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Abstract—The downlink communications are vulnerable to
intelligent unmanned aerial vehicle (UAV) jamming attack. In this
paper, we propose a novel anti-intelligent UAV jamming strategy,
in which the ground users can learn the optimal trajectory to
elude such jamming. The problem is formulated as a stackelberg
dynamic game, where the UAV jammer acts as a leader and
the ground users act as followers. First, as the UAV jammer is
only aware of the incomplete channel state information (CSI) of
the ground users, for the first attempt, we model such leader
sub-game as a partially observable Markov decision process
(POMDP). Then, we obtain the optimal jamming trajectory via
the developed deep recurrent Q-networks (DRQN) in the three-
dimension space. Next, for the followers sub-game, we use the
Markov decision process (MDP) to model it. Then we obtain
the optimal communication trajectory via the developed deep
Q-networks (DQN) in the two-dimension space. We prove the
existence of the stackelberg equilibrium and derive the closed-
form expression for the stackelberg equilibrium in a special case.
Moreover, some insightful remarks are obtained and the time
complexity of the proposed defense strategy is analyzed. The
simulations show that the proposed defense strategy outperforms
the benchmark strategies.

Index Terms—UAV, jamming, Markov decision process, deep
Q-networks.

I. INTRODUCTION

W ITH the urgent demands of high-speed data transmis-
sion in wireless communications, various technologies

have been explored to improve the network capacity, i.e.,
massive multiple-input multiple-output (massive-MIMO) and
millimeter wave (mmWave) communication. Recently, the
unmanned aerial vehicle (UAV) has been adopted to improve
the network capacity. For example, compared to the ground
communications, UAV can provide strong line-of-sight (LoS)
links and small path-loss exponent to the ground users when it
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is used as the base station. Therefore, by optimizing the UAV
trajectory and transmission strategies, the UAVs can be used
to boost the network capacity [1]–[4].

When considering the security issues in wireless commu-
nication systems, UAVs can be exploited as different com-
ponents [5]–[13]. As security components, UAVs can be
used by the legitimate users. For example, since the friendly
jammer can protect the confidential messages by transmitting
the artificial noise [14], [15], UAV has been utilized as a
friendly jammer to protect the ground users away from the
eavesdropper. Specifically, with the assist of an air-to-ground-
friendly UAV jammer, the system security can be improved
when the location of the eavesdropper is unknown [6]. Then,
UAVs can work as relays to forward the message to improve
the communication quality [10]. In [11], a reinforcement
learning based UAV relay has been studied to against the smart
jamming in vehicular ad hoc networks. Additionally, some
work has attempted to combine UAV relay and UAV friendly
jammer to enhance communication security. For example, a
dual-UAV enabled secure communication system has been
investigated in [7], in which one UAV can work as a relay
to communicate with multiple ground users and another UAV
can work as a friendly jammer to jam the ground eavesdropper.
As malicious components, UAVs can be exploited by the
illegitimate users [12], [13]. The authors in [8] have shown
that malicious UAVs equipped with cameras and multi-spectral
sensors can eavesdrop the privacy of legitimate users. Due to
the LoS links and small path-loss exponent, UAV jamming
can significantly block the data transmission and degrade
communication quality of service (QoS), which is more serious
than ground jamming. Therefore, anti-UAV jamming problem
is worth investigating.

Some meaningful work has been developed to address the
malicious UAV jamming problem [16]–[19]. Particularly, a
zero-sum pursuit-evasion game has been formulated to com-
pute optimal strategies, which aims to evade the attack of an
UAV jammer [16]. A smart UAV attacker, who can specify the
attack type, such as jamming, eavesdropping, and spoofing, has
been considered in [17] and the reinforcement learning based
power allocation strategies have been proposed to defend
against such attack. However, the aforementioned anti-UAV
jamming work are based on some ideal assumptions, i.e., the
perfect observation. More recent work has considered imper-
fect observation in anti-ground jamming but few in anti-UAV
jamming [18]–[24]. For example, with considering the co-
channel mutual interference and the incomplete information,
i.e., incomplete channel state information (CSI), the competi-
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tion between UAV users and jammers have been investigated
by using a Bayesian stackelberg game [18]. The authors in
[19] have designed a secure communication system to deal
with the joint impact of UAV smart attack and imperfect
channel estimation. The authors in [20] has formulated the
jamming game with incomplete information, i.e., the other
users identities, as a Bayesian game and discussed the perfor-
mance of this game. The prospect theoretic analysis has been
used to model anti-jamming communications [21]. Moreover,
a Bayesian stackelberg game with incomplete information has
been formulated to analyze the jammer in [22], [23]. Likewise,
the impact of observation error of a smart jammer has been
evaluated in a stackelberg anti-jamming game and the Nash
equilibrium has been derived [24]. As aforementioned, only
[18], [19] have considered imperfect observations in anti-
UAV jamming problem. Meanwhile, only [19] has considered
an intelligent UAV attacker with imperfect observations. In
other words, limited work has considered intelligent UAV
jamming, which can easily learn the optimal attack strategy
in complex communication environments, even with imperfect
observation, i.e., incomplete CSI.

With the rapid development of artificial intelligence (AI) in
communications [25], [26], such an intelligent UAV jamming
becomes more reality and more harmful than we have ever
considered. One powerful tool is reinforcement learning, by
which the intelligent agent can choose jamming action based
on the environments and maximize the reward. This reward
is called long-term cumulative reward, which is decided by a
series of time events. The Q-learning is a model-free reinforce-
ment learning method, which can learn the optimal strategy
based on the long-term cumulative reward with an end-to-end
approach. Then, to address the curse of high dimensionality in
Q-learning, the Deep Q-network (DQN) has been developed
by Google DeepMind, which combines Q-learning with con-
volutional neural network (CNN). It can be used to learn the
optimal strategy in a large state space [27]. Whereas, the DQN
cannot perform well with the imperfect observations. Then,
to learn the optimal strategy with the imperfect observation,
the deep recurrent Q-network (DRQN) has been introduced,
which is a combination of a long short term memory (LSTM)
and a DQN [28]. With AI, some incredible jamming attacks
have been realizing, i.e., [17], [29], which makes the anti-UAV
jamming problem more challenging.

In this paper, we consider the scenario that both the UAV
jammer and the ground users are intelligent agents. On the
one hand, the UAV jammer can learn the optimal jamming
trajectory via the imperfect observation. On the other hand, the
ground users can learn the optimal communication trajectory
to elude the UAV jamming. To the best of our knowledge,
“How do ground users defend against intelligent UAV jamming
attack using AI?” is still an open problem. The specific
contributions of our work are summarized as follows:
• For the first time, we consider the scenario that both the

UAV jammer and the ground users are intelligent agents,
in which an UAV jammer can block the data transmission
of the ground users and the ground users are capable
of defending against the intelligent UAV jamming to the
greatest extent.

• For the ground users, we propose a novel anti-intelligent
UAV jamming strategy, in which the optimal trajectory
of each ground user is obtained. Specifically, the anti-
intelligent UAV jamming problem is formulated as a
stackelberg dynamic game. The incomplete CSI is consid-
ered in the game and the optimal trajectories are learned
via DRQN and DQN, respectively.

• Some insightful remarks are obtained from the theory and
the simulations: i) we prove that the optimal trajectory of
each ground user exists; ii) we prove the existence of
the stackelberg equilibrium in the game; iii) to maximize
long-term cumulative reward, the action choices of UAV
jammer is different from that of maximizing the imme-
diate reward.

The rest of the paper is organized as follows. In Section
II, we present the system model and the problem formulation.
In Section III, we propose the anti-intelligent UAV jamming
strategy and the corresponding discussions. Simulations are
presented in Section IV and conclusions are given in Section
V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first give the system model, then, we
formulate the optimization problem. For ease of reference,
important symbols are summarized in Table I.

TABLE I
SUMMARY OF SYMBOLS

Symbols Notations
B Base station
J UAV jammer
i User i
AJ Action space of UAV jammer
Ai Action space of user i
βLoS Additional attenuation factor of LoS link
βNLoS Additional attenuation factor of NLoS link
IJ i Expectation of the jamming power received at user i
Γi Received SINR at user i
RJ Long-term cumulative reward of UAV jammer
Ri Long-term cumulative reward of user i
ri Immediate reward of user i
rJ Immediate reward of UAV jammer
γ Discount factor
S Channel state space
Si Motion state space of user i
SJ Flight state space of UAV jammer
O Observation state space
M belief state space
P (·|·) Probability of transition
Ω(·|·) Probability of possible observation
b Belief
O Sequence of ` historical observation-action pairs
S Sequence of ` historical state-action pairs
θ Weight parameter set of the Q-network of UAV jammer
ξ Weight parameter set of the Q-network of user
ε Probability that the agent chooses the non-optimal action

T ∗(aJ ) Optimal jamming trajectory of UAV jammer
L ∗(aV ) Optimal communication trajectory of virtual user
O(·) Time complexity function
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Fig. 1. Schematic diagram. The network includes one base station, U ground
users and a UAV jammer, then the network is transformed into a solid figure.
The UAV jammer can fly in a three-dimension space, the ground users can
move in a two-dimension space, moreover, the base station is in a three-
dimension space and deployed at the center of the “x0y” plane.

A. System Model

We consider the downlink transmissions between a base
station and ground users under the threat of a UAV jammer,
which is shown in Fig. 1. In the following, if no confusions
occur, the users refer to the ground users. Denote J as the
UAV jammer, B as the base station and i ∈ {1, · · · , U} as
user i. We assume that the location of the base station is fixed
with height HB, while the users and the UAV jammer are
mobile at constant velocities in each time slot. Considering
the resource-limited devices, all of them are equipped with
single antenna and communicate with the base station by
adopting frequency division multiple access (FDMA). The
total bandwidth is B Hz, and we consider the worst case
that the UAV performs barrage jamming, which can jam the
full bandwidth of the network [30]. The UAV jammer and
the users are considered as intelligent agents, who can learn
the optimal actions to maximize their long-term cumulative
rewards, i.e., signal-to-interference-plus-noise ratio (SINR)
[31], respectively. The locations of base station B, an arbitrary
user i, and the UAV jammer J are denoted as (0, 0, HB),
(xi, yi, 0), and (xJ , yJ , zJ ), respectively. Denote the mapping
of UAV jammer action space as

AJ = {(0, 0, 0), (0, 0, 1), (0, 0,−1), (−1, 0, 0), (1, 0, 0),

(0, 1, 0), (0,−1, 0)},

which represents moving directions including stay, up, down,
left, right, forward, backword. Likewise, we map the user
action space as

Ai = {(0, 0, 0), (−1, 0, 0), (1, 0, 0), (0, 1, 0), (0,−1, 0)},

which represents flight directions including stay, left, right,
forward, backword. In time slot t, the UAV jammer J chooses
an action atJ ∈ AJ to determine the flight direction, and user
i chooses an action ati ∈ Ai to determine its moving direction.

The channel coefficient from base station B to user i is
denoted as hBi =

√
d−ηBi h̃Bi, where dBi represents the distance

between base station B and user i, η is the path loss exponent
and h̃Bi is the small-scale fading, which follows zero-mean
complex Gaussian distribution with unit variance. In addition,
the communication channel between UAV jammer and user i
is modeled as an air-to-ground channel, which contains three
parts, including strong LoS, reflected nonline-of-sight (NLoS),
and small-scale fading. In general, the influence of small-scale
fading is smaller than LoS and NLoS, therefore, the small-
scale fading is neglected [32], [33]. The path loss of the air-
to-ground channel between UAV jammer and user i is denoted
as [34]

PL(J , i) =

{
βLoS|dJ i|−α, for LoS link,
βNLoS|dJ i|−α, for NLoS link, (1)

where dJ i =
√

(xi − xJ )2 + (yi − yJ )2 + z2J is the distance
between UAV jammer J and user i, α is the path-loss
exponent for the air-to-ground channel, and βLoS and βNLoS
are additional attenuation factors for LoS link and NLoS
link, respectively. The probability of LoS connection, PLoS,
depends on the elevation angle θi between user i and UAV,
the communication environment, the surrounding buildings
density, and the height of the UAV jammer, HJ , which can
be represented as

PLoS =
1

1 + Φ exp(−Ψ[θi − Φ])
. (2)

In particular, Φ and Ψ are S-curve parameters, which depend
on communication environment, i.e., Φ = 150 and Ψ = 15
are the common settings for urban areas, the angle is

θi =
180

π
arcsin(

zJ
dJ i

)

and the probability of NLoS is PNLoS = 1− PLoS. Hence, the
expectation of the jamming power received at the user i is
given by [32]

IJ i = pJPLoSβLoS|dJ i|−α + pJPNLoSβNLoS|dJ i|−α, (3)

where pJ is the power budget of the UAV jammer. Then, the
received SINR at user i can be denoted as

Γi =
pBd

−η
Bi |h̃Bi|2

IJ i + σ2
, (4)

where pB is the power budget of the base station and σ2 is
the noise variance.

B. Problem Formulation

Since the UAV jammer is a malicious user, the UAV jammer
cannot obtain the complete observation information of the
users, i.e., CSI. The partially observable information that
the UAV jammer known is the location of the users, which
represents as the distances from the users to the base station,
giving by

dBi =
√
x2i + y2i +H2

B, i ∈ {1, · · · , U}.
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Meanwhile, the information observed by the users contin-
uously is the jamming power received from the UAV1.
Considering the hierarchical interactions among UAV jam-
mer and the users, we utilize a stackelberg dynamic game
G〈{J , i}, {dJ , di}, {rJ , ri}〉 to formulate the anti-UAV jam-
ming problem, namely, anti-jamming elude game. In the
formulated game, we model the foresighted UAV jammer J
as a leader and the myopic users i ∈ {1, · · · , U} as followers.
The UAV jammer first chooses its action aJ ∈ AJ , then each
user chooses its corresponding action ai ∈ Ai. We assume
that the location of the user i is (xi, yi, 0) in the previous
time slot and (x′i, y

′
i, 0) in the current time slot with action

ai, i.e., (x′i, y
′
i, 0) = (xi, yi, 0) + ai. The location of the

UAV jammer J is (xJ , yJ , zJ ) in the previous time slot
and (x′J , y

′
J , z

′
J ) in the current time slot with action aJ , i.e.,

(x′J , y
′
J , z

′
J ) = (xJ , yJ , zJ ) + aJ .

In this case, the immediate reward of user i can be given
as

ri[T (aJ ),L (ai)] =
pBd

−η
Bi |h̃Bi|2

IJ i + σ2
− CUdi, (5)

where T (aJ ) = (x′J , y
′
J , z

′
J ) denotes the current trajectory

of the jammer with action aJ , L (ai) = (x′i, y
′
i, 0) denotes

the current trajectory of user i with action ai, CU is the unit
energy cost of the user, i.e., mobility cost per unit distance.
The distance between UAV jammer J and user i is

dJ i =
√

(x′J − x′i)2 + (y′J − y′i)2 + z′2J ,

the distance from the base station to user i is

dBi =
√
x′2i + y′2i +H2

B

and the moving distance per time slot is

di =
√

(x′i − xi)2 + (y′i − yi)2.

The UAV jammer’s immediate reward in the current time slot
can be given by

rJ [T (aJ ),L (ai)] =
U∑
i=1

IJ i

pBd
−η
Bi |h̃Bi|2 + σ2

− CJ dJ , (6)

where CJ is the unit energy cost of the UAV jammer, i.e.,
flight cost per unit distance, and the flight distance per time
slot can be denoted as

dJ =
√

(x′J − xJ )2 + (y′J − yJ )2 + (z′J − zJ )2.

The goal of the formulated optimization problem is to
maximize the long-term cumulative rewards of UAV jammer
and users, respectively. To maximize jammer’s long-term
cumulative reward RJ , we need to find the optimal jamming
trajectory for the UAV jammer and then to maximize each
user’s long-term cumulative reward Ri, we need to find the
optimal communication trajectory for each user, with the

1This is a reasonable assumption since that the jamming is continuous and
the users can estimate it in each inter frame gap.

constraints of flight distance and moving distance per time
slot. The formulated optimization problem can be given as

max
aJ ,ai

RJ [T (aJ ),L (ai)],

Ri[T
∗(aJ ),L (ai)],

s.t. |aJ | ≤ 1, (7)
|ai| ≤ 1, i ∈ {1, · · · , U}, (8)

where RJ =
∑∞
k=0 γ

krJ (k) and Ri =
∑∞
k=0 γ

kri(k) denote
k steps long-term cumulative rewards of each time slot with
discount factor γ, (7) represents the flight distance of UAV
jammer per time slot, (8) represents the moving distance of
user i per time slot. Due to the mobility of the network,
the communication environment is dynamic and complex.
The formulated optimization problem faces several challenges,
including the need to obtain the complete CSI, the need to
obtain the channel state transition probability, as well as the
difficulty to obtain the convexity of the problem. Therefore,
to solve the formulated optimal problem, we propose the
following strategies.

III. DEEP LEARNING BASED OPTIMAL STRATEGY

In this section, we propose a novel anti-intelligent UAV
jamming strategy to defend against UAV jammer. Particularly,
we analyze the optimal jamming trajectory and the optimal
communication trajectory.

A. The Optimal Jamming Trajectory

Since the wireless channel environment is dynamic and
complex, we quantize the channel hBi into a finite channel
state space S = {h1Bi, · · · , hKBi}, i ∈ {1, · · · , U}, and model it
as a Markov chain with finite states [35]. Then, by partitioning
the flight space of the UAV jammer J into a finite number of
states, i.e., L states, the flight state space of the UAV jammer
J can be denoted as

SJ = {(xJ ,1, yJ ,1, zJ ,1), · · · , (xJ ,L, yJ ,L, zJ ,L)}.

Again, we quantize the motion state space of the users into
M states, which is denoted as

Si = {(xi,1, yi,1, 0), · · · , (xi,M , yi,M , 0)}, i ∈ {1, · · · , U}.

To simplify the case, we model a virtual user, V , as a target
user, which is a virtual point that related to the users in the
network. The initial location of the virtual user can be decided
by

(xV , yV , 0) =

(∑U
i=1 wixi∑U
i=1 wi

,

∑U
i=1 wiyi∑U
i=1 wi

, 0

)
, (9)

where wi is the initial location weight of user i. Then, the
quantized motion state space of the virtual user can be denoted
as

SV = {(xV,1, yV,1, 0), · · · , (xV,M , yV,M , 0)}.

Remark. Since the communication fairness among users, the
base station will allocate more bandwidth to the user far away
from it. Thus, the initial value of the location weights wi is
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proportion to the distance between base station and user i,
i.e., wi ∝ dBi. As UAV flies at very high altitudes, it can
obtain the location of each user, then it can approximately
estimate the initial location weights wi based on the distance
between base station and user i, i.e., wi = dBi∑U

i=1 dBi
. As the

users moving, the location weight wi will be adjusted with the
time. Let Aw = b, where

w = (w1 w2 · · · wU )†,

A =

 x1 x2 · · · xU
y1 y2 · · · yU
0 0 · · · 0

 ,

B = (A,b) =

 x1 x2 · · · xU xV
y1 y2 · · · yU yV
0 0 · · · 0 0

 .

Excepting the special case ∀i ∈ {1, · · · , U}, xi = yi, xV 6=
yV , we can find that the location of the virtual user can be
represented by the locations of all the users, linearly. The
special case means that all users are on the surface diagonal
of the solid figure and the UAV jammer is not. Since the
communication environment is complex and the user number is
large, the special case above is hard to occur in practice. In the
following analysis, we assume that the location relationship
between virtual user and users are always linear.

The UAV jammer’s immediate reward in (6) can be trans-
formed to

rJ [T (aJ ),L (aV )] =
IJV

pBd
−η
BV |h̃BV |2 + σ2

− CJ dJ , (10)

where the distance

dBV =
√
x′2V + y′2V +H2

B.

Then the optimization problem for the UAV jammer J is
formulated as choosing action aJ to maximize UAV jammer’s
long-term cumulative reward under the constraint of moving
distance per time slot, which can be given by

max
aJ

RJ [T (aJ ),L (aV )],

s.t. |aJ | ≤ 1. (11)

However, the complete CSI of the virtual user is not
known to the UAV jammer. Considering the dynamic channel
environments, we model this process as a partially observable
Markov decision process (POMDP) [28]. Define a POMDP as
a 6-tuple 〈S,AJ , P, rJ ,O,Ω〉, where
• S is the channel state space;
• AJ is the action space;
• P (·|s, aJ ) is the transition probability of the next state,

conditioned on action aJ being chosen in state s ∈ S;
• rJ [s,T (aJ )] is the immediate reward obtained when ac-

tion aJ is taken in state s, and the symbol rJ [s,T (aJ )]
is omitted to rJ ,s if no confusion occurs;

• O is the observation state space, which is equal to the
motion state space SV ;

• Ω(·|s, aJ ) is the probability of the possible observation,
conditioned on action aJ being taken to reach state s.

According to the observation o, the probability of being in
state s is defined by the belief b, which can be updated by

b′(s′) =
1

Θ

[
Ω(o′|s′, aJ )

∑
s∈S

P (s′|s, aJ )b(s)

]
, (12)

where

Θ =
∑
s′∈S

Ω(o′|s′, aJ )
∑
s∈S

P (s′|s, aJ )b(s)

is the normalization function of the belief and the belief is
initialized at b0 = P0, i.e., P0 = 0.1. Define the action
selection policy as π : b → aJ . Then, solving the POMDP
is to find the optimal action selection policy π∗ : b∗ → a∗J ,
yields the maximum expected reward for each belief. This
maximum expected reward can be obtained by the Bellman
equation

V ∗b = max
aJ∈AJ

[
rJ ,b + γ

∑
o∈O

Ω(o|b, aJ )V ∗b′

]
, (13)

where

rJ ,b =
∑
s∈S

rJ ,sb(s)

represents the expected reward over the belief distribution.
For any partially observable with known state transition

probability P (·|s, aJ ), the problem can be reformulated as
a belief-MDP, which uses belief state spaceM as a new state
space instead of the original channel state space S [36]. The
near-optimal solution to the belief-MDP can be solved by Q-
learning [37]. By storing and updating a Q-value function
for each belief in the system, the optimal action a∗J with
respect to the maximum Q-value is obtained. However, in
practice, the belief space is large and the state transition
probability is unknown, the Q-learning is impossible to store
and update the Q-value function. Therefore, we use the model-
free approach to learn the trajectory, which directly exploits
the sequence of ` historical observation-action pairs, Ot =
{ot−`, at−`J , · · · , ot−1, at−1J } to learn the optimal jamming
trajectory [28]. The DRQN that combines Q-learning with a
recurrent convolutional neural network (CNN), is developed.
The framework is shown in Fig. 2. In each Q-network, the
neural network consists of two convolutional layers, one long
short-term memory (LSTM) layer, and one fully connected
(FC) layer. The first convolutional layer convolves F1 filters
of n1 × n1 with stride 1, and the second convolutional layer
convolves F2 filters of n2 × n2 with stride 1. The LSTM
layer consists of C1 rectifier unites and FC layer includes |AJ |
rectifier unites.

Solving the formulated POMDP problem via the developed
DRQN, the Q-values are parameterized by Q(φ, aJ ; θ), where
θ is the weight parameter set of the Q-network. In time slot
t, sequence Ot can be preprocessed to an n0 × n0 matrix
φt, then input this matrix to the recurrent CNN to calculate
Q(φt, aJ ; θ). Once θ is learned, the Q-values are determined.
Then, the UAV jammer’s experience etJ (φt, atJ , r

t
J , φ

t+1) is
stored in the replay memory DJ = {e1J , · · · , etJ }. When
training the DRQN, mini-batches of experience egJ , 1 ≤ g ≤ t
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Fig. 2. The developed DRQN framework, which includes one main Q-network
and one target Q-network. Each Q-network consists of one input layer, two
convolutional layers, one LSTM layer, and one FC layer.

from the pool of the reply memory is randomly chosen to
update the weight parameter set θ via a stochastic gradient
descent (SGD). The weight parameter set θ is updated via the
loss function

L(θ) = Eφ,a,r,φ′
[(
rJ ,φ + γmax

a′J

Q(φ′, a′J ; θ−)

−Q(φ, aJ ; θ)
)2]

, (14)

where the symbol θ− is only updated with θ every N steps
from the same Q-network. The gradient of loss function with
respect to the weight parameter set θ is obtained by

∇θL(θ) = Eφ,a,r,φ′
[(
rJ ,φ + γmax

a′J

Q(φ′, a′J ; θ−)

−Q(φ, aJ ; θ)
)
∇θQ(φ, aJ ; θ)

]
. (15)

To balance the exploration and exploitation, we utilize the ε-
greedy policy πJ to select the action with greedy probability
P (aJ = a∗J ) = 1 − ε, where ε ∈ (0, 1) is a small positive
value, i.e., ε = 0.01. Then, the optimal jamming trajectory at
time t can be denoted by

T ∗(atJ ) = (xJ 0, yJ 0, zJ 0) + a0J
∗

+ a1J
∗

+ · · ·+ atJ
∗
, (16)

where (xJ 0, yJ 0, zJ 0) is the initial location of the UAV
jammer.

B. The Optimal Communication Trajectory

In the follower sub-game, the virtual user V chooses the
optimal action a∗V ∈ AV based on the observation of the UAV
jammer, and obtains the optimal communication trajectory
L ∗(aV ) by solving

max
aV

RV [T ∗(aJ ),L (aV )],

s.t. |aV | ≤ 1. (17)

Since the optimal action a∗V of the virtual user depends on the
observation of the UAV jammer, we can derive the insightful
property between action aV and action aJ , which is given by
the following theorem.

Theorem 1. The communication trajectory is decided by the
observation-action transition of the UAV jammer, and the ac-
tion transition probability P (aJ |a′J ) follows an independent
and identically distribution finite state Markov chain.

Proof: Please see Appendix A.
From Theorem 1, the optimizing communication trajectory

problem can be modeled as solving a MDP problem, in which
the communication trajectory of the virtual user is determined
by the state SJ with respect to the action of the UAV jammer,
i.e., s′J = sJ + a′J . The MDP can be denoted as a 4-tuple
〈SJ ,AV , rV , P (·|sJ , aV )〉, where
• SJ is the flight state space,
• AV is the action space,
• rV [sJ ,L (aV )] is the immediate reward obtained when

action aV is taken in state sJ , and the symbol
rV [sJ ,L (aV )] is omitted to rV,sJ if no confusion
occurs.

• P (·|sJ , aV ) is the transition probability of the next state,
conditioned on action aV being chosen in state sJ ∈ SJ .

We have

P (st+1
J |s

t
J , aV )

= P (stJ + at+1
J |s

t
J , aV )

= P (a0J + · · ·+ at+1
J |a

0
J + · · ·+ atJ , aV )

= P (at+1
J |a

t
J , aV ). (18)

Then, we apply the Q-learning to derive the optimal communi-
cation trajectory of virtual user L ∗(aV ) with the observation
of the UAV jammer.
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Every N 
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V
r

Fig. 3. The developed DQN framework, which includes one main Q-network
and one target Q-network. Each Q-network consists of one input layer, two
convolutional layers and two FC layers.

Considering the state space SJ is large, we develop the
CNN to approximate the Q-value function. Then, we utilize the
DQN to estimate the Q-value with the weight parameter ξ [27].
The developed DQN framework is shown in Fig. 3, including
the main Q-network and the target Q-network. Specifically,
in time slot t, the sequence of ` historical state-action pairs
St = {st−`J , at−`V , · · · , st−1J , at−1V } is preprocessed to an n×n
matrix ϕt as the input to the CNN. The experience of the
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user etV (ϕt, atV , r
t
V , ϕ

t+1) is stored in the replay memory
DV = {e1V , · · · , etV }. When training the DQN, mini-batches
of experience egV , 1 ≤ g ≤ t from the pool of the replay
memory is randomly chosen to update weight parameter set
ξ via a SGD. The weight parameter set ξ is updated via the
following loss function

L(ξ) = Eϕ,a,r,ϕ′
[(
rV,sJ + γmax

a′V

Q(ϕ′, a′V ; ξ−)

−Q(ϕ, aV ; ξ)
)2]

,

where the symbol ξ− is updated from the same Q-network
to minimize the loss function in every N steps. The gradient
of loss function with respect to the weight parameter set ξ is
obtained by

∇ξL(ξ) = Eϕ,a,r,ϕ′
[(
rV,sJ + γmax

a′V

Q(ϕ′, a′V ; ξ−)

−Q(ϕ, aV ; ξ)
)
∇ξQ(ϕ, aV ; ξ)

]
. (19)

The optimal action in ε-greedy policy πV with greedy proba-
bility P (aV = a∗V ) = 1− ε is given by

a∗V = arg max
aJ∈AJ

Q(ϕ, aV ; ξ). (20)

The optimal communication trajectory of virtual user L ∗(aV )
in time slot t is given by

L ∗(atV ) = (xV 0, yV 0, 0) + a0V
∗

+ a1V
∗

+ · · ·+ atV
∗
, (21)

where (xV 0, yV 0, 0) is the initial location of the virtual user.
However, the optimal communication trajectory of virtual user
is an equivalent solution, as described in (9). Actually, we
have to prove the existence of the optimal communication
trajectory for each user after using the DQN, thus, we derive
the following lemma and theorem.

Lemma 1. For any multivariate function f(c1, · · · , cU ) =
f1(c1) + · · ·+ fU (cU ), if

∂2fi(ci)

∂2ci
> 0,∀i ∈ 1, · · · , U (22)

then, the optimal solution that satisfies f∗(c1, · · · , cU ) =
f∗1 (c1) + · · ·+ f∗U (cU ).

Proof: Please see Appendix B.

Theorem 2. For the optimal communication trajectory of
virtual user in each time slot, denoted as L ∗V , the optimal
communication trajectory L ∗i , i ∈ 1, · · · , U that maximizes
the long-term cumulative reward for each user is existent.

Proof: Please see Appendix C.

Remark. The relationship between optimal communication
trajectory of virtual user and optimal communication trajec-
tories of users are linear. In addition, we can further derive
that if the optimal communication trajectory of virtual user
exists, then the optimal communication trajectory of each user
is existent but not unique, which can be proved as follow:

Based on the non-homogeneous linear equations, we can
rewrite (33) as (A∗w)† = b∗†, where

A∗ =

 a∗1
a∗2
a∗3

 =

 x∗1 x∗2 · · · x∗U
y∗1 y∗2 · · · y∗U
0 0 · · · 0

 ,

w = (w1 w2 · · · wU )†,

b∗ = (b1, b2, b3)† = (x∗V y∗V 0)†.

Let (a∗jw)† = bj ,pj = (w†, bj), j ∈ {1, 2, 3}, then for given
w and ∀ j ∈ {1, 2, 3}, we have Rank(w†) = Rank(pj) = 1 <
U , the solutions of x∗i , y

∗
i , i ∈ {1, · · · , U} are existent but

not unique.

As per Theorem 2, the optimal communication trajectory of
each user in time slot t is given by

L ∗(ati) = (xi0, yi0, 0) + a0i
∗

+ a1i
∗

+ · · ·+ ati
∗
, i ∈ 1, · · · , U

(23)

where (xi0, yi0, 0) is the initial location of user i.

C. Discussions

Here, we prove the existence of stackelberg equilibrium in
the game, and then we analyze the time complexity of the
proposed defense strategy.

1) Stackelberg Equilibrium:

Definition 1. Given a two-player stackelberg game, where
player 1 as a leader wants to maximize a reward function
r1(a1, a2) and player 2 as a follower wants to maximize a
reward function r2(a1, a2) by choosing a1, a2 from action
space A1 and A2, respectively. Then the pair (a∗1, a

∗
2) is called

a stackelberg equilibrium if for any a1 belonging to A1 and
a2 belonging to A2, satisfies

r1(a∗1, a2) ≥ r1(a1, a2)

r2(a∗1, a
∗
2) ≥ r2(a∗1, a2(a∗1)), (24)

where the reward r2(a∗1, a
∗
2) = maxa2 r2(a∗1, a2(a∗1)) [38].

Remark. We note that the stackelberg equilibrium with the
UAV jammer as a leader is the optimal solution for it if the
UAV jammer chooses its action a∗J first, and if the goal of the
virtual user is to maximize RV , while that of the UAV jammer
is to maximize RJ . If the leader chooses any other action
aJ , then the follower will choose an action ã∗V to maximize
RV . In this case, the reward of the UAV jammer will be less
than that when the stackelberg equilibrium with UAV jammer
is used.

Theorem 3. In the proposed game with one UAV jammer J
and one virtual user V , the DQN based optimal trajectory
pairs [T ∗(aJ ),L ∗(aV )] is a stackelberg equilibrium.

Proof: Please see Appendix B.

Remark. Theoretically, a stackelberg equilibrium can be
achieved with probability one, if the DQN is well trained.
To balance the exploration and exploitation with respect to
a large state-action space, it has a probability 2ε− ε2 that the
system cannot obtain the optimal communication trajectory
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with respect to a stackelberg equilibrium in DQN training.
Since ε ∈ {0, 1} is a small positive value, the probability event
2ε−ε2 is extremely small, i.e., ε = 0.05, 2ε−ε2 = 0.0975. Such
occasional small probability event can help to fully explored
and exploited the large state-action space and help to obtain
the global optimal solution, then, the DQN can be well trained.

Corollary. If the initial location of the UAV jammer and the
virtual user satisfies xJ 0 = yJ 0 and xV 0 = yV 0, and the
channel is quasi-static block fading, then the anti-jamming
elude game has a stackelberg equilibrium [T ∗(aJ ),L ∗(aV )],
which is given by

T ∗(aJ ) =

(
xJ 0 − xV 0 + xV 0zJ 0

zJ 0
,
yJ 0 − yV 0 + yV 0zJ 0

zJ 0
, 1),

L ∗(aV ) = (1, 1, 0).

Proof: Please see Appendix E.

Remark. In the above case, we note that the stakelberg
equilibrium of the system is independent of the initial flight
height zJ 0, and the optimal flight height z∗J is a constant. The
optimal communication trajectory of the virtual user satisfies
{(x∗V , y∗V , 0)|(x∗V , y∗V , 0) ∈ Si, x∗V = y∗V }. In particular,
L ∗(aV ) = (0, 0, 0) has no physical meaning in practice, and
L ∗(aV ) = (1, 1, 0) is a special case.

2) Time Complexity Analysis: The total time complexity of
anti-intelligent UAV jamming strategy mainly depends on the
all convolutional layers, which can be defined as [39]

O

( 2∑
m=1

Fm−1n2mFmµ2
m

)
, (25)

where m is the index of convolutional layer, the symbol Fm−1
is the number input channels of the m-th layer, i.e., F0 = 1,
the symbol µm is the spatial size of the output feature map of
the m-th convolutional layer.

In our developed CNN, the number of the convolutional
layer m = 2. Thus, with regard to the first convolutional layer,
each filter has size n1 × n1 with stride 1, it inputs a n × n
matrix, then outputs a feature map with size (n−n1+1). With
each filter size n2×n2 and stride 1, the second convolutional
layer inputs a (n− n1 + 1) matrix and outputs a feature map
with size (n−n1−n2 + 2). The total testing time complexity
of the proposed strategy can be obtained via (25). Meanwhile,
since the CNN training includes one forward propagation
and two backward propagation, the training time complexity
is roughly three times of the testing time complexity [39].
Therefore, the time complex of the proposed defense strategy
is given in table II.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the anti-
jamming elude game via simulations. In the simulations, the
transmit power of the base station is pB = 100 mW, the
jamming power of the UAV is pJ = 30 mW, the noise power
is σ2 = 1 mW, the unit energy cost of the UAV jammer is
Cj = 0.9 dB ≈ 1.23 mW and the unit energy cost of the

virtual user is CU = 0.5 dB ≈ 1.12 mW. From [32], we set the
path-loss exponents for air-to-ground channel α = 3, ground-
to-ground channel η = 2, and the additional attenuation factors
βLoS = 1 dB, βNLoS = 20 dB, respectively. The location of the
base station is (0, 0, 0) and the initial location of the virtual
user is calculated by (9). The virtual user can move in a square
area with size X × Y × 1, and the UAV jammer can move in
a cube area with size X ×Y ×Z, where X ∈ [−30 m, 30 m],
Y ∈ [−30 m, 30 m], and Z ∈ [0 m, 30 m]. To simplify
simulation, the CSI is set to be real number, which changes in
each time slot, and the size of state S is set to be 50. Likewise,
the size of state SJ is also set to be 50. The neural network
consists of 2 hidden layers with the discount factor γ = 0.95,
and greedy rate ε = 0.1.
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Fig. 4. The ergodic immediate reward of the virtual user at different location.
The UAV is at (-10 m, 20 m, 50 m) and state changes 1000 times.

As the channel environment is dynamic, it is difficult to
directly analyze the immediate reward. Thus, we analyze the
immediate reward based on the ergodic immediate reward. Fig.
4. shows the tangent plane of ergodic immediate reward of
virtual user in different location, corresponding to the location
of the UAV is (-10 m, 20 m, 50 m). Some interesting insights
are obtained. For instance, with the distance between virtual
user and base station decreases, the immediate reward received
by the virtual user increases. In particular, such increasing
trend is non-linear and the ergodic immediate reward of the
virtual user is maximum at (0 m, 0 m, 0 m). For example, when
coordinate x = 0 m is fixed, the coordinate y changes from
−10 m to −7.5 m which increases 0.25 dB ergodic immediate
reward, and from −7.5 m to −5 m which increases 0.65 dB
ergodic immediate reward.

When the location of the virtual user is (5 m, -5 m, 0 m),
making state s change 1000 times, the ergodic immediate
reward of the UAV jammer is shown in Fig. 5. We find
that the tangent plane of the ergodic immediate reward can
be approximated to a hemisphere. It shows that the closer
the distance between virtual user and UAV jammer is, the
higher the ergodic immediate reward will be. In addition, we
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TABLE II
THE TIME COMPLEX OF THE PROPOSED DEFENSE STRATEGY

The testing time complexity The training time complexity

O

(
F1

(
n2
1(n− n1 + 1)2 + F2n2

2(n− n1 − n2 + 2)2
))

O

(
3F1

(
n2
1(n− n1 + 1)2 + F2n2

2(n− n1 − n2 + 2)2
))
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Fig. 5. The ergodic immediate reward of the UAV jammer at different
location. The virtual user is at (5 m, -5 m) and the state changes 1000 times

observe that the ergodic immediate reward decreases with the
increasing flight height zJ and it decreases rapidly when the
coordinate y is greater than 2 m. The reason is that the gradient
of the edge is large, which leads to the immediate reward
decreases rapidly. The result suggests that if the attacker only
launches jamming in one time slot, the UAV jammer should
stay close to the virtual user as soon as possible to obtain a
high ergodic immediate reward. Furthermore, one interesting
observation is that the ergodic immediate reward is symmetric
about x = 5 under the parameters setting above.

The long-term cumulative rewards of the UAV jammer
in 300 time slots is presented in Fig. 6. We leverage the
greedy strategy, random strategy and Q-learning strategy as
benchmark methods and compare them with the proposed
DRQN based intelligent jamming strategy. Since the greedy
strategy and the random strategy do not consider a series of
time events, for these two strategies, the long-term cumulative
rewards are equal to immediate rewards. We find that the long-
term cumulative reward via DRQN can converge to 21.2 dB
after 200 time slots. However, due to the state spaces are large,
the Q-learning strategy cannot update the Q-table effectively.
Thus, the convergence speed of Q-learning is slower than
DRQN based strategy. And, even after 300 time slots, the
Q-learning based strategy cannot converge to a fixed value.
The performance of the proposed strategy is already superior
to the greedy strategy and the random strategy after 25 time
slots. For example, the proposed strategy can achieve 75%
higher long-term cumulative reward than the greedy reward in
the 200-th time slot. In benchmark methods, we also find that
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Fig. 6. The long-term cumulative rewards of the UAV jammer in DRQN,
greedy, random and Q-learning strategy in 300 time slots.

the greedy strategy can achieve a better performance than the
random strategy, and the Q-learning based strategy is the best
of the three.
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Fig. 7. The long-term cumulative rewards of the virtual user in DQN, greedy,
random and Q-learning strategy in 300 time slots.

We obtain the long-term cumulative rewards of the vir-
tual user in Fig. 7. The result suggests that the long-term
cumulative reward via DQN can converge to 22.3 dB after
100 time slots. After 10 time slots, the DQN based strategy
has already get a higher long-term cumulative reward than
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random and greedy strategies. Then, after 20 time slots, the
proposed strategy is better than the Q-learning base strategy.
In summary, these two figures show that both the UAV
jammer and the virtual user can obtain the highest long-term
cumulative rewards via the proposed strategy, respectively.
That is, the stackelberg equilibrium exists after the long-term
cumulative reward converges.
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Fig. 8. The optimal trajectories via learning in one episode, the UAV jammer
via DRQN vs. the virtual user via DQN.

Fig. 8. presents the optimal jamming trajectory of the UAV
and the optimal communication trajectory of the virtual user
in one episode. We observe that the communication location
of the virtual user starts at (-2 m, 1 m, 0 m) and ends at (15
m, 18 m, 0 m) and the jamming location of the UAV starts at
(0 m, 0 m, 10 m) and ends at (15 m, 15 m, 0 m). To obtain
the maximum long-term cumulative reward, the UAV jammer
will not prefer to stay close to the virtual user in each time
slot as analyzed in Fig. 5. The reason is that the CSI is time
varying in each time slot, the UAV jammer will consider the
CSI transition probability to maximize long-term cumulative
reward rather than considering the instantaneous CSI only.

V. CONCLUSIONS

In this paper, we have proposed the anti-intelligent UAV
jamming strategy via deep Q-networks. Specifically, we have
formulated the anti-UAV jamming problem as a stackelberg
dynamic game, in which the UAV jammer acts as a leader and
the users act as followers. We have modeled the leader sub-
game as a partially observable Markov decision process and
have learned the optimal jamming trajectory via deep recurrent
Q-networks in the three-dimension space. Then, we have mod-
eled the follower sub-game as a Markov decision process. The
optimal communication trajectory has been learned via deep
Q-networks in the two-dimension space. The time complexity
of the defense strategy has been analyzed via theory and
the performance of the proposed defense strategy has been
evaluated by simulations. Some insightful remarks have been
obtained: 1) If the optimal trajectory of virtual user exists, the

optimal communication trajectory of each user is existent but
is not unique. 2) In quasi-static block fading, the stakelberg
equilibrium of the system is independent of the initial flight
height, and the optimal flight height is a constant. 3) To
maximize long-term cumulative reward, the action choices
of UAV jammer is different from that of maximizing the
immediate reward.

APPENDIX A
PROOF OF THEOREM 1

The action transition probability of UAV jammer can be
divided into two cases based on ε-greedy policy πJ .

Case 1: If the UAV jammer chooses the optimal action a′J
∗

in the next time slot, then

P (a′J
∗|aJ ) = P (o′, a′J

∗|o, aJ )

= P (a′J
∗
)P (o′|o, aJ )

= (1− ε)P (o′|o, aJ ). (26)

Case 2: If the UAV jammer chooses the non-optimal action
ã′J
∗

in the next time slot, then

P (ã′J
∗
|aJ ) = P (o′, ã′J

∗
|o, aJ )

= P (ã′J
∗
)P (o′|o, aJ )

= εP (o′|o, aJ ), (27)

where the action aJ ∈ {a∗J , ãJ
∗}. As per (26) (27), we have

the action transition probability P (a′J |aJ ) = P (o′|o, aJ ).
Given current action aJ , we note that the next action a′J
is independent of the previous action, which has a Markov
property. Then proof is completed.

APPENDIX B
PROOF OF LEMMA 1

Taking the second derivative of function f(c1, · · · , cU ), we
can get the Hessian matrix

∂2f(c1, · · · , cU )

∂2c1, · · · , cU
=


∂2f
∂c2

1

∂2f
∂c1∂c2

· · · ∂2f
∂c1∂cU

∂2f
∂c2∂c1

∂2f
∂c2

2
· · · ∂2f

∂c2∂cU

...
...

. . .
...

∂2f
∂cU∂c1

∂2f
∂cU∂c2

· · · ∂2f
∂c2

U

 . (28)

According to (22), we can obtain

∂2f

∂ci∂cj
= 0, i, j ∈ {1, · · ·U}, i 6= j,

∂2f1(c1)

∂2c1
> 0,

...
∂2f1(c1)

∂2c1
+ · · ·+ ∂2f1(cU )

∂2cU
> 0, (29)

and deduce that the Hessian matrix is positive definite.
The result indicates that f(c1, · · · , cU ) is a convex func-
tion, therefore, there is an optimal solution that satisfies
f∗(c1, · · · , cU ) = f∗1 (c1) + · · · + f∗U (cU ), and the proof is
completed.
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APPENDIX C
PROOF OF THEOREM 2

Substituting wi into (9), we can obtain the linear represen-
tation among users, which are

(xV , yV , 0)

= (w1x1 + · · ·+ wUxU , w1y1 + · · ·+ wUyU , 0)

= w1(x1, y1, 0) + · · ·+ wU (xU , yU , 0). (30)

Since the Q-values with respect to the locations of the users,
we can get

Q(ϕ, aV ; ξ) ∝ Q(ϕ1, ai; ξ1) + · · ·+Q(ϕU , aU ; ξU ), (31)

where ϕi, ξi,∈ {1, · · · , U} is the DQN parameter of each user.
According to Lemma 1, we have

Q∗(ϕ, aV ; ξ) ∝ Q∗(ϕ1, ai; ξ1) + · · ·+Q∗(ϕU , aU ; ξU ). (32)

Then, we can get

(xV , yV , 0)∗ = w1(x1, y1, 0)∗ + · · ·+ wU (xU , yU , 0)∗, (33)

which shows that all users have effectively learned the optimal
communication trajectory to maximum its long-term cumula-
tive reward, if and only if the virtual user obtains the optimal
communication trajectory L ∗V . Then proof is completed.

APPENDIX D
PROOF OF THEOREM 3

As the leader, the UAV jammer first chooses the action atJ ∈
AJ to maximize its long-term cumulative reward in each time
slot t. For any a−J ∈ A−J , we have the following

RJ [T ∗(atJ ),L (at−1V )] ≥ RJ [T (at−J ),L (at−1V )],

where A−J is the action space except the action aJ . Then, as
the follower, the virtual user observes the action of the leader
and chooses the action atV ∈ AV to maximize its long-term
cumulative reward RV [T ∗(atJ ),L ∗(atV )]. For any a−V ∈
A−V , we have the following

RV [T ∗(atJ ),L ∗(atV )] ≥ RV [T ∗(atJ ),L (at−V )],

where A−V is the action space except the action aV . For any
a−J ∈ A−J and a−V ∈ A−V , we can obtain

RJ [T ∗(atJ ),L ∗(atV )] ≥ RJ [T (at−J ),L (atV )],

RV [T ∗(atJ ),L ∗(atV )] ≥ RV [T (atJ ),L (at−V )]. (34)

Based on (24), the proof is completed.

APPENDIX E
PROOF OF COROLLARY 1

Substituting (3) into (10) and defining K + J =
pJPLoSβLoS + pJPNLoSβNLoS, we can get immediate reward
in (35), which is shown at the top of this page.

According to Lagrange multiplier

F (xJ , yJ , zJ , λJ ) = rJ [T (aJ ),L (aV )] + λJ (|aJ | − 1)
(36)

and sufficient Karush-Kuhn-Tucker (KKT) conditions,

∂F (xJ , yJ , zJ , λJ )

∂xJ
= 0

∂F (xJ , yJ , zJ , λJ )

∂yJ
= 0

∂F (xJ , yJ , zJ , λJ )

∂zJ
= 0 (37)

λJ (|aJ | − 1) = 0

λJ ≥ 0,

we obtain

T ∗(aJ ) =

(
xJ 0 − xV 0 + xV 0zJ 0

zJ 0
,
yJ 0 − yV 0 + yV 0zJ 0

zJ 0
, 1).

Defining

(x∗J , y
∗
J , z

∗
J ) =

(
xJ 0 − xV 0 + xV 0zJ 0

zJ 0
,
yJ 0 − yV 0 + yV 0zJ 0

zJ 0
, 1)

(38)

and substituting (3) into (5), we can get immediate reward in
(39), which is presented at the top of this page.

Similarly, if the initial location of the UAV jammer and
the virtual user satisfies xJ 0 = yJ 0 and xV 0 = yV 0, using
Lagrange multiplier and KKT conditions,

F (xV , yV , 0, λV ) = rV [T ∗(aJ ),L (aV )] + λV (|aV | − 1)
(40)

∂F (xV , yV , 0, λV )

∂xV
= 0

∂F (xV , yV , 0, λV )

∂yV
= 0 (41)

λV (|aV | − 1) = 0

λV ≥ 0,

we have x∗V = y∗V . Then, we derive that L ∗(aV ) = (1, 1, 0)
is one of the optimal solution for the virtual user in this special
case.
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