highest concentration of error around 0m, whereas the iPhone 6s, iPhone X, Galaxy S5 and EOS 450D all show outliers greater than 
±0.4 m.  
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Figure 22 ‘Full Distribution’ histograms displaying the spread of error in the y horizontal dimension for each device. The PL50 shows the 
highest concentration of error around 0m, whereas the iPhone 6s, iPhone X, Galaxy S5 and EOS 450D all show a wider spread of error.  
Error in this dimension is lower than that in the x dimension.  
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Figure 23 Histograms displaying the spread of error in the z vertical dimension for each device. All devices show a high concentration of 
error around 0 m with the EOS 450D showing the most spread error. 
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All mean values of error were highly centred around zero in the x and z coordinates 

with values of order millimetres. This was not entirely true for y coordinates, as values for 

the Galaxy S5 and EOS 450D (Figure 22 and Figure 23) extended into the centimetres. This 

is likely an effect from the oblique viewing angle present in the y direction on the seawall 

GCPs. 

GCP locations are given in Figure 24 to visualise the distribution of vertical errors 

across the groyne cell. Points with high red or blue saturation suggest larger errors for the 

vertical component, in the positive and negative direction respectively. A relatively large 

portion of these vertical error components tend to lie around the seawall, with a few 

sparsely distributed elsewhere. Viewing angles for targets attached to the seawall 

presented more of challenge for choosing marker location within PhotoScan and thus often 

contain larger pixel errors. This is especially true on the extremities such as GCP 1,9,18, 24 

and 25 which were removed from some models due to high inaccuracies.
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Ground Control Point 

Check Point 

Figure 24 GCP locations with a colour grading representing z error for the ‘Full Distribution’ for each device with respect to the GCP position.  
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Elevations from the sparse clouds derived from images obtained using different 

cameras are plotted against each other in Figure 25. Linear regressions show 

significantly more deviation at lower elevations (Figure 25). As suggested by previous 

results showing similar trends. Deviations are largest in comparison between clouds 

derived from other cameras rather than GCP configuration when comparing the sparse 

point clouds – differences in elevation here range from 0.032 m for the PL50 versus 

the iPhone 6s and 0.052 m for the Galaxy S5 versus the EOS 450D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 Linear Regressions of elevations between device DEMs generated from sparse clouds. The red lines 
represent a perfect positive correlation. 
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As in the previous analysis, larger discrepancies are observed at lower 

elevations down on the beach. The largest deviations are observed in comparisons 

involving the Samsung Galaxy S5 and the Canon EOS 450D, but also there is quite a bit 

of deviation between them suggesting that the cameras, their respective settings and 

the way the images are taken can influence the accuracy of results.  

 

4.2.4.2. Comparison of Dense Reconstructions 

 

Elevations from models obtained by different cameras were plotted against each other 

(Figure 26). Interestingly, increased surface deviations are not as noticeable between 

Figure 26  Linear Regressions showing relationships between dense reconstructions generated from each 
device. Red lines represent a perfect positive correlation. 
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the dense DEMs—there is not a significant systematic trend of lower elevation 

deviation. Additionally, RMSE values decrease significantly after the dense 

reconstruction process (Figure 26). This is coherent with the cloud filtering methods 

used, which remove obvious outliers – a step that is not performed until dense 

reconstruction. Prior to filtering, the sparse clouds had much more noise present, 

especially in the Galaxy S5 and EOS 450D models (Figure 25). 

Monitoring changes in beach volume is a key factor in understanding beach 

dynamics, and thus is the area of interest for this study. Although comparisons are 

directly measured as elevation change, volumetric change can also be worked out 

between clouds. Comparisons between DEMs obtained by different cameras show 

consistent deviations towards the seawall (eastwards) as illustrated in Figure 27, 

Figure 28 and in Appendix 3.  Scales here have been chosen to visualise topographical 

deviations according to the magnitudes they operate on; the scales for these DoDs are 

either 0.02 m or 0.03 m as a maximum elevation. It should be noted, that the largest 

divergence towards the seawall is shown in comparisons involving the Galaxy S5 and 

EOS 450D. This could be a result of a tilt in model alignment, consequently causing a 

positive and negative shift at both the east and west extents of the DEM (Figure 27). 

DoDs derived from model pairs including the EOS 450D also have a systematic defect 

propagating from central regions northwards. This defect explains the sporadic 

distribution of point about the regression line in Figure 26. DoDs here present changes 

that are significantly lower than those inflicted by a change of GCP configuration. The 

least accurate DEMs also result in the largest volume difference; the largest of which 

is for the Galaxy S5 and the EOS 450D. Figure 28 shows a DoD between the PL50 and 
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iPhone 6s where the deviation tends to be much lower than the Galaxy S5 and EOS 

450D. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Volume: -3.636 

Surface: 2,731.401 

---------------------- 
Added volume: (+)8.793 

Removed volume: (-)12.429 

---------------------- 
Matching cells: 70.6% 

Non-matching cells: 
ground = 0.6% 

ceil = 28.8% 

Average neighbors per cell: 7.3 / 8.0 

PL50 - EOS 450D 

Figure 27 DoD between PL50 and EOS 450D. The DoD displays deviations in elevation of the EOS 
450D DEM with reference to the PL50 DEM. 

Volume: -2.301 

Surface: 2,373.841 

---------------------- 
Added volume: (+)5.171 

Removed volume: (-)7.472 

---------------------- 
Matching cells: 86.0% 

Non-matching cells: 
ground = 13.8% 

ceil = 0.3% 

Average neighbors per cell: 7.5 / 8.0 

PL50 – iPhone 6s 

Figure 28 DoD between PL50 and iPhone 6s. The DoD displays deviations in elevation of the 
iPhone 6s DEM with reference to the PL50 DEM. 
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4.3. Implementing Citizen-led Coastal Photogrammetry 
 

This section describes the challenges and successes of implementing photogrammetry 

as a coastal data collection activity for members of the Rossall Beach Residents and 

Community Group. It reviews the level of engagement from participants during the 

data collection process and participants’ feedback gained for both sessions. The first 

session served as an initial assessment into the structural framework required for 

citizen-integrated coastal monitoring and involved an indoor and outdoor activity. This 

was followed in the next month with a more refined session, being based solely on the 

beach. 

 

4.3.1. Session 1 
 

Participation numbers for the outdoor activity of session 1 declined from 18 taking 

part in the indoor session, to 12 continuing outdoors. This was a result of the various 

responsibilities of the volunteers and a few who were not able to participate due to 

cold weather conditions. Nevertheless, the 12 volunteers who did participate in the 

outdoor session, performed the task in the proscribed manner (see Methodology 

section). The task was performed with high enthusiasm and appeared to follow the 

correct procedure. Here we look at the feedback gained from the participants. 

Questions 1 – 5 in the feedback forms (Appendix 5 and Appendix 8) were 

centred around the participants’ understanding of project aims and objectives and 

their involvement within the programme. Overall feedback was positive with a high 

level of understanding shared between individuals. Crucially, there was consensus 
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among the participants about clarity of the aims and objectives of the project 

regarding coastal monitoring and how it is important in their lives (Figure 29a). 

When asked about the indoor activity, citizens appeared to find the table-top 

3D model generation difficult (Figure 29b).  General enthusiasm towards the indoor 

3D model generation was high, although when asked in person about their 

understanding of the 3D model generation process, relatively few said they had 

understood the procedure. The volunteers were split into 5 groups each with a laptop, 

and usually contained at least one member who had understood the procedure 

instructions.  

 

For the outdoor session, volunteers responded positively when asked if they 

found imaging the coast easy. 57% of participants said they felt confident in the data 

collection procedure and followed the technique closely to the researcher’s 

demonstration, where 43% were mostly confident performing the task (Figure 30a). 

Figure 29 Pie charts displaying views expressed by The Rossall Beach Residents and Community Group. (a) Shows the 
proportion of participants who understand the benefits coastal monitoring has on developments. (b) The level of difficulty 
encountered for 3D model generation by participants. 
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When asked, if they were able to independently upload data through the data transfer 

site wetransfer.com, 88% of participants responded as either mostly agreeing or 

completely agreeing (Figure 30b). This is interesting as only 50% of participants 

successfully transferred their data wirelessly. One volunteer attempted to transfer the 

data, however, was unsuccessful and had deleted the photos before a second attempt 

could be made. This shows that, although many volunteers assumed they were able 

to transfer the data, without performing it, their understanding may have been 

incorrect. Another potential is the loss of motivation once removed from the study 

and therefore reduced chances of retrieving data. It is for this reason, that the second 

session was adapted to account for this. 

Having this monitoring session as a part of The Rossall Beach Residents and 

Community Group regular meeting was something that 86% of volunteers were happy 

with, however it was not unanimous. If this style of coastal research were to be 

conducted by members of this community group, then 57% would be happy with a 

periodicity of once a month, 29% once a week and 14% of once a year. These figures 

are based on a small sample size of 12 (questionnaires were filled out after the outdoor 

session) and thus requires a larger sample size to confidently represent the coastal 

group, however, this acts as an indication of participant perceptions towards coastal 

data collection. 
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4.3.2. Session 2 
 

Feedback from the first session indicated that citizens did not absorb the intended 

information about SfM 3D model generation. For this reason, the indoor session was 

removed from activities conducted in the second session. Instead emphasis was 

focused on the technique for image capture rather than the method behind the 

processing of imagery. Volunteers were handed information packs detailing the 

requirements for coastal photogrammetry.  

Figure 30 Pie charts displaying views expressed by The Rossall Beach Residents and Community Group. (a) How 
participants performed the imaging technique. (b) Participants’ willingness to have coastal photogrammetry 
incorporated into their set of activities. (c) Participant views on how often they might conduct this type of data 
collection in the future. 
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The second session hosted fewer participants than before, and thus a more in-

depth engagement model was able to be established. Motivation from the volunteers 

was high, and the procedure was conducted as required despite a relatively strong 

persistent wind. The day was overcast and thus provided ideal light conditions for 

photogrammetry. Manual hard-wired data collection was instigated for data upload 

this session due to the low volume of data retrieved from the last session. Participants 

met for a post-field meeting, whereby data was collected, and questionnaires were 

filled out.  

One volunteer did not complete the questionnaire and thus results displayed 

only represent 4 out of 5 volunteers. Of the 4 participants, 75% showed confidence in 

following the image capture procedure with the remaining 25% not knowing whether 

they did or not. Interestingly, 50% of the volunteers stated they found the task 

enjoyable, and the other 50% mostly agreeing. This might be due to the large number 

of images collected in this session of >200 per person. The importance of the study 

and the effect that coastal monitoring has in their lives seemed to be unanimously 

agreed upon. The significance of correct scene and camera conditions was 

understood; however, the citizens showed less confidence in being able to identify 

what the correct conditions might be. This is an important factor to understand to 

reduce the collection of unusable coastal imagery. In future sessions, the participants 

could be further trained, and examples given that they can relate to and therefore 

understand more intuitively.
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5. Discussion 
 

5.1. Comparison of Session Frameworks 
 

Session 1 provided an initial insight into survey design when incorporating citizens into 

data collection. Data collected during this session was successful for dense cloud 

generation, which was facilitated by the reduced image quantities. However, scene 

coverage was limited by the relatively low number of images taken per person and the 

50% success rate of data transfer. This resulted in clouds having to be merged to 

produce a model spanning the length of the groyne cell. This segmentation of beach 

topography into several point clouds was not suitable for device comparisons, as the 

point clouds generated did not contain sufficient overlap for geometry comparisons.  

The GCP network in the first session was distributed throughout the scene, 

however, visibility of GCP targets was compromised due to the camera positions. A 

large gap in data caused by an obstructing berm, resulted in numerous GCPs being 

obscured in the photos and thus could not be reconstructed. Imagery was captured in 

an easterly direction with the western side of the berms being well exposed and thus 

undergoing successful 3D reconstruction. The area of no-data behind the western face 

of the berm, would require imagery to be taken from the east looking west. The 

presence of the stepped revetment to the east, enabled a gain in height to be made if 

images were to be taken from on top. This prompted the second session to incorporate 

imagery taken in a westerly direction from the top of the stepped revetment.  

Survey design for the second session was refined from observations made during 

the first session. Despite fewer participants being present for the second session, data 
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capture per participant was considerably higher. Each photoset covered the whole 

groyne cell in this session and enabled the coverage of >2000 m² of mixed shingle and 

sand beach. This allowed for a more robust comparison of data from participants as 

point clouds contained significant overlap – no less than 60% overlap between any 

device (James and Robson, 2012; Agisoft, 2016). The ability to use to the stepped 

revetment as a guideline for image-taking aided in data collection efficiency, and 

combined with groynes as boundaries, led to a robust data capture area. 

 

5.2. The Optimum GCP Configuration 
 

Given the small sample size of this study, it is not possible to conclude with 100% 

confidence that GCP configurations that include groynes provide the highest accuracy 

in all scenarios, however, results gained from this study agree with literature – a GCP 

network that encompasses the scene works best (James and Robson, 2012; Brunier et 

al., 2016; Agisoft, 2016). Results derived from this project suggest that a combination 

of groyne and seawall defences offer the highest average accuracy after bundle 

adjustment – 0.035 m on GCP check points between all devices. However, if limited to 

only one permanent structure, dense reconstruction analysis suggests that using GCPs 

located on structures perpendicular to the linear route of data capture – in this case 

the groynes – provides the best match to the ‘Full Distribution’ model.  

Linear regressions of DEMs also suggest that GCP configurations involving groynes 

match closely with each other. Lower elevations diverge from the regression line 

generated from sparse and dense DEMs. Lower elevations occur at increasing 

distances from the seawall, implying a higher chance of topography being located 
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outside the confines of GCP distribution and an increased distance from the camera, 

both of which lead to higher RMSE values (Clapuyt et al., 2015). This reinforces the 

argument that maintaining expansive GCP coverage where possible is best to ensure 

model geometry is highly accurate (James et al., 2017a).  

The optimum control network that does not include GCPs situated on sediment, is 

the configuration that involves all defence GCPs. This is to be expected as it spans the 

largest coverage whilst also containing the highest quantity of GCPs, however, where 

a coastal structure has only one orientation, then those that are perpendicular to the 

shore provide the greatest model accuracy. 

 

5.3. Configuration Application Along the Fylde 
 

Successful geometry reconstructions consistently achieved RMSE values of <0.05 m 

when optimised using bundle adjustments including GCPs of known position. The GCPs 

were collected with accuracy values of ±0.02 m (provided by the dGNSS) suggesting a 

confidence in surface topography of ±0.07 m on average for all configurations for each 

device when accounting for a cloud geometry and alignment of ~±0.05 m. There is a 

strong link between GCP distribution and geometry/ point cloud orientation accuracy 

when designing surveys. From this, it is evident that survey designers should aim to 

maximise coverage across the scene of interest and encompass, where possible, the 

entire scene. Extrapolation beyond the confines set up by GCPs rapidly decreases 

topographical accuracy and therefore limits the extent of geometric confidence (James 

and Robson, 2012; Agisoft, 2016; James et al., 2017a). For each DoD shown, deviations 

in surface topography never exceeded ±0.05 m across all GCP configurations and 



Lancaster Environment Centre  Student Number: 32290900 
 

102 
 

device comparisons. These measures of confidence do not achieve cross-shore 

accuracies achieved by GNSS beach profile surveys – which are a direct consequence 

of GNSS equipment accuracy – however they enable full topographical measurements 

in x, y and z directions.  

The Fylde coastline, is predominantly defended by hard defences. 17km of the 

coastline is comprised of seawalls, 6km of which have additional groynes. As 

permanent features are required to establish a GCP network suitable for continued 

citizen-led monitoring, these hard defences are relied on. As a result, the most 

common form of configuration that is enabled along the Fylde coastline would be the 

seawall configurations. Where possible, a combination of elevations on the seawall 

should be utilised, however, structural characteristics might restrict this. Furthermore, 

many parts of the coastline do not have the same geometry as the groyne cell tested 

in this study. Linear seawall formations would result in increasingly obliquity on GCP 

viewing angles. This could add to increased y error in GCP placement within imagery.  

In this study the deviation in point cloud accuracy for seawall only configurations 

exhibited characteristics of model tilt, whereby data increasingly diverges from the 

reference ‘Full Distribution’ model. This effect would be difficult to remove entirely 

along other parts of the 17km hard-defended coast where permanent structures might 

only run along the back of the beach, so this reduced accuracy would have to be taken 

into account when interpreting results.  

To summarise, this study contributes knowledge towards defining an optimum 

GCP configuration for a CS data collection programme in a coastal environment. An 

optimum GCP configuration would include the use of permanent structures that 
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protrude out perpendicular to the shoreline to encompass the scene of interest along 

with a permanent structure running parallel to the beach. The structures should be 

permanent so that the GCP survey only needs to be conducted once and updated a 

little as possible. When setting the GCP targets on the permanent structures they 

should be clearly visible, and where possible, should be positioned so that they are 

parallel with the plane of the image collected by the camera. Distances should not be 

too large between the camera and GCP as to avoid the misidentification of the GCP 

centroid. 

In a scenario where there are no perpendicular permanent structures on the coast, 

then a raised seawall or similar sea structure positioned at the back of the beach, can 

be used for GCP positioning. In this scenario, results gained from this investigation 

suggest that the model will be more prone to tilting, and therefore differences in 

elevation are likely to increase the further from the structure the topography is. 

Results from this study imply that differences could be up to ±0.05 m if GCPs are 

positioned only to one side of the model. 

 

5.4. Device Performance 
 

Perhaps surprisingly, the standalone DSLR camera provided the largest systematic 

error, with noise propagating from the southeast region of the model to the 

northwest. This proved difficult to remove using the point removal tool within 

CloudCompare (Girardeau-Montaut, 2003). The excessive points were present above 

the active layer in this model and positioned close to the ground, making point removal 

problematic. This excessive noise displays false visual surface features that can 
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influence quantitative interpretation and would therefore not be a suitable visual tool 

for coastal decision making. It should be understood however, that this is an issue 

related to the dense reconstruction procedure, which was present in all clouds but was 

difficult to remove for this particular point cloud. Overall, model geometries displayed 

minimal signs of deviation between devices. The much larger influence on geometry 

results from the control network. Smartphones in general performed well, however, 

some models required excessive manual intervention to remove noisy data – although 

this could be reduced if depth filtering was set to ‘aggressive’ (Agisoft, 2016).  

The sample size was small and thus further work would be required, however, the 

results gained from this study supports findings from literature where built-in 

smartphone cameras exhibit similar, and in some cases better, topographical accuracy 

than standalone cameras (Prosdocimi et al., 2015; Micheletti et al., 2015a).  

Additionally, this project brings to light the high-resolution 3D models generated by 

smartphones. Models produced using these cameras provided dense point clouds 

displaying resolutions that are high enough to identify small-scale coastal processes 

such as toe scour (Sutherland et al., 2006). On average the models had a point density 

of 0.3 points/cm² and contained millions of points – between ~8 million for the Galaxy 

S5 and 24 million for the iPhone X. This high resolution enables the possibility to study 

the topography of processes that are undetectable to many other monitoring methods 

such as airborne LiDAR.  
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5.5. Citizen Motivations 
 

The study carried out has demonstrated that CS projects can be utilised in the 

collection of coastal data, which importantly, is scientifically useful and can be used to 

successfully generate 3D topographic models. More trials would be needed to 

determine whether engagement was truly successful, however, feedback from each 

session yielded positive participant stances towards coastal photogrammetry. 

Literature suggests that if a study has contextual meaning in a person’s life, then they 

are more likely to absorb information provided to them (Hails and Kinderlerer, 2003; 

Sturgis and Allum, 2004). It suggests that their level of engagement is based upon their 

interest in the topic. From this study, the volunteers expressed an understanding of 

how coastal processes can affect them either directly, from coastal flooding during 

storm events, or indirectly, through negative impacts inflicted on infrastructure and 

commercial developments. The residents seemed to possess lay expertise regarding 

the Fylde Coast which in coastal topography facilitates the efficient identification of 

developing erosional features such as toe scour or the more widely affecting, beach 

lowering. Local qualitative knowledge of sediment levels along large sections of coast 

seemed be present among the volunteers, which could help in the discovery of 

erosional features such as toe scour along the coast. This provides a means for efficient 

detection-and-monitoring if combined with the community group’s ability to perform 

photogrammetric coastal surveys. 

Overall perceptions towards the photogrammetric approach were positive, 

however, adverse weather conditions are likely to affect data collection abilities. This 

was observed during the first session, as participation decreased when transitioning 
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from the indoor to the outdoor activity due to a cold, consistent wind from the Irish 

Sea. Furthermore, feedback gained from the questionnaire during the first session 

regarding data transfer appeared to show 86% percent were comfortable transferring 

data wirelessly via data transfer websites (Figure 30c), yet only 50% of data was 

retrieved. This could be related to declining motivations once separated from 

community activities.  

Overall, observations made on the community group suggest a highly 

motivated coastal group collectively. However, the data transfer procedure seemed to 

be the biggest challenge when conducting field studies with this group, and 

momentum in proactive engagement is required if data collection is to happen in their 

own time.  

 

5.6. A Comparison to Other Topographical Methods 
 

In this study, photogrammetric surveys using smartphones operated by citizens have 

been shown to provide suitable accuracies that are consistently lower than <0.05 m 

when compared to check points. As it currently stands, airborne LiDAR surveys cover 

larger swaths of coastline, with freely available data that yield accuracies of between 

0.25 m and 2.0 m ground sampling distance (x and y) and between 0.12 m and 0.35 m 

in the vertical (z) dimension (Miles, 2014), however,  the frequency is much lower than 

the potential offered by photogrammetric surveys conducted by citizens.  

This study has demonstrated the capability of citizen-derived imagery as a source 

of data for SfM; exhibiting maximum inaccuracies of up to ~0.07 m at distances of 50 

m offshore – an area of especially high erosion during storm events therefore often 
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requiring diligent monitoring (Wyre Borough Council, 2004). If this type of CS project 

became an integral part of community activities, then monitoring frequency could 

increase significantly at high spatial resolutions. Volunteers stated they would be 

willing to integrate data collection for SfM photogrammetry into The Rossall Beach 

Residents and Community Group’s set of activities (Appendix 9B). 

 

5.7. The Potential Framework for a Citizen Science Coastal Data Collection 

Programme 
 

Due to the intensity and length of the sessions run for this study, it would be feasible 

to run similar sessions at 6-month intervals, and more frequently as expertise develops 

within the group. The sessions are planned to be run by the partner SME, Jane 

Littlewood from The Rabbit Patch Ltd. who has built knowledge and understanding of 

the SfM process. Running of the sessions would involve demonstrations out on the 

beach by leaders of the project to participants followed by the data collection activity.  

Areas of topographic interest should be investigated to determine whether the 

surroundings are fit for a GCP network to be established following the guidelines set 

out in section 5.3. If the guidelines can be followed, then a GCP network can be 

established and repeated surveys can take place, though if only localised 

measurements are required then something with a known distance should be included 

in the models – however model accuracy can only be made with respect to other 

models. If a GCP network is established, then model accuracy can be tested against 

points of known coordinates and measurements can be relatable to other 

disconnected models. When conducting the survey models should be produced in 
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batches of two or more to increase the likelihood of generating successful models. This 

also provides the added benefit of cross-referencing models with each other for 

further topographic assessment (Prosdocimi et al., 2015). This helps to identify 

erroneous data by showing topographical differences through visual DEMs of 

difference and the data can be extracted for use within other statistical tests such as 

providing RMSE values shown in section 4.2.  

The idea of community group data collection extends beyond organised 

sessions by establishing a deep knowledge of the SfM process into participants with 

the potential for data collection in their own time. By having participants who are 

capable and encouraged by project leaders to carry out the SfM imaging procedure, 

the ability to monitor the coastline at short notice becomes achievable. This opens the 

possibility for rapid post-storm beach surveys to take place when researchers might 

not be able to gather equipment, human resources or be in the vicinity to carry out 

the research themselves. 
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6. Conclusions 
 

This study had 2 primary objectives regarding data outputs from a coastal SfM-

orientated CS project: (1) To assess the accuracy of point cloud products of a coastal 

environment derived from imagery collected by citizens, and (2) analyse the response 

from participating public members towards the SfM imaging procedure. This 

conclusion revisits the objectives set out at the start of this project and reviews the 

successes and problems encountered throughout.  

 

6.1. Assessing the Accuracy of Citizen-derived Coastal Point Cloud Products 
 

Images acquired during this study proved to be a viable source of data for scientifically 

useful 3D models. The act of capturing imagery was undertaken successfully in both 

sessions, however, lesser practiced tasks such as data transfer were identified to be a 

limiting factor on the volume of gathered data. Despite this, images that were 

transferred from participant to researcher generated successful high-density 

topographic models which can be manipulated to suit the objective of study – whether 

large-scale beach morphological changes are to be monitored therefore requiring low 

density point cloud/DEM products or small-scale processes such as toe-scour utilising 

the high-density nature of the point cloud.  

 

6.1.1. Suitability of Citizen-Derived Imagery 
 

Citizen-derived imagery has displayed the potential for use within a scientific domain. 

At this point it still requires a brief set of instructions and training into the technique 
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for data collection. For this reason, it is a suitable tool for coastal community groups 

as they provide a dedicated group of willing volunteers, however, further analysis 

would need to be conducted into minimising the quantity of photos needed for 

successful point cloud reconstruction if the method were to be applied to the wider 

public.  

Overall, this thesis suggests that citizen-derived imagery is a viable data source for 

costal monitoring, however it highlights the difficulties involved with acquiring data 

from volunteers and processing it efficiently. If the computing power is sufficient, then 

depth filtering can increase to provide cleaner models and thus reduce manual post-

processing tasks.  

 

6.1.2. Point Clouds Prior to Georeferencing 
 

Sparse point cloud generation was successful for each device throughout both sessions 

which demonstrates the fact that the correct imaging procedure had be performed. In 

total out of both sessions only one device did not manage to produce the full dense 

point cloud reconstruction- the CUBOT X15. This shows that the is a high success rate 

in the geometry reconstructions from a citizen-derived dataset. Sparse geometry could 

be reconstructed with ease, however, where dense reconstructions are necessary 

processing times are significantly increased. Dense point clouds were successfully 

produced across the full range of GCP configurations for the PL50, iPhone 6s and 

iPhone X, however, were limited to only the ‘Full Distribution’ GCP configuration for 

the Galaxy S5 and EOS 450D due to processing time constraints (Table 16). The 

processing and post-processing times required to produce dense point couds require 
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hours. It seems that for the coastal setting, noise is introduced relatively easily and 

needs to be accounted for. This means more aggressive depth filtering settings are 

recommended if computing power allows (Agisoft, 2016), however increased 

processing times result from this as shown in the Methodology. Occasionally, 

processing times results in the SfM procedure to be halted and resumed on a less 

aggressive filter setting. To ensure the maximum leverage from the collected data is 

achieved, multiple participants photographed the same scene.  

This study proves that from a single CS session, multiple 3D models can be 

produced thus providing the ability for model to model assessment. This allows for 

deviations in topography to be analysed between model without the need for 

georeferencing. However, to gain further insight into model accuracy the use of real-

world coordinates needs to be used to relate point cloud reconstructions to points of 

known coordinates.  

 

6.1.3. Georeferenced Clouds 
 

Reconstructed dense clouds were georeferenced with a variety of GCP configurations. 

Each configuration manipulates model geometry and therefore has a direct effect on 

the accuracy of the 3D models. This study has tested 8 different varieties of GCP 

configuration to attempt to understand the different model topographies that might 

be generated in various locations along the coast. Where a typical research 

investigation would establish the most ideal GCP network to achieve minimal RMSE - 

such as investigations carried out by James et al. (2017a) - this study investigates non-

ideal GCP setups due to constraints that are intrinsic to the nature of a CS project of 
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this kind. This CS project requires GCPs to be permanent to remove the need for 

repeated GNSS surveys – often resulting in GCP placement to be on coastal structures. 

This study has revealed that coastal structures that run perpendicular to the shoreline 

provide, on average, the best model accuracies. Between the PL50, iPhone 6s and 

iPhone X when ‘All Groyne’ GCP configurations were compared to their respective ‘Full 

Distribution’ reference models, RMSE was <= 0.012 m suggesting the models were 

highly similar. This is coherent with literature which suggests a GCP network 

encompassing the area of study provides the least error in linear and non-linear 

geometries (James and Robson, 2012; James et al., 2017a). When each GCP 

configuration is averaged for each device, model accuracies are slightly lower than 

other photogrammetry studies (James and Robson, 2012; Prosdocimi et al., 2015), 

however, RMSE still falls far below those from Airborne LiDAR or satellite acquired 

optical imagery (Miles, 2014). 

When comparisons were made between devices for each of their respective 

‘Full Distribution’ models, initially sparse point cloud products would suggest larger 

deviations in topography. However, once the number of outliers were removed during 

the dense reconstruction procedure RMSE values were brought down to similar 

magnitudes to the GCP configurations. RMSE ranged from 0.007 m (for the PL50) to 

0.015 m (for the Galaxy S5) between all devices after filtering. This shows that there is 

minimal impact inflicted on model topography using the cameras included in this 

study. When compared to other SfM studies in the geosciences that often use DSLR 

cameras, this model produced in this study provide slightly lower accuracies but they 

act as a guide for what is achievable by citizen-operated smartphone SfM.   



Lancaster Environment Centre  Student Number: 32290900 
 

113 
 

 

 

6.2. The Response from Participants 
 

This thesis reviewed other citizen science projects to understand the engagement type 

suitable for a coastal monitoring method. In-field observations and feedback 

questionnaires helped shape an understanding of the group’s knowledge of their 

coastal environment as well as their comprehension of the SfM data collection 

process. Throughout the study it has been evident that motivations towards coastal 

maintenance and arising issues has been high, with a generally positive and proactive 

attitude. The group were willing to undertake tasks requiring hundreds of photos to 

be taken in windy, cold conditions. This was significant if data collection is to occur 

during months with increased wave activity and sediment transport processes, as 

these will likely be in periods of less favourable weather conditions.   

However, it was also evident that participation numbers dropped considerably 

when transitioning between the indoor activity in the first session, to the outdoor 

activity. The same is true for the transition from the first session in September, to the 

second session in later October 2018. Although conclusions cannot be drawn from two 

occasions alone, it seems logical that fewer participation numbers occur in less 

favourable conditions. Despite this, the data gathered covered the entire area of study 

and thus a topographical insight could be gained. This study aids scientific 

understanding about a SfM CS project conducted on a beach, both from a social and 

technical standpoint. 
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6.3. Contributions to Research and Coastal Management 
 

Citizen science projects have huge implications on research and coastal management. 

By integrating science into the public domain vast improvements can be made to the 

issues often faced within the scientific community: (1) The lack of available human 

resources often limits professional scientific activity, (2) considering the huge expanse 

of coastline, the diversity of topographies and their constant changing morphologies, 

a comprehensive understanding of this environment requires intensive research over 

space and time (Garcia-Soto and van der Meeren, 2017). This CS study enhances our 

understanding of what a CS project might look like when trying to generate coastal 

topography from public-acquired data.  

By utilising smartphones that have penetrated and proliferated throughout most 

of the developed world we can record measurements of the coastal environment on 

scales that were previously unachievable. This study proves that the SfM 

photogrammetry technique can be carried out successfully to produce highly accurate 

topographic models. In a collaborative effort between scientists and community group 

members, it is possible to generate dense point clouds which provide vital information 

on the large- and small-scale processes that shape the coast – The Rossall Beach 

Residents and Community Group is an example of such a success. The data from this 

study is of a higher resolution than the current periodical airborne LiDAR surveys 

conducted by the EA (Miles, 2014) and has the potential to be far more frequent and 

adaptive. Additionally, this project was conducted through the enthusiasm of the 
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participants, requiring no cost – a factor that is limiting to both scientific research and 

coastal management.  

 

6.4. Contributions to Public Engagement within Coastal Science 
 

This CS project contributes towards deepening the public understanding of the coastal 

environment, the impacts climate change has and the role that humans are playing in 

the driving of such change (Garcia-Soto and van der Meeren, 2017). It has 

demonstrated that members of the Rossall Beach Residents and Community Group 

are willing to incorporate SfM sessions into their scheduled activities which suggests 

that there is an interest in the outcomes achieved by such a programme. By 

participating in these sessions, citizens are encouraged to record data on areas that 

are highly dynamic or host erosional features such as toe scour. 

This immersion within a coastal setting and the data capture of coastal processes 

has shown to increase public awareness into what processes affect the shape of the 

coastline. After the sessions were conducted, participants understood how coastal 

erosion such as toe scour can be detrimental to sea defences. Incremental 

improvements to coastal literacy like those achieved during this study help to build a 

scientific way of thinking and importantly build confidence in scientific research.  

 

6.5. Future Work 
 

Currently there is still work that can be done to develop citizen-led coastal 

photogrammetry as a viable source of scientific data. On the small scale, operated by 
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community groups, the methods for coastal photogrammetry do not require too much 

complexity. The study showed that with only a few volunteers, a full groyne cell can 

be surveyed in x, y and z dimensions and produce accuracies capable of detecting 

morphological change in coastal environments. More research would be needed to 

identify how social interactions fluctuate throughout the year due to weather and 

what effect this has on monitoring key coastal erosion such as toe scour - whose scale 

this study is focused on. However, it has been evident that coastal community groups 

are likely to be willing to perform surveys as part of the activities conducted as it holds 

interest and relevance in their lives. 

If project scales are to increase and measurements are to be undertaken by the 

public, then informal training will become difficult. Instead some form of 

infrastructure might have to be developed; for example, information boards detailing 

instructions on the SfM procedure. Additionally, further research would have to be 

conducted into the minimal number of images required for different coastal 

environments to adhere to a method more suited to the general public. 
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Appendix 1A – GCP Configuration Linear Regressions (Sparse) – 

PL50 

Linear regressions of Samsung PL50 GCP configurations. The red lines indicate a perfect 1:1 positive 

correlation 
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Appendix 1B – GCP Configuration Linear Regressions (Sparse) – 

iPhone 6s 
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Linear regressions of iPhone 6s GCP configurations. The red lines indicate a perfect 1:1 

positive correlation 
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Appendix 1C – GCP Configuration Linear Regressions (Sparse) – 

iPhone X 
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Linear regressions of iPhone X GCP configurations. The red lines indicate a perfect 1:1 positive 

correlation 
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Appendix 1D – GCP Configuration Linear Regressions (Sparse) – 

Galaxy S5 
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Linear regressions of Galaxy S5 GCP configurations. The red lines indicate a perfect 1:1 

positive correlation 
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Appendix 1E – GCP Configuration Linear Regressions (Sparse) – EOS 

450D 
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Linear regressions of Galaxy S5 GCP configurations. The red lines indicate a perfect 1:1 

positive correlation. 
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Appendix 2A – DoDs for PL50 
 

 

 

 

  

All Defence 
Volume: 8.720 
Surface: 2,712.729 
---------------------- 
Added volume: (+)9.549 
Removed volume: (-)0.829 
---------------------- 
Matching cells: 85.8% 
Non-matching cells: 
ground = 0.1% 
ceil = 14.1% 
Average neighbors per cell: 7.3 / 

8.0 

All Seawall 
Volume: 39.368 
Surface: 2,712.543 
---------------------- 
Added volume: (+)39.559 
Removed volume: (-)0.192 
---------------------- 
Matching cells: 85.8% 
Non-matching cells: 
ground = 0.1% 
ceil = 14.1% 
Average neighbors per cell: 7.3 / 

8.0 

All Groyne 
Volume: 5.959 
Surface: 2,712.520 
---------------------- 
Added volume: (+)6.930 
Removed volume: (-)0.970 
---------------------- 
Matching cells: 85.8% 
Non-matching cells: 
ground = 0.1% 
ceil = 14.1% 
Average neighbors per cell: 7.3 / 

8.0 

Seawall High 
Volume: 10.204 
Surface: 2,712.541 
---------------------- 
Added volume: (+)18.045 
Removed volume: (-)7.841 
---------------------- 
Matching cells: 85.8% 
Non-matching cells: 
ground = 0.1% 
ceil = 14.1% 
Average neighbors per cell: 7.3 / 

8.0 
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DoDs between the Full distribution GCP configuration model and other variants of GCP configurations for the PL50 

Seawall Mid 
Volume: 35.523 
Surface: 2,712.412 
---------------------- 
Added volume: (+)35.727 
Removed volume: (-)0.205 
---------------------- 
Matching cells: 85.8% 
Non-matching cells: 
ground = 0.1% 
ceil = 14.1% 
Average neighbors per cell: 7.3 / 

8.0 

Seawall Low 
Volume: 58.181 
Surface: 2,711.975 
---------------------- 
Added volume: (+)59.015 
Removed volume: (-)0.833 
---------------------- 
Matching cells: 85.7% 
Non-matching cells: 
ground = 0.1% 
ceil = 14.2% 
Average neighbors per cell: 7.3 / 

8.0 

Groyne Low 
Volume: -1.532 
Surface: 2,655.750 
---------------------- 
Added volume: (+)1.484 
Removed volume: (-)3.015 
---------------------- 
Matching cells: 95.4% 
Non-matching cells: 
ground = 2.1% 
ceil = 2.4% 
Average neighbors per cell: 7.3 / 

8.0 
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Appendix 2B – DoDs for iPhone 6s 
 

 

  

All Defence 
Volume: -1.631 
Surface: 2,396.020 
---------------------- 
Added volume: (+)2.323 
Removed volume: (-)3.954 
---------------------- 
Matching cells: 99.3% 
Non-matching cells: 
ground = 0.3% 
ceil = 0.4% 
Average neighbors per cell: 7.4 / 

8.0 

All Seawall 
Volume: 5.306 
Surface: 2,391.529 
---------------------- 
Added volume: (+)8.842 
Removed volume: (-)3.536 
---------------------- 
Matching cells: 98.9% 
Non-matching cells: 
ground = 0.5% 
ceil = 0.6% 
Average neighbors per cell: 7.4 / 

8.0 

All Groyne 
Volume: 4.661 
Surface: 2,389.388 
---------------------- 
Added volume: (+)6.099 
Removed volume: (-)1.439 
---------------------- 
Matching cells: 98.9% 
Non-matching cells: 
ground = 0.6% 
ceil = 0.5% 
Average neighbors per cell: 7.4 / 

8.0 

Seawall High 
Volume: -6.976 
Surface: 2,391.339 
---------------------- 
Added volume: (+)3.862 
Removed volume: (-)10.838 
---------------------- 
Matching cells: 62.8% 
Non-matching cells: 
ground = 37.2% 
ceil = 0.0% 
Average neighbors per cell: 7.4 / 

8.0 
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Seawall Mid 
Volume: -28.552 
Surface: 2,391.271 
---------------------- 
Added volume: (+)0.030 
Removed volume: (-)28.583 
---------------------- 
Matching cells: 98.9% 
Non-matching cells: 
ground = 0.5% 
ceil = 0.6% 
Average neighbors per cell: 7.4 / 

8.0 

Seawall Low 
Volume: 20.427 
Surface: 2,391.232 
---------------------- 
Added volume: (+)22.818 
Removed volume: (-)2.391 
---------------------- 
Matching cells: 98.9% 
Non-matching cells: 
ground = 0.5% 
ceil = 0.6% 
Average neighbors per cell: 7.4 / 

8.0 

Groyne Low 
Volume: 3.113 
Surface: 2,389.187 
---------------------- 
Added volume: (+)5.505 
Removed volume: (-)2.392 
---------------------- 
Matching cells: 98.9% 
Non-matching cells: 
ground = 0.6% 
ceil = 0.5% 
Average neighbors per cell: 7.4 / 

8.0 
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Appendix 2C – DoDs for iPhone X 
 

 

  

All Defence 
Volume: 4.336 
Surface: 3,086.962 
---------------------- 
Added volume: (+)4.998 
Removed volume: (-)0.662 
---------------------- 
Matching cells: 98.3% 
Non-matching cells: 
ground = 0.8% 
ceil = 0.8% 
Average neighbors per cell: 7.4 / 

8.0 

All Seawall 
Volume: 13.807 
Surface: 3,084.709 
---------------------- 
Added volume: (+)14.113 
Removed volume: (-)0.306 
---------------------- 
Matching cells: 98.2% 
Non-matching cells: 
ground = 0.9% 
ceil = 0.9% 
Average neighbors per cell: 7.4 / 

8.0 

Seawall High 
Volume: 45.025 
Surface: 3,083.632 
---------------------- 
Added volume: (+)45.245 
Removed volume: (-)0.220 
---------------------- 
Matching cells: 98.2% 
Non-matching cells: 
ground = 0.9% 
ceil = 0.9% 
Average neighbors per cell: 7.4 / 

8.0 

All Groyne 
Volume: -8.033 
Surface: 3,084.871 
---------------------- 
Added volume: (+)5.609 
Removed volume: (-)13.643 
---------------------- 
Matching cells: 98.2% 
Non-matching cells: 
ground = 0.9% 
ceil = 0.9% 
Average neighbors per cell: 7.4 / 

8.0 
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Seawall Mid 
Volume: 73.846 
Surface: 3,081.996 
---------------------- 
Added volume: (+)73.990 
Removed volume: (-)0.144 
---------------------- 
Matching cells: 98.1% 
Non-matching cells: 
ground = 1.0% 
ceil = 0.9% 
Average neighbors per cell: 7.4 / 

8.0 

Seawall Low 
Volume: 13.807 
Surface: 3,084.709 
---------------------- 
Added volume: (+)14.113 
Removed volume: (-)0.306 
---------------------- 
Matching cells: 98.2% 
Non-matching cells: 
ground = 0.9% 
ceil = 0.9% 
Average neighbors per cell: 7.4 / 

8.0 

Groyne Low 
Volume: -20.730 
Surface: 2,679.797 
---------------------- 
Added volume: (+)1.835 
Removed volume: (-)22.565 
---------------------- 
Matching cells: 84.4% 
Non-matching cells: 
ground = 13.6% 
ceil = 2.0% 
Average neighbors per cell: 7.3 / 

8.0 
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Appendix 3 – DoDs Between Devices 

PL50 – iPhone6s 
Volume: -2.121 
Surface: 2,330.311 
---------------------- 
Added volume: (+)5.037 
Removed volume: (-)7.158 
---------------------- 
Matching cells: 83.5% 
Non-matching cells: 
ground = 13.8% 
ceil = 2.7% 
Average neighbors per cell: 7.5 / 

8.0 

PL50 - iPhoneX 
Volume: 6.042 
Surface: 2,695.289 
---------------------- 
Added volume: (+)7.616 
Removed volume: (-)1.574 
---------------------- 
Matching cells: 86.0% 
Non-matching cells: 
ground = 0.6% 
ceil = 13.3% 
Average neighbors per cell: 7.3 / 

8.0 

PL50 - GalaxyS5 
Volume: 10.699 
Surface: 2,281.599 
---------------------- 
Added volume: (+)14.206 
Removed volume: (-)3.507 
---------------------- 
Matching cells: 74.2% 
Non-matching cells: 
ground = 14.1% 
ceil = 11.7% 
Average neighbors per cell: 6.3 / 

8.0 

PL50 – EOS450D 
Volume: -10.860 
Surface: 2,649.712 
---------------------- 
Added volume: (+)2.802 
Removed volume: (-)13.662 
---------------------- 
Matching cells: 82.4% 
Non-matching cells: 
ground = 2.0% 
ceil = 15.6% 
Average neighbors per cell: 7.3 / 

8.0 
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iPhone6s - iPhoneX 
Volume: 7.995 
Surface: 2,362.720 
---------------------- 
Added volume: (+)11.279 
Removed volume: (-)3.284 
---------------------- 
Matching cells: 74.9% 
Non-matching cells: 
ground = 1.3% 
ceil = 23.8% 
Average neighbors per cell: 7.5 / 

8.0 

iPhone6s – GalaxyS5 
Volume: 14.157 
Surface: 2,003.796 
---------------------- 
Added volume: (+)17.553 
Removed volume: (-)3.395 
---------------------- 
Matching cells: 65.9% 
Non-matching cells: 
ground = 13.2% 
ceil = 20.9% 
Average neighbors per cell: 6.4 / 

8.0 

iPhone6s – EOS450D 
Volume: -5.146 
Surface: 2,297.773 
---------------------- 
Added volume: (+)4.944 
Removed volume: (-)10.089 
---------------------- 
Matching cells: 70.6% 
Non-matching cells: 
ground = 3.3% 
ceil = 26.2% 
Average neighbors per cell: 7.5 / 

8.0 

iPhoneX – GalaxyS5 
Volume: 3.483 
Surface: 2,534.719 
---------------------- 
Added volume: (+)10.038 
Removed volume: (-)6.555 
---------------------- 
Matching cells: 78.7% 
Non-matching cells: 
ground = 18.0% 
ceil = 3.3% 
Average neighbors per cell: 6.3 / 

8.0 
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DoDs of Full Distribution models for each device pair. Note: negative and positive values are purely relative.  

iPhoneX – EOS450D 
Volume: -20.674 
Surface: 2,981.992 
---------------------- 
Added volume: (+)1.022 
Removed volume: (-)21.695 
---------------------- 
Matching cells: 90.9% 
Non-matching cells: 
ground = 4.0% 
ceil = 5.1% 
Average neighbors per cell: 7.4 / 

8.0 

GalaxyS5 – EOS450D 
Volume: -20.959 
Surface: 2,574.233 
---------------------- 
Added volume: (+)1.908 
Removed volume: (-)22.867 
---------------------- 
Matching cells: 80.0% 
Non-matching cells: 
ground = 2.1% 
ceil = 17.9% 
Average neighbors per cell: 6.2 / 

8.0 
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Appendix 4A – GCP Configuration - Linear Regressions (Dense) – 

PL50 
  

Linear regression for GCP configurations for the PL50. Red lines indicate a perfect 1:1 positive 

correlation. 
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Appendix 4B – GCP Configuration Linear Regressions (Dense) – 

iPhone 6s 
 

 

  

iPhone 6s 
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Linear regression for GCP configurations for the iPhone 6s. Red lines indicate a perfect 1:1 positive 

correlation. 
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Appendix 4C – GCP Configurations Linear Regressions (Dense) – 

iPhone X 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

iPhone X 

Elevation (m) 

El
ev

at
io

n
 (

m
) 

Linear regression for GCP configurations for the iPhone X. Red lines indicate a perfect 1:1 positive 

correlation. 
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Appendix 5 – Feedback Questionnaire 1 
 

FEEDBACK QUESTIONNAIRE 

 

Thanks for taking part in today’s activity, your data will really go a long way! I hope you’ve 

enjoyed it and you can go home happy knowing you’ve helped your coastline - and a very happy 

university student. 

 

If you do have time, it would be huge help if you could spare a couple of minutes to fill out this 

questionnaire. This questionnaire is anonymous. 

 

The following questions require a mark in the most appropriate box. Below, indicates what each 

number means: 

 

1 = I completely disagree 

2 = I somewhat disagree 

3 = I neither agree nor disagree 

4 = I somewhat agree 

5 = I completely agree  

 

ON THE BEACH 

 

I have a clear understanding of what this project aims to achieve 

 

I have a clear understanding of how my involvement helps this project 

 

 

1 2 3 4 5 

     

1 2 3 4 5 
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I can see how monitoring the coastline can benefit residents, commerce and infrastructural 

developments 

 

I clearly understand what toe scour is and how it can be detrimental to coastal structures 

 

I found the table-top practical session a very useful prior step before heading outside 

 

I clearly understand what scene conditions are most ideal for this project 

 

I clearly understand why the scene conditions are important and how each condition can affect 

processing 

 

I clearly understand how and why the camera settings are important 

 

 

 

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 
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I clearly understand how the correct technique for capturing imagery plays an important role for 

this project 

I can independently download data onto my desktop/laptop 

 

I can independently upload data via the wetransfer.com website (or other known data transfer 

websites)  

 

I found 3D model generation easy 

 

I can identify and upload the correct files vis the wetransfer.com website (or other known data 

transfer websites) 

 

If you have any comments about how the indoor session went, how it could have gone differently, 

is there anything I missed that I should have included? or anything else whatsoever – write it 

here! 

 

 

 

 

 

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 
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OUTDOOR SESSION 

 

I collected my images on the coastline easily 

 

I feel my imaging technique closely followed the procedure demonstrated 

 

I can see myself doing this on a regular basis 

 

I would be happy for sessions like this to be included as part of the Rossall Beach Residents and 

Community Group’s set of activities 

 

If you have any comments about how the outdoor session went, how it could have gone 

differently, is there anything I missed that I should have included? or anything else whatsoever – 

write it here! 

 

 

 

 

 

 

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 

     



Lancaster Environment Centre  Student Number: 32290900 
 

141 
 

Appendix 6 – Feedback Questionnaire 2 
 

FEEDBACK QUESTIONNAIRE 2 

 

Thanks for taking part in today’s activity, your data will really go a long way! I hope you’ve 

enjoyed it and you can go home happy knowing you’ve helped your coastline - and a very happy 

university student. 

 

If you do have time, it would be huge help if you could spare a couple of minutes to fill out this 

questionnaire. This questionnaire is anonymous. 

 

The following questions require a mark in the most appropriate box. Below, indicates what each 

number means: 

 

1 = I completely disagree 

2 = I somewhat disagree 

3 = I neither agree nor disagree 

4 = I somewhat agree 

5 = I completely agree  

Before you begin please tick this box if you are a returning volunteer 

 

ON THE BEACH 

 

1. I have a clear understanding of what this project aims to achieve. 

 

2. Taking the images on the coastline was easy. 

 

 

1 2 3 4 5 

     

1 2 3 4 5 
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3. My imaging technique closely followed the procedure demonstrated. 

 

4. Taking images on the beach was enjoyable. 

 

5. I have a clear understanding of how my images will be used. 

 

6. I can see how monitoring the coastline can benefit residents, commerce and 

infrastructural developments. 

 

7. I clearly understand what scene conditions are ideal for this project. 

 

8. I understand why these scene conditions are important. 

 

9. I clearly understand how and why the camera settings are important. 

 

 

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 
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10. I clearly understand how the correct technique for capturing imagery plays an important 

role for this project. 

 

11. I can see myself doing this on a regular basis. 

 

12. I would be happy for group session like this to be included as a part of Rossall Beach 

Residents and Community Group’s set of activities. 

 

 

If you have any comments about how the outdoor session went, how it could have gone 

differently, is there anything I missed that I should have included? or anything else whatsoever – 

write it here! 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 

     

1 2 3 4 5 

     

1 2 3 4 5 
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Appendix 7 – SfM Instructions 
 

A B 

Information sheets provided for the community group members 
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Appendix 8 – Session 1 Feedback 
 

  

Pie charts displaying results from the feedback questionnaire from session 1. 
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Appendix 9 – Session 2 Feedback  

Pie charts displaying results from the feedback questionnaire from session 1. 
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Pie charts displaying results from the feedback questionnaire from session 2 


