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ABSTRACT
We introduce Deep-CEE (Deep Learning for Galaxy Cluster Extraction and
Evaluation), a proof of concept for a novel deep learning technique, applied directly
to wide-field colour imaging to search for galaxy clusters, without the need for photo-
metric catalogues. This technique is complementary to traditional methods and could
also be used in combination with them to confirm galaxy cluster candidates. We use a
state-of-the-art probabilistic algorithm, adapted to localise and classify galaxy clusters
from other astronomical objects in SDSS imaging. As there is an abundance of labelled
data for galaxy clusters from previous classifications in publicly available catalogues,
we do not need to rely on simulated data. This means we keep our training data as
realistic as possible, which is advantageous when training a deep learning algorithm.
Ultimately, we will apply our model to surveys such as LSST and Euclid to probe
wider and deeper into unexplored regions of the Universe. This will produce large
samples of both high redshift and low mass clusters, which can be utilised to constrain
both environment-driven galaxy evolution and cosmology.

Key words: galaxies: clusters: general – methods: statistical – methods: data analysis
– techniques: image processing

1 INTRODUCTION

Galaxy clusters are the largest gravitationally bound sys-
tems in the Universe. We study galaxy clusters to under-
stand the environmental effects on galaxy evolution and
to determine the cosmological parameters that govern the
growth of large scale structure in the Universe. In order to
do this, large well understood samples of clusters across a
range of masses and redshifts are required.

Throughout the 1950s to 1980s the astronomer George
Abell created the ‘Abell catalogue’ containing 4073 galaxy
clusters (Abell et al. 1989), which we now refer to as Abell
galaxy clusters. George Abell used a magnifying glass to
manually examine photographic plates and looked specifi-
cally for over-dense regions of galaxies. He could then mea-
sure or estimate properties such as distance, richness and
galaxy magnitudes for each cluster (Cudnik 2013). That
would be the last time that a wide-field cluster search would
be conducted manually by eye.

Since then a variety of techniques have been developed
and used to search for galaxy clusters. The primary tech-
nique for extracting clusters from imaging data is red se-
quence fitting (e.g. Gladders & Yee 2000, Gladders & Yee
2005, Koester et al. 2007, Rykoff et al. 2014a, Rykoff et al.
2014b and Rykoff et al. 2016). Unlike the Abell method,

this technique is applied to photometric catalogue data
extracted from imaging, as opposed to the images them-
selves. It identifies clusters via the distinctive red sequence
slopes containing red, passive galaxies found in colour mag-
nitude diagrams. In the charge-coupled device (CCD) era
this catalogue-based technique has proven to be an efficient
alternative to by-eye searches.

Both X-ray emission (e.g. Sarazin 1986, Ebeling et al.
1998, Böhringer et al. 2004 and Mehrtens et al. 2012a) and
the Sunyaev-Zeldovich (SZ) effect (e.g. Staniszewski et al.
2009, Vanderlinde et al. 2010 and Hilton et al. 2018) reveal
the presence of galaxy clusters through the properties of the
hot intracluster medium (ICM). The ICM emits at X-ray
wavelengths and so X-ray telescopes such as XMM-Newton
and Chandra can be used to search for clusters, which appear
as extended sources. Low energy photons from the Cosmic
Microwave Background (CMB) radiation experience Comp-
ton scattering when they interact with the high energy elec-
trons of the ICM. This is the SZ effect, in which the presence
of a galaxy cluster leaves a shadow on the CMB itself at the
galaxy clusters location.

Finally, as clusters are massive structures their pres-
ence can also be inferred via weak gravitational lensing (e.g.
Wittman et al. 2006 and Umetsu 2010). Statistical tech-
niques are applied to wide-field galaxy surveys to search for
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minute signatures of the convergence and alignment of the
shears produced by gravitational lensing.

The X-ray, SZ and weak lensing techniques need to op-
tically confirm their candidate clusters as there are contam-
inants (e.g. active galactic nuclei [AGN] or nearby galax-
ies) and line-of-sight coincidences (e.g. unrelated low mass
groups at different redshifts) that can conspire to give a false
positive. This confirmation has to be done by eye, which is
time inefficient, or by relying on a red sequence selection
again. This can introduce biases or result in an uncertain
selection function. Therefore an approach that can produce
fast and precise analysis of imaging data would be advanta-
geous to both search for or confirm galaxy clusters.

The Large Synoptic Survey Telescope (LSST, Ivezić
et al. 2019) is currently under construction in Chile and engi-
neering first-light is expected to be in 2020. LSST will be the
deepest wide-field optical survey ever conducted, perform-
ing multiple scans of the entire Southern sky over ten years,
with an estimated 15 TB of data generated per night. Euclid
(Amiaux et al. 2012) is a wide-field space telescope that is
due to commence operation in 2022. It will conduct a weak
lensing survey to probe the nature of Dark Matter and Dark
Energy, with an estimated 1PB of data generated per year.
Data mining techniques such as deep learning will be re-
quired to analyse the enormous outputs of these telescopes.
LSST and Euclid will observe thousands of previously un-
known galaxy clusters across a wide range of masses and
redshifts but cataloguing them presents a significant chal-
lenge.

During the last two decades computing power has sig-
nificantly improved (Roser & Ritchie 2019), as such deep
learning techniques have become an increasingly popular
approach to replace repetitive manual tasks. In particular,
convolutional neural networks (CNN) have been successful
in the field of computer vision, where CNNs are designed
to mimic the human brain at learning to perceive objects
by activating specific neurons upon visualising distinctive
patterns and colours. We can train and utilise CNNs to pro-
cess high-dimensional features directly from digital images
into a meaningful understanding with minimal human input
(Huang 1996). LeCun et al. (1999) first introduced a deep
learning approach using CNNs to classify uniquely hand-
written digits in images from the MNIST dataset achieving
error rates of less than 1 per cent.

Deep learning is very applicable in astronomy due to
the abundance of imaging data available from modern tele-
scopes. This makes it preferable when conducting data min-
ing tasks such as classification, regression and reconstruc-
tion. These include determining the morphology of galaxies
(e.g. Khalifa et al. 2018, Walmsley et al. 2019 and Zhu et al.
2019), identifying gravitational lenses (e.g. Hezaveh et al.
2017, Schaefer, C. et al. 2018, Pearson et al. 2018, Davies
et al. 2019, Ribli et al. 2019 and Petrillo et al. 2019), pre-
dicting photometric redshift (e.g. Hoyle 2016, Pasquet et al.
2019 and Chong & Yang 2019), generating synthetic sur-
veys (Smith & Geach 2019), denoising of astronomical im-
ages (Flamary 2016) and astronomical object classification
(e.g. Hála 2014 and Kim & Brunner 2017). However, a deep
learning approach has yet to be developed to detect and de-
termine intrinsic properties of galaxy clusters from wide-field
imaging data.

Conventional CNN classifiers are adept at distinguish-

ing learned features in images but rather naive at determin-
ing their positions in an image. For this paper we want to
apply a deep learning approach that can efficiently localise
and classify objects in images. Szegedy et al. (2013) demon-
strates a deep learning approach to perform object detection
in images by modifying the architecture of CNNs into mod-
ules that are specific to classification and localisation tasks,
where objects with importance are classed as ‘foreground’
whilst everything else is considered as ‘background’.

TensorFlow (Abadi et al. 2015) is an open source data
science library that provide many high level application pro-
gramming interfaces (API) for machine learning. The object
detection API1 (Huang et al. 2016) contains multiple state-
of-the-art deep learning algorithms, which are designed to
enhance the speed or accuracy of a model. These include
SSD (Single Shot Detection, Liu et al. 2015) and Faster-
RCNN (Faster Region-based CNN, Ren et al. 2015). Huang
et al. (2016) finds that the Faster-RCNN algorithm returns
high precision for predictions on the COCO dataset and is
suitable for large input images during training and testing.
However the algorithm can take a long time to train and be
slow at generating predictions. Whilst the SSD algorithm is
quick to train and produces fast predictions, but the overall
precision of predictions is lower compared to Faster-RCNN.
We choose the Faster-RCNN algorithm as we prefer accu-
racy over speed.

We organise this paper in the following format. We split
§2 into two subsections to outline our methodology. In §2.1
we explain the concept behind the Deep-CEE model and
in §2.2 we the describe the procedure to create the training
and test sets. In §3 we analyse the performance of our model
with the test set (see §3.1) and we also assess our model on
an unseen dataset (see §3.2). In §4 we discuss the limita-
tions and future applications of our model. Finally, in §5 we
summarise this paper.

Throughout this paper, we adopt a ΛCDM cosmology
with H0 = 71 km s−1 Mpc−1, Ωm = 0.27 and ΩΛ = 0.73.

2 METHOD

2.1 Deep Learning Method

We use a supervised learning approach (Kotsiantis 2007) to
train the Faster-RCNN algorithm by providing it labelled
data. The architecture of the algorithm can be seen in Fig-
ure 1. It is comprised of three different individual networks
that work collectively during the training phase. These three
networks are called the Feature Network (FN), Region Pro-
posal Network (RPN) and Detection Network (DN). Only
the convolution layers in the RPN and the fully-connected
(FC) layers in the DN require training as the other layers
have no trainable parameters. To train our model, we use
a joint training (Ren et al. 2015) approach, which means
we allow the outputs from all the networks to be generated
before the trainable layers are updated. Throughout this sec-
tion we adopt a similar methodology and hyper-parameters
as described in Ren et al. (2015). We set a learning rate of

1 The full list of object detection algorithms can be found
at: https://github.com/tensorflow/models/blob/master/

research/object_detection/g3doc/detection_model_zoo.md
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0.0002, momentum of 0.9, gradient clipping threshold of 10
and a mini-batch size of one2. We randomly initialise the
weights in the RPN and the DN from a zero-mean Gaus-
sian distribution with a standard deviation of 0.01. We also
initialise all bias values in the RPN and DN to be zero.

2.1.1 Feature Network

The FN is found at the beginning of the Faster-RCNN al-
gorithm and takes an image as the input. We apply trans-
fer learning (Torrey & Shavlik 2009) by using a pre-trained
CNN called Inception-v2 (Szegedy et al. 2015) as the ar-
chitecture of the FN. Inception-v2 consists of convolution,
ReLU (rectified linear unit) activation and pooling layers3

(Schmidhuber 2014). The convolution and ReLU activation
layers are responsible for extracting non-linear features from
an image such as straight lines, edges and curves. The pool-
ing layers then down-sample the convolved image to form a
feature map. The reason we choose the Inception-v2 archi-
tecture as opposed to other architectures such as VGG16
(Simonyan & Zisserman 2014) and AlexNet (Krizhevsky
et al. 2012) is that it has been designed to reduce the number
of parameters needed in the network. This means less com-
putational power is required to train the algorithm, while
still retaining high accuracy. Inception-v2 has been pre-
trained to recognise objects from the COCO (The Common
Objects in Context) dataset (Lin et al. 2014), which con-
tains images of commonly found objects in daily life such as
vehicles and animals. This means we do not have to retrain
the weights and biases in the network since they are suffi-
ciently optimised at finding generic structures, as retraining
every single weight and bias from scratch is computationally
expensive. Furthermore we do not alter the architecture of
Inception-v2, as it has already been fine tuned for object
detection.

2.1.2 Region Proposal Network

The RPN is found after the FN and consists of a shallow ar-
chitecture of three convolution layers with a ReLU activation
layer specific only to the first convolution layer, see Figure
1. The weights and biases in the the first convolution layer
are shared for classification and localisation tasks whilst the
remaining convolution layers are separated into two parallel
convolution layers, with independent weights and biases for
each task. The RPN takes the feature map output from the
FN as its input. The role of the RPN is to generate probabil-
ities of possible positions at which an object could be located
within an image. In the first convolution layer we use a 3×3
pixel sliding window with zero-padding4 and we set a pixel
stride of one, which translates to every sixteenth pixel in the
original image. At the centre of each sliding window we place

2 The definitions for each hyper-parameter is beyond the scope
of this paper but is explained in Ruder (2016).
3 The fully-connected and softmax classifer layers in Inception-

v2 are not included for the FN since we do not want to perform
classification or regression in this network.
4 An additional layer of pixels is added around the edge of an
image with values of zero. This helps to preserve the dimensions

of the input as it passes through the layer.

an ‘anchor’. Each anchor has a set number of different sized
boxes generated around it. The dimensions and number of
boxes is dependent on the scaling and aspect ratios. We use
scaling ratios of 0.25, 0.5, 1.0 and 2.0 and aspect ratios of
0.5, 1.0 and 2.0. We choose these values to reflect the di-
mensions of the ground truth boxes in all of the images. A
scaling ratio of 1.0 relates to a box of 256× 256 pixels in the
original image, such that setting other values for the scaling
ratio would generate additional larger or smaller boxes at
each anchor. The aspect ratio produces boxes around each
anchor that have adjusted widths and heights with respect
to each scaling ratio. This means at every anchor there are
twelve boxes of different sizes. In the final convolution layers
we apply a 1× 1 pixel sliding window with no-padding5 and
a pixel stride of one. This ensures we have fixed dimensions
for the output of this layer.

We assign any box with more than 50 per cent over-
lap with the ground truth box as a positive ‘foreground’ la-
bel or otherwise set as a negative ‘background’ label. Then
128 positive labelled boxes and 128 negative labelled boxes
are randomly chosen for each image to update the weights
and biases, so that the RPN learns to distinguish impor-
tant objects as ‘foreground’ and irrelevant objects as ‘back-
ground’. If there are fewer than 128 positive labelled boxes
in an image then additional negative labelled boxes with the
next highest percentage overlapping are chosen to represent
positive labels. Therefore the RPN will learn two outputs:
whether a box is likely to contain a ground truth object
and whether a box is not likely to contain a ground truth
object, based on percentage overlap with the ground truth
box. During the testing phase, if a box has a high probability
of containing an object then this box will be passed onto the
next stage in the Faster-RCNN algorithm. However if a box
has a high probability of not containing an object then the
box is disregarded. We use back-propogation (BP, Rumel-
hart et al. (1986)) and stochastic gradient descent (SGD,
Bottou (2010)) to train the weights and biases in RPN.

We apply two additional steps to limit the number of
boxes for faster computation. Firstly, any box which ex-
tends outside the image borders are disregarded. We then
use Non-Maximum Suppression (NMS, Hosang et al. (2017))
on the boxes. NMS keeps the highest overlapping box with
the ground truth box and disregards any remaining boxes
that overlap by more than 70 per cent with this box. These
steps are then repeated on the remaining boxes, such that
the next box with the highest overlap is kept and any other
box with more than 70 per cent overlap with this box are
also disregarded. This procedure continues until there are
fewer than 300 boxes for each image.

We then utilise two loss functions (binary cross-entropy
loss and smooth L1-loss) to calculate prediction errors in
the RPN, these two loss functions are associated to separate
convolution layers in the final layer of the RPN. The binary
cross-entropy loss layer (Bishop 2006) creates a probability
distribution for all the proposed boxes, where the sum of
all probabilities equals one. This function is described in
Equation 1:

Lcls(pi, p∗i ) = −p∗i log(pii) − (1 − p∗i )log(1 − pi), (1)

5 No additional pixels are added around the edge of an image.

MNRAS 000, 1–18 (2019)



4 M. C. Chan and J. P. Stott

Figure 1. High-level overview of the architecture for the Faster-RCNN algorithm which contains the Feature Network, Region Proposal

Network and Detection Network. The output from each network is used as the input for the next network. This architecture is similar

to the system demonstrated in Figure 2 from Ren et al. (2015). The full details of the Inception-v2 architecture can be found in Ren
et al. (2018). For simplicity, the layers in the Inception-v2 architecture and the FN are not displayed fully, and we do not show the

ReLU activation layers in any of the networks. The RPN and the DN loss functions are active during the training phase, but they are

replaced by a softmax classifier layer (Nwankpa et al. 2018) in the testing phase.

where pi is the predicted probability of a box and p∗i is
zero or one depending on whether the ground truth box is
correctly classified. The binary cross-entropy loss function
calculates the objectness error for boxes being predicted as
‘foreground’ and ‘background’.

The smooth L1-loss layer (Girshick 2015) only consid-
ers positive labelled boxes in the training phase. It takes into
account the distance between the centre coordinates of the
ground truth box and predicted boxes, and also the differ-
ence in size of the boxes compared to the ground truth box.
This function is seen in Equation 2:

Lreg(x) =
{ 0.5x2, if |x | < 1,
|x | − 0.5, otherwise,

. (2)

where x = (ti − t∗i ) is the error between the ground truth
and the predicted boxes. The smooth L1-loss function pe-
nalises localisation error by taking the absolute value (be-
haves like L1-loss) for large errors and the square value (be-
haves like L2-loss) for small errors (Ng 2004). This encour-
ages stable regularisation of the weights and biases during
training.

The proposed boxes from the RPN are merged with
the feature maps from the FN, so that each box is over-
laid on an ‘object’ in a feature map. We then use an ROI-
pooling (region-of-interest) layer (Dai et al. 2015), which di-
vides each box into the same number of sections. The largest
value in each section is extracted to generate new cropped
14×14 feature maps associated to each box from the previous
feature map. ROI-pooling speeds up computation later on
in the Faster-RCNN algorithm, as having fixed sized feature
maps leads to faster convergence (Girshick 2015).

2.1.3 Detection Network

The DN is found after the ROI-pooling layer at the end of
the Faster-RCNN algorithm. The DN is composed of FC lay-
ers, see Figure 1. The purpose of an FC layer is to combine

all the outputs from the previous layer, this allows for the
model to make decisions. The FC layers are run in parallel,
such that the weights and biases are split between classifi-
cation and localisation. One of these two FC layers consists
of 2 neurons to categorise the outputs for classification, the
other FC layer consists of 4 neurons to predict the properties
for box regression. We apply a step between the ROI-pooling
layer and the DN, where any box with no overlap is disre-
garded. Similar to the procedure for RPN, 16 positive and 48
negative labelled boxes are randomly chosen in each image
to train the weights and biases in the DN, where additional
negative boxes with the next highest overlap are assigned
as positive labels if there are fewer than 16 positive labelled
boxes. We then apply NMS again using a 60 per cent thresh-
old to reduce the number of overlapping boxes. At the end
of the DN, we add another binary cross-entropy loss and
smooth-L1 loss layer to calculate the classification and lo-
calisation errors, where each loss function is also associated
to its own FC layer in the DN. The weights and biases in
the FC layers are also trained via BP and SGD. We mea-
sure classification loss by comparing the pixel values in the
cropped feature maps of each box with the ground truth
box. We determine box regression loss by calculating the
difference between the pixel coordinates, height and width
of the positive labelled boxes with the ground truth box.

Finally, the loss functions of the RPN and the DN are
combined into one multi-tasking loss function (Ren et al.
2015) to train the algorithm during an epoch. It takes into
account the classification loss and box regression loss, by
comparing all of the predicted properties for the boxes with
the ground truth box in each image. This multi-tasking loss
function is described in Equation 3:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p∗i )

+λ
1

Nreg

∑
i

p∗i Lreg(ti, t∗i ),
(3)

MNRAS 000, 1–18 (2019)
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where pi is the predicted probability of a box, ti is the
height, width, x and y coordinates of a box, λ is equal to 10
to balance the cls (classification) and reg (regression) terms
and * for a p or t term signifies either a positive label or
ground truth box respectively. Ncls is the number of inputs
per mini-batch during the training phase and Nreg is the
number of anchors in each image. Lcls is classification loss
and p∗i Lreg is box regression loss for only positive labelled
boxes.

2.2 Catalogue and Image Pre-Processing

Wen et al. (2012) applied the Friends-of-Friends cluster de-
tection algorithm (Huchra & Geller 1982) on photometric
data taken from the Sloan Digital Sky Survey III (SDSS-III,
Eisenstein et al. 2011) Data Release 8 (DR8, Aihara et al.
2011). Wen et al. (2012) identified 132,684 galaxy clusters in
the redshift range 0.05 ≤ z < 0.8. The resultant catalogue has
a completeness ratio of > 95 per cent for detecting galaxy
clusters with mass greater than 1.0 × 1014 M� inside R200

6

and in the redshift range of 0.05 ≤ z < 0.42. We use the Abell
galaxy clusters identified in the Wen et al. (2012) catalogue,
to obtain the labelled data needed to create the training set.
We choose the Abell galaxy clusters because our technique
uses visual inspection of images in a similar manner to that
performed by George Abell and is therefore appropriate to
this proof of concept paper.

We did not train the algorithm on the entire Wen et al.
(2012) catalogue, as this is a pilot study to test the perfor-
mance of the Faster-RCNN algorithm at identifying galaxy
clusters from a sample set. We limit the photometric red-
shift range of galaxy clusters to 0.1 < z < 0.2, as we want
to maximise the signal-to-noise available and avoid nearby
galaxy clusters that could fill the field of view. See Figure
2 for the photometric redshift distribution in the training
set. We set a threshold of 20 ≥ galaxy members inside a
R200 radius, as poorly populated galaxy clusters may have a
lower signal-to-noise. Applying these constraints results in a
sample set of 497 Abell galaxy clusters. Figure 2 shows the
richness distribution of the galaxy clusters in the training
set within R200. Richness is defined by Equation 4:

RL∗ =
L200
L∗

, (4)

where RL∗ is the galaxy cluster richness, L200 is the total
r-band luminosity within R200 and L∗ is the typical luminos-
ity of galaxies in the r-band (Wen et al. 2012).

The brightest cluster galaxy (BCG) is a giant elliptical
galaxy that is usually located in the vicinity of the spa-
tial and kinematic centre of a galaxy cluster (Stott et al.
2008). We convert the right ascension (RA) and declination
(Dec) of the BCG in each image to pixel coordinates. We
adopt these pixel coordinates as the centre coordinates for
the ground truth boxes in both training and test sets. Figure
2 shows the distribution of the r-band magnitudes for the
BCGs in the training set. We also restrict Dec to greater

6 R200 is the radii at which the mean density of the galaxy clus-
ter is 200 times greater than the critical density of the Universe

(Carlberg et al. 1997).
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Figure 2. The distributions of the properties for all of the galaxy
clusters in the training set. The histograms display the photomet-

ric redshift, r-band magnitude of the BCG and richness (from top
to bottom).

MNRAS 000, 1–18 (2019)



6 M. C. Chan and J. P. Stott

than 0 degrees to reduce the amount of data near the galac-
tic plane, due to a higher concentration of stars that may
introduce significant foreground contamination.

The imaging camera on the SDSS telescope has a pixel
size scaling of 0.396 arcsec pixel−1. The SDSS telescope has
five broadband imaging filters, referred to as u, g, r, i, z
covering a wavelength range of 3543 to 9134 Å (Eisenstein
et al. 2011). We use the i, r, g filters but not the u and
z filters as the sensitivity of the SDSS telescope is poorer
at these wavelengths. Each image in the training set con-
tains one Abell galaxy cluster labelled as a ground truth.
We fix each image size to 2000 × 2000 pixels (approximately
1443 × 1443 kpc at redshift z = 0.1 and 2588 × 2588 kpc at
redshift z = 0.2) to capture the wider context but we lower
the resolution of the images during training to a fixed di-
mension of 1000 × 1000 pixels for computational efficiency.
We apply a random offset from a uniform distribution to
the input coordinates since we do not want the algorithm to
be biased towards specific positions in an image. This offset
results in a uniform spread of the positions of the galaxy
clusters in all images, where a galaxy cluster could be found
anywhere within 270 arcseconds from the image centre. See
Figure 3 for the distribution of the positions in the training
and test sets.

To make colour images we ensure that the individual
images taken from the publically available SDSS-III Data
Release 9 (DR9, Ahn et al. 2012)7 for the i, r, g filters are
set to the same scaling and aspect ratios. We then stack
the three filter images to RGB channels and apply a non-
linear transformation to ‘stretch’ each image channel with
a square root function. This adjusts the contrast of the im-
age, as we define lower and upper flux limits by mapping the
image onto a luminosity scale. We do this to reduce back-
ground noise, dim extremely bright objects and make stars
and galaxies easily distinguishable. These changes benefit
the algorithm by decreasing the learning complexity of the
features.

We also want to increase the amount of variance in the
sample set by applying image augmentation techniques. In
Ren et al. (2015), it is stated that one of the properties
of the Faster-RCNN algorithm is translational invariance,
which means the algorithm is robust at learning translated
objects. We want train the algorithm to recognise that an
object could appear at any location in an image. Since our
method applies a random offset to the input coordinates via
translation we can augment the sample set three additional
times, which boosts the sample size to 1988. We then ran-
domly shuffle the sample set and perform simple random
sampling to split the sample set into a training and test set,
which are approximated representations of the full popula-
tion. The training set is made up of ∼ 90 per cent of the
sample set consisting of 1784 labelled galaxy clusters and
the test set is made up of the remaining ∼ 10 per cent con-
sisting of 204 labelled galaxy clusters. Figure 4 displays the
astronomical coordinates for the galaxy clusters in the train-
ing and test sets compared to all the galaxy clusters in the
Wen et al. (2012) catalogue. We then horizontally flip the

7 The imaging data for SDSS-III DR9 can be found
via NASA’s SkyView (http://skyview.gsfc.nasa.gov) online

database (McGlynn et al. 1998).

Figure 3. The distribution of image positions for the galaxy clus-
ters in the training set (top) and test set (bottom). The positions
are determined by calculating the difference in arcseconds be-

tween the coordinate offset and the true coordinates of the galaxy

cluster at its respective photometric redshift, where the coordi-
nate offsets are sampled from a uniform distribution.

images in the training set, where each image has a 50 per
cent chance of being flipped. This approach doubles the size
of the training set to 3568 as all images are flipped once
but this does not affect the size of the test set. Since galaxy
clusters can be observed from any orientation we find these
augmentation techniques to be appropriate during training.

MNRAS 000, 1–18 (2019)
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Figure 4. A map of astronomical coordinates using the J2000 epoch system of the galaxy clusters in the training set, test set and Wen

et al. (2012) catalogue.

3 RESULTS

3.1 Model Analysis with Test Set

We train our model with graphics processing unit (GPU)
support for a maximum of 25000 epochs to ensure the al-
gorithm has enough training time to sufficiently minimise
prediction errors. The number of epochs is a tunable hyper-
parameter that can shorten or extend the run-time of train-
ing a model. In Figure 5, we find that the algorithm gener-
alises well as the total loss stabilises at approximately 3000
epochs, where an epoch represents one iteration of the entire
dataset through the algorithm. For a competent model, the
total loss should not fluctuate significantly during training.

We are able to monitor the performance of the RPN
and the DN via their respective loss functions, where we
measure the objectness and box regression loss in the RPN
and the classification and box regression loss in the DN. Ob-
jectness loss measures whether a box is likely to contain a
ground truth object, box regression loss measures the exact-
ness of the dimensions between the positive labelled boxes
and ground truth box, and classification loss compares the
resemblance of the features in a box with the features of the
ground truth box. A lower loss value means that the pre-
diction is almost identical to the ground truth. In Figure 6,
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Figure 5. The total loss (see Equation 3) considers the errors

from the RPN and the DN during training. We stop the the train-
ing of the model at 7458 epochs as the loss stabilises. Each point

represents the total loss recorded at different epoch intervals. The
values of these points can be found in Table A1.
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we find that each of the losses also eventually stabilise at
approximately 3000 epochs. Figure 6 suggests that the RPN
is better generalised than the DN as there are fewer fluc-
tuations. This could be explained by two possible reasons:
either the training set is suited for localising objects in an
image but improvements could be made to enhance the fea-
ture classification of objects in the training set, or we need
to allow our model to train for more epochs.

The 204 Abell galaxy clusters in the test set appear in
the training set at least once but since the positions of the
galaxy clusters and their surrounding image environments
are different, we can assume the images to be unique. This
is a useful test of the localisation performance of our model.

To evaluate our model we use common metrics such as
precision, recall and F1-score (Goutte & Gaussier 2005). We
only train for one class, so we do not account for true nega-
tives as there may be many other objects in an image aside
from galaxy clusters to consider. The final output of our
model is a ‘confidence’ score generated for every predicted
box, where a high confidence score means a high probabil-
ity of an object being a ‘real’ galaxy cluster. We want to
determine a threshold for the confidence score that returns
high precision and high recall ratios. We re-run our model
on the test set using different confidence score thresholds to
examine the number of true positives (TP), false positives
(FP) and false negatives (FN) returned.

We define a distance threshold by calculating a linear
distance between the predicted and ground truth centre co-
ordinates, where the predicted cluster centre is assumed to
be at the same redshift as the ground truth cluster centre.
We only apply a distance threshold during the model anal-
ysis, as we want to distinguish whether a predicted object
is considered as a true positive or false positive detection to
assess object localisation.

For our model, TP refers to the number of predicted
boxes that score greater than the confidence score threshold
and has a predicted centre within the distance threshold of
the ground truth centre. FP refers to the number of pre-
dicted boxes that score greater than the confidence score
threshold but does not have a predicted centre within the
distance threshold of the ground truth centre. FN refers to
the number of predicted boxes that score less than the confi-
dence score threshold but has a predicted centre within the
distance threshold of the ground truth centre.

We calculate the precision and recall ratios using the
number of TP, FP and FN at each confidence score thresh-
old. Precision is a ratio that effectively determines the num-
ber of ground truth objects returned by our model compared
with the number of new predictions, see Equation 5:

Precision =
TP

TP + FP
. (5)

Recall also determines the number of ground truth ob-
jects returned by our model but compared with the number
of ground truth objects that our model failed to predict, see
Equation 6:

Recall =
TP

TP + FN
. (6)

Precision-Recall (PR) curves are used as visual rep-
resentations to examine the performance of a model, es-

pecially when a class population imbalance exists in the
dataset (Davis & Goadrich 2006). Each point on the PR
curve refers to the precision and recall ratio at a specific
cut-off threshold. We explore eleven cut-off thresholds for
confidence scores ranging from 0 to 100 per cent and cal-
culate the corresponding F1-score at each confidence score
threshold.

F1-score is the harmonic mean between the precision
and recall ratios at each confidence score threshold (Chase
Lipton et al. 2014). We want to maximise the F1-score for
our model to find the optimal balance between precision and
recall. F1-score is described in Equation 7:

F1-score = 2 × Precision × Recall

Precision +Recall
. (7)

We analyse three galaxy clusters (a), (b) and (c) in the
test set that have contrasting predicted confidence scores.
These galaxy clusters can be seen in Figure 7. From Table
1, we find that (c) has the lowest confidence score, whilst
(a) has the highest. This is because even though (c) has a
high richness value, its higher redshift means it has fainter
galaxies. Additionally (b) has a lower richness than (c) but
is estimated to have a higher confidence score, again be-
cause it is at lower redshift. This demonstrates that galaxy
clusters at lower redshift with brighter galaxies will receive
higher confidence scores than their fainter counterparts at
higher redshift. However, a galaxy cluster would also need
high richness to achieve a very high confidence score. As a
demonstration of our model, we choose a confidence score
threshold of 80 per cent for the remainder of this paper.

We investigate how the environment (actual or contam-
inants) surrounding a galaxy cluster in an image can affect
the predictions generated by our model. We visually inspect
multiple predicted galaxy clusters from four different images
in the test set. In Figure 8, we examine a predicted galaxy
cluster that lies just outside the distance threshold at 88
kpc from the ground truth centre. We observe that multiple
possible candidates galaxies could be classified as the BCG
of the galaxy cluster. Since we train our model to predict a
BCG as the galaxy cluster centre we would expect one of the
galaxies in Figure 8 to be chosen. However we find that our
model is unable to definitively determine the ground truth
cluster centre if there are multiple BCG-like galaxies close
together in an image, such as in the event of an on-going
cluster merger. Instead it finds an average centre, which is
likely more appropriate for such systems.

In Figure 9, we examine another predicted galaxy clus-
ter that lies 158 kpc from the ground truth centre. We use
SDSS-III’s Baryon Oscillation Spectroscopic Survey (BOSS,
Eisenstein et al. 2011) to identify the spectroscopic redshift
of the cluster. We identify the spectroscopic redshift of the
predicted ‘BCG’ at z = 0.15765 ± 0.00003 and the spectro-
scopic redshift of the ground truth BCG at z = 0.19282 ±
0.00003. This means that while the galaxies are in the same
line-of-sight they are not part of the same gravitationally-
bound system. Our model is unable to determine the ground
truth BCG since the predicted ‘BCG’ has stronger visual
features and is at a lower redshift.

We find that our model identifies two BCG-like galax-
ies in Figure 10 as potentially two separate galaxy cluster
centres but are within each others respective optical mean
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Figure 6. Training losses of the RPN and the DN are represented in (a), (b), (c) and (d). Where (a) displays the RPN objectness loss,

(b) displays the RPN box regression loss, (c) displays the DN classification loss and (d) displays the DN box regression loss. The training
of the model is stopped at epoch 7458 when the total loss no longer fluctuates, see Figure 5. The values for each point in (a),(b),(c) and

(d) can be found in Table A1.

Table 1. The predicted confidence scores and properties of each galaxy cluster in Figure 7.

ID Confidence Score (%) Photometric Redshift r-band Magnitude of the BCG Richness

(a) 98 0.1474 14.99 78.49

(b) 51 0.1303 16.19 35.90
(c) 20 0.1875 16.73 58.44

core radii defined in §2.2. One of the two predicted objects
lies within the distance threshold of the ground truth centre
whilst the other object is 220 kpc away. We find the spec-
troscopic redshift of the predicted ‘BCG’ is z = 0.15974 ±
0.00003 whilst the ground truth BCG has a spectroscopic
redshift of z = 0.15989 ± 0.00002. This suggests that our
model may have detected a possible galaxy cluster merger.

From Figure 11, we find that our model is able to detect
a potential galaxy cluster which is extremely far from the

ground truth centre at 1163 kpc distance, assuming it is
at a similar redshift. We find that the predicted centre is
located on top of a BCG-like object.We again use the BOSS
survey to find the spectroscopic redshift of the predicted
‘BCG’ at z = 0.10608 ± 0.00002 and the ground truth BCG
spectroscopic redshift of z = 0.14551 ± 0.00003. This shows
that the two objects are clearly physically unrelated and
we could identify the predicted object as a galaxy cluster
candidate.
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10 M. C. Chan and J. P. Stott

Figure 7. Colour images (a), (b) and (c) contain three different Abell galaxy clusters from the test set. The J2000 coordinates for each
galaxy cluster are as follows. (a) RA: 222.78917 and Dec: 14.61203, (b) RA: 180.19902 and Dec: 35.58229 and (c) RA: 137.49464 and

Dec: 60.32841. The predicted confidence scores and properties for the galaxy clusters in (a), (b) and (c) can be found in Table 1.

Figure 8. The linear distance between the ground truth and predicted centre coordinate is 88 kpc in respect to the photometric redshift

z = 0.1788 of the ground truth galaxy cluster. The J2000 coordinates of the ground truth galaxy cluster is RA: 191.85623 and Dec:

35.54509.

We decide to set an appropriate distance threshold
based on Figures 8 and 9 to be between 88 and 158 kpc. At
these distances, we identify multiple galaxy clusters, which
are considered far enough apart that cluster mergers and
line-of-sight overlap clusters are distinguishable. Since we
want to differentiate between cases of TP and FP in our
model analysis, we choose a distance threshold of 100 kpc
for the remainder of this paper.

From Figure 12, we observe that high precision dimin-
ishes recall and high recall diminishes precision. A low pre-
cision ratio results in a large number of predicted objects,
whilst a low recall ratio means many real galaxy clusters
are not predicted by our model. Table 2 shows that an 80
per cent confidence score threshold has the highest F1-score,

which suggests that this confidence score threshold is the
most effective at balancing precision and recall.

We analyse the distance between all of the predicted
centre coordinates from the ground truth centre using an 80
per cent confidence score threshold. In Figure 13, we find
that the distance threshold of 100 kpc contains 70 per cent
of all of the predictions and returns 81 per cent of the to-
tal ground truth clusters in the test set. We disregard any
detection further than 250 kpc from the ground truth cen-
tre from being considered a true positive prediction, since
the prediction would lie outside the optical mean core radii
stated in §2.2. We calculate the standard error of coordinate
regression of our model to determine the average distance

MNRAS 000, 1–18 (2019)
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Figure 9. The linear distance between the ground truth and predicted centre coordinate is 158 kpc in respect to the photometric

redshift z = 0.1687 of the ground truth galaxy cluster. The J2000 coordinates of the ground truth galaxy cluster is RA: 201.45726 and
Dec: 59.33027.

Figure 10. The linear distance between the ground truth and predicted centre coordinate (the one that does not overlap directly with

the ground truth) is 220 kpc in respect to the photometric redshift z = 0.1603 of the ground truth galaxy cluster. The J2000 coordinates

of the ground truth galaxy cluster is RA: 353.35867 and Dec: 9.42395.

of the predicted centre coordinate from the ground truth
centre coordinate using Equation 8:

σestimate =

√∑ (Y − Y ′)2
N

, (8)

where σestimate is the standard error of regression, Y is

the ground truth value, Y
′
is the predicted value and N is the

sample size (L. McHugh 2008). We obtain a standard error
of 17.40 kpc for only predictions considered as true posi-
tives. Therefore we can estimate a 95 per cent confidence
interval for all predicted centre coordinates to be approx-
imately within ±1.96 × standard error of a ground truth
centre coordinate (Altman & Bland 2005).
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Figure 11. The linear distance between the ground truth and predicted centre coordinate (the one that does not overlap directly with
the ground truth) is 1163 kpc in respect to the photometric redshift z = 0.1368 of the ground truth galaxy cluster. The J2000 coordinates
of the ground truth galaxy cluster is RA: 186.96341 and Dec: 63.38483.
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Table 2. The total number of true positives, false positives and false negatives returned by our model on the test set, where the precision,
recall and F1-score ratios are then calculated for each confidence score threshold.

Confidence score threshold (%) # TP # FP # FN Precision Recall F1-score

0 203 60997 1 0.003317 0.9951 0.006612

10 198 538 6 0.2690 0.9706 0.4213
20 197 391 7 0.3350 0.9657 0.4975

30 193 302 11 0.3899 0.9461 0.5522

40 191 243 13 0.4401 0.9363 0.5987
50 188 202 16 0.4821 0.9216 0.6330

60 181 163 23 0.5262 0.8873 0.6606

70 177 119 27 0.5980 0.8676 0.7080
80 165 72 39 0.6962 0.8088 0.7483

90 136 29 68 0.8242 0.6667 0.7371
100 0 0 204 0.00 0.00 0.00
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Figure 12. Precision vs Recall ratios from the test set, where
each point represents the ratios at a confidence score threshold.

The values of each point can be found in Table 2. We do not

include the precision and recall ratio for the 100 per cent confi-
dence score threshold, as it provides no conclusive evaluation of

the performance of the model.

In Figure 14, we visually examine the positions of re-
turned ground truth galaxy clusters in the test set with their
original locations as shown in Figure 3. We find that our
model does not show bias towards any particular location in
an image. This suggests that the random offset we apply in
§2.2 is effective at reducing location bias during training.

We also compare the photometric redshift, BCG r-band
magnitude and richness distributions of all the galaxy clus-
ters returned by our model with their original distributions
in the test set. Figure 15 shows that our model has no clear
prediction bias towards any of these properties. We perform
a two sample Kolmogorov-Smirnov (KS) test (Smirnov 1939)
to test whether the original and returned distributions vio-
late the null hypothesis. Since the KS test is non-parametric,
the distributions do not need to have normality. We calcu-
late test statistic values of 0.06275, 0.07335 and 0.02193 for
photometric redshift, BCG r-band magnitude and richness
respectively. We set α = 0.05 as the level of significance to
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Figure 13. The distribution of the linear distance between the

ground truth and predicted centre coordinates in test set im-
ages for all predictions (top) and predictions within the distance
threshold (bottom) using an 80 per cent confidence score thresh-
old.

obtain a critical value of 0.1289 (Gail & Green 1976). Since
the test statistic values are smaller than the critical value
at α = 0.05, we cannot reject that the original and returned
distributions are statistically the same.
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Figure 14. A comparison of the centre coordinate offset between

the ground truth galaxy clusters returned by our model and the

full list of offset values in the test set (see Figure 3) using an 80
per cent confidence score threshold.

3.2 Comparison To redMapper galaxy clusters

The redMapper algorithm predicts galaxy clusters using the
red sequence fitting technique and probabilistic percolation
of galaxies based on their photometric redshift. Rykoff et al.
(2014b) apply their algorithm to SDSS DR8 (Aihara et al.
2011), to create a catalogue of 25,000 predicted galaxy clus-
ters in the photometric redshift range of 0.08 < z < 0.55.
We apply the same testing constraints used in §2.2 on the
redMapper galaxy clusters, where galaxy clusters must be
in the photometric redshift range of 0.1 < z < 0.2. We
do not need to apply a galaxy member count constraint as
the redMapper algorithm by default only recognises galaxy
clusters with greater than 20 member galaxies8. In Figure
16, we locate a 105 square degree region that contains 31
galaxy clusters identified by the redMapper algorithm. We
examine this area of the sky to further assess the localisa-
tion and classification performance of our model on galaxy
clusters that the algorithm has never seen before.

We first adopt the same procedure from §2.2 to generate
new redMapper test set images. We then re-run our model on
the redMapper test set and apply the evaluation metrics of
precision, recall and F1-score again. In Figure 17, we observe
a precision and recall trade-off similar to Figure 12, where
precision increases with confidence score threshold whilst
recall decreases. From Table 3, we find the confidence score
with the highest F1-score is 70 per cent. This suggests that
our model has not overfit since it performs better on an
unseen dataset, where the confidence score threshold has
lowered from 80 per cent in §3.1. A lower confidence score

8 Note that Rykoff et al. (2014b) does not define galaxy members
within R200 but from an optical radius cutoff that scales with the

number of galaxies found via percolation.
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Figure 15. The distributions of the properties from the original

and ground truth galaxy clusters returned by our model in the

test set using an 80 per cent confidence score threshold. The his-
tograms display the photometric redshift, r-band magnitude of

the BCG and richness (from top to bottom).
MNRAS 000, 1–18 (2019)



A Deep Learning Search for Galaxy Clusters 15

Figure 16. A map of astronomical coordinates using the J2000

epoch system for the galaxy clusters in the training set, test set
and Rykoff et al. (2014b) catalogue. A region of interest highlights

galaxy clusters identified by the redMapper algorithm, which are

not already part of the training set or test set.
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Figure 17. Precision vs Recall ratios on the redMapper test
set, where each point represents the ratios at a confidence score

threshold. The values of each point can be found in Table 3. Again
we do not include the precision and recall ratio for the 100 per

cent confidence score threshold, as it provides no conclusive eval-

uation of the performance of the model.

threshold increases the number of objects detected while still
retaining high precision.

4 DISCUSSION

4.1 Limitations of our model

Feature selection is an important process for improving com-
putational efficiency and the performance of a deep learning
model (Fang 2018). We apply constraints to the training set
to reduce the complexity of the features. Abell galaxy clus-

ters contain a minimum of 50 galaxies within a 1.5 h−1 Mpc
radii of the galaxy cluster centre (Abell et al. 1989). This
means that these galaxy clusters would have strong signal-
to-noise and are very likely to be real gravitationally bound
clusters. However, not all Abell galaxy clusters have been
verified so one limitation of our approach is that our model
is reliant on the catalogue from Wen et al. (2012) for training
data. In Wen et al. (2012), Monte Carlo simulations are used
to determine a false detection rate of less than 6 per cent
for the entire catalogue. False detections lower the overall
precision of the predictions because the training data could
be contaminated with objects that should not be classified
as galaxy clusters. Similarly, the test set will also suffer from
this. Since we have a large training set, it is impractical to
directly check for contaminants in every image with spec-
troscopic follow-up of all ground truth cluster members. We
must therefore assume that all of the galaxy clusters in this
catalogue are real. Additionally we must account for the er-
rors in RA and Dec coordinates from Wen et al. (2012), as
we use these coordinates for the ground truth centre coor-
dinates.

As with all deep learning algorithms, there are hyper-
parameters that require either minor or extensive fine tun-
ing, depending on the task at hand. The default training
hyper-parameters of Faster-RCNN include the learning rate,
momentum, gradient clipping threshold, mini-batch size,
number of layers, number of neurons in each layer and archi-
tecture. We have shown that the values set for these hyper-
parameters are capable of being adapted to perform gener-
alised object detection of galaxy clusters. However to fully
optimise the value of every hyper-parameter is computation-
ally expensive, so we rely on the use of transfer learning
for partial optimisation of the hyper-parameters in our deep
learning model.

We adopt a specific methodology to generate all of the
images by applying the same contrasting, image aspect and
image scaling ratios for computational efficiency. However,
this may create a trade-off between computational efficiency
and bias from image pre-processing. This means that all
future input images to our model are somewhat restricted
to using the same pre-processing techniques that we apply
in §2.2 to obtain maximum performance.

We perform hold-out validation on the sample set to
form the training and test sets. However, this approach is
limited to a simple approximation since we observe a popu-
lation imbalance in the sample in Figure 2. For example, we
find that there are fewer low redshift galaxy clusters com-
pared with high redshift galaxy clusters. This means our
model could overfit to populations that appear more fre-
quently. To reduce the chance of overfitting from population
bias in the training set we could perform k-fold cross valida-
tion (Yadav & Shukla 2016) when splitting the sample set.
K-fold validation splits the sample set into an arbitrary ‘k’
number of folds where one fold becomes the test set whilst
the remaining folds are merged to form the training set.
This is repeated until every fold has been used as the test
set. Then all the folds are compared and the fold with the
best performance is chosen to represent the training and test
set.
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Table 3. The total number of true positives, false positives and false negatives returned by our model on the redMapper test set where
the precision, recall and F1-score ratios are then calculated for each confidence score threshold.

Confidence score threshold (%) # TP # FP # FN Precision Recall F1-score

0 30 9270 1 0.003226 0.9677 0.006430

10 29 50 2 0.3671 0.9355 0.5273
20 29 29 2 0.50 0.9355 0.6517

30 29 23 2 0.5577 0.9355 0.6988

40 28 18 3 0.6087 0.9032 0.7273
50 28 14 3 0.6667 0.9032 0.7671

60 28 11 3 0.7179 0.9032 0.80

70 27 8 4 0.7714 0.8710 0.8182
80 23 4 8 0.8519 0.7419 0.7931

90 17 0 14 1.00 0.5484 0.7083

100 0 0 31 0.00 0.00 0.00

4.2 Future Applications of this Technique

LSST and Euclid are ideal surveys to apply our deep learn-
ing model to, as they will be wider and deeper than any
survey conducted before them. This will produce detections
of many thousands of candidate high redshift or low mass
clusters that are currently undiscovered. This may be an
iterative process in practice with these large datasets also
being used to improve the training of our model.

The Deep-CEE method will be of great use for con-
firming candidate galaxy clusters detected by X-ray or SZ
surveys, as they often have many interlopers. We also in-
tend to use training sets based on galaxy clusters selected
from traditional techniques. For example, it will be inter-
esting to compare the clusters predicted by a deep learning
algorithm based on a training set of X-ray selected clusters
compared with those trained on a red sequence fitting sam-
ple. This may be a good way to test the various biases of
cluster detection methods, which can filter through to any
cosmological predictions made with them.

Our deep learning model can also be adapted and ap-
plied to both optical imaging and other cluster detection
methods at the same time. For example, a related algorithm
could be shown a red sequence fit and/or an X-ray image at
the same time as visual imaging to create a robust sample
of clusters.

To improve the model itself, we will investigate whether
applying additional image augmentation techniques such as
rotation and vertical flipping can improve the performance
of our model. Perez & Wang (2017) shows that using simple
image transformations can result in a more robust model.
We will also train the model to predict other properties of
the clusters such as redshift and richness, which will be vital
for the thousands of clusters discovered by wide-field surveys
such as LSST and Euclid.

5 CONCLUSION

We present Deep-CEE a novel deep learning model for de-
tecting galaxy clusters in colour images and returning their
respective RA and Dec. We use Abell galaxy clusters from
the Wen et al. (2012) catalogue as the ground truth labels in
colour images to create a training set and test set. We find
that an 80 per cent confidence score threshold is optimal
to balance precision and recall. At this threshold our model

achieves a precision of 70 per cent and recall of 81 per cent
for all predictions in the test set. This suggests that the fea-
tures in the training set and hyper-parameters for our model
are suitable for generalised object detection of galaxy clus-
ters. A random classifier would only obtain a precision of 50
per cent and recall of 50 per cent, whilst a perfect classi-
fier would have a precision of 100 per cent and recall of 100
per cent (Tharwat 2018). We show that our model does not
overfit to galaxy clusters in the training set, as we obtain a
lower optimal confidence score threshold when we run the
model on unseen galaxy clusters.

By applying Deep-CEE to wide-deep imaging surveys
such as LSST and Euclid, we will discover many new higher
redshift and lower mass galaxy clusters. Our approach will
also be a powerful tool when combined with catalogues
or imaging data from other wavelengths such as X-ray
(Mehrtens et al. 2012b) and SZ (E. Carlstrom et al. 2009)
surveys. It is hoped that the future cluster samples produced
by Deep-CEE alone or in combination with other selection
techniques will be well-understood and therefore applicable
to constraining cosmology, as well as environmental galaxy
evolution research. We will build upon this model by in-
cluding methods to estimate intrinsic properties of galaxy
clusters such as redshift and richness in a similar manner to
George Abell many years ago.
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Ivezić Ž., et al., 2019, ApJ, 873, 111

Khalifa N. E., Hamed Taha M., Hassanien A. E., Selim

I., 2018, in 2018 International Conference on Com-

puting Sciences and Engineering (ICCSE). pp 1–6,
doi:10.1109/ICCSE1.2018.8374210

Kim E. J., Brunner R. J., 2017, MNRAS, 464, 4463

Koester B. P., et al., 2007, ApJ, 660, 239

Kotsiantis S. B., 2007, in Proceedings of the 2007 Conference
on Emerging Artificial Intelligence Applications in Com-

puter Engineering: Real Word AI Systems with Applica-

tions in eHealth, HCI, Information Retrieval and Pervasive
Technologies. IOS Press, Amsterdam, The Netherlands, The

Netherlands, pp 3–24, http://dl.acm.org/citation.cfm?id=
1566770.1566773

Krizhevsky A., Sutskever I., Hinton G. E., 2012, in Pereira F.,

Burges C. J. C., Bottou L., Weinberger K. Q., eds, , Advances
in Neural Information Processing Systems 25. Curran Asso-

ciates, Inc., pp 1097–1105, http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf

L. McHugh M., 2008, Biochemia Medica, 18, 7

LeCun Y., Haffner P., Bottou L., Bengio Y., 1999, in Forsyth D.,

ed., Feature Grouping. Springer

Lin T.-Y., et al., 2014, arXiv e-prints, p. 1405.0312

Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y.,

Berg A. C., 2015, arXiv e-prints, p. arXiv:1512.02325

McGlynn T., Scollick K., White N., 1998, ] 10.1007/978-94-009-

1485-8 117, 179, 465

Mehrtens N., et al., 2012a, MNRAS, 423, 1024

Mehrtens N., et al., 2012b, MNRAS, 423, 1024

Ng A. Y., 2004, in Proceedings of the Twenty-first International

Conference on Machine Learning. ICML ’04. ACM, New York,

NY, USA, pp 78–, doi:10.1145/1015330.1015435, http://doi.
acm.org/10.1145/1015330.1015435

Nwankpa C., Ijomah W., Gachagan A., Marshall S., 2018, arXiv
e-prints, p. arXiv:1811.03378

Pasquet J., Bertin E., Treyer M., Arnouts S., Fouchez D., 2019,
A&A, 621, A26

Pearson J., Pennock C., Robinson T., 2018, Emergent Scientist,
2, 1

Perez L., Wang J., 2017, arXiv e-prints, p. arXiv:1712.04621

Petrillo C. E., et al., 2019, MNRAS, 482, 807

Ren S., He K., Girshick R., Sun J., 2015, arXiv e-prints, p.
1506.01497

Ren Y., Zhu C., Xiao S., 2018, Mathematical Problems in Engi-
neering, 2018, 1
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Table A1. The Total, RPN and DN loss values at different epochs during the training of our model.

Epoch Total loss RPN objectness loss RPN box regression loss DN classification loss DN box regression loss

147 0.5954 0.3825 0.0535 0.1162 0.0432

204 0.3448 0.2023 0.0538 0.0605 0.0282

313 0.3185 0.1242 0.0515 0.0794 0.0634
450 0.2841 0.0834 0.0487 0.0994 0.0526

581 0.2559 0.0694 0.0436 0.0838 0.0591

934 0.1641 0.0441 0.0380 0.0552 0.0268
1065 0.1347 0.0401 0.0302 0.0367 0.0277

1361 0.1399 0.0344 0.0283 0.0543 0.0229

1455 0.2004 0.0327 0.0268 0.1129 0.0280
1582 0.1242 0.0302 0.0279 0.0443 0.0217

1709 0.1049 0.0307 0.0256 0.0274 0.0212

1836 0.1465 0.0280 0.0261 0.0646 0.0277
1960 0.1344 0.0281 0.0301 0.0531 0.0232

2083 0.1090 0.0290 0.0246 0.0377 0.0177
2209 0.1322 0.0274 0.0237 0.0521 0.0290

2335 0.1540 0.0284 0.0256 0.0712 0.0288

2461 0.1096 0.0267 0.0247 0.0365 0.0218
2588 0.0942 0.0273 0.0245 0.0244 0.0181

2716 0.1184 0.0269 0.0354 0.0339 0.0223

2842 0.0986 0.0253 0.0235 0.0324 0.0173
2968 0.0969 0.0247 0.0222 0.0310 0.0190

3187 0.1048 0.0251 0.0275 0.0326 0.0196

3312 0.1293 0.0234 0.0233 0.0611 0.0214
3438 0.1125 0.0240 0.0224 0.0458 0.0204

3566 0.0900 0.0250 0.0232 0.0243 0.0175

3697 0.0901 0.0247 0.0213 0.0256 0.0185
3823 0.1237 0.0233 0.0238 0.0548 0.0219

3948 0.1189 0.0233 0.0229 0.0520 0.0208
4073 0.1059 0.0231 0.0208 0.0420 0.0201

4198 0.1015 0.0239 0.0217 0.0337 0.0223

4321 0.1177 0.0224 0.0204 0.0509 0.0240
4543 0.1118 0.0231 0.0221 0.0461 0.0205

4675 0.0943 0.0232 0.0215 0.0294 0.0202

4805 0.1042 0.0232 0.0264 0.0297 0.0249
4944 0.1024 0.0222 0.0194 0.0398 0.0209

5072 0.1038 0.0223 0.0201 0.0423 0.0191

5198 0.0881 0.0241 0.0205 0.0253 0.0182
5330 0.1047 0.0220 0.0202 0.0425 0.0199

5462 0.1275 0.0219 0.0241 0.0541 0.0274

5587 0.0969 0.0233 0.0220 0.0294 0.0222
5917 0.0972 0.0224 0.0265 0.0265 0.0219

6048 0.0943 0.0221 0.0184 0.0344 0.0194
6179 0.1038 0.0228 0.0228 0.0313 0.0268

6495 0.1066 0.0235 0.0231 0.0352 0.0248

6698 0.1035 0.0216 0.0184 0.0446 0.0189
6824 0.1022 0.0223 0.0190 0.0427 0.0182

6951 0.1045 0.0217 0.0187 0.0460 0.0180
7077 0.1029 0.0217 0.0188 0.0378 0.0247
7204 0.0910 0.0208 0.0180 0.0341 0.0181

7332 0.0974 0.0215 0.0176 0.0403 0.0181

7458 0.0926 0.0249 0.0211 0.0268 0.0198
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