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Abstract

In this thesis, we present a new perspective on tight binding models. Utilising the rich

algebraic toolkit provided by a combination of graph and matrix theory allows us to

explore tight binding systems related through polynomial relationships.

By utilising ring operations of weighted digraphs through intermediate König digraph

representations, we establish a polynomial algebra over finite and infinite periodic graphs,

analogous to polynomial operations on adjacency matrices.

Exploring the microscopic and macroscopic behaviour of polynomials in a graph-

theoretic setting, we reveal elegant relationships between the symmetrical, topological,

and spectral properties of a parent graph G and its family of child graphs p(G).

Drawing a correspondence between graphs and tight binding models, we investigate

deep-rooted connections between different quantum systems, providing a fresh angle from

which to view established tight binding models.

Finally, we visit topological chains, demonstrate how their properties relate to more

trivial underlying chains through effective “square root” operations, and provide new

insights into their spectral characteristics.
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Introduction

The mathematical basis of Heisenberg’s treatment is the law of multiplica-

tion of quantum-theoretical quantities, which he derived from an ingenious

consideration of correspondence arguments. The development of his formal-

ism, which we give here, is based upon the fact this rule of multiplication is

none other than the well-known mathematical rule of matrix multiplication

(M. Born and P. Jordan [1]

English translation by B. L. van der Waerden [2])

The importance of the historical introduction of matrices into the quantum mechanical

toolkit cannot be understated. More than just the introduction of a new language, ma-

trices have changed the way that physicists think about quantum problems for the better

part of a century. After Heisenberg’s groundbreaking paper “Über quantentheoretische

Umdeutung kinematischer und mechanischer Beziehungen”[3] came a flood of discussion

from Born, Jordan[1, 4], Dirac [5, 6], Pauli [7] and others, leading to a reformulation of

the bleeding edge physics research of the day.

To this day, the language of matrices dominates condensed matter physics. Typically,

a physicist who is looking to analyse a quantum system through a tight binding model

will first write it down in the form of a graph; they might, for example, represent vacant

atomic orbitals as nodes, and represent interactions between them as edges. They will then

usually use this graph to write down the system’s hamiltonian, courtesy of the graph’s

adjacency matrix (section 1.2.1). If the quantum system has translational symmetry,

they will first reduce it into translation eigenspaces, under the Bloch formalism[8]. This

approach is, of course, not unique to atoms and electrons. Rather, a similar approach

is found in a variety of applications, from photonic systems (with atoms replaced by
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dielectric pillars and with photons as excitations) to Majorana excitations in strongly

correlated systems [9].

The matrix representation provides an easy way of exploring measurable quantities

of the system. Eigendecomposition, for example, provides a natural way of extracting

the set of single-particle excitation wavefunctions and their corresponding energies from

the hamiltonian. Symmetries can be identified through commutation relationships under

matrix multiplication, revealing spectral and topological characteristics[10].

In this work, we build a framework under which relationships between different quan-

tum systems can be explored, and from which observable behaviour can be derived. Re-

volving around matrix algebra recast into a graph-theoretic approach, this framework

provides a map between any tight binding system S and a child system p(S), with any

polynomial p. It explains how microscopic and macroscopic characteristics from S are

manifested in p(S), how trivial topological properties of p(S) can result from non-trivial

topological properties of S, and how the spectral properties of defects in S can be can be

explained by analysis of p(S). We also provide methods for finding a suitable polynomial

p which transforms a known S into a child system p(S) with required microscopic prop-

erties, where possible.

To this end, we present the duality between matrices and graphs in chapter 1, utilising

König digraphs[11] for exploration of the underlying matrix and vector algebra along

the way. This algebra provides a mechanism for applying matrix methods to graphs,

under which we place particular focus on polynomial evaluation. In section 1.5 we then

demonstrate that that the spectral properties from one “parent” graph can be mapped

onto those of a “child” polynomial graph. Having explored the ramifications of these
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relationships, we move on to develop an understanding of the microscopic behaviour of

graph polynomials in chapter 2, and expand the algebra to graphs with infinite periodicity.

With this graph-theoretical toolkit at hand, we are able to explore the properties

of quantum tight-binding models in a new light. In chapter 3, we take a fresh look at

some well-known quantum toy models, deriving properties from polynomial relationships

with simpler systems, with the primary aim of developing a more concrete understanding

of the applications of the new graph algebra in a theoretical condensed matter context.

Chapter 4 takes our algebra further, exploring topological chains and the deep ancestral

relationship of topological properties with underlying symmetries of child polynomial

systems. Starting with the Su-Schrieffer–Heeger (SSH) model of Polyacetylene, we find

properties rooted in the trivial monatomic chain. We then look at the Rice-Mele model,

identifying a polynomial relationship with the SSH chain, and observe the impact of

defects on the structure of the underlying system. Finally, we examine the rich topological

properties of the Bowtie chain, relating midgap states to those of underlying systems,

substantiating our findings with those of established methods by exploring the topological

indices in the context of the concrete model.

Full analysis of the bowtie chain, as well as a photonic realisation of the model, is

provided in our seminal published work on topologically nontrivial square root systems[12].

Section 4.3 is based on this work, which was written in collaboration with Mohammad H.

Teimourpour, Liang Feng and Ramy El-Ganainy.
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Units, notation, and terminology

Units

Although some parts of this thesis describe realisations of the theory contained within,

the majority of the content is concerned with quantum systems and their observables as

abstract entities. The theory applies to atomic systems, photonic systems, or any other

linear system that can be reduced, to some reasonable approximation, to a “ball and

stick” model.

We shall thus use natural units throughout.

Notation

In the programming world, “syntactic sugar” refers to syntax which makes code easier to

read and write, either by making it more visually appealing, more consistent with human

language, or by simply reducing the character count of a command.

The same concept applies to physics and mathematics. Indeed, the use of natural

units is a fantastic way to make equations simpler to write, easier to understand, and

allows for generalisations. There are other uses of syntactic sugar in this thesis, and to

avoid confusion they are listed here.

• Appropriate identity matrices and graphs are implied. When adding a complex

number c ∈ C to a square matrix H ∈ Cn×n, a formal expression could be H + c1n,

where 1n is the identity matrix of dimension n. Given the frequency that we will

be manipulating matrices in this manner, we will write this simply as H + c, and

1n is to be implied.

• Graph edges are left unlabelled if their weight is unity, or otherwise provided with
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a value in the surrounding text. A symmetric pair of directed edges may be repre-

sented with a single line with arrowheads on both sides.

A note on terminology

This work presents a new algebra in the context of graphs, and later applies the key prin-

ciples to quantum tight binding models. Although these subjects are deeply connected,

they don’t share common terminology. For example, bonds in tight binding models are

named edges in graph theory, sites are called vertices, amplitudes become weights, and

the tight-binding hamiltonian is analogous to the adjacency matrix of the corresponding

graph.

In this thesis, we shall use a consistent terminology. As the first half of this thesis

focuses on graphs, graph-theoretical terminology is used throughout, rendering the later

sections accessible to readers from a background other than condensed matter. Readers

from a condensed matter background should thus be prepared for a tactical avoidance

of significant conversation about such concepts as Bloch momenta and energy levels,

for example, except when necessary. Instead, we refer to the Bloch formalism through

eigenspaces of translation graphs, and refer to energy levels more generally as eigenvalues,

by virtue of the time-independent Schrödinger equation.
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Glossary

Description Defined

adj(graph) The adjacency matrix of the input graph section 1.2.1

∇(graph) The incidence matrix of the input graph section 1.2.3

δ(graph) The laplacian matrix of the input graph section 1.2.4

Coates(matrix) A graph representation of a matrix section 1.3.1

graph(matrix) The coates graph of the input matrix’s transpose section 1.3.1

König(matrix) A digraph representation of a matrix section 1.3.2

walk(graph) A digraph representation of a graph section 1.3.2

via König(adj(graph))

graph⊕ graph The disjoint union of two graphs section 1.2.5

graph⊕N The disjoint union of N clones of the input graph section 2.6
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Chapter 1

Graph-Matrix Duality

Introduction

Graph theory is a mathematical framework which provides an abstract setting in which

one can describe plethora of problems, with applications in data science, game theory,

computer science and the natural sciences. Although they are an intuitive language in

their own right, graphs have a duality with matrices, allowing a wide array of operations

to be performed on graphs and matrices which extend beyond their native capabilities.

This thesis has a strong focus on some such operations which are pertinent to con-

densed matter theory. As such, we begin with a light introduction into the relevant areas

of graph theory.
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1.1 Basic Definitions

1.1.1 Graphs

A graph G(V,E) comprises a set of vertices V and a set of edges E that connect pairs

of vertices. A vertex is said to be of degree k if there are k edges that connect to it. As

an abstract object, a graph’s vertices and edges have a contextual underlying meaning,

though it is common for vertices to represent a set of distinct entities and for edges to

represent a relationship between them, such as a shared property or the existence of a

process for some stateful object to transfer from one such entity to the other.

A labelling of a graph assigns a unique index to each vertex v ∈ V , typically 0 . . . |V |.

In a labelled graph, one can refer to a vertex of label a with the notation va ∈ V , and one

can refer to an edge e ∈ E from va ∈ V to vb ∈ V with the notation e = {a, b}.

A weighted graph equips its edges with a numerical weight. The meaning of this

weight is context-dependent: as an example, edges may represent roads between a col-

lection of cities (represented by vertices) and their weight may represent the average fuel

cost or travel time along these roads, such as in the famous “travelling salesman” problem.

A digraph (or directed graph) is a generalisation of a graph, in which edges are given

a direction. Rather than stating that an edge e exists between two vertices i and j, we

state for clarity that e exists from i to j, or name i and j the head and tail, respectively,

of e. The existence of such an edge is free of any implication that an edge e∗ exists from

j to i. It is, however, possible for two edges to connect i and j, in opposite directions. If
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the digraph is weighted, the weights of these two edges may differ.

Two labelled graphs G1, G2 with the same number of vertices are considered equivalent

iff, for every edge {a, b} in G1, there exists an edge {a, b} of the same weight in G2; we

shall use G1 = G2 to describe this equivalence. If there exists some permutation f such

that each edge {a, b} ∈ G1 has an equivalent edge {f(a), f(b)} ∈ G2, then G1 and G2

are isomorphic, which we denote with G1
∼= G2. If, instead, G1 and G2 were unlabelled,

they are considered equivalent if any labelling exists that renders them equivalent. In

a graphical representation, if two graphs are equivalent then the nodes of one can be

rearranged to produce the other, as in

0 1

23

w

x

y

z =

0 1

2 3

w

x
y

z
∼=

3 0

21

w

x

y

z (1.1)

A walk from x ∈ V to y ∈ V is an alternating sequence of vertices and edges, starting

with x and ending with y, such that each edge connects the vertices either side of it. It

is said to have length l if the number of edges in the sequence is l. A walk’s additive

weight is the sum of the weights of the edges along the walk, and its multiplicative weight

is the product of the weights of the edges along the walk. The minimum number of edges

required to get from a vertex x ∈ V to another vertex y ∈ V is called the distance dG(x, y).

We shall introduce a generalised version of distance, which we will call a distance-set

d̃G(x, y) ⊂ N, comprising all k ∈ N for which there exists a walk of length k vertex x to

vertex y. By definition, dG(x, y) ≡ min
(
d̃G(x, y)

)
.

A graph is connected if, for each pair x, y ⊂ V , d̃G(x, y) 6= ∅. A digraph is weakly
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connected if it isn’t connected but the undirected graph produced by stripping each edge

of a direction is connected. Any graph in which there exists a pair of vertices with no

path between them is disconnected, and can be separated into two or more connected

subgraphs.

1.2 Matrix representations of graphs

The dual relationship between graphs and matrices can be exploited both to solve graph-

related problems using matrix theory, and to solve matrix-related problems using graph

theory. There exist graph transformations that do not have a direct analogue in matrices

(such as removing edges to eliminate cycles), and there exist transformations in matrices

that do not have a direct analogue in graphs (such as multiplication). Through the

duality, it is possible to manipulate matrices in a graph-theoretic manner through their

graph representation, and it is possible to manipulate graphs in a matrix-theoretic manner

through their matrix representation. This property is of central importance to this thesis.

This section will cover three matrix representations of graphs (the adjacency matrix,

the incidence matrix, and the laplacian), and provide a motivating example of describing

a graph-theoretic operation (the disjoint union) through the matrix representation. Due

to the wide variety of graphs, the definitions of the matrix representations are often in-

consistent between different areas of research. For example, directed edges are sometimes

represented as negative matrix elements in mixed graphs[13], but sometimes the sign

is direction-dependent[14]. The definitions presented in this section will be consistent

throughout this thesis.
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1.2.1 The adjacency matrix

A graph G of N vertices can be represented as a matrix through its N × N adjacency

matrix adj(G). A labelled graph has a single adjacency matrix, with each row and each

column corresponding to a vertex, such that each matrix element (a, b) (at row b and

column a) is assigned the weight of the edge b, a. It follows that two equivalent graphs

have the same adjacency matrix, and that an unlabelled graph has N ! adjacency matrices

resulting from the different possible labelling permutations. Consider a labelled graph

G =

0 1

23

(1.2)

Then

adj(G) =



0 0 0 1

1 0 0 0

1 1 0 0

0 0 1 0


(1.3)

In the absence of an edge between two vertices, the corresponding matrix elements are

set to a token value, typically zero or infinity depending on the context∗; for our purposes,

we shall use zero. Loop edges, for which the head and tail are the same vertex are thus

represented along the diagonal of the adjacency matrix.

∗If the graph represents a series of electronic components with edge weights corresponding to electrical

resistance, infinity would be a suitable placeholder for disconnected components, because a wire of infinite

resistance is equivalent to the absence of a wire. On the other hand, if the edge weights instead correspond

to conductance, the placeholder would be zero.
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1.2.2 Biadjacency matrices

If a graph’s vertices can be arranged into V = VA∪VB, where no edge exists between any

two vertices in VA or any two vertices in VB, it is called bipartite. For such a graph, we can

choose three labelling schemes: one for the whole graph with indices 0 . . . |VA|+ |VB| − 1,

one for VA with indices 0 . . . |VA| − 1, and one for |VB| with indices 0 . . . |VB| − 1.

We can then form two biadjacency matrices biadjA,B(G) and biadjB,A(G), such that

biadjX,Y (G) comprises elements (i, j) assigned by the weight of the edge which has the

head vj ∈ VX and the tail vi ∈ VY .

It is often useful to choose the labelling scheme for the whole graph such that

vi ∈


VA i < |VA|

VB i >= |VA|
, (1.4)

allowing for the useful representation

adj(G) =

 0 biadjB,A(G)

biadjA,BG 0

 . (1.5)

Take, as an example,

Gbi =

A0 A1 A2

B1 B2

w x y z
. (1.6)

In this case,

biadjB,A(G) =


0 0

x 0

0 z

 , biadjA,B(G) =

w 0 0

0 y 0

 , (1.7)
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adj(G) =



0 0 0 0 0

0 0 0 x 0

0 0 0 0 z

w 0 0 0 0

0 y 0 0 0


(1.8)

1.2.3 The incidence matrix

The incidence matrix ∇(G) of an unweighted graph G(V,E) is an |E| × |V | matrix that

describes the connectivity between vertices and edges. Each row and column corresponds

to an edge and vertex respectively, and each element is assigned the value

∇(G)a,b =



1 b = head(a)

−1 b = tail(a)

0 otherwise,

(1.9)

such that each row has exactly two non-zero values†. For example, labelling edges as well

as vertices,

∇


0 1

23

0

3

4

1
2

 =



1 −1 0 0

1 0 −1 0

−1 0 0 1

0 1 −1 0

0 0 1 −1


(1.10)

The canonical incidence matrix application is that of electrical circuits, whereby if

the graph represents a circuit with edges as wires, solutions to ∇†(G)~x = ~0 provide the

electrical currents along the wires that satisfy Kirchhoff’s current law [15, 16]. It also

†In the case of a hypergraph, which contains hyper-edges that are connected to more than two vertices,

each column can have more than two non-zero values.
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provides a reasonable representation of hypergraphs, where representation through an

adjacency tensor may be non-trivial to write[17], and provides an efficient computational

representation of graphs in which the number of edges is fewer than the number of vertices.

The values 1,−1 given here are generally used when the graph is unweighted, or when

the weights are otherwise not important for some stage of a calculation. There exist a

variety of different protocols for creating an incidence matrix for a weighted graph, and

these are designed for specific situations.

1.2.4 The laplacian

Let D(G) be the diagonal degree matrix

D(G) (i, i) =
∑
k∈V

weight{k, i}, G = G(V,E). (1.11)

The laplacian of a graph is then defined as

∆(G) = D(G)− adj(G), (1.12)

for example

∆


0 1

23

0

3

4

1
2

 =



1 0 0 −1

−1 1 0 0

−1 −1 2 0

0 0 −1 1


. (1.13)

The laplacian is of great interest in spectral graph theory[18]‡ because of its connections to

geometry and topology. Indeed, the laplacian acts as a discrete analogy of the continuous

laplacian operator, and the number of zero-valued eigenvalues of ∆(G) corresponds to the

number of connected components in G[19].

‡The adjacency matrix is also a common representation of interest in spectral graph theory, but does

not receive as much attention as the laplacian.
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The laplacian of an undirected, unweighted graph be calculated with the incidence

matrix ∇ through

∆(G) = ∇†(G) · ∇(G) (1.14)

Such that, with the undirected equivalent of the graph above,

∆


0 1

23

 =



1 1 −1 0 0

−1 0 0 1 0

0 −1 0 −1 1

0 0 1 0 −1





1 −1 0 0

1 0 −1 0

−1 0 0 1

0 1 −1 0

0 0 1 −1


(1.15)

=



3 −1 −1 −1

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2


. (1.16)

1.2.5 Graph unions

Two graphs G1(V1, E1), G2(V2, E2) can be unified into one graph through one of two types

of union. Under a disjoint union, vertices and edges from each are considered unique and

are combined into one graph of two disjoint parts,

G1 ⊕G2 = G3(V3, E3) (1.17)

V3 = V1 ⊕ V2, E3 = E1 ⊕ E2 (1.18)

In another form of union, there can be common vertices in V1 and V2, and the resulting

graph merges G1 and G2 to form
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G1 ∪G2 = G̃3(Ṽ3, Ẽ3) (1.19)

Ṽ3 = V1 ∪ V2, Ẽ3 = E1 ∪ E2 (1.20)

For the purposes of this thesis, only the disjoint union will be considered. The result

of the disjoint union has a rather simple effect on all of the matrix representations of

graphs that we have looked at thus far,

adj(G1 ⊕G2) = adj(G1)⊕ adj(G2) (1.21)

∇(G1 ⊕G2) = ∇(G1)⊕∇(G2) (1.22)

∆(G1 ⊕G2) = ∆(G1)⊕∆(G2), (1.23)

as demonstrated graphically with

G1 =

A0

A1

A2

x y
G2 =

B1

B2

z
(1.24)

adj(G1) =


0 x 0

x 0 y

0 y 0

 adj(G2) =

0 z

z 0

 (1.25)

incidence(G1) =


1 0

−1 1

0 −1

 incidence(G2) =

 1

−1

 (1.26)

laplacian(G1) =


1 −1 0

−1 2 −1

0 −1 1

 laplacian(G2) =

 1 −1

−1 1

 (1.27)
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G1 ⊕G2 =

A0

A1

A2 B1

B2

x y z
(1.28)

adj(G1 ⊕G2) =



0 x 0 0 0

x 0 y 0 0

0 y 0 0 0

0 0 0 0 z

0 0 0 z 0


(1.29)

incidence(G1 ⊕G2) =



1 0 0

−1 1 0

0 −1 0

0 0 1

0 0 −1


(1.30)

laplacian(G1 ⊕G2) =



1 −1 0 0 0

−1 2 −1 0 0

0 −1 1 0 0

0 0 0 1 −1

0 0 0 −1 1


(1.31)
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1.3 Graph representations of matrices

1.3.1 Coates digraphs of matrices

For most intents and purposes, an adjacency matrix can be used to fully describe a graph§.

Indeed, the Coates digraph Coates(M) of any square matrix M provides a graph whose

adjacency matrix is MT , and thus

Coates(adj(G)T ) ≡ G. (1.32)

This concept will be used heavily throughout this thesis, but we instead wish to remove

the transpose requirement and work directly on graphs whose adjacency matrix satisfies

M directly. For clarity, let us define

graph(M) ≡ Coates(MT ), (1.33)

such that adj� graph forms an identity over matrices and graph� adj forms an identity

over square matrices.

1.3.2 König digraphs of matrices

The König digraph König(M) of a matrix M is a directed bipartite graph with two layers

of vertices (henceforth referred to as the input and output layers) V0 and V1 corresponding

to the rows and columns of M respectively, with matrix elements represented by edges

directed from the input layer to the output layer[11].

Let walk(G) = König(adj(G)) of a graph G be the König digraph of its adjacency

matrix. As adj(G) is a square matrix, walk(G) comprises two sets of clones of G’s vertices,

§A common method of storing a graph in memory is through the matrix representation, so long as

the matrix is not sufficiently sparse as to justify an alternative pointer-based representation.
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and edges from G exist in walk(G) with the head and tail replaced with the corresponding

vertices in the input and output layers respectively. This is then a bipartite graph with

biadjV0,V1(walk(G)) = adj(G), as shown in the following example.

G =
A B C

x
, adj(G) =


A x 0

0 B 0

0 0 C

 (1.34)

walk(G) = A B C
x

adj(walk(G)) =

 03 03

adj(G) 03

 (1.35)

The inverse, unwalk, merges the input and output layers, such that unwalk(walk(G)) =

G.

The separation of the input and output layers makes the König representation an ex-

tremely powerful representation of matrices, allowing for the representation of rectangular

matrices and, thus, vectors and dual vectors, which have no direct analogue in graphs.

A (column) vector v of dimension N can be represented in a König digraph by a sole

source vertex in the input layer, and N sink vertices in the output layer, such that the

edge from the source vertex to sink vertex i is weighted vi, as in

v =


1

2

3

 walk(v) =
1

2
3

(1.36)

Conversely, a dual (i.e. row) vector of dimension N be represented in a König digraph

by N source vertices in the input layer and a single sink vertex in the output layer, as in
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u =

(
4 5 6

)
walk(u) =

4
5

6
(1.37)

Finally, a scalar can be represented by a single source vertex and a single sink vertex,

with edge weight equal to the scalar value, as in

t = 7 walk(t) = 7 (1.38)

1.3.3 Concatentation of König digraphs

Consider the multiplication of two matricesA ∈ Cp×q andB ∈ Cq×r, such thatAB ∈ Cp×r.

It is possible to represent the multiplication of A and B through the König digraphs of

A and B by merging the output layer of König(A) with the input layer of König(B).

For example, let K be the permutation matrix

K =


0 1 0

1 0 0

0 0 1

 , König(K) =
11

1 (1.39)

and let v be a vector in three dimensions, and u be a dual vector in three dimensions

v =

(
1 2 3

)T
u =

(
3 4 5

)
V = König(v) U = König(u)

=
1

2
3

=
4

5
6
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Then the digraph corresponding to the multiplication KV is the graph formed by

merging the three output vertices of König(V ) with the three input matrices of König(K),

König(K)×König(V ) =

1
2

3

11
1

.

We are now left with a graph with three layers of vertices: an input layer, an intermediate

layer, and an output layer. We can now define a reduction operation

reduce : König(A)×König(B)→ König(AB) (1.40)

that performs the graph analogue of matrix multiplication: for each vertex in the inter-

mediate layer, connect the head of each incoming edge ei with the tail of each outgoing

edge eo with an edge of weight weight(ei) × weight(eo). It is clear that this is simply a

graph analogue of the matrix product (AB)i,j =
∑

k Ai,kBk,j.

We will be using this concept heavily for the remainder of this thesis so, for brevity,

let the reduction operation be implicit whenever a König digraph is compared with a

multi-layer digraph, such that we may write

König(KV ) = König(K)×König(V )

=
2

1
3

.

This represents a vector with components

biadjsink,source(KV ) =

(
2 1 3

)T
, (1.41)
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in agreement with 
0 1 0

1 0 0

0 0 1




1

2

3

 =


2

1

3

 . (1.42)

We may then consider multiplication on the left by U ,

2
1

3

4
5

6

= 31 (1.43)

in agreement with

(
4 5 6

)


0 1 0

1 0 0

0 0 1




1

2

3

 =

(
4 5 6

)


2

1

3

 = 31 (1.44)

1.4 Matrix-theoretic operations on graphs

So far we have seen how graphs can be represented as matrices and how matrices can

be represented as graphs. We have seen that a graph-theoretic operation can be imple-

mented through a matrix representation, and that a matrix-theoretic operation can be

implemented through a graph representation. This is established literature, and is used

heavily in a variety of different fields, including electronics, artificial intelligence, and

condensed matter physics.

In this thesis, the duality between graphs and matrices is taken one step further.

Specifically, we will be looking closely at transforming graphs with polynomials, in a

manner such that their adjacency matrices will be transformed by the same polynomials.
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The set of square matrices of equal size forms a ring, such that they form a group

under element-wise addition

(A+B)i,j = Ai,j +Bi,j, (1.45)

and also have a defined multiplication

(AB)i,j =
N−1∑
n=0

Ai,kBk,j. (1.46)

which is

• left distributive A ∗ (B + C) = A ∗B + A ∗ C,

• right distributive (A+B) ∗ C = A ∗ C +B ∗ C, and

• associative A ∗ (B ∗ C) = (A ∗B) ∗ C.

A general function comprising such operations is a polynomial

p : x→
∑
k

ckx
k. (1.47)

We can extend this algebra to graphs with a few simple steps. Consider two graphs G,

H on the same set of vertices. Addition is trivial: G + H is simply a graph on the same

vertices with edges from both G and H, adding weights of common edges. For example,

H =
D F

y z
, adj(H) =


D 0 0

y 0 0

0 z F

 (1.48)

walk(H) = D F
y z

adj(walk(H)) =

 03 03

adj(H) 03

 (1.49)
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walk(G+H) = walk(G) + walk(H)

= A+D B C + F
x y z

(1.50)

G+H = unwalk(walk(G+H))

=

A+D B C + Fy

x

z (1.51)

Their multiplication GH can be obtained from graph(adj(G)adj(H)) or, equivalently,

through

unwalk(walk(G)× walk(H)). (1.52)

. For example,

walk(H)× walk(G) =

A B C
x

D F
y z

(1.53)

=

 A

D

+


x

D

+

 B

z



+

 A

y

+


x

y

+

 C

F

 , (1.54)
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=

 AD

+

 xD

+

 Bz



+

 Ay

+

 xy

+

 CF

 (1.55)

= AD xy CF

Dx

Ay

Bz

. (1.56)

HG = unwalk(walk(H)× walk(G))

=

AD xy CFAy

Dx
Bz

. (1.57)

Multiplication of more than two graphs, for example a graph power[20], can either be

performed through repeated walks and unwalks or, due to the associativity of rings, by

concatenating the walk graphs of each operand and reducing the final many-layer graph

in any order.

Although the approach of applying matrix operations on the adjacency matrices of the

operands and drawing a graph on the same vertices, the graphical approach through König

digraphs is a useful book-keeping tool which provides a deeper insight into the operations.

This will make itself clear later in this thesis, when we graphically demonstrate the logic

behind the appearance of topological characteristics in the polynomial of a graph.

The multiplicative identity of a walk graph simply joins vertices in the input layer with

the corresponding vertices in the output layer, with edges of unit weight. For example,

the identity walk graph of four vertices is
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14 = 1 1 1 1 . (1.58)

Multiplying a multiple x1N of the N -dimensional identity walk graph with an N -

dimensional walk vector v is equivalent to multiplying v by the scalar x, as we expect

from matrix algebra. Although this result alone is trivial, we will see a useful generalisa-

tion in section 1.5.2. For example,

(x14)× walk



v1

v2

v3

v4


=

v1 v2 v3
v4

x x x x

(1.59)

=
xv1 xv2 xv3

xv4
(1.60)

=

x

v1 v2 v3
v4

(1.61)

1.5 Eigendecomposition

An eigenvalue λ of a diagonalisable matrix M ∈ CN×N is a scalar value which is a solution

to the characteristic polynomial of M

27



det(M − λ) = 0.

As a single variable polynomial of order N , the fundamental theorem of algebra states

that there are N such eigenvalues λ0, λ1, . . . , λN such that

det(M − λ) = (λ0 − λ) (λ1 − λ) . . . (λN − λ) .

Eigenvalues need not be distinct; any eigenvalue which occurs q times in the expansion

is said to have an algebraic multiplicity of q, such that the sum of algebraic multiplicities

of each unique eigenvalue is N . An eigenvalue with algebraic multiplicity q > 1 is called

degenerate.

For each eigenvalue with algebraic multiplicity q, there are q̃ ∈ [1 .. q] linearly inde-

pendent eigenvectors, which are nonzero vectors v for which

(M − λ) v = 0 (1.62)

Mv = λv. (1.63)

q̃ is called the geometric multiplicity of λ in M , and any non-zero linear combination

of corresponding eigenvectors also has eigenvalue λ. For example, let

Mv = λv, Mu = λu

then

M(av + bu) = aMv + bMu

= aλv + bλu

= λ(av + bu). (1.64)
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Such eigenvectors thus span an eigenspace of M , or a space in which every point except

for the zero vector is an eigenvector with eigenvalue λ.

If, for every eigenvalue λ of M , the geometric multiplicity and algebraic multiplicity

of λ are equal, then M is said to be diagonalisable. All diagonalisable matrices can

be written as a diagonal matrix Λ = diag ({λ0, . . . , λn}) in the basis of a complete set

of linearly independent and normalised eigenvectors, or eigenstates, Q = {vo, . . . , vn}

through the transformation

M = QΛQ−1. (1.65)

The process of finding a Q and Λ is called eigendecomposition. Λ is unique up to a

permutation, which must also be applied to Q. However, Q is not unique: it depends

on a choice of phase¶ and a choice of basis for each eigenspace. Different diagonalisation

techniques may produce different, but nonetheless valid, Q and different permutations of

Λ and Q.

From this point onwards, we will only be considering diagonalisable matrices.

1.5.1 Eigendecomposition of polynomials of matrices

All eigenstates of a matrix M are also eigenstates of P (M), where P is some polynomial,

and their corresponding eigenvalues λ transform as P (λ). More formally, for any eigen-

decomposition of M into an eigenvalue matrix Λ and an eigenstate matrix Q, there exists

an eigendecomposition of P (M) into an eigenvalue matrix P (Λ) and the same eigenstate

matrix Q.

¶each eigenstate maintains unit magnitude and linear independence from other eigenstates when

multiplied by any complex number on the unit circle
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We can show this by first analysing integer powers of M

MN = (QΛQ−1)N (1.66)

= QΛ
(
Q−1Q

)
ΛQ−1 . . . (1.67)

= QΛΛ . . . Q−1 (1.68)

= QΛNQ−1. (1.69)

Expressing the polynomial P of order A, through its action on an indeterminate X as

P : X →
A∑
a=0

CaX
n (1.70)

then allows us to write

P (M) =
A∑
a=0

CaM
a (1.71)

=
A∑
a=0

CaQΛaQ−1 (1.72)

= Q

(
A∑
a=0

CaΛ
a

)
Q−1 (1.73)

= QP (Λ)Q−1. (1.74)

P (Λ) is a diagonal matrix obeying P (Λ)n,n = P (Λn,n). Thus P (M) shares the same

eigenstates of M , with eigenvalues {P (λn)}.

In the special case of hermitian matrices this provides a trivial proof of the Cayley-

Hamilton theorem [21], which states that a diagonalisable matrix satisfies its own char-

acteristic equation P (X) = det(M −X) = 0. As the individual elements of the diagonal

matrix Λ solve P (X) by definition, P (Λ) is the N ×N zero matrix, hence P (M) is also
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the N ×N zero matrix.

As a result, properties of P (M) may be viewed as being rooted in its ancestry from

M . By extension, if a polynomial Q exists such that M = Q(M ′), for some matrix M ′,

the properties of M , along with all P (M), might stem from those of M ′.

The converse does not generally hold. Consider two distinct eigenvalues λ1, λ2 of M ,

with algebraic multiplicities α1, α2 and eigenspaces E1, E2 respectively. Now consider some

polynomial such that P (λ1) = P (λ2) = λ̃.

In P (M), the eigenvalue λ̃ then has algebraic multiplicity α̃ = α1 + α2. As P (M)

is diagonalisable, the geometric multiplicities accumulate likewise, and its corresponding

eigenspace Ẽ = E1 ⊕ E2 is the orthogonal direct sum of the eigenspaces of λ1 and λ2.

Any point z ∈ Ẽ is an eigenvector of P (M) with eigenvalue λ̃, but z need not exist

within either E1 or E2. Thus, while it is possible to choose a basis for Ẽ for which each

basis vector belongs in either E1 or E2, it is not necessary to do so. Thus there exist

eigendecompositions of P (M) for which P (Λ) and Q̃ are not a valid eigendecomposition

of M .

Let us now demonstrate this with the matrix

M =
1√
2


0 0 1

0 0 1

1 1 0

 , M2 =
1

2


1 1 0

1 1 0

0 0 2

 .

M may be eigendecomposed into the eigenstates and eigenvalues

u =
1

2

(
1 1

√
2

)T
λu = 1, (1.75)
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v =
1

2

(
1 1 −

√
2

)T
λv = −1, (1.76)

w =
1√
2

(
1 −1 0

)T
λw = 0. (1.77)

Multiplying these eigenstates through M2, where x
A−−→ y implies Ax = y,

u
M−−−→ u

M−−−→ u

v
M−−−→ −v M−−−→ v

w
M−−−→ 0

M−−−→ 0

we see that, while they are indeed eigenstates of M2, both u and v have eigenvalue 1

in M2. As per eq. (1.64), the eigenstates found by directly decomposing M2 may be any

two orthonormal linear combinations of u and v.

As M2 is separable into a direct sum of two matrices

M2 =
1

2

1 1

1 1

⊕(
1

)
,

= m1

⊕
m2

a natural decomposition of M2 would be a symmetric and anti-symmetric pair of

vectors in the space of m1 and a unit vector in the space of m2,

ũ =

(
0 0 1

)T
λũ = 1

ṽ =
1√
2

(
1 1 0

)T
λṽ = 1

w̃ =
1√
2

(
1 −1 0

)T
λw̃ = 0,
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The degenerate pair are not eigenstates of M ,

Mũ = ṽ Mṽ = ũ,

but they are of course linear combinations of u and v,

(
ũ ṽ

)
=

1√
2

(
u v

) 1 1

−1 1

 . (1.78)

There is also another matrix, L which squares to the same M2,

L =
1√
2


1 1 0

1 1 0

0 0 2

 , (1.79)

L2 = M2, (1.80)

and this decomposes in the same way as M2, and we might say that M2’s properties

are inherited from its alternative square root L. This would, however, be a tautology,

because L is itself a scalar multiple of M2.

1.5.2 Eigenstates and graphs

Just as an eigenstate v of a matrix M obeys Mv = λvv for some scalar λ, we can describe

an eigenstate V of a graph G as one which multiplies through walk(G) to produce a scalar

multiple of V , such that
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v1 v2 v3

walk(G)

=

v1 v2 v3

λ λ λ

=

λ

v1 v2 v3

(1.81)

The latter representation is particularly useful for reasoning about a set of eigenstates

u, v, w with eigenvalues λ1, λ2, λ3, as we can then write

u1
u2

u3 v1
v2

v3 w1

w2 w3

walk(G)

=

λ1 λ2 λ3

u1
u2

u3 v1
v2

v3 w1

w2 w3

. (1.82)

As an eigenstate is invariant, except for a scale factor λn, when multiplied through

the finite graph Gn, it follows that the properties of each eigenstate are dependent not

just on the structure of G, but on that of all powers of G.

Consider two vertices x, y in a graph and recall that we have defined their distance set

d̃G(x, y) as the set of all k ∈ N for which there exists at least one walk from of length k

from x to y. If there is any k ∈ d̃G(x, y) such that the multiplicative weights of all such

walks of length k do not sum to zero‖, then Gk connects vertices x and y.

As an eigenstate v of G is also an eigenstate of Gk, the components vx, vy corresponding

to vertices x and y must necessarily take this connectivity into account. Any modification

‖If the multiplicative walk weights do indeed mutually cancel, this is a graph analogue of destructive

interference
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to an edge attached to vertex y would then modify vx, thus the eigendecomposition of G

is macroscopic, depending on the entire structure of G rather than the neighbourhood of

each vertex alone.

If, for every k ∈ d̃G(x, y), the set of walks of length k between vertices x and y are

mutually destructive, it is possible for vx and vy to be unrelated, and for modifications of

the neighbourhood of vertex y to have no effect on vx.

Let us now demonstrate the nature of destructive and constructive interference in the

language of graphs. Let a ∈ R be a varying parameter, and consider the graphs

Gc =
1

1

1

1

a
(1.83)

Gd =
1

1

1

−1

a
, (1.84)

where any edge with weight dependent on a is coloured purple for the benefit of the reader.

The vertices of interest are the leftmost vertex and the vertex immediately to the left of

the rightmost vertex, which we shall denote Q and R respectively. There are two walks

of length 2 from Q to R in both graphs, but the multiplicative weights of these paths are

1 and 1 in Gc, whereas they are 1 and −1 in Gd. Thus, we expect that G2
c contains an

edge of weight 2 between Q and R due to the constructive interference of the two possible

paths, but in G2
d such an edge is absent due to the destructive interference of the two

paths. This edge provides the avenue through which vertex Q gains a direct dependence

on the parameter a in higher powers of Gc.

We shall now demonstrate this behaviour directly through König digraphs. Starting

from Gc, let us first look at its square and the formation of the edge between Q and R.
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walk(Gc) =

1

1

1

1

1
1

a1

1

a

, (1.85)

walk(G2
c) =

1

1

1

1

1
1

a1

1

a

1

1

1

1

1
1

a1

1

a

, (1.86)

=

2
a

a

a2 + 2

2

2

2
2

a2

a

a

, (1.87)

⇒ G2
c =

2

2

2

a2 + 2
a2

a

a

2 . (1.88)

We can see that there will be some power of Gc that will contain an edge connected to

Q that depends upon a by inspection: The path QRR in G2
c has a multiplicative weight

of 2(a2 + 2), which will contribute to the edge between Q and R in G4
c . However, we need
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look no further than G3
c to find the first a-dependent edge incident on Q, as

G3
c =

4

4

2a

a2 + 4

a2 + 4

a3 + 2a

. (1.89)

The eigenstates and eigenvalues of Gc are given by

γ =
√
a4 + 16

β± = a2 − γ ± 4, δ± = a2 + γ ± 4

vc,1 =

(
0 − 1√

2
1√
2

0 0

)
λc,1 = 0 (1.90)

vc,2 ∝
(

δ−√
β+

−2γ−
β+

−2γ−
β+

−
√
β+√
2

a

)
λc,2 = −

√
2β+ (1.91)

vc,3 ∝
(
−δ−√
β+

−2γ+
β+

−2γ−
β+

√
β+√
2

a

)
λc,3 =

√
2β+ (1.92)

vc,4 ∝
(
−β−√
δ+

2γ+
δ+

2γ+
δ+

√
δ+√
2

a

)
λc,4 = −

√
2γ+ (1.93)

vc,5 ∝
(

β−√
δ+

2γ+
δ+

2γ+
δ+

−
√
δ+√
2

a

)
λc,5 =

√
2γ+. (1.94)

The zero eigenstate solely occupies the two middle vertices due to their symmetry:

Gc is invariant under a swapping of them. However, in all other eigenstates, the (0th)

component corresponding to vertex Q have components that are all functions of a.

Let us now divert our attention to Cd. No power of Gd (and, by extension, no poly-

nomial of Gd) ever connects the vertices Q and R, demonstrated with

walk(Gd) =

1

1

−1

−1

1
1

a1

1

a

, (1.95)
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walk(G2
d) =

1

1

−1

−1

1
1

a1

1

a

1

1

−1

−1

1
1

a1

1

a

, (1.96)

=

2
−a

−a

a2 + 2

2
2

a2

a

a

, (1.97)

G2
d =

2

2

2

a2 + 2

a2

a

−a

, (1.98)

G3
d =

2

2

a2 + 2

−(a2 + 2)

a(a2 + 2)
, (1.99)

G4
d =

4

a2 + 4

a2 + 4

(a2 + 2)2

a2(a2 + 2)

−a2

a(a2 + 2)

−a(a2 + 2)

, (1.100)
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G5
d =

4

4

(a2 + 2)2

−(a2 + 2)2

a(a2 + 2)2
, (1.101)

Clearly the even powers, which are simply integer powers of G2
d, leave vertex Q isolated

from the rest of the graph. Upon multiplying these by G, each contribution of a into an

edge connected to Q is cancelled out by an alternate path. The opposing signs between

the intermediate vertices and vertex R on every power of Gd prohibit any interactions

between Q and R, thus any eigenstate with amplitude on Q must be entirely independent

of a.

Indeed, the eigenstates and eigenvalues of Gd are

v1 =
1

2

(
−
√

2 1 1 0 0

)
λ1 = −

√
2 (1.102)

v2 =
1

2

(
√

2 1 1 0 0

)
λ2 =

√
2 (1.103)

v3 =
1√

2a2(a2 − 1) + 4

(
0 a −a a2 − 2 a2

)
λ3 = −

√
a2 + 2 (1.104)

v4 =
1√

2a2(a2 − 1) + 4

(
0 a −a a2 + 2 a2

)
λ4 =

√
a2 + 2 (1.105)

v5 =
1√

2a2 + 4

(
0 −a a 0 2

)
λ5 = 0 (1.106)
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Chapter 2

Microscopic viewpoint

Introduction

As shown in section 1.5, eigendecomposition generally explores macroscopic properties

of a system: a perturbation of an edge can have an impact on eigenstate components

corresponding to vertices far away. We have also seen that a parent graph’s macroscopic

properties can be linked to those of a child graph, such that the child is achieved through

some polynomial of the parent∗.

One key property of our graph algebra is that it can provide an intuitive graphical

insight into how microscopic properties of a graph can impact those of its polynomials; we

have already seen a glimpse of this with the destructive interference demonstrated in sec-

tion 1.5.2, where even powers G2n exhibit a disconnect between some of the neighbouring

vertices in G.

Of course, G was chosen specifically for this reason. How, then, does one construct a

∗There exist polynomials p(G) = G, such as p = 1 and p = f + 1, where f is G’s characteristic

polynomial. Our terminology thus implies that G is its own child and its own parent. The terminology

is nonetheless rather useful in most situations.
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G for which p(G) has some required local properties?

This section takes a pedagogical approach to introducing a toolkit which can be used

for such a purpose, starting from the simplest graphs and working up to those with more

complexity.

2.1 Polynomials and loop edges

Consider a graph S1(A) comprising a single vertex with a loop edge of weight A

S1 =
A

, walk(S1) = A , adj(S1) = (A) . (2.1)

This graph admits a single eigenstate v = (1) with eigenvalue λ = A.

We can trivially see that the following properties are obeyed:

S1(A) + S1(B) = S1(A+B) (2.2)

aS1(A) = S1(aA) (2.3)

S1(A)n = S1(A
n) , (2.4)

thus the polynomial is directly applied to the loop edge weight

P (S1(A)) = S1(P (A)) (2.5)

A graph with multiple disjoint vertices is impacted in the same way: such a graph can

be expressed as the outer sum

S(A,B, . . .) = S1(A)⊕ S1(B)⊕ . . .
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and the polynomial P (S) operates on the component graphs independently as

P (S(A,B, . . .)) = P (S1(A)⊕ S1(B)⊕ . . .) (2.6)

= P (S1(A))⊕ P (S1(B))⊕ . . . (2.7)

= S1(P (A))⊕ S1(P (B))⊕ . . . (2.8)

= S(P (A) , P (B) , . . .) (2.9)

P

(
A B C

. . .

)
=

P (A) P (B) P (C)
. . . (2.10)

Thus, if a polynomial P (G) of any graph G exists which reduces it into a set of

disconnected vertices, then any child P̃ (P (G)) for some polynomial P̃ is also disconnected,

and the loop edges are directly modified by P̃ .

2.2 Edge modification

Consider a graph S2(A,B; tAB, tBA) comprising two vertices with loop edges of weight A

and B, an edge from the first vertex to the second with weight tAB, and from the second

to the first with weight tBA.

S2 = A B

tAB

tBA

, walk(S2) = A B

tAB

tBA

, adj(S2) =

A s

t B


(2.11)

The two eigenvalues λ± of S2(A,B; tAB, tBA) satisfy

λ± = µ±
√

∆2 + tABtBA µ =
1

2
(A+B) ∆ =

1

2
(A−B). (2.12)
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The trivial addition and scalar multiplication goes along the same lines as in section 2.1

S2(A,B; tAB, tBA) + S2(A
′, B′; t′AB, t

′
BA) = S2(A+ A′, B +B′; tAB + t′AB, tBA + t′BA)

(2.13)

aS2(A,B; tAB, tBA) = S2(aA, aB; atAB, atBA) , (2.14)

but multiplication is somewhat more involved. Let us begin with a squaring operation

walk(S2)
2 =

A

A

B

B

tAB

tBA

tAB

tBA

= (A2 + tBAtAB)

(A+B)tAB

(A+B)tBA

(B2 + tABtBA)

(2.15)

 A B

tAB

tBA


2

= (A2 + tBAtAB) (B2 + tABtBA)

(A+B)tAB

(A+B)tBA

(2.16)

S2(A,B; tAB, tBA)2 = S2

(
A2 + tBAtAB, B

2 + tABtBA; (A+B)tAB, (A+B)tBA
)
.

(2.17)

As in section 2.1, the weight of the loop edges is modified through the polynomial

p : x → x2, but an extra term tABtBA is introduced. The weight of the edge linking the

two vertices has also been changed. From the walk graph approach, the new loop edges

correspond to the sum of the walks
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• Remaining in place for two steps

• Walking to the other vertex and back

and the new edges correspond to the walks

• Remaining in place, then walking to the other vertex.

• Walking to the other vertex, then remaining in place.

An important special case of this result is that of A+B = 0, where the edge between

vertices A and B reduces in S2
2 , separating the resulting graph into two independent

graphs of a single vertex each.

 β −β

tAB

tBA


2

=
β2 + tBAtAB β2 + tABtBA

(2.18)

=
β2 + tABtBA ⊕

β2 + tABtBA
, (2.19)

or, equivalently,

S2(β,−β; tAB, tBA)2 = S2

(
β2 + tBAtAB, β

2 + tABtBA; 0, 0
)

(2.20)

= S1

(
β2 + tABtBA

)
⊕ S1(β

2 + tABtBA) (2.21)

All configurations of S2 can be brought into this form through a subtraction by the

mean loop edge weight, and thus there exists a second order polynomial for each S2 which

eliminates the edge between the two vertices

S2(A,B; tAB, tBA)− µ = S2(∆,−∆; tAB, tBA) (2.22)
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(S2(A,B; t)− µ)2 = S2(A,B; tAB, tBA)2 − 2µS2(A,B; tAB, tBA) + µ2 (2.23)

= S2

(
∆2 + tABtBA,∆

2 + tABtBA; 0, 0
)

(2.24)

Thus, given

P : X → X2 − 2µX + µ2,

P : S2(A,B; tAB, tBA)→ S1(∆
2 + tBAtAB)⊕ S1(∆

2 + tABtBA). (2.25)

S1(∆
2 + tABtBA) has a single eigenvalue ∆2 + tABtBA, and the direct sum of two such

graphs thus has two eigenvalues of the same value ∆2 + tABtBA. As we have seen, we can

solve

P (λ) = ∆2 + tABtBA

to retrieve the eigenvalues λ± of S2

0 = λ2 − 2µλ+ µ2 −∆2 − tABtBA

λ = µ± 1

2

√
4µ2 − 4µ2 + 4∆2 + 4tABtBA

= µ±
√

∆2 + tABtBA,

in agreement with eq. (2.12).

This should come as no surprise, because (through the Cayley-Hamilton theorem) a

graph G solves its own characteristic equation CG

CG(G) = 0, (2.26)

and, in this case,

P (G) = CG(G) + ∆2 + tABtBA. (2.27)
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This graph demonstrates our second principle: polynomials can act to remove edges

between connected vertices. In two-vertex graphs, this is always achievable through some

polynomial, though larger graphs might exhibit more complex interactions that cannot

be broken down in this manner. The distinguishing feature is whether or not the graph

is what we shall call pseudo-bipartite, that is, whether the vertices can grouped into two

sets such that no vertex in one set has an edge to any other vertex in the same set other

than itself, and such that the loop edge weights of all vertices in such a set are identical.

In this case, subtracting the mean µ of the two sets’ loop edge weights from the graph G

provides a graph G − µ in which the two vertex sets have equal but opposite loop edge

weights.

Through the mechanism described in this section the square (G− µ)2 of such a graph

is devoid of edges between vertices of different sets, such that the sets can be separated.

In some graphs, then, simple polynomials can result in multiple independent graphs

which can be analysed in isolation to build a picture of the original graph, as we shall

exploit in section 3.4. In some other graphs, a child system may exhibit topological

defects, as explored in chapter 4, with signatures of topological behaviour appearing in

the eigenspectrum of the parent system.

2.3 Joining next-nearest neighbours

As well as eliminating an edge between nearest neighbours (those reachable with a walk

of length 1), we can introduce an edge between next-nearest neighbours (those reachable

with a walk of length 2). At least three vertices are needed, so we begin with a quick

overview of three-vertex graphs and move on to a chain.

Let us extend S2 by adding a new vertex C and connecting it to both A and B, and
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let us call this graph S3(A,B,C; tAB, tAC , tBA, tBC , tCA, tCB), comprising three vertices,

A,B,C with loop edges of weight A,B,C, connected through edges tij (where i, j are

distinct vertices labelled by their weight A,B,C)

S3 =

A

B C

tAB
tBA

tCB

tBC

tCA
tAC

walk(S3) =

A
tAB

tAC tBA

B
tBC tCA

tCB

C ,

(2.28)

adj(S3) =


A tBA tCA

tAB B tCB

tAC tBC C

 . (2.29)

S3 squares as

S3(A,B,C, tAB, . . .)
2 = S3(A

′, B′, C ′, t′AB, . . .) (2.30)

with

X ′ = X2 + tXY tY X + tXZtXZ (2.31)

t′XY = tXY (X + Y ) + tXZtZY (2.32)

for all X, Y, Z ∈ {A,B,C}, X 6= Y 6= Z

Now we shall move on to a special case: the chain L3(A,B,C, tAB, tBA, tBC , tCB)

formed by removing the edges between A and C,
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L3 = S3(A,B,C, tAB, 0, tBA, tBC , 0, tCB) (2.33)

=

A

B C

tAB
tBA

tCB

tBC

(2.34)

walk(L3) = A

tAB tBA

B

tBC tCB

C (2.35)

Although L3 has a disconnect between A and C, they become connected in (L3)
2 by

edges of weight tABtBC , tCBtBC .

(L3(A,B,C))2 =

A2 + tABtBA

B2 + tBAtAB + tBCtCB C2 + tCBtBC

tAB(A+B)

tBA(A+B)

tCB(B + C)

tBC(B + C)

tCBtBCtABtBC ,

(2.36)
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As these edges are single term multiples of existing bonds, there does not exist a config-

uration of L3 which does not exhibit an edge between A and C in its square, apart from

those with at least one absent edge. Furthermore, the edges between A and B can be

eliminated in the square if A+B = 0 and those between B and C if B + C = 0

(L3(A,−A,C))2 =

A2 + tABtBA

A2 + tBAtAB + tBCtCB A2 + tCBtBC

tCB(C −A)

tBC(C −A)

tCBtBCtABtBC

(2.37)

If A = C,B = −A, then both of these conditions are met and the only remaining edges

will be between A and C

(L3(A,−A,A))2 =

A2 + tABtBA

A2 + tBAtAB + tBCtCB A2 + tCBtBC

tCBtBCtABtBC

(2.38)

Note that L3(A,−A,C)2 is also a chain, and upon swapping the labelling of B and C

we find another L3
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L3(A,−A,C) ∼ L3

(
A2 + tABtBA, A

2 + tCAtAC , A
2 + tBAtAB + tBCtCB;

tABtBC , tCBtBC , tCB(C − A), tBC(C − A)

)
(2.39)

2.4 Interference

We have now seen that next nearest neighbours can become connected by an edge under

a second power, and that this is unavoidable in a three-site chain without absent edges. It

is, however, possible to produce a graph in which the second power does not exhibit next-

nearest edges, as we have seen in section 1.5.2. The trick is to introduce an additional

intermediate vertex with edges chosen such that the multiplicative path between two

next-nearest neighbours cancels out through destructive interference.

Consider, then, a graph C4 in the form of a square

C4 =

A B

C D

tAB

tBA

tCD

tDC

tACtCA tBDtDB adj(C4) =



A tBA tCA 0

tAB B 0 tBD

tAC 0 C tDC

0 tBD tCD D



walk(C4) =

A
tAB

tAC tBA

B

tBD tCA

C
tCD

tDB

tDC

D

(2.40)
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Squaring C4 results in a new graph with edges

A′ = A2 + tBAtAB + tCAtAC (2.41)

B′ = B2 + tDBtBD + tABtBA (2.42)

C ′ = C2 + tCAtAC + tDCtCD (2.43)

D′ = D2 + tCDtDC + tDBtBD (2.44)

t′XY = tXY (X + Y ), (2.45)

where tXY are existing edges in C4, and four additional edges connecting the next

nearest neighbours

t′AD = tBDtAB + tCDtAC (2.46)

t′DA = tBAtDB + tCAtDC (2.47)

t′BC = tACtBA + tDCtBD (2.48)

t′CB = tABtCA + tDBtCD (2.49)

We can cancel out the vertex between the next nearest neighbours by restricting edges

such that the terms above cancel. For example, with

tAB = −α tBD =
tCDtAC
α

(2.50)

tBA = −β tDB =
tCDtAC
β

(2.51)

the edges t′AD (through eq. (2.50)) and tBA (through eq. (2.51)) are cancelled out.

We can also cancel out the edges t′BC and t′CB simply by choosing
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tCD = γ tDC =
αβ

γ

such that



A B

C D

−α

−β

γ

αβ
γ

tACtCA
tACγ
α

tCAα
γ



2

=

A2 B2

C2 D2

−α(A+B)

−β(A+B)

γ(C +D)

αβ
γ (C +D)

t A
C
(A

+
C
)

t C
A
(A

+
C
)

γ
t A

C

α
(B

+
D
)

α
t C

A

γ
(B

+
D
)

+ (tACtCA + αβ), (2.52)

where for notational ease we imply the final term multiplies with the identity.

Thus, along with a choice of A,B,C,D, tAC and tCA, we have the choice of three free

parameters α, β, δ from which to produce a graph which exhibits destructive interference

between (A and D) and (B and C), resulting in another C4, after raising to the power 2.

As we have seen in section 2.2, we can separate neighbouring vertices by providing

them with opposing loop weights. For example,

• A = ∆, B = −∆ separates A and B,

• A = ∆, B = −∆, C = ∆, D = −∆ separates A and B and C and D, resulting in a

separable graph of two S2 subgraphs.

• A = ∆, B = −∆, C = −∆, D = ∆ separates all four sites, resulting in four isolated

vertices of self-loop weight ∆2.
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2.5 Connecting distant neighbours

We have so far looked at graphs with a small number of vertices, and it is clear that

general graphs can become rather complex under a polynomial unless they obey specific

requirements, such as presenting destructive interference at walks of a certain length,

or unless the polynomial is specifically chosen to exploit the Cayley-Hamilton theorem.

Graphs that do not obey such requirements, particularly connected graphs with edges of

strictly positive weight, increase their number of edges until their maximum number of

edges M(M + 1)/2 (for a graph with M vertices) is reached.

For this subsection, we will look at a simpler graph, the cycle graph CN , with N

vertices, arranged as an N -gon such that each vertex has two neighbours, with undirected

edges of unit weight, e.g

C7 = walk(C7) =

(2.53)

As there are no self-loops in C7, C
2
7 will lose all edges between those that are neighbours

in C7 (as the sum of self-loops between nearest neighbours always sums to zero), but will

exhibit edges between the next nearest neighbours of unit weight and new vertex loops of

weight 12 + 12 = 2.
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



2

=

2

2

2

2 2

2

2

(2.54)

Let

p0 : x→ 1 (2.55)

p1 : x→ x (2.56)

p2 : x→ x2 − 2 (2.57)

be polynomials which map C7 to a graph with only loop edges, a graph with only

nearest neighbour edges and a graph with only next-nearest neighbour edges respectively.

Can we find a polynomial p3 which maps C7 to a graph with only 3rd nearest neighbour

edges?





3

=

1

1

1

1 1

1

1

3

3

3

3

3

3

3

(2.58)

= p3(C7) + 3C7 (2.59)

⇒ p3 : x→ x3 − 3x. (2.60)
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We now have three polynomials that can generate a 7-vertex cycle with required nth-

neighbour edge weights

wp0(C7) + xp1(C7) + yp2(C7) + zp3(C7) =

w

w

w

w w

w

w

z
zzz

z
zz

y

y

y

y

y

y

y
x

x

x

x

x

x

x

(2.61)

such that we can generate the complete graph

3∑
i=1

pi(C7) = (2.62)

with knowledge that

(
3∑
i=1

pi

)
: λ→ λ̃ (2.63)

maps each eigenvalue of C7 to that of its complete equivalent.

This is not, of course, a feature specific to C7. The polynomials pi are a result of the

local structure of cycle graphs, and they extend as

p0 : x→ 1

p1 : x→ x
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p2 : x→ x2 − 2

pk : x→ xpk−1(x)− pk−2(x) (i > 2). (2.64)

We can prove the form of pk by induction. Imagine some CN with large N , and assume

pk−2 and pk−1 are polynomials that map CN to a graph with only the (k−2)th and (k−1)th

neighbours connected with unit edge weight respectively (k > 2). Then we can look at

the local neighbourhood of some vertex Vi by multiplying pk−1(CN) with a walk vector

vj = δij

... ... ... ...

... ... ... ...

1

= ... ... ... ...

... ... ... ...

1

(2.65)

=

... ... ... ...

1 1 (2.66)

Now we can multiply by CN

... ... ... ...

... ... ... ...

11

=

... ... ... ...

1

11

1
, (2.67)

thus

CNpk−1(CN) = pk(CN) + pk−2(CN)
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pk : x→ xpk−1(x)− pk−2(x) (2.68)

Through this, we can describe a cycle graph f(CN) equipped with arbitrarily weighted

nth-neighbour edges through the polynomial

f = ap0 + bp1 + cp2 + dp3 + . . . (2.69)

such that each eigenstate and eigenvalue pair (v, λ) obeying

CNv = λv (2.70)

will also obey

f(CN)v = f(λ)v. (2.71)

The polynomials pk described here are related to the Chebyshev polynomials of the

first kind[22],

T0(x) = 1 (2.72)

T1(x) = x (2.73)

Tk(x) = 2xTk−1(x)− Tk−2(x). (2.74)

The kth Chebyshev polynomial indeed maps the nearest-neighbour cycle with edge

weights 1/2 to the kth nearest-neighbour cycle with edge weights 1/2. This distinction

manifests itself in the trigonometric transformations provided by the polynomials,

Tk(cos(x)) = cos(kx), pk(2 cos(x)) = 2 cos(kx), (2.75)

which becomes particularly useful in section 3.1, where we will relate the eigenspectra

of general chains of infinite length to the eigenspectrum of the unit nearest-neighbour

infinite chain.
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2.6 Periodic Systems

M disconnected copies of a graph G can be written as a direct sum of G with itself M

times or, equivalently, a tensor product of 1M and G. Such an operation will be used

heavily in this section, so let us introduce the shorter notation

G⊕M ≡ 1M ⊗G, (2.76)

and let us denote the M copies of G as g0, ..., gM−1.

For example, if

walk(G̃) = (2.77)

then

walk(G̃⊕3) = ,

(2.78)

where readers with a colour copy will see the vertices of each copy g0, g1, g2 in blue

(left), red (centre), and green (right) respectively.

For such a repeating graph, we can introduct connectivity between components with

use of a translation graph, comprising edges directed from every vertex in each gm to the

corresponding vertex in g(m+1 mod M). Let T be the translation graph of G⊕3, then
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walk(T ) =

(2.79)

walk(T−1) = ,

(2.80)

where the dashed lines are used as a visual aid to highlight the wrap-around effect of

the modulus operation.

Consider that we want an edge from a vertex u in each gm to a vertex v in gm+1 mod M .

We can represent this inter-cell connectivity with two pieces of information: a graph R in

which there exists an edge from the vertex corresponding to u to the vertex corresponding

to v, and a translation. As an example, consider the graph R̃ with

walk(R̃) = (2.81)

then
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walk
(
R̃⊕3

)
= ,

(2.82)

which we can multiply by the translation graph to obtain

walk
(
TR̃⊕3

)
=

(2.83)

= .

(2.84)

Thus TR̃⊕M describes connectivity with neighbours to the right. We can also form

a graph L̃ and use it to describe connectivity with neighbours to the left with L̃T−1.

Consider the graph L̃ with

walk(L̃) = (2.85)

then
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walk(T−1L̃⊕3) =

(2.86)

We can now describe a periodic graph F , constructed from the unit cell G̃, with inter-

cell edges to graphs on the right defined by R̃ and on the left defined by L̃, through the

expression

F = G̃⊕M + TR̃⊕M + T−1L̃⊕M (2.87)

such that

adj(F ) =



adj(G̃) adj(L̃) 0 . . . 0 adj(R̃)

adj(R̃) adj(G̃) adj(L̃)
. . . 0 0

0 adj(R̃) adj(G̃)
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0
. . . adj(G̃) adj(L̃)

adj(L̃) 0 0 . . . adj(R̃) adj(G̃)



. (2.88)

As T obeys TM = 1, its eigenvalues λT,m are M th roots of unity

λT,m = exp

(
2iπm

M

)
, m ∈ [0 .. M − 1]. (2.89)

Consider some graph X on the same vertices as G, such that X⊕M comprises only

edges between vertices within in the same cell.

X = (2.90)
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Then TX⊕M is a graph comprising edges from the same input layer as X⊕M , to edges

from the output layer translated by one unit cell,

TX⊕M = (2.91)

= . (2.92)

Likewise,

X⊕MT = (2.93)

= . (2.94)

Thus T commutes with any such unit graph, including G⊕M , R⊕M and L⊕M . It thus

commutes with F , which is a linear combination of these unit graphs and T itself. Because

of this, we can separate the Hilbert space F acted on by F into the eigenspaces Fn of T ,

such that

F =
M−1⊕
m=0

Fm, (2.95)

where T has eigenvalue λT,m throughout Fm. In each such eigenspace, we can project

F into a graph F̃ (λT,m) ∈ Fm by substituting the operator T with its eigenvalue λT,m,
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F̃ (λT,m) = G̃⊕M + λT,mR̃
⊕M + λ−1T,mL̃

⊕M , (2.96)

= f̃0(λT,m)⊕ . . .⊕ f̃M−1(λT,m) (2.97)

where

f̃n(λT,m) = G̃+ λT,mR̃ + λ−1T,mL̃. (2.98)

Even though each subgraph f̃n(λT,m) is independent from its neighbours, the total

algebraic multiplicity of F̃ (λT,m) is N : Fm enforces a translation eigenvalue of λT,m. As

such, we can eigendecompose f̃0(λT,m) and expand each of its eigenstates

f̃0(λT,m)v = λv (2.99)

into a full eigenstate V of F through

V = v ⊕
(
λ1T,mv

)
⊕ ...⊕

(
λM−1T,m v

)
(2.100)

F̃ (λT,m)V = λV (2.101)

As a result, we can fully eigendecompose F through analysis of the smaller subgraphs

f formed as a superposition of its unit cell G̃ and its neighbour connection matrices R̃

and L̃. An example of this process is provided in example 1.

If we take the number of repetitions to infinity, we can represent an infinite, periodic

graph. The translation eigenvalues are thus the rational† roots of unity

λT,θ = exp (2πiθ) θ ∈ Q (2.102)

†The number of repetitions is countable, thus the number of translation eigenspaces must also be

countable. As such, this method does not extend to irrational eigenvalues of the translation graph.
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and we can separately analyse translation eigenspaces through the graphs f̃(θ). This

result is one that condensed matter theorists are particularly familiar with: it is nothing

less than Bloch’s Theorem[8].

It is important to use caution when dealing with infinite systems. So far we have

only looked at generating infinite graphs that are nonetheless locally finite, meaning that

although there are an infinite number of vertices, each vertex has a finite number of

neighbours. As a result, each row and column of the adjacency matrix has a finite number

of nonzero elements, as does each row and column of any finite-degree polynomial of the

adjacency matrix, which is well defined. In this formalism, it is valid to calculate the

eigenspectra of finite degree polynomials of locally finite periodic systems‡.

If, instead, we wish to use polynomials of infinite degree, we may end up with a locally

infinite child graph, such that each vertex has an infinite number of neighbours. The

adjacency matrix of a locally infinite hermitian graph has an infinite number of nonzero

elements in each row and column, and multiplication with such matrices is undefined

in general[24]. Validity of such multiplications is continent on the convergence of the

summation used for calculating each element of the result. Examples of the valid and an

invalid cases are provided in section 3.1.

Example 1 (Translation eigenspace projection). Let us use the graphs G̃, L̃, R̃ from

above

walk(G̃) = (2.103)

‡An in-depth discussion of the eigendecomposition of locally finite graphs can be found in [23]
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walk(L̃) = (2.104)

walk(R̃) = (2.105)

and create a periodic graph by

F = G̃⊕3 + TR̃⊕3 + T−1L̃⊕3 (2.106)

walk(F ) = ,

(2.107)

which we may visualise in a wrapped-around form as
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F = . (2.108)

We can easily verify that F and T commute, through

walk(FT ) =

(2.109)
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= walk(TF ) =

(2.110)

= ,

(2.111)

Let us now look at the three F̃ (λT,n), formed from the translation eigenvalues

λT,n = exp

(
2πin

3

)
, n ∈ {0, 1, 2} (2.112)

walk(F̃ (λT,n)) =


0 0 1 + exp

(
2πin
3

)
0 1 0

1 + exp
(−2πin

3

)
0 0

 . (2.113)

F̃ (λT,n) has eigenvalues and corresponding eigenvectors

ṽn,0 =

(
0 1 0

)
λH,n,0 = 1 (2.114)

ṽn,1 =
1√
2

(
exp
(
nπi
3

)
0 −1

)
λH,n,1 = −2 cos

(
nπi

3

)
(2.115)

ṽn,2 =
1√
2

(
exp
(
nπi
3

)
0 1

)
λH,n,2 = 2 cos

(
nπi

3

)
(2.116)
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and thus its corresponding eigenstates in the Hilbert space F are

λF,n,0 = 1 λF,n,1 = −2 cos

(
nπi

3

)
λF,n,2 = 2 cos

(
nπi

3

)

vn,0 =
1√
3

(
0 1 0 0 e(

2nπi
3 ) 0 0 e(

4nπi
3 ) 0

)
vn,1 =

1√
6

(
e(

nπi
3 ) 0 −1 e(

3nπi
3 ) 0 −e( 2nπi

3 ) e(
5nπi
3 ) 0 −e( 4nπi

3 )

)
vn,2 =

1√
6

(
e(

nπi
3 ) 0 1 e(

3nπi
3 ) 0 e(

2nπi
3 ) e(

5nπi
3 ) 0 e(

4nπi
3 )

)
,

where the phase factors have been written explicitly in elements 4 to 9 to demon-

strate the translation property. We can trivially see that the eigenstates generated

by the different subspaces are orthonormal, and that they are eigenstates of F . As

there are 9 such eigenstates, and because dimF = 9, and because F is hermitian, we

have found all eigenstates of F .
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Chapter 3

Tight Binding Toy Models

Introduction

So far, we have looked at a graph algebra, describing a method of generating polynomials

of graphs, and observing that eigendecomposition of a child graph P (G) can be indirectly

performed through its parent graph G. In this chapter, we will move away from abstract

matters and into those of some practicality in condensed matter physics.

In this setting, graphs are used to describe a discrete set of basis states (vertices), and

the complex probability amplitudes of transitioning between them (weighted edges), such

that their adjacency matrices correspond to the hamiltonian of the represented system.

As such, graphs for closed systems are hermitian, such that each edge has a corresponding

conjugate transpose edge.

In the tight binding model, the basis states correspond to an electron’s occupation of

atomic orbitals in a material, such that it is assumed that all possible electronic states

are in a superposition of occupation of a set of orbitals. Transition probabilities are

determined by the properties of the material itself, which are assumed to be uninfluenced
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by the electronic state, and by the properties of the environment in which the material is

in. The hamiltonian describes the dynamics of a state as it evolves over time.

In coupled-mode theory of photonic crystals[25], basis states correspond to optical

excitations in dielectric nanostructures. These states are governed by the Helmholtz

equation, the optical analogue of the Schr̈odinger equation, defining dynamics along the

length of a waveguide rather than through time.

In both of these types of system, the tight binding model serves as an approximation

to the behaviour of independent particles. In some cases, the approximation is a good

representation of the true behaviour of a quantum system, and in others it serves as a

useful initial step, to be used as a basis for further exploration with more advanced meth-

ods. For our purposes, it serves as a unifying model, enabling us to look upon condensed

matter systems as a collection of “sticks and balls”, without concerning ourselves with

setting-dependent behaviours such as spin-orbit coupling or loss and gain.

This chapter begins by analysing a collection of simple tight binding models, demon-

strating, along the way, how the polynomial algebra presented in this thesis can be used

to simplify calculations and obtain a deeper insight into their algebraic properties.

The terminology used throughout the previous sections of this thesis will continue

throughout: tight binding systems will be presented as graphs, and their corresponding

hamiltonians as adjacency matrices.

As previously stated, analysing periodic systems through the Bloch formalism is anal-

ogous to the decomposition of periodic graphs into translation eigenspaces. Although the

mathematical underpinning is identical, the Bloch formalism concerns itself with geomet-

rical properties: the translation eigenvalue λT (θ) = exp(2πiθ) is viewed as the exponential

exp(i~k.~r), containing an inner product between momentum, a vector in reciprocal space,

70



and translation vectors in real space. Graphs, on the other hand, are viewed through a

topological, rather than geometrical, lens; a vertex has no concept of a physical position.

Whilst it is certainly possible to embellish vertices with a position, we shall stick to the

language of translation eigenspaces and discuss any geometrical properties in commen-

tary.

3.1 The Monatomic Chain

The monatomic chain M is the simplest infinite system, comprising a single vertex in each

repeating cell, with translational symmetry along a single axis, and a unit weighted edge

connecting each vertex to both of its neighbours, depicted as

M = . . . . . . (3.1)

walk(M) = . . . . . . (3.2)

Following section 2.6, we can represent the chain as a single-vertex graph G̃, with

connection graphs R̃ and L̃, with

walk(G̃) = walk(R̃) = 1 walk(L̃) = 1 (3.3)

adj(G̃) =

(
0

)
adj(R̃) =

(
1

)
adj(L̃) =

(
1

)
(3.4)
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Figure 3.1: The eigenspectrum of the reduced monatomic chain m(θ) for varying θ

and we can project the chain into translation eigenspaces with

m̃(θ) = 2 cos (2πθ) adj(m̃(θ)) =

(
2 cos(2πθ)

)
, (3.5)

for which the sole eigenvector is trivially (1) with eigenvalue 2 cos(2πθ).

In section 2.5 we saw that we can apply a polynomial pn (described in eq. (2.64)) to a

cycle graph, generating a graph with nth-neighbour edges. We can describe a monatomic

chain with arbitrary nth-neighbour edges tn with

p′ =
∑
n

tnpn, (3.6)

M ′ = p′(M) (3.7)

= . . .

t0 t0 t0 t0 t0

t1 t1 t1 t1

t2 t2 t2 t2t2

. . . (3.8)

such that each eigenvalue 2 cos(2πθ) ofM has a corresponding eigenvalue p′(2 cos(2πθ))
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in M ′. Conveniently, the polynomials described in eq. (2.64) satisfy the trigonometric

relationship

pn : 2 cos(2πθ)→ 2 cos(2nπθ) (3.9)

Thus the corresponding eigenvalue of M ′ is

λ(θ) =
∑
n

2tn cos(2nπθ) . (3.10)

This result in itself seems remarkably simple: the eigenspectrum is simply a sum over

the eigenspectra formed from each individual nth neighbour edge configuration. This

clearly isn’t the case in all systems, though, and relies on each of the nth neighbour edge

graphs commuting with one another. As each nth neighbour interaction chain is simply

a polynomial of the nearest-neighbour chain within our framework, this property cleary

holds for the monatomic chain.

In some scenarios, one may wish to model a monatomic chain with edge weights

calculated as a function of vertex distance: this function need not have finite extent,

taking us back to the discussion in section 2.6. For example, consider an infinite chain

with loop edges 1 and edge weights halving for each subsequent neighbour. The elements

tn in eq. (3.10)are then given by tn = 2−n, and the eigenspectrum of such a system is

presented in fig. 3.2. A sum over a finite distance of q vertices provides the eigenspectrum

q∑
n=0

2 cos(2πnk)

2n
=

4 cos(2πk)− 8 + 21−q(2 cos(2πk(1 + q))− cos(2πkq))

4 cos(2πk)− 5
, (3.11)

converging in the infinite limit to

∞∑
n=0

2 cos(2πnk)

2n
=

4 cos(2πk)− 8

4 cos(2πk)− 5
. (3.12)
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In this circumstance, the adjacency matrix of this graph is locally infinite but mul-

tiplication is still well-defined. There are models which may, at first glance, seem like

reasonable interaction models, but which are nonetheless problematic due to sums that

do not converge. Take, for example, an inverse relationship between edge weight and

distance, not including any loop edges, such that tn = n−1, n ≥ 1. The eigenspectrum for

such a system with large, but not infinite, maximum edge distance is presented in fig. 3.3.

However, the sum
∑∞

n=1 n
−1 does not converge, thus the zero-momentum eigenvalue for

such a system with infinitely extending edges is undefined. A modified interaction model

with tn = n−s, s > 1, converges: it is the definition of ζ(s), where ζ is the Riemann zeta

function.

Figure 3.2: The eigenspectrum of
∑∞

n=0 2−nMn, representing a monatomic chain with a edge

weight that halves each unit distance.

74



Figure 3.3: The eigenspectrum of
∑∞

n=1
1
nM

n, which represents a monatomic chain with an

inverse relationship between site distance and edge weight.

3.2 Time evolution and the square root of The Aharonov-

Bohm Effect

The time-dependent Schrödinger equation

∂tψ(t) = −iHψ(t) (3.13)

describes how a state ψ evolves through time under the influence of the hamiltonian

H. We can describe the state at time t by as compared with an initial state ψ(0) through

ψ(t) = exp(−iHt)ψ(0). (3.14)

As an exponential can be described by the Maclaurin series

exp(x) =
∞∑
n=0

xn

n!
, (3.15)

75



we can write

ψ(t) =

(
∞∑
n=0

(−iHt)n
n!

)
ψ(0) (3.16)

In our framework, H corresponds to a graph, and ψ as a walk vector. As we have

defined a polynomial algebra over graphs, we can describe a graph corresponding to the

“time evolution operator” U , where

U(H, t) =
∞∑
n=0

(−iHt)n
n!

(3.17)

such that

U(H, t)ψ(0) = ψ(t) (3.18)

The dynamics of a state are thus determined by its initial configuration and a power

series of the hamiltonian. This allows us to project our understanding of polynomials of

various graphs into analysis of an evolving system, with observable implications.

The Aharonov-Bohm effect[26] is a particularly useful physical phenomenon which

we can explore directly in this setting. The effect was discovered by consideration of a

charged particle travelling through a multiply-connected surface: Starting at an initial

position, it has two topologically-inequivalent paths by which it can reach a point on the

other side of a hole in the surface. A magnetic vector potential due to a solenoid centred

at the hole multiplies each path by a different phase, such that the superposition of both

paths causes interference, and when the two paths are out of phase by π radians, this

interference is destructive and the particle never appears at the final position. The same

effect can be achieved in the absence of a magnetic potential by introducing a resonant

scattering site between two vertices, enabling a realisation in a photonic setting[27].
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We can model this system with the graph

G(a, b) =

b

a

−a

b

adj(G(a, b)) =



0 a b 0

a 0 0 b

b 0 0 −a

0 b −a 0


(3.19)

We can then demonstrate that there is destructive interference between the leftmost

vertex and rightmost vertex under any walk length in G by observing the powers of G.

These take the simple forms, for n ∈ N,

G(a, b)2n = (a2 + b2)n14 = (a2 + b2)n

(a2 + b2)n

(a2 + b2)n

(a2 + b2)n

(3.20)

G(a, b)2n+1 = (a2 + b2)nG(a, b) =

b(a2 + b2)n

a(a2 + b2)n

−a(a2 + b2)n

b(a2 + b2)n

(3.21)

Thus no power, polynomial, or power series of G(a, b) has an edge from the left vertex

to the right vertex. Indeed, any power, polynomial or power series of G resolves to a
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linear combination xG+ y, for some x and y. Let ψ and φ be states that fully occupy the

leftmost and rightmost vertices respectively,

ψ =

(
1 0 0 0

)T
(3.22)

φ =

(
0 0 0 1

)T
(3.23)

then

φ†p(G(a, b))ψ = 0 (3.24)

for all polynomials p, and thus

φ†U(G, t)ψ = 0 (3.25)

for all t, as demonstrated in fig. 3.4.

The time evolution operator U(G(a, b), t) is a power series of G(a, b) in which the

coefficients of all even powers are real, and those of all odd powers are imaginary. A

graph F (a, b) obeying

F 2 = P̃ (G), (3.26)

where P is some polynomial, can never have an edge from vertex A to vertex D in its

even powers. As a result, the time evolution of a state that initially solely occupies vertex

A will always have an imaginary amplitude on D.

We can demonstrate this with the graph
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Figure 3.4: The components of a state ψ = U(G(1, 1), t)ψ0 for varying times t, where the initial

state ψ0 fully occupies the leftmost vertex A with amplitude 1. The amplitude of the evolving

state is always zero at the rightmost vertex D.

F = 1 −1

1

1

1

(3.27)
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such that

F 2 = 2

2

2

2

1 1

1 −1

(3.28)

= G(1, 1) + 2, (3.29)

such that we can call F a “square root” of the Aharonov-Bohm loop G(1, 1) + 2.

Obeying eq. (3.26), we expect the time evolution operator overlap between the A and D

sites to be imaginary, or

<(φ∗U(F, t)ψ) = 0 (3.30)

This is indeed the case, as demonstrated by the time evolution simulation fig. 3.5 of

F , starting with unit amplitude on site A.
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Figure 3.5: The components of a state ψ = U(F, t)ψ0 for varying times t, where the initial state

ψ0 fully occupies vertex A with amplitude 1. Because only odd powers of F can have an edge

between vertex A and vertex D, the amplitude on D is always imaginary.
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3.3 The Square Lattice and The Hofstadter Butterfly

Although we have so far looked at graphs with translation symmetry in a single direction,

two-dimensional systems can be built in a similar manner. Let

walk(G̃) = walk(C̃) = 1 (3.31)

Let where X⊕∞,∞ describe a graph X copied infinitely across two orthogonal directions

x̂ and ŷ, forming a 2 dimensional grid. We also need to introduce translation graphs acting

in these directions, so let

walk(Tx) =

(3.32)

walk(Ty) =

(3.33)

Then we can describe a square lattice through the sum
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S = G̃⊕∞,∞ +
(
Tx + T−1x + Ty + T−1y

)
C̃⊕∞,∞, (3.34)

= (3.35)

The translation operators Tx and Ty are independent, yet commute with one another

and thus with S. As such, we can project S into eigenspaces of Tx and Ty, which have

eigenvalues

λx(θx) = exp(2iπθx) , (3.36)

λy(θy) = exp(2iπθy) , (3.37)

such that we may reduce S into the reduced graph s̃(θx, θy) in the eigenspace θx of Tx

and θy of Ty, with

walk(s̃(θx, θy)) = 2 cos (2πθx) + 2 cos (2πθy) (3.38)

with eigenspectrum

E(θx, θy) = 2 cos(2πθx) + 2 cos(2πθy) (3.39)
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Figure 3.6: Eigenspectrum of a unit square lattice

plotted in fig. 3.6.

At a first glance, the introduction of a second dimension complicates the polynomial

algebra. After all, a walk of m steps along the graph is no longer restricted to a single

dimension, and there are now many routes from one vertex to another. Consider, for

example, S2,

S2 =

1 1

1

1

4

2

2

2

2

, (3.40)
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where the edges to and from a single site are emphasised and labelled for visual clarity,

while translational symmetry applies and each site has the same configuration.

There are four walks of length 2 that return to the original vertex (up and down, down

and up, left and right, right and left), and this results in a loop edge of weight 4. There

is a single walk which ends two vertices to the right, so this results in an edge of unit

weight; the same applies for two vertices to the left, upwards, and downwards. Diagonals

have two paths; for example, walking upwards then to the right, and walking to the right

then upwards.

Whilst the square lattice can be represented as a bipartite lattice, and thus its square

is separable into two disjoint lattices, an elegant intepretation of S through polynomials

is hindered by the diagonal edges: In their absence, S2 would be separable into a set of

four square lattices.

3.3.1 The Hofstadter Butterfly

When a quantum system is subject to a magnetic vector potential ~A, the hopping am-

plitude between two sites is rotated in the complex plane by an angle determined by the

line integral of ~A between them, through the Peierls substitution[28]

ta,b( ~A) = ta,b(0) exp

(
i

∫ r(b)

r(a)

~A · d~s
)
, (3.41)

where r(a) and r(b) are the physical positions of lattice sites represented by the vertices

a, b, which we normalise such that neighbours are a unit distance apart. This transfor-

mation is commonly to as the Peierls substitution, and has two immediate implications:

loop edges are left unchanged, and the phase applied to an edge from a node b to a node a

is opposite to that applied to an edge from a to b; a hermitian system remains hermitian
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under the influence a magnetic vector potential.

To describe a square lattice under the influence of a perpendicular magnetic field

~B = Bẑ, where ẑ ⊥ ŷ, ẑ ⊥ x̂, and x̂ ⊥ ŷ, and where x̂ and ŷ are the physical unit

translations described by the translation graphs, we choose the transverse magnetic vector

potential ~A(x, y) = Bxŷ, and modify our translation graphs according to the Peierls

substitution. Let Tx(0) and Ty(0) refer to our earlier square lattice translation vectors,

then we can describe the Peierls substitution through the graph P (B) with

walk(P (B)) =
1

1

1

1

eiB
eiB

eiB
eiB

e2iB
e2iB

e2iB
e2iB

e3iB
e3iB

e3iB
e3iB

(3.42)

Ty(B) = Ty(0)P (B) (3.43)

Tx(B) = Tx(0), (3.44)

such that

S(B) = G̃⊕∞,∞ + (Tx(B) + Tx(B)−1 + Ty(B) + Ty(B)−1)C̃⊕∞∞ (3.45)

Except for when B is an integer multiple of 2π, the translation graphs Tx(B) and

Ty(B) do not commute. Instead,

Ty(B)Tx(B) = eiBTx(B)Ty(B) (3.46)
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Let us describe a more general commutator (·, ·|·) with

(A,B|µ) = AB − exp(2πiµ)BA, (3.47)

such that, for n ∈ Z,

(A,B|2πn) = AB −BA = [A,B] (3.48)

(A,B|2π(n+ 1/2)) = AB +BA = {A,B}. (3.49)

Consider some A,B, µ that obey

(A,B|µ) = 0 (3.50)

then raising A to an integer power provides

AnB = exp(iµ)An−1BA (3.51)

= exp(iµn)BAn (3.52)

by induction, and, by symmetry,

AnBm = exp(iµnm)BmAn (3.53)

thus

(An, Bm|µnm) = 0 (3.54)

As a result, if µ is a rational multiple of 2π, such that µ = 2πp
q
, p ∈ Z, q ∈ N+, then

any combination n,m ∈ N satisfying nm = rq, r ∈ N+ will result in
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(An, Bm|µnm) = (An, Bm|2πrp) (3.55)

= [An, Bm] (3.56)

We can now rewrite eq. (3.46) as

(Ty(B), Tx(B)|B) = 0, (3.57)

and from eq. (3.56) we conclude that, for a rational magnetic field strength B = 2πp
q

,

[Ty(B)nq, Tx(B)] = 0 n ∈ N+. (3.58)

The only terms in S(B) that do not commute with Ty(B) are due to multiplications

by Tx(B) and Tx(B)−1, and eq. (3.58) demonstrates that Ty(B)nq commutes with these

terms. Thus, Ty(B)nq commutes with S(B).

Let us return to the issue of the diagonal edges of S(0)2. As we saw in section 3.2,

destructive walks of length N between two vertices in a graph G eliminate an edge con-

necting them in GN , and we have also seen how edges gain a phase due to a magnetic

vector potential, and that a translation of q unit cell lengths in an orthogonal magnetic

field of strength B = 2πp
q

commutes with the square lattice S(B). As it turns out, there

is a polynomial of degree q that produces a graph that is separable into q2 square graphs,

each with unit edges.

Consider, for example, the case of q = 2,
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S(π) =

1 1 11 1 11 1

1 1 11 1 11 1

1 1 11 1 11 1

1 1 11 1 11 1

1

1

1

1

1

1

1

1

−1

−1

−1

−1

−1

−1

−1

−1

1

1

1

1

1

1

1

1

−1

−1

−1

−1

−1

−1

−1

−1

. (3.59)

with spectrum

λ±(θx, θy) = ±
√

4 cos2(2πθy) + 2 cos(2πθx) + 2 (3.60)

plotted in fig. 3.7.

In this case, the diagonal edges in S(π)2 must vanish: there are two walks of equal and

opposite weight of length 2 from each vertex at position (i, j) to each diagonal partner at

position (i± 1, j ± 1). The loop edges in S(π)2 are, like in S(0)2, still of weight 4. Thus
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Figure 3.7: The spectrum of a unit square lattice in the presence of an orthogonal magnetic

field of strength π

S(π)2 − 4 =

1 1

1

1

, (3.61)
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which corresponds to four separable square graphs with unit edges, without phases,

and thus has the same spectrum as S(0). Indeed, performing the polynomial P (x) = x2−4

on the spectrum in fig. 3.7 produces fig. 3.6, albeit with appropriately scaled translation

eigenvalues.

As it turns out, S(2πp/q)q removes all diagonal edges between vertices of distance q.

This can be understood rather intuitively by considering the phases along each possible

path. Consider the length-q walks from a vertex (a, b) to a vertex (a+ q − 1, b+ 1): each

necessarily involves a walk of length q − 1 in the x direction, which gains no phase, and

a walk of length 1 from any vertex (c, b) to (c, b + 1), a ≤ c ≤ b, thus gaining a phase

exp
(

2πic
q

)
. The sum over all of these multiplicative walks is simply a sum over evenly

distributed points on the unit circle in the complex plane, resulting in an edge of weight

zero, or, equivalently, no edge.

The same logic applies to the walk from vertex (a, b) to vertex (a+q−2, b+2), though

this time the overall phase is

q−2∑
n=0

q−2∑
m=n

exp

(
2π(n+m)

q

)
= 0, (3.62)

and so on.

Removing other edges to result in a separable square graph can be achieved by adding

terms of power less than q. Finding such polynomials is a non-trivial process: for q ≥ 4,

walks can be performed around full plaquettes, for q ≥ 6 we must to take into account

walks around rectangular formations of plaquettes, and for q ≥ 8 we must consider terms

corresponding to walks around the same a plaquette multiple times, larger squares, tri-

angular block shapes, and walks surrounding non-neighbouring plaquettes. When a walk

of length q ends at a vertex which could be reached in a shorter walk of length q̃, its
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weight must be cancelled out by a term of power q̃, typically requiring trigonometric

terms corresponding to the magnetic flux.

Let

B(q, p) = 2 + 2 cos(
2πp

q
) (3.63)

be modified Beraha constants. Then

P1,1 : x→ x (3.64)

P2,1 : x→ x2 − 4 (3.65)

P3,1 : x→ x3 − 6x (3.66)

P4,1 : x→ x4 − 8x2 + 4(3− B(4, 1)) (3.67)

P5,p : x→ x5 − 10x3 + 5(5− B(5, p))x (3.68)

P6,p : x→ x6 − 12x4 + 6(7− B(6, p))x2 − 6

(
2

B(6, p)

)
(3.69)

P7,p : x→ x7 − 14x5 + 7(9− B(7, p))x3 − 7

(
2 +

2

B(7, p)

)
x (3.70)

P8,p : x→ x8 − 16x6 + 8(11− B(8, p))x4 − 8

(
4 +

8

B(8, p)

)
x2 + 4 (3.71)

are polynomials such that Pq,p

(
S
(

2πp
q

))
are graphs comprising q2 separable square

lattices, each of unit area q2, and each with unit edges∗.

As such graphs must also have the eigenspectrum 2 cos(2πθx) + 2 cos(2πθy), lying

∗The polynomials Pq,p were found recursively. Let X = S( 2πp
q ). Then identify the edge weight w

from a point (a, b) to a point (a + q − 2, b) in the graph Xq. Then identify the weight w2 from a point

(a, b) to a point (a + q − 4, b) in the graph Xq − wXq−2, and so on. An attempt at a general form of

Pq,p was made, but it requires the highly non-trivial task of identifying the multiplicative weight of all

length-N walks between two points on a square lattice with position-dependent complex edges.
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Figure 3.8: Hofstadter Butterfly, colour co-ordinated such that points of the a colour are solutions

to the equation Pp,q(x) = y, where y has the same colour in the B = 0 line.

in the interval (−4, 4), the values of λ satisfying −4 ≤ Pq,p(λ) ≤ 4 are eigenvalues of

S(2πp
q

). Such eigenvalues are plotted in fig. 3.8, forming the Hofstadter Butterfly[29].

This process is analogous to vanilla eigendecomposition: the polynomials are of the same

degree as would be required to decompose a unit cell of q vertices, and we know that

the eigenstates of such graphs must be superpositions of the eigenstates of the zero-flux

square lattice graph, expanded to an area of q2.
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3.4 Honeycomb Strutures

The honeycomb structure has significant prevalence in modern condensed matter. The

first significant theoretical analysis of the carbon layers of graphite in a tight-binding

setting was conducted by P.R. Wallace in 1947[30], who identified an approximately linear

energy dispersion around two distinct points in the Brillouin zone. These points were

analysed by D. P. DiVincenzo and E.J. Mele in 1984[31], and the hamiltonian was brought

into a form identical to a two-dimensional Dirac equation, replacing spin with a sublattice

index. In 2004, A. Geim and K. Novoselov isolated individual layers of hexagonal carbon,

known as Graphene. Their experimental confirmation of theoretical results, along with

further groundbreaking research[32], resulted in them being awarded the 2010 Nobel Prize

in Physics.

Monolayer Hexagonal Boron Nitride[33] (HBN) is another honeycomb material, with

Boron and Nitrogen, rather than carbon, as the two sites in the unit cell rather than

Carbon. As such, we can approximate the electronic properties of monolayer HBN by

using two vertices with loop edges of different weights.

In this section, honeycomb structures will be analysed through the graph algebra. We

will discover that a next-nearest neighbour tight binding model of the honeycomb is in

fact a polynomial of the nearest-neighbour graph, and show that the tight binding model

of monolayer HBN and that of graphene are be algebraic related using the microscopic

graph algebra rules outlined in chapter 2.

3.4.1 Polynomials and next-nearest neighbours

Let the infinite honeycomb be described by the graph
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G = (3.72)

which can be broken down into

G̃ = 11 C̃AB = 1 C̃BA = 1 (3.73)

TA = (3.74)
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TB = (3.75)

such that

G = G̃⊕∞,∞ + (TA + TB) C̃⊕∞,∞AB +
(
T−1A + T−1B

)
C̃⊕∞,∞BA (3.76)

which is decomposable into translation eigenspaces of TA and TB as

g̃(θ1, θ2) = G̃+ (exp(2iπθ1) + exp(2iπθ2)) C̃AB

+ (exp(−2iπθ1) + exp(−2iπθ2)) C̃BA (3.77)

where

adj(g̃(θ1, θ2)) =

 0 1 + exp(2iπθ1) + exp(2iπθ2)

1 + exp(−2iπθ1) + exp(−2iπθ2) 0

 .

(3.78)

The eigenspectrum of eq. (3.78) is given by

λ± = ±
√

3 + 2 cos(2πθ1) + 2 cos(2πθ2) + 2 cos(2π(θ1 − θ2)) (3.79)
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Figure 3.9: Eigenspectrum of the unit honeycomb

plotted in fig. 3.9. The two eigenvalues meet at the points

(θ1, θ2) = (n− 1/3, n− 1/3) (3.80)

(θ1, θ2) = (n+ 1/3, n+ 1/3) (3.81)

for all integers n.

In a condensed matter setting, θ1 and θ2 are transformed into inner products of a

two-dimensional Bloch momentum vector with the position vectors corresponding to the

translations,

~TA =

( √
3

2
,
3

2

)
~TB =

(
−
√

3

2
,
3

2

)
(3.82)

~k · TA =
3ky +

√
3kx

2
~k · TB =

3ky −
√

3kx
2

(3.83)

= 2πθ1 = 2πθ2 (3.84)

⇒ kx =
2π(θ1 − θ2)√

3
ky =

2π(θ1 + θ2)

3
. (3.85)
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The degenerate points are the so-called “Dirac points” described in this section’s

introduction.

The honeycomb eigenspectrum being positive and negative square roots, the next

natural step is to look at G2. We know that it must have the eigenspectrum

λ±(θ1, θ2) = 3 + 2 cos(2πθ1) + 2 cos(2πθ2) + 2 cos(2π(θ1 − θ2)), (3.86)

which is simply a shifted spectrum of a triangular lattice. Indeed, the graph algebra al-

lows us to separate the honeycomb into a direct sum of its two sublattices, each connected

in a triangular lattice formation, and with loop edges of weight 3 on each vertex,

G2 = (3.87)
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= ⊕ , (3.88)

In the square lattice graph, there were two varieties of next-nearest neighbours. The

geometrical next-nearest neighbours are those which are a physical distance
√

2 apart, at

diagonals to one another. The topological next-nearest neighbours are simply those that

can be reached in walks of length 2, including those of geometrical distance 2 apart, the

geometrical next-nearest neighbours of distance
√

2 apart, both of unit weight, and the

source sites themselves. From a physical standpoint, we expect a relationship between

edge weight and distance, so polynomials of the square lattice do not aid an exploration

into next-nearest neighbours.

In the honeycomb, this is not the case. The geometrical and topological next-nearest

neighbours are the same, apart from the loop edges of weight 3 which can trivially be

removed by a subtraction of the identity graph. As such, the polynomial

pt1,t2 : x→ t1x+ t2(x
2 − 3) (3.89)

can be applied to G to form a honeycomb with nearest neighbour edges of weight

t1 and next-nearest geometrical neighbour edges of weight t2, the eigendecomposition

of which being obtainable from the eigendecomposition of the nearest neighbour-only

graph G through the usual approach: eigenstates are unchanged, and eigenvalues λ are

transformed to pt1,t2(λ), as depicted in fig. 3.10.
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Figure 3.10: Eigenspectrum of the squared honeycomb lattice

3.4.2 Different self-loop weights

In the previous subsection, we described a honeycomb graph without loop edges, rendering

the two vertices in the unit cell equivalent. Let us now consider a modification to G,

providing loop edges of weight εA and εB to the vertices in the unit cell,
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G(εA, εB) =

εA

εA

εA

εA

εA

εA

εA

εA

εA

εA

εA

εA

εA

εA

εA

εA

εA εA

εB εB

εB

εB

εB

εB

εB

εB

εB

εB

εB

εB

εB

εB

εB

εB

εB

εB

(3.90)

As the loop edges modify the diagonal elements of adj(G), we can subtract the mean

of their weights to result in a honeycomb with equal magnitude loop edges, alternating

in sign, such that

µ =
εA + εB

2
(3.91)

∆ =
εA − εB

2
(3.92)

G(εA, εB)− µ = G(∆,−∆) (3.93)

As we saw in section 2.2, squaring such a graph separates the sublattices into two

disjoint graphs. The result is the same as eq. (3.87), except that the loop edges on the

vertices become ∆2 + 3. Thus,

(G(εA, εB)− µ)2 = G(0, 0)2 + ∆2, (3.94)
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the eigenspectrum for which is plotted in fig. 3.11. As the spectrum of the squared

graph is lifted by ∆2, we know that the positive and negative eigenvalue bands inG(εA, εB)−

µ must symmetrically separate apart, such that the gap between the would-be degenerate

points becomes ∆. To obtain the spectrum of G(εA, εB), we shift the bands by µ, visually

depicted in fig. 3.12.

Figure 3.11: The eigenspectrum for (G(εA, εB)− µ)2, with extrema at ∆2 and ∆2 + 9

Figure 3.12: The eigenspectrum of G(εA, εB), exhibiting a band splitting of 2∆ centred around

µ.
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3.5 Sibling systems

In section 2.3 we saw that squaring a parent graph can result in a child graph such that

next-nearest neighbours of the parent are neighbours in the child. It follows that one can

find a parent H of a graph G, such that H2 = G + b, b ∈ R, simply by bisecting each

non-loop edge e ∈ G with an additional vertex in H, carefully choosing the weights of

the split edges in order to reproduce the edges of G upon squaring. The same approach

can then be applied to loop edges, with weights chosen such that the weights of G’s loop

edges can be achieved with a constant offset b upon squaring.

Upon squaring our designed H, we will then obtain the direct sum of two graphs,

(G + b) ⊕ (G̃ + b̃), where G is our target child graph offset by the constant b, G̃ is

formed of the bisecting vertices we added to H, and b̃ is an arbitrary offset, included for

consistency.

Let us illustrate this with the honeycomb G from eq. (3.72). As weights are all of unit

weight, we can split each edge into two of unit weight, connecting them with a new vertex

(coloured white).
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H = (3.95)

This system is, in itself, very interesting. Its eigenspectrum, plotted in fig. 3.13, reveals

a flat band with eigenvalue zero across all momenta and, as we have learned to expect

from previous results, there is an analogue of Dirac cones in the positive and negative

energy spectra. Its square

H2 = . (3.96)
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is indeed a disjoint graph comprising two subgraphs, one of which being the honeycomb

G+ 3 Note that loop edges are not displayed in eq. (3.96), for visual clarity. H2 separates

as

H2 = (G+ 3)⊕ (G̃+ 2) (3.97)

G̃ = (3.98)

revealing the “sibling” lattice of the honeycomb to be the kagome lattice G̃+ 2. The

symmetry of the parent lattice’s eigenspectrum around the zero eigenvalue demonstrates

that H2 comprises three sets of eigenvalue bands: one at zero energy, which corresponds

to the kagome lattice’s flat band at eigenvalue −2 (the full eigenspectrum of the kagome

lattiice is shown in fig. 3.14), and two bands that are formed from the bands seen in both

the honeycomb and kagome spectra, offset by +3 and +2 respectively.

We can recreate the honeycomb seen in section 3.4.2, with alternating loop edges on

the A and B sublattices, by choosing the weights of edges from A vertices to the bisecting

vertices to be α, and the edge weights from B vertices to the bisecting vertices to be α−1,

105



resulting in a system

F = (3.99)

F 2 = G(α2, α−2) +K (3.100)

K =

α2

α−2
(3.101)

with eigenspectrum plotted in fig. 3.15. The square of this system is then a honeycomb

with loop edges 3α2 on A sites and 3α−2 on B sites, and a kagome-like lattice with loop

edges (α2 +α−2), edge weights α2 between vertices surrounding a common A vertex, and

edge weights α−2 between vertices separated by a B vertex.

This prescription can be applied to any lattice structure, and indeed any graph. It is
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Figure 3.13: Eigenspectrum of the honeycomb’s parent H

useful both as an exploratory tool and as a way of finding an ancestral relation between

different systems.

3.6 Conclusion

In this chapter, we have looked at several well-known quantum systems through a new

perspective using the graph algebra introduced in chapter 1. We have seen how different

systems can be related to one another through polynomials, and how the solution of a

parent system can be utilised to gain quantitative understanding about the behaviour of

its child systems.

In section 3.1 we saw how homogeneous nth-neighbour models of the monatomic chain

can be solved indirectly, by taking polynomials of the unit nearest-neighbour version. We

used this result to demonstrate several examples of distance-bond relationships.

We demonstrated the Aharonov-Bohm effect in a discrete system in section 3.2, de-

scribing how an injected state at one side of a system can be prevented from occupying a

vertex at the other side due to destructive interference from its multiple paths. We then
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Figure 3.14: Eigenspectrum of the kagome lattice with unit edges and zero self-loop weights

Figure 3.15: Eigenspectrum of the alternating honeycomb’s parent F
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showed how the time-dependent Schrödinger equation allows us to coerce a chain into

performing a π rotation in the phase of the amplitude at a final site, simply by exploiting

the odd and even powers of a lattice which squares to an Aharonov-Bohm loop.

In section 3.3 and section 3.4 we demonstrated the use of the graph algebra in two-

dimensional systems. We noted the difference between topological and geometrical next-

nearest neighbours, and explored how polynomials can introduce meaningful next-nearest

neighbour edges when the topological and geometrical next-nearest neighbours are equiv-

alent. In a system presenting different types of next-nearest neighbours are inequivalent,

we have explored how a magnetic field may introduce a destructive interference to remove

unwanted interactions in higher powers, and how the famous Hofstadter Butterfly results

from the separation of a lattice into sublattices of larger area.

We also saw how two different systems can be related through polynomials, providing

that they share a similar structure. Even when equivalence holds only when both sides

of the equation involve polynomials, we can intuitively understand the behavioural differ-

ences between the two systems using the rules set out in chapter 2. When the child system

is separable, the parent eigenspectrum can be recovered by solving equations of fewer sites.

Indeed, knowing that the honeycomb has a symmetric eigenspectrum, a simulation of a

finite honeycomb can be performed indirectly by decomposing a single sublattice of its

squared representation and passing the resulting eigenvalues through a square root.

Although the systems we have covered in this chapter are simple, they serve as a useful

platform from which to view tight-binding systems in a new light.
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Chapter 4

Polynomial relationships of

topological chains

Introduction

As the story goes, in 1927 Niels Bohr asked Paul Dirac “What are you working on Mr.

Dirac?” to which Dirac replied “I’m trying to take the square root of something.” Once

Dirac achieved his goal, to identify the desired operator that squares to the Klein-Gordon

equation, he had not only laid down a description of relativistic electrons replete with spin

and antimatter [34, 35]. As it emerged later, Dirac’s very same operator also plays a cen-

tral role for topological considerations in differential geometry, where the Atiyah-Singer

index theorem addresses its zero modes [36]. The zero modes in the topological materials

considered today are a direct extension of this connection [37, 38]. Fundamental symme-

tries can guarantee that all positive-energy states are paired with negative-energy states,

with the exception of a protected set of zero-energy states whose number |ν| is obtained

from a topological invariant. These properties may follow from a charge-conjugation sym-
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metry, as encountered in superconductors [39, 40], or from a chiral symmetry, as encoun-

tered for the Dirac operator [41, 42]; both operations anticommute with the Hamiltonian

and therefore single out a spectral symmetry point.

In combination with possible invariance under time-reversal, these spectral symme-

tries determine a ten-fold system of universality classes [43, 40], which can be further

extended by including aspects of dimensionality [44, 45] and the space group (i.e., crystal

symmetries) [46]—for example, nonsymmorphic symmetries involving fractional lattice

translations can replace fundamental symmetries normally associated with fermionic sys-

tems [47]. Depending on the universality class, the topological invariant may take the

values ν ∈ {0, 1}, leading to the notion of a Z2 invariant, or be any integer, leading to the

notion of a Z invariant. These topological features are not present in the Klein-Gordon

equation, from which Dirac had started to take the square-root of, a task which was

non-trivial as it required him to introduce extra components and matrices.

In this chapter, we explore the properties of topological chains through the perspective

of the graph algebra, forming relationships between some notable models. We see how the

topological properties of such models can be directly related to trivial systems that result

from taking polynomials, and how the inverse relationship describes the appearance of

topological artifacts as a result of a “square root”. These features arise because the square-

root operation provides a way of inducing (typically nonsymmorphic) spectral symmetries

at the expense of broken crystal symmetries.

4.1 The SSH Model

The Su-Schrieffer-Heeger (SSH) model of Polyacetylene[48] describes a chain with alter-

nating edge weights, induced by a dimerisation known as the Peierls instability. Let us
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denote the graph of this model by S(∆), where the edge weights alternate as 1+∆, 1−∆.

Then, if we represent edges of weight 1 + ∆ by a solid line and edges of weight 1−∆ with

a dashed line,

S(∆) = . . . 1 + ∆ 1 − ∆ 1 + ∆ 1 − ∆ . . . (4.1)

walk(S) = . . . . . . (4.2)

We can build this chain in the previous manner through the graphs

walk(G̃(∆)) = adj(G̃(∆)) =

 0 1 + ∆

1 + ∆ 0

 (4.3)

walk(L̃(∆)) = adj(L̃(∆)) =

 0 0

1−∆ 0

 (4.4)

walk(R̃(∆)) = adj(R̃(∆)) =

 0 1−∆

0 0

 (4.5)

such that

S(∆) = G̃⊕∞ + TR̃⊕∞ + T−1L̃⊕∞ (4.6)

Projecting into an eigenspace of translation eigenvalue exp(2πiθ), we find
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s̃(∆, θ) =

(1 + ∆)
+e−2πiθ(1 − ∆)

(1 + ∆)
+e2πiθ(1 − ∆) (4.7)

adj(s̃(∆, θ)) =

 0 (1 + ∆) + e2πiθ(1−∆)

(1 + ∆) + e−2πiθ(1−∆) 0

 (4.8)

with eigenspectrum

λ± = ±
√

2(1 + ∆2) + 2(1−∆2) cos(2πθ), (4.9)

depicted visually in fig. 4.1. The spectrum is symmetric around zero for each choice of

translation eigenvalue, with a gap of 4∆ at θ = 1
2
. Thus the difference in the alternating

edge weights is the root cause of the gap. At ∆ = 1, the inter-cell connection units

become null and we represent an infinite set of connected pairs, each disconnected from

its neighbouring pairs. As a result, the graph loses its dependence on the translation

graphs and the bands become flat.

We apply the prescription that we are now very used to. Knowing that s̃(∆, θ)2 must

have the eigenspectrum

λ2+ = 2(1 + ∆2) + 2(1−∆2) cos(2πθ), (4.10)

λ2− = 2(1 + ∆2) + 2(1−∆2) cos(2πθ), (4.11)

plotted in fig. 4.2, we note some familiarity with a spectrum we have already seen.

Indeed, λ2+ and λ2− are polynomials of the eigenspectrum of the monatomic chain m̃(θ),
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Figure 4.1: Eigenspectrum of the SSH chain with unit average edge weight

Figure 4.2: Eigenspectrum of the squared SSH chain
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or a monatomic chains with modified nearest-neighbour edges and loop edges. As such,

fig. 4.2 is related to fig. 3.1 through a linear transformation of scaling by (1 − ∆2) and

shifting by 2(1 + ∆2). Such a transformation is revealed through the graph algebra, in

the projected graph with

s̃(∆, θ)2 =

(1 + ∆)
+e−2πiθ(1 − ∆)

(1 + ∆)
+e2πiθ(1 − ∆)

(1 + ∆)
+e−2πiθ(1 − ∆)

(1 + ∆)
+e2πiθ(1 − ∆)

(4.12)

=

2(1 + ∆2)
+2(1 − ∆2) cos(2πiθ)

2(1 + ∆2)
+2(1 − ∆2) cos(2πiθ) (4.13)

which is the polynomial

=
(

2
(
1 + ∆2

)
p0(m̃(θ)) +

(
1−∆2

)
p1(m̃(θ))

)⊕2
, (4.14)

and through the full graph with

walk(S(∆)2) = . . . . . . (4.15)
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= . . . . . . (4.16)

where, in eq. (4.16) the solid lines represent edges of weight 2(1+∆2) and dotted lines

represent edges of weight 2(1−∆2). Thus

S(∆)2 = . . .

2(1 + ∆2)

2(1 + ∆2)

2(1 + ∆2)

2(1 + ∆2)

2(1 + ∆2)

(1 − ∆2)

(1 − ∆2)

(1 − ∆2)

(1 − ∆2) (1 − ∆2)

. . .

(4.17)

or, equivalently

S(∆)2 − 2(1 + ∆2)

1−∆2
= . . . . . .

(4.18)

= M ⊕M (4.19)

We have so far looked at infinite chains, particularly for their convenience: finite

systems cannot commute with translation operators, and thus cannot be simplified into

translation eigenspaces. However, the SSH chain provides a suitable setting for exploring

the impact of restricting a system into a finite graph.

Let us consider a finite SSH chain of N cells, such that the total number of vertices

remains even,

S ′ = (4.20)
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Figure 4.3: The eigenspectrum of a finite chain of 200 vertices, with alternating hoppings 1 + ∆

and 1−∆, with varying ∆.

The eigenspectrum is plotted in fig. 4.3, varying ∆ from −1 to 1, the dimerisation

limits. In the infinite system, as explained above, the dimerisation limits cause flat bands.

For ∆ = −1, the vertices in the same unit cell become disconnected, and for ∆ = 1 the

neighbouring cells become disconnected. These two cases are equivalent in the infinite

system, each obtainable from the other by a translation of half of a unit cell, and thus

the bands hold flat at eigenvalues 2 and −2 in both cases. In the finite system, the

dimerisation limits are inequivalent: in the case of ∆ = 1, every vertex is paired with the

other in its unit cell, but in the case of ∆ = −1, the vertices at each edge of the chain

have no neighbouring cell to connect to, and become isolated. Having no loop edge, a

state fully occupying them necessarily has an eigenvalue of zero.

Although we have a solid argument that the zero eigenvalue state must fully occupy

one of the extreme vertices in the ∆ = −1 limit, we can explore the nature of the zero
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eigenvalue states at other ∆ by breaking down the eigenvalue equation into constituent

parts. Let v be an eigenstate at eigenvalue λ, and consider the component vn of this

eigenvector corresponding to a vertex Vn, connected to a set {Vm} of vertices with with

bonds of weight {wn,m}. The eigenvalue equation then demands

λvn =
∑
m

wn,mvm (4.21)

As such, let us consider an eigenstate v with eigenvalue λ = 0, with some real, positive-

definite amplitude v1 at the far left vertex. Then

0(v1) = (1 + ∆)v2 ⇒ v2 = 0 (4.22)

0(v2) = (1 + ∆)v1 + (1−∆)v3 ⇒ (∆ + 1)v1 = (∆− 1)v3 (4.23)

⇒ v3 =

(
∆ + 1

∆− 1

)
v1 (4.24)

0(v3) = (1−∆)v2 + (1 + ∆)v4 ⇒ v4 = 0, (4.25)

0(v4) = (1 + ∆)v3 + (1−∆)v5 ⇒ (∆ + 1)v3 = (∆− 1)v5 (4.26)

⇒ v5 =

(
∆ + 1

∆− 1

)
v3, (4.27)

and so on, such that

v2j+1 =

(
∆ + 1

∆− 1

)
v2j−1 v2j = 0 ∀j ∈ [1..N ] (4.28)

The resulting state is thus an evanescent mode decaying to the right, occupying a

single sublattice, when ∆ < 0. Note here that we have relied upon a positive-definite

v1: at ∆ > 0, the amplitude of the state on successive odd-numbered vertices increases

exponentially to the right according to the local parameter ∆, which is unphysical unless

we had set v1 = 0. As well as this “zero mode” decaying to the right, there is another
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such mode decaying to the left from the right edge of the system, symmetrically following

the same principle as equations eq. (4.22) to eq. (4.27), using the even-indexed vertices.

These modes are sublattice-polarised for all negative ∆; these modes are thus topologically-

protected against local perturbations within the limit ∆ < 0.

Let us now look at the impact of the hard boundary on the squared system. The loop

edges of the vertices in the monatomic child of the SSH chain are determined by length-2

walks that return to the original vertex. In the case of the finite SSH chain, the vertices

at the boundaries of the chain thus have a modified weight compared with the rest of the

chain.

S ′(∆)2 =

(1 + ∆)2

2(1 + ∆2)

2(1 + ∆2)

2(1 + ∆)

2(1 + ∆2)

2(1 + ∆2)

2(1 + ∆2)

(1 + ∆)2

(1 − ∆2) (1 − ∆2)

(1 − ∆2) (1 − ∆2)

(4.29)

Remarkably, this configuration of a monatomic chain is sufficient to create these zero

modes, demonstrated in the spectum plotted in fig. 4.4; this is a property that would be

difficult to interpret without the graph algebra.

We can introduce a defect in the SSH chain by breaking the alternating pattern of the

edge weights, such that one site has edges of equal weight either side, as in

S ′(∆) = (4.30)

we can observe the impact on the squared system by looking at the local impact on

the system,
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Figure 4.4: The eigenspectrum of a single monatomic chain in S′(∆)2, demonstrating the ap-

pearance of the zero mode for negative ∆.

S ′(∆)2 =

2(1 + ∆2)

2(1 + ∆2)

2(1 + ∆)2

2(1 + ∆2)

2(1 + ∆2)

(1 − ∆2)

(1 + ∆)2

(1 − ∆2)

(1 − ∆2) (1 − ∆2)

. (4.31)

The loop edge weight at the defect site in S ′(∆)2 transforms from 2(1+∆2) to 2(1+∆)2,

and the edge passing through it, from the vertex to the left to the vertex to that on the

right, is transformed from (1−∆2) to (1 + ∆)2. Thus, the defect modifies a vertex in one

of the separated graphs of S ′(∆)2, and modifies an edge in the other separated graphs.

As the defect is connected to by edges of the same weight, it too can become isolated

in one of the dimerised limits, forming a triplet in the other, and thus contributes a

zero-eigenvalue at both dimerisation limits as in fig. 4.5.
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Figure 4.5: Eigenspectrum of a finite SSH chain of 200 vertices, with a defect in the centre, with

varying ∆.

The SSH chain anticommutes with a chiral operator[49] C corresponding to the σz

Pauli matrix

König(σz) = 1 −1 , (4.32)

C = graph(σz)
⊕∞,∞ (4.33)

such that

CS(∆)C = −S(∆) (4.34)

and, for the infinite case,

graph(σz) s̃(∆, θ) graph(σz) = −s̃(∆, θ), (4.35)

described as chiral symmetry (in a condensed matter setting). As such, positive and
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negative eigenvalues are related through the σz operator. We can thus decompose the

polynomial form of S as a monoatomic chain, and add the components from each sublattice

deterministically to create the positive and negative eigenstates of S. If we add or remove

a vertex from the finite SSH chain, the number of eigenstates becomes odd, such that

there exists a state for which there is no partner state which has an eigenvalue of the

opposite sign: it must obey this relationship with itself. As a result, it must commute

with the chiral symmetry operator, and thus exist solely on one sublattice, and have an

eigenvalue of zero.

4.2 The Rice-Mele model

The Rice-Mele model[50] is a system proposed to describe conjugated polymers. It extends

the idea of the SSH chain by equipping vertices with loop edges of equal magnitude δ,

but alternating sign, as in

R =

δ δ δ

−δ −δ

(4.36)

As we have already seen in section 3.4, this results in a pseudo-bipartite system with

very similar properties to the SSH chain, except that each eigenvalue λ of the SSH chain

becomes
√
λ2 + δ2, as in fig. 4.6. This result is trivially derived from the polynomial

relationship

R2 = S2 + δ2 (4.37)

In the case of the finite Rice-Mele model, the zero-eigenvalue states from the finite

SSH chain become separated, as shown in fig. 4.7. The sublattice occupied by each such
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Figure 4.6: Eigenspectrum of an infinite Rice-Mele chain with varying translation eigenvalue

eigenstate is trivial to identify in the dimerisation limit, and as eq. (4.21) takes into

account the loop edges, the transfer approach used in Equations 4.22 to 4.27 also apply

to the Rice-Mele model.

However, while the SSH chain anticommutes with the chiral symmetry graph, render-

ing it topologically-nontrivial, this is not the case with the Rice Mele model with δ 6= 0,

because the loop edges return to their original signs after multiplication on the left and

right with graph(σz). Thus the Rice Mele model is topologically trivial.

In the SSH chain we looked at how a defect formed by breaking the alternating pattern

of edges strengths can introduce a pair of zero-eigenvalue bands that result from the

isolation of a vertex. In the Rice-Mele model, we can introduce a defect by breaking the

alternating pattern of the loop edges. As we are aware, the alternating sign of the loop

edges maintains the separability of the squared system into monatomic chains, and thus

we expect that breaking this pattern will render the squared system unseparable.

Indeed, if
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Figure 4.7: Eigenspectrum of a finite Rice-Mele chain of 200 vertices

R′ = . . .

δ δ

−δ

δ δ

−δ −δ −δ

. . . (4.38)

then

(R′)2 = . . .

(1 − ∆2)

(1 − ∆2)

(1 − ∆2)

(1 − ∆2)

(1 − ∆2)

(1 − ∆2)

−2δ(1 − ∆)

δ2 δ2 δ2

δ2 δ2δ2 δ2

δ2

. . . ,

(4.39)

and if

R′ = . . .

−δ −δ

δ

−δ −δ

δ δ δ

. . . (4.40)
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then

(R′)2 = . . .

(1 − ∆2)

(1 − ∆2)

(1 − ∆2)

(1 − ∆2)

(1 − ∆2)

(1 − ∆2)

2δ(1 + ∆)

δ2 δ2 δ2

δ2 δ2δ2 δ2

δ2

. . . ,

(4.41)

4.3 The bowtie chain

We shall now look at an extension of the Rice-Mele model with remarkable topological

properties, linked to its squared representation as a two-legged ladder. Although our

original research began from the opposite direction, starting from the two-legged ladder

and discovering the bowtie chain as a square root through symmetry arguments, we shall

here present the reverse of this process in order to maintain the pedagogical manner of

writing. A more detailed explanation of how we arrived at the bowtie chain model, along

with a proposal for a photonic experimental realisation, can be found at [12], upon which

this section is based, and the reader is encouraged to explore the subsequent work inspired

in part by this research at [51, 52, 53, 54, 55, 56, 57, 58], and the realisation of the photonic

system at [59].

Introduction

The bowtie chain is a chain with loop edges alternating as (β, β,−β,−β, . . .) and nearest

neighbour edges alternating as (κ, γ,−κ,−γ, . . .),
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B =
κ γ −κ −γ κ γ −κ

β β −β −β β β −β −β
,

(4.42)

which can be represented with the translation method, in the usual manner, through

the graphs

G̃ =

β β −β −β

κ γ −κ
(4.43)

walk(L̃) = −γ (4.44)

walk(R̃) = −γ

B = G̃⊕∞ + TLL̃
⊕∞ + TRR̃

⊕∞ (4.45)

which we can project to the translation eigenspace and obtain

adj(b̃(θ)) =



β κ 0 −γe−2πiθ

κ β γe2πiθ 0

0 γe−2πiθ −β −κ

−γe2πiθ 0 −κ −β


(4.46)

with the four eigenvalues, plotted in fig. 4.8,
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Figure 4.8: The spectrum of the bowtie chain, demonstrating the band edges at the ε and ε̃

described in eq. (4.48) in the phase (ξ, ξ̃) = (1, 1), described in eq. (4.111). Other phases change

the order of the band edges.

λµ,η(θ) = η

√
β2 + γ2 + κ2 + 2µκ

√
β2 + γ2 cos2(2πθ), (4.47)

where the label η = ±1 selects between positive and negative eigenvalues, and the

label µ = ±1 selects between higher and lower magnitude eigenvalues. The four bands

thus come in two pairs, with edges

ε± =
√
β2 + γ2 ± κ, ε̃± =

√
γ2 + (β ± κ)2. (4.48)

The square of the bowtie chain adopts the remarkable form of a two-legged ladder

with an effective π magnetic flux,
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B2 =

κγ κγ κγ

−κγ −κγ −κγ

2βκ 2βκ 2βκ 2βκ

β̃ β̃ β̃ β̃

β̃ β̃ β̃ β̃

−κγ

κγ

,

(4.49)

adj(b̃2(θ)) =



β̃ 2βκ κγ
(
1 + e−2πiθ

)
0

2βκ β̃ 0 −κγ(1 + e−2πiθ)

κγ
(
1 + e2πiθ

)
0 β̃ 2βκ

0 −κγ(1 + e2πiθ) 2βκ β̃


(4.50)

where β̃ = β2 + κ2 + γ2. The eigenspectrum of this graph is plotted in fig. 4.9.

B possesses a nonsymmorphic symmetry in the form of a fractional lattice translation[60].

Let T ′ be a translation by half of a unit cell, then

T ′B = −B′T. (4.51)

As we saw in section 3.3, such an anticommuting relationship between B and T ′ manifests

itself as a commuting relationship betweenB and (T ′)2, which we know as the translational

symmetry of B, and as a commuting relationship between B2 and T ′. Indeed, B2 is

invariant under the translation T ′, and we can project B2 into the eigenspaces of T ′, with

eigenvalues exp(2πiθ′) = exp(4πiθ), in the simpler form

adj(l̃(θ′)) =

β̃ + 2κγ cos(2πθ′) 2βκ

2βκ β̃ − 2κγ cos(2πθ′)

 , (4.52)
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which we can describe with periodic graphs as

H̃ = β̃ β̃

2βκ 2βκ

L̃ = 2κγ −2κγ R̃ = 2κγ −2κγ , (4.53)

with

B2 = H̃⊕∞ + T ′LL̃
⊕∞ + T ′RR̃

⊕∞ (4.54)

Due to the effective π-flux of the two-legged ladder B2, we can obtain further de-

coupling by taking another polynomial. Indeed, B2 − β̃ itself squares to a set of four

independent monatomic chains with edge weight (κγ)2 and loop edges of weight α =

2κ2(2β2 + γ2),

(B2 − β̃)2 − α =

κ2γ2

κ2γ2

κ2γ2

κ2γ2

κ2γ2

κ2γ2

κ2γ2

κ2γ2

(4.55)

4.3.1 Symmetries and the 10 fold way

The Atland-Zirnbauer symmetry classes categorise quantum systems by their time-reversal,

charge-conjugation, and chiral symmetry operations. We represent these symmetries with

the operators T , C, and X respectively, and operate upon a hamiltonian H(θ) as

T H(θ)T −1 = +H(−θ) (4.56)
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Figure 4.9: The eigenspectrum of the squared bowtie chain, demonstrating the band edges at the

ε and ε̃ described in eq. (4.48)

CH(θ)C−1 = −H(−θ) (4.57)

XH(θ)X−1 = −H(+θ) (4.58)

For any hamiltonian with periodicity in N dimensions, there may or may not exist

an operator T satisfying eq. (4.56). If one does exist, it may square to either the unit

matrix in N dimensions, or it may square to negative the unit matrix. Thus there are

three classes of system corresponding to time reversal. Consider some eigenstate |ψ(θ)〉

of H(θ) with eigenvalue λψ(θ). Then, if a time reversal symmetry exists in H,

H(−θ)T |ψ(θ)〉 = T H(θ)|ψ(θ)〉 (4.59)

= λψ(θ)T |ψ(θ)〉, (4.60)

which enforces that, for each such eigenstate |ψ(θ)〉 of H(θ), there is an eigenstate T |ψ(θ)〉

of H(−θ) with the same eigenvalue: the eigenspectrum is thus symmetric around the line
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θ = 0.

Likewise, there may or may not exist an operator C satisfying eq. (4.57), and, if one

does exist, it may square either to the unit matrix or negative the unit matrix. Thus

there are three classes of system corresponding to charge-conjugation. The existence of

such a T is independent from the existence of a C operation, and so there are 9 possible

classes of system corresponding to the combination of these two symmetries. Consider

again the state |ψ(θ)〉 of some H(θ) which possesses charge-conjugation symmetry. Then

H(−θ)C|ψ(θ)〉 = −CH(θ)|ψ(θ)〉 (4.61)

= −λψ(θ)C|ψ(θ)〉, (4.62)

which enforces that, for each eigenstate |ψ(θ)〉 of H(θ), there is an eigenstate C|ψ(θ)〉 of

H(−θ) with an eigenvalue of the same magnitude but opposite sign.

The existence of both a time reversal operator and a charge conjugation operator

implies the existence of the chiral symmetry by choosing X = exp(iω)T C for some ω ∈ R.

If only one of either the time reversal symmetry or the charge conjugation symmetry is

present, there is no chiral symmetry[10]. Finally, if neither time reversal symmetry nor

charge conjugation symmetry are found, then there may or may not be a chiral symmetry.

Considering again the state |ψ(θ)〉 of some H(θ) which possesses chiral symmetry,

H(θ)X|ψ(θ)〉 = −XH(θ)|ψ(θ)〉 (4.63)

= −λψ(θ)X|ψ(θ)〉, (4.64)

Such that each such eigenstate |ψ(θ)〉 of H(θ) is accompanied by an eigenstate X|ψ(θ)〉,

also of H(θ), with the opposite eigenvalue. If an odd number of eigenstates are present,

then there necessarily exists an eigenstate at eigenvalue λ = 0, which is invariant under
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X up to a phase.

Taking all combinations of time-reversal, charge-conjugation, and chiral symmetry into

account, there are 10 possible symmetry classes, provided in table 4.1. For any hamil-

tonian with an infinite translational symmetry, the nature of possible topological phases

can be determined by identifying the existence of such symmetries and cross-referencing

against the number N of dimensions of infinite translational symmetry.

For the bowtie chain, with hamiltonian b̃(θ), a time reversal graph T exists in the

form

walk(T ) =
1 1 −1 −1

adj(T ) =



0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


,

(4.65)

where

T b̃(θ)T = b̃(−θ), (4.66)

T b̃2(θ)T = b̃2(θ), (4.67)

T 2 = 1. (4.68)

There exists the charge conjugation symmetry in the form

C =
i

i −i
−i

adj(C) =



0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0


, (4.69)
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Symmetry Dimension

Class T C X 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI +1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI +1 +1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 +1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 +1 1 Z2 Z2 Z 0 0 0 Z 0

AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0

CI +1 −1 1 0 0 Z 0 Z2 Z2 Z 0

Table 4.1: The 10 Atland-Zirnbauer symmetry classes, categorised by symmetries and dimen-

sions. We denote the symmetries as T for time-reversal symmetry, C for charge-conjugation

symmetry and X for chiral symmetry. In the symmetries section, cells are allocated 1 if the

corresponding operator squares to the unit matrix, −1 if it squares to negative the unit matrix,

and 0 if the symmetry doesn’t hold. Cells in the Dimension section are allocated Z2 if the phases

of the respective symmetry class are characterised by a Z2 (binary) invariant in the respective

dimension, Z if the phases are characterised by a Z (integer) invariant, or 0 if the phases are

topologically trivial. Adapted from Ref. [10].
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under which

Cb̃(θ)C = −b̃∗(θ), (4.70)

C2 = 1. (4.71)

We also have a chiral symmetry,

walk(X ) = adj(X ) =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


, (4.72)

(4.73)

under which

{
X , b̃(θ)

}
= 0, (4.74)[

X , b̃2(θ)
]

= 0, (4.75)

X 2 = 1, (4.76)

where, as in the case of the half-translation, eq. (4.75) naturally extends from eq. (4.74)

due to eq. (3.54).

As such, in accordance with table 4.1, we establish that the bowtie chain belongs to

the BDI symmetry group. As there is a single dimension of infinite periodicity, the bowtie

chain is thus characterised by a Z topological invariant.
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Finally, we note a symmetry χ̃, where

walk(X̃ ) = 1 −1 −1 1 adj(X̃ ) =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


.

(4.77)

σy =
i −i

adj(σy) =

0 −i

i 0

 (4.78)

These graphs obey the relationships

X̃ b̃2(θ)X̃ = 2β̃ − b̃2(θ) (4.79)

σy l̃(θ
′)σy = 2β − l̃(θ′) (4.80)

where it is clear that χ̃ operates on b̃2(θ) in eq. (4.79) in a manner equivalent to σy on

l(θ′) in eq. (4.80). From this unconventional symmetry, we know that the eigenspectrum

of the bowtie chain has a spectral symmetry

λ2−,η(θ) = 2β̃ − λ2+,η(θ) (4.81)

of the squared bands about λ2 = β̃, which is a property of the bowtie chain that would

be difficult to interpret without knowledge that it squares to a two-legged ladder, which

in turn may be passed through the polynomial p′ : l̃ →
(
l̃ − β̃

)2
resulting in a set of

monatomic chains.
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4.3.2 Finite bowtie chain polynomials

To restrict the bowtie chain to a finite chain, we have a choice of terminating at any of the

four vertices in the unit cell. In order to further understand the topological distinction

between these systems, we can employ our graph algebra and analyse the impact of the

termination upon the polynomials B2 and p(B) = (B2−β̃)2−α, describing the two-legged

ladder and separated monatomic chain child systems respectively.

Let Bi be a bowtie chain terminated at vertex i of the unit cell. Then

B1 =
κ γ −κ −γ κ γ −κ

β β −β −β β β −β −β
(4.82)

B2 =
γ −κ −γ κ γ −κ −γ

ββ −β −β β β −β −β
(4.83)

B3 =
−κ −γ κ γ −κ −γ κ

β β−β −β β β −β −β
(4.84)

B4 =
−γ κ γ −κ −γ κ γ

β β −β−β β β −β −β
. (4.85)

These graphs have the squared representations as the two-legged ladders
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B2
1 = 2βκ 2βκ 2βκ 2βκ

γκ γκ γκ

−γκ −γκ −γκ

β̃ − γ2 β̃ β̃ β̃

β̃ β̃ β̃ β̃

γκ

(4.86)

B2
2 = 2βκ 2βκ 2βκ 2βκ

γκ γκ γκ

−γκ −γκ −γκ

β̃ β̃ β̃ β̃

β̃ − γ2 β̃ β̃ β̃

−γκ

(4.87)

B2
3 = 2βκ 2βκ 2βκ 2βκ

γκ γκ γκ

−γκ −γκ −γκ

β̃ − γ2 β̃ β̃ β̃

β̃ β̃ β̃ β̃

γκ

(4.88)

B2
4 = 2βκ 2βκ 2βκ 2βκ

γκ γκ γκ

−γκ −γκ −γκ

β̃ β̃ β̃ β̃

β̃ − γ2 β̃ β̃ β̃

−γκ

, (4.89)

from which we can already see a striking structural difference emerging between the
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even and odd site termination, and we can note that the B2
1 and B2

3 graphs are structurally

identical, as are B2
2 and B2

4 . This is due to the fact that Bi = −Bi+2, as per eq. (4.79),

hence B2
i = B2

i+2.

Further structural impacts of the termination are found in the 4th order polynomial

grandchild graphs p(Bi),

p(B1) = −2βκγ2

−κγ3

γ2κ2

γ2κ2

γ2κ2

γ2κ2

γ4 − γ2κ2

−γ2κ2

γ2κ2

γ2κ2

(4.90)

p(B2) =

−2βκ2γ

κγ3

γ2κ2

γ2κ2

γ2κ2

γ2κ2

γ4 − κ2(γ2 + 4β2)

−γ2κ2

γ2κ2

γ2κ2

(4.91)
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p(B3) = −2βκγ2

−κγ3

γ2κ2

γ2κ2

γ2κ2

γ2κ2

γ4 − γ2κ2

−γ2κ2

γ2κ2

γ2κ2

(4.92)

p(B4) = −2βκ2γ

κγ3

γ2κ2

γ2κ2

γ2κ2

γ2κ2

γ4 − κ2(γ2 + 4β2)

−γ2κ2

γ2κ2

γ2κ2

(4.93)

Unlike in the case of the SSH chain, the child graphs of the bowtie chain undergo a

structural change at the termination vertex. For even i, B2
i is no longer a closed ladder,

but has a hanging vertex. This is a significant result: all other vertices being paired

up in the ladder formation, we thus expect a single midgap state to emerge from these

configurations, while for odd i we expect any midgap states to arrive in pairs.

This is a particularly interesting feature of the bowtie chain. As the gap in B2 cor-

responds to the finite-eigenvalue gaps in the bowtie chain, and as a consequence of both

the singular nature of the midgap state in B2
2i and the relationship Bi = −Bi+2, we then

conclude that if Bi exhibits a defect state in the positive gap, then Bi+2 exhibits a de-
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fect state in the negative gap. This is indeed the case, demonstrated in the eigenspectra

plotted in fig. 4.10.
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Figure 4.10: The eigenspectra of finite bowtie chains and their polynomial child systems, ter-

minated at sites 1 (conf. 1), 2 (conf. 2), 3 (conf. 3) and 4 (conf. 4), demonstrating the

presence of the midgap states of the bowtie chain (coloured red) in the child systems.
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4.3.3 Topological phases

Each band n can be associated with a Zak phase[61], the one-dimensional analogue of the

Berry phase[62], calculated by integrating the associated wavefunction |n, θ〉 across the

Brillouin zone,

Zn =
i

π

∮
BZ

〈n, θ| d
dθ
|n, θ〉dθ. (4.94)

This requires |n, θ〉 to evolve smoothly with θ, and as eigendecomposition provides eigen-

states multiplied by an arbitrary phase, we must fix the eigenstates with a gauge choice.

We choose that the first component of |n, θ〉 is real and positive. In systems exhibiting

topological characteristics, the phase is quantized, giving rise to an integer index Zn for

each band n, while in non-topological systems the phase can take any value [49].

As we have seen, states appear in the gaps between bands when the system is finite.

Thus our interest lies not just within the bands, but also in the gaps between them.

In order to investigate such phenomena, we must take a short step away from what we

may call the Bloch question, which fundamentally asks which energies exist at specified

momenta, and step into the scattering question, where we may ask which momenta are

present at specified energies. We choose the transfer matrix approach[63, 64, 65, 66, 67,

12], utilised on a simple level in eq. (4.22).

As the bowtie chain exhibits only nearest-neighbour edges, and as each site has at most

two nearest neighbours, the Schrödinger equation allows us to relate any single component

of a consecutive triplet of eigenstate components to the other two.

Let v be an eigenstate with eigenvalue λ, and let the component vn,m describe the

state component at the vertex n in the mth unit cell, indexed such that vertices 1 and 2

have the positive weighted loop edges β. Then
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(λ− β)vn,1 = −γv(n−1),4 + κvn,2, (4.95)

(λ− β)vn,2 = κvn,1 + γvn,3, (4.96)

(λ+ β)vn,3 = γvn,2 − κvn,4, and (4.97)

(λ+ β)vn,4 = −κvn,3 − γv(n+1),1. (4.98)

We can write these linear equations using the transfer matrices

M̃1(λ) =

 0 1

−κ/γ (λ− β)/γ

 , (4.99)

M̃2(λ) =

 0 1

γ/κ −(λ+ β)/κ

 , (4.100)

M̃3(λ) =

 0 1

−κ/γ −(λ+ β)/γ

 , (4.101)

M̃4(λ) =

 0 1

γ/κ (λ− β)/κ

 . (4.102)

such that

 vn,2

vn,3

 = M̃1

vn,1
vn,2


 vn,3

vn,4

 = M̃2

 vn,2

vn,3



 vn,4

vn+1,1

 = M̃3

vn,3
vn,4


vn+1,1

vn+1,2

 = M̃4

 vn,4

vn+1,1

 . (4.103)
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Eigenstates of b̃(θ) are simultaneously eigenstates of the translation operator with

eigenvalue exp(2πiθ), and must then obey

vn,1
vn,2

 = exp(2πiθ)

vn−1,1
vn−1,2

 (4.104)

and are thus also eigenstates of the product

M(λ) = M̃4(λ)M̃3(λ)M̃2(λ)M̃1(λ) (4.105)

with eigenvalue exp(2πiθ). As such, the two eigenstates φ± with eigenvalues Λ =

exp(2πiθ±) of M(λ) can be used to fully describe the eigenstates of B with eigenvalue

λ and translation eigenvalues θ±. Within the bands, θ± are real, thus their eigenvalues

lie on the unit circle in the complex plane. In the band gaps, the effective momentum

is imaginary, and the eigenvalues Λ are real valued. At the band edges, which form a

boundary between bands and gaps, the translation eigenvalues are thus necessarily ±1.

This is illustrated in fig. 4.11. We choose the sign of θ = iω(λ) according to Reω > 0,

such that |Λ+(λ)| < 1 describes an evanescent state φ+ that decays to the right, while

|Λ−(λ)| > 1 describes an evanescent state φ− that decays to the left.

We exemplify this in fig. 4.12 with plots of the midgap states in the finite bowtie chain

of configuration B1, which has four gap states. Lying in the bandgap of the infinite chain,

they decay exponentially from one of the boundaries towards the other.

From the eigenvectors φ±(λ) of the transfer matrix, we may describe a reflection

coefficient[12]

r(λ) =
φ+,1(λ) + iφ+,2(λ)

φ+,2(λ) + iφ+,1(λ)
, (4.106)

due to a plane wave entering the system being of the form ∝ (exp(ik) + r(λ) exp(−ik)).

Recall our gauge choice: the first eigenstate component is real and positive, and the
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Figure 4.11: Magnitude and angle of the eigenvalues of the transfer matrix M(λ) for a range of

energies λ encompassing the bands and gaps of the bowtie chain with β = 0.5, κ = 0.75, γ = 0.5.

Within the bands, signified with a hatched background, the eigenvalues are of unit magnitude and

each half way around the unit circle. Outside of energy bands, solutions to the transfer matrix

are real valued, with values above and below 1 describing exponentially increasing and decreasing

amplitudes respectively.
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Figure 4.12: Absolute values of the amplitudes of the midgap eigenstates along vertices in the

finite bowtie chain B1, arranged as Top left: lowest eigenvalue, Top right: second lowest

eigenvalue Bottom left: second highest eigenvalue Bottom Right: highest midgap eigenvalue.
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other components scale accordingly. Thus in eq. (4.106), we can enforce φ+,1(λ) = 1

and obtain the Zak phase by integrating over eigenstates propagating in each direction

through the nth band’s energy minimum to its maximum,[12]

Zn =
1

π

∫ λmax(n)

λmin(n)

dλφ+,2(λ)
d

dλ
φ+,2(λ) (4.107)

=
1

π

∫ λmax(n)

λmin(n)

dλ
1

1 + r(λ)2
d

dλ
r(λ) (4.108)

=
2

π
[arctan r(λmin(n))− arctan r(λmax(n))] (4.109)

In the band gaps, including the band edges, waves are totally reflected, so that |r(λ)| = 1,

as demonstrated in fig. 4.14. At the band edges, translation eigenstates from the bands

must match up with evanescent states found in the gaps, enforcing r(λ) = ±1. As

arctan(±1) = ±π/4,

Zn =
1

2
[r(λmin(n))− r(λmax(n))] (4.110)

As r(λmin(n)) and r(λmax(n)) adopt the values ±1, the Zak phase for each band is

indeed quantized.

Before we are ready to assign a Zak phase to each band, however, we must address an

important assumption that has been implicit in our exploration so far: We must ensure

that there is indeed a gap between each band, thus avoiding degeneracies in the bowtie

chain eigenspectrum. Gaps close if β = 0, when the bowtie chain becomes the SSH model

with a single central gap, or if β2 + γ2 = κ2. As such we can separate four topologically

distinct regions in the bowtie chain parameter space, identified by the parameters (ξ, ξ̃),

where

ξ = sgn (β2 + γ2 − κ2) ξ̃ = sgn β, (4.111)
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Figure 4.13: Locations of the band edges (eq. (4.47)) as the bowtie chain is deformed through

different topological sectors (ξ, ξ̃) described in eq. (4.111) and illustrated in fig. 4.15. The range

of energies λ available in each band is coloured for clarity. At a boundary between topological

sectors, band edges are exchanged. Iff κ2 = β2 + γ2, the central bands touch and there is a

degenerate point in the spectrum at λ = 0. Either side of this topological boundary, ε̃ has

a different sign, and behaves as the central upper band minimum or the central lower band

minimum when it is positive or negative, respectively. Iff β = 0, the same phenomenon happens

between the upper and central upper bands, and between the lower and central lower bands.
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Figure 4.14: Clockwise winding of the reflection coefficient of the bowtie chain in topological

phases Top Left: (ξ = 1, ξ̃1), Top Right: (ξ = 1, ξ̃ = −1), Bottom Left: (ξ = −1, ξ̃ = 1),

Bottom Right: (ξ = −1, ξ̃ = −1).

such that ξ changes sign when the central gap closes, while parameters are steered

through an inversion of the inner bands, and ξ̃ changes sign in a band inversion in which

the finite-eigenvalue gaps close. Starting with fixed γ and allowing variable β and κ, we

obtain the phase diagram provided in fig. 4.15.

Although the lowest energy band’s minimum is −ε+ and the highest energy band’s

maximum is +ε+ in all topological phases, the other band extrema ±ε̃−,±ε̃+,±ε− depend

on the topological phase, demonstrated in fig. 4.13. Specifically, the lowest energy band’s

maximum and the centre-low band’s minimum are −ε̃ξ̃ and −ε̃−ξ̃ respectively, and ξ thus

determines which of these band edges belong to which band. By symmetry, the highest

energy band’s minimum and the centre-high energy band’s maximum are +ε̃ξ̃ and +ε̃−ξ̃.

Finally, the centre-low band’s maximum and the centre-high band’s minimum are ξε−

and −ξε+ respectively, such that a sign flip of ξ exchanges the central gap edges.
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Figure 4.15: Phase diagram of the bowtie chain with constant γ. Each phase corresponds to an

ordering of band edges according to ε± and ε̃± in eq. (4.48).

To calculate the Zak phases of the bands in each topological phase, all we require is

the reflection coefficients of the band edges, given in table 4.2. From these we simply

apply eq. (4.110) to each band according to the edges assigned as above. The resulting

Zak phases are provided in table 4.3.

Similarly, we can associate a topological phase to each gap. This can normally done,

e.g., via the Witten index [68], which here relates to the reflection phase at a spectral sym-

metry point [69, 70, 71]. In the finite-eigenvalue gaps, this information is instead encoded

in the winding of the reflection coefficient as λ increases from the lower band maximum

to the upper band minimum. Crossing a gap, r(λ) necessarily winds clockwise[72] along

the unit circle, from ±1 to ∓1, encoding topological information along the way. For

example, if the reflection coefficient starts at r = 1, it needs to pass r = −i along the

way to r = −1, and the Witten index W is +1. Alternatively, if the reflection coefficient

starts at r = −1, it needs to pass through r = i before reaching r = 1, and this gives

W = −1. As with the Zak phase, we can utilise the reflection coefficients at the band
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Energy Transfer Eigenvalue Transfer Eigenvector Reflection Coefficient

λ Λ+ φ+ r(λ)

−ε+ +1 (1,−1) −1

−ε̃+ −1 (1,+1) +1

−ε̃− −1 (1,−1) −1

−ε− +1 (1,−1) +1

+ε− +1 (1,−1) −1

+ε̃− −1 (1,−1) −1

+ε̃+ −1 (1,+1) +1

+ε+ +1 (1,+1) +1

Table 4.2: Transfer eigenvalues and eigenvectors at the band edges provided in eq. (4.47) along-

side the reflection coefficient r(λ) defined in eq. (4.106).
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Lowest Centre Centre Highest

Phase Band Low Band High Band Band

ξ ξ̃ λmin λmax Z λmin λmax Z λmin λmax Z λmin λmax Z

1 1 −ε+ −ε̃+ −1 −ε̃− −ε− −1 +ε− +ε̃− 0 +ε̃+ +ε+ 0

1 −1 −ε+ −ε̃− 0 −ε̃+ −ε− 0 +ε− +ε̃+ −1 +ε̃− +ε+ −1

−1 1 −ε+ −ε̃+ −1 −ε̃− +ε− 0 −ε− +ε̃− 1 +ε̃+ +ε+ 0

−1 −1 −ε+ −ε̃− 0 −ε̃+ +ε− 1 −ε− +ε̃+ 0 +ε̃− +ε+ −1

Table 4.3: Zak phases of each band in each topological phase (ξ, ξ̃). For each band, the energy

minimum and maximum are given in reference to the band edges eq. (4.47), and the Zak phase

Z = (r(λmin) − r(λmax))/2 is calculated with the reflection coefficients provided in table 4.2.

Though calculated through the reflection coefficients, the values present a relationship between

the topological phase and the Zak phase for each band. The lowest energy band’s Zak phase

depends only on ξ̃, and takes the value −(ξ̃ + 1)/2. The highest energy band has similar form

(ξ̃ − 1)/2. The central low energy band has Zak phase equal to −(ξ̃ + ξ)/2, and the central high

energy band has Zak phase (ξ̃ − ξ)/2.
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Negative Energy Central Positive Energy

Phase Bandgap Bandgap Bandgap

ξ ξ̃ λmin λmax W λmin λmax W λmin λmax W

1 1 −ε̃+ −ε̃− 1 −ε− +ε− 1 +ε̃− +ε̃+ −1

1 −1 −ε̃− −ε̃+ −1 −ε− +ε− 1 +ε̃+ +ε̃− 1

−1 1 −ε̃+ −ε̃− 1 +ε− −ε− −1 +ε̃− +ε̃+ −1

−1 −1 −ε̃− −ε̃+ −1 +ε− −ε− −1 +ε̃+ +ε̃− 1

Table 4.4: Witten phases of each bandgap in each topological phase (ξ, ξ̃). For each bandgap,

the energy minimum and maximum are given in reference to the band edges eq. (4.47), and the

Witten phase W = (r(λmin) − r(λmax))/2 is calculated with the reflection coefficients provided

in table 4.2. The Witten index for the negative bandgaps equal ξ̃, those in the positive bandgaps

equal −ξ̃, while the central bandgap has a Witten index equal to ξ.
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edges to calculate band gap Witten indices for each topological phase of the bowtie chain,

for which we have provided the results in table 4.4.

4.4 Conclusion

This chapter explored some of the interesting topological features that can arise from

when one considers a lattice which adopts the form of a square root of a more trivial

structure.

In section 4.1 we looked at the SSH chain, observing that it squares to a monoatomic

chain, and identified the structure of the zero-eigenvalue defect state from basic principles

which were later formalised into the language of transfer matrices in section 4.3. We

observed how the defects can be directly linked to edge states of the monatomic chains

that were modified as a result of the SSH chain termination.

We extended the model to the Rice-Mele model in section 4.2 and found a polynomial

connection with the SSH chain, algebraically formulating the splitting behaviour of the

defect state We also looked at a different form of defect, created by breaking the alter-

nating pattern of loop edges, and had a first glimpse of how a modification to a parent

system can form connections between otherwise separable chains in a child system.

Exploiting this behaviour, we extended the Rice-Mele model by changing the behaviour

of the alternating loop edges and nearest-neighbour edges, resulting in the bowtie chain

in section 4.3. Here, we took a closer look at the rich topological properties that emerged

as a result of nonsymmorphic symmetries that become symmomorphic in the child two-

legged ladder, including the emergence of states in the different spectral gaps when the

bowtie chain is restricted to a semi-infinite system. The topological sectors, separated by

configurations with degenerate states, were identified, and the properties of each sector
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were explored using an energy integral form of the Zak phase, allowing us to also extend

the topological characterisation to the band gaps through the Witten index. The Zak

phases and Witten indices of the bowtie chain’s bands and bandgaps are stable across a

topological sector, changing only upon transition from one sector into another. This is

indeed the fundamental concept of topological features: they are stable to perturbations of

the underlying system, including thermal fluctuations[73] and can relate to experimentally

observable[74][59] characteristics.
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Chapter 5

Concluding remarks

In this thesis, we have utilised König digraphs to present the concept of polynomials of

graphs. This representation allows us to describe the concepts of more general matrices.

Indeed, any N × M matrix may be represented through a walk graph with M input

vertices and M output vertices. We make particular use of this by defining vectors and

scalars, which have no direct representation in conventional graph theory.

In section 1.5 we showed that the eigendecomposition of any “parent” graphG is deeply

related to that of a “child” graph p(G), namely that the eigenstates of G are eigenstates

of p(G) and each eigenvalue λ of G takes the eigenvalue p(λ) in the child graph. This

provides motivation for further exploration of the algebra, particularly in a condensed

matter setting where, through the Schrödinger equation, the eigendecomposition of G

provides the stable wavefunctions of a system, along with their corresponding energies.

With this motivation in mind, we moved on to describe the microscopic behaviour

of graph polynomials, i.e. the way that a local set of edges transform as a result of the

polynomial, in chapter 2. This allowed us to describe the impact upon loop edges on

isolated vertices, which are modified directly by the polynomial. We extended this by
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looking at the behaviour of edges that connect a set of vertices, describing the methods

by which a polynomial can cancel out such edges in the child system, either by direct

cancellation or by destructive interference. We also described an approach analogous to

Bloch’s theorem, allowing us to remain within the graph-theoretical framework for the

remainder of the thesis.

We moved on to discuss concrete models in a condensed matter setting in chapter 3.

Although the models under discussion were simple, our new approach enabled us to

view them in an entirely new way. We derived the properties of arbitrary-neighbour

homogeneous monatomic bonds using polynomials derived from cycle graphs, found a

square root of an Aharonov-Bohm loop, used destructive interference to view a square

lattice under the influence of a rational magnetic field as a root of a set of larger, separable

square lattices, and derived the properties of honeycomb systems, using only structural

arguments and the eigendecomposition of the unit honeycomb.

Finally, chapter 4 explored the properties of topological chains, revealing their topo-

logical properties as an artifact of a non-trivial square root of more trivial child chain

systems. We examined the impact of termination of a parent system on its child systems,

and demonstrated that the resulting modifications have physical ramifications in the par-

ent system. This was particularly useful in the case of the bowtie chain, where we related

graph-theoretic arguments to the results of explicit topological invariant calculations.

The methods introduced by this thesis have a direct application in condensed matter

systems. Not only can parent topological systems be described through simpler child

systems, but they can also be derived from them; this was the case with our research on

the bowtie chain, although this thesis presents the reverse of this process in order to obtain

continuity with with previous sections. Even outside of the context of topological systems,
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a lot can be learned about a quantum system simply by squaring it, or by attempting to

obtain a square root system.

We finally remark that our algebra also provides an intuitive mechanism by which

to explore any abstract entity that can be modelled as a graph, particularly when their

adjacency matrix eigendecomposition plays an important role.
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[7] W. Pauli, “Über das Wasserstoffspektrum vom Standpunkt der neuen Quanten-

mechanik,” Zeitschrift fur Physik, vol. 36, pp. 336–363, May 1926.
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