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2Department of Physics, University of Basel,

Klingelbergstrasse 82, CH-4056 Ba-sel, Switzerland

3Kavli Institute of Nanoscience, Delft University of Technology,

Lorentzweg 1, 2628 CJ Delft, The Netherlands

4Department of Physics, Lancaster University,

Lancaster LA1 4YB, United Kingdom

5Department of Chemistry and Biochemistry,

University of Bern, 3012 Bern, Switzerland

6Department of Physics, University of Basel,

Klingelbergstrasse 82, CH-4056 Basel, Switzerland

7Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel

8School of Engineering, University of Warwick,

Coventry, CV4 7AL, United Kingdom

9Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.

1



One of the main challenges to upscale the fabrication of molecular devices is

to achieve a mechanically stable device with reproducible and controllable elec-

tronic features, operating at room temperature1,2. This is crucial because struc-

tural and electronic fluctuations can lead to significant changes in the transport

characteristics at the electrode-molecule interface3,4. In this study, we report

on the realization of a mechanically and electronically robust graphene-based

molecular junction. Robustness is achieved by separating the requirements for

mechanical and electronic stability at the molecular level. Mechanical stabil-

ity is obtained by anchoring molecules directly to the substrate, rather than to

graphene electrodes, using a silanization reaction. Electronic stability is achieved

by adjusting the π-π orbitals overlap of the conjugated head groups between

neighbouring molecules. The molecular devices exhibit stable current-voltage

(I-V) characteristics up to bias voltages of 2.0 V with reproducible transport

features in the temperature range from 20 K to 300 K.

To realize reliable graphene-based junctions, several issues exist to date and need to be

addressed. First, graphene-based junctions have been reported to exhibit signatures similar

to those of molecules, with gate-dependent resonance features, such as Coulomb blockade5,6,

quantum interference7 and Fabry-Perrot resonances8. Second, connecting molecules to the

graphene remains challenging due to the lack of control on the electrode geometry at the

nanoscale4,5,8–10. Achieving both mechanical stability and electrical reproducibility at the

same time impose different requirements on the junction properties3,11. Finding the proper

balance between electronic and mechanical stability is therefore challenging. Weakly coupled

π − π stacking is believed to be an appealing strategy to anchor molecules to the contact

electrodes3, offering advantages such as high thermoelectric efficiency. However, this ap-

proach has been shown to lead to mechanically unstable junctions12. Alternatively, molecules

have also been bonded covalently to graphene, yielding mechanically stable junctions10.

However, transport through strongly coupled molecules is expected to be heavily influenced

by the electrode geometry, edge termination and crystallographic structure, leading to a

large variability in the shape of the current-voltage characteristics3. Third, junction-to-
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junction variability remains high for the above-mentioned anchoring methods13,14, leading

to poor devices reproducibility. Finally, the silicon dioxide substrate itself has been reported

to yield feature-rich charge-transport characteristics15, in particular due to switching within

the oxide16, which may be confused with molecular signatures.
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Figure 1: Junction geometry, molecular design and electrical characterization. a)

Drawing of the three molecules, constituted of three main parts: the silane group for the covalent

anchoring to the substrate, the alkane chain that decouples the silane group from the different

head groups : CH3 (molecule M) , N-carbazole (molecule C), and bi-phenyl N-carbazole (molecule

BPC). b) Schematic illustration of a molecular junction containing a series of π-π-stacked molecules

bridging a graphene nanogap. The atomic positions of the molecules are for illustrative purposes

only, and do not correspond to the DFT-relaxed geometry shown in Figure 4. For clarity reasons,

different atoms and colours are used to distinguish carbon atoms of the molecule from those of

the graphene. c-e) The electrical measurements corresponding to the three molecules under study

with different head groups are displayed as density plots of the measured I-V curves, of which the

absolute value of the current is plotted on logarithmic scale. For each molecule, 100 I-V curves

without data selection are measured at room temperature on a specific device per molecule.

The molecule we propose (see Fig. 1a) contains three main parts, a silane group and a

π-conjugated head group, decoupled by a non-conjugated alkane chain. The silane part is

responsible for the mechanical anchoring of the molecule by forming a covalent bond with the

substrate. This silanization process is commonly used to cover surfaces with organofunc-

tional molecules17–19. This approach offers distinct advantages. As the graphene edges

usually present ill-defined edge terminations after nanofabrication and/or preparation of the
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contact electrodes, anchoring the molecules to the substrate seems a valid possible alterna-

tive. In addition, as the molecules are covalently bonded to the substrate, this process leads

to mechanically stable graphene-molecule junctions. Moreover, the silanization process also

passivates the silicon dioxide surface and prevents unwanted switching effects16. The sec-

ond part of the molecule is the conjugated head group, specifically a bi-phenyl N-carbazole

group (molecule BPC), whose orbitals can couple to the π orbitals of the graphene. The

alkane chain is the final necessary element, whose crucial role is to electronically decouple the

mechanical anchoring from the electronic head group. Density functional theory (DFT) cal-

culations (methods and Supplementary Information SI section II) confirm that the frontier

orbitals of the BPC molecule are indeed solely localized on the head group. These calcula-

tions also show that head groups of two neighbouring molecules can π − π stack, forming

transport channels which are delocalized across all head groups. A schematic illustration of

BPC molecules assembled in the graphene nanogap with π−π stacked head groups is shown

in Fig. 1b).

In order to correlate the junction stability and electrical properties with the molecular

structure, several test molecules with different head groups were designed and investigated.

The first test molecule is methyl terminated (abbreviated as molecule M). Due to the absence

of a delocalized π system, it is expected to only poorly conduct charges. The second test

molecule possess an N-carbazole head group (abbreviated as molecule C). The π-system of

molecule C has two phenyl rings less than the BPC molecule. The lack of phenyl rings leads

to a reduction in orbital overlap by about a factor of two, resulting in a lower interaction

energy between neighbouring head groups3. Due to its smaller interaction energy, molecule

C is therefore expected to form less stable transport channels than the BPC molecule.3A

description of the device fabrication and molecule deposition can be found in the Methods

section.

Figure 1c)-e) presents the electrical characterisation of three devices, each exposed to one

of the molecules under study. For this purpose, current-voltage characteristics (I-V curves)

are acquired at room temperature by averaging a back-and-forth voltage sweep. For each

device, 100 I-V curves are measured and combined into a density plot without any data

selection. This density plot consists of a 2-dimensional histogram of all I-V curves recorded

on the device, constructed by binning both the current and the voltage axes. For the current

axis, the absolute value of the current on log-scale is used. The density plots are a color-
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coded representation of such histograms, in which areas of high counts can be identified,

corresponding to the most likely device behaviour. The density plots are normalized by the

total number of data points.

The junction containing molecule M (Fig. 1c) presents a single category of tunnelling-like

I-V curves, with a maximum current of about 10 pA at a bias voltage of 2 V. The I-V curves

recorded on junctions exposed to molecule C are shown in Fig. 1d. The maximum currents

are about two orders of magnitude larger than for molecule M, indicating that the π-π

stacking leads to a more efficient charge transport across the molecular junction. However,

the plot also exhibits large variations in I-V shapes and current levels. These fluctuations

are attributed to the weak electronic interaction between the neighbouring head groups,

allowing for various molecular conformations to occur, each of them possibly with slightly

different electronic properties (a more detailed study is presented in the SI section III).

Figure 1e shows the density plot of the I-V curves recorded for a device after deposition of

molecule BPC. Contrary to molecule C, the BPC molecule leads to both a higher current

and a higher stability, as shown by the high similarity of the 100 I-V curves recorded at

room temperature.

Stability and intersample reproducibility at 20 K

We performed electrical measurements at cryogenic temperatures (20 K) to spectroscop-

ically characterize the BPC molecular junctions. Figure 2 presents an overview of these

measurements, with Fig. 2a showing three individual I-V curves recorded on each device.

100 of such I-V curves are measured successively. The 100 I-V curves are then used to

construct a density plot (Fig. 2b), as described previously. Here, only one category of I-V

curves is observed, with small fluctuations. Furthermore, all devices exhibit similar current

levels (within one order of magnitude) and curve shape. The inset shows the correspond-

ing average I-V curve (〈I〉), exhibiting a very similar shape as the individual I-V curves

shown in Fig. 2a. Finally, the numerical derivative of 〈I〉 is calculated (Fig. 2c) in order to

obtain the differential conductance (d〈I〉/dV) traces (blue line). As a comparison, the red

traces display the dI/dV curve for that particular device obtained at 20 K before deposition.

The observed resonance peaks are a signature of one or more transport channels present in

the molecular junction. As these resonances are only present after deposition of molecules,
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Figure 2: Electrical characterization of devices A-C at 20 K exposed to molecule

BPC. a) Three individual I-V curves recorded for each device. b) Density plots of I-V curves. The

inset shows the average I-V curve 〈I〉. c) d〈I〉/dV curve obtained before (red) and after (blue)

deposition. The resonances observed after deposition correspond to electronic energy levels of the

molecular junction. The grey regions highlight the different resonances.

they are attributed to the presence of the BPC molecule. In general, the position of these

resonances reflects the electronic structure of the junction. These resonances are located

at similar bias voltages, highlighted by the grey-shaded regions, confirming the robustness

and reproducibility of the BPC molecular junctions. We note, however, that the resonances

exhibit different amplitudes, which may be attributed to local variations in the junction

conformation.

Finally, we note that also for molecule C, the mechanical anchoring to the substrate is

stable, even though the electronic transport is not. In the Supporting Information, using a

statistical cross-correlation analysis, we show that similar electronic features are observed

across multiple devices, demonstrating that indeed the anchoring to the substrate provides
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sufficient mechanical stability. However, due to the smaller π-π overlap between the head

groups compared to the BPC molecule, the electronic stability is limited.

Electronic robustness of the junctions at different temperatures
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Figure 3: Transport measurements through a BPC molecular junction (device A)

at different temperatures. a) Density plots constructed from 100 I-V curves for the three

temperatures. b) Differential conductance d〈I〉/dV of the device shown in a) plotted for increasing

temperatures. c) Evolution of the absolute value of 〈I〉 as a function of the temperature plotted for

different bias values in log-log scale. d) Evolution over time of the I-V curves measured at 300 K.

We further investigate the junction stability by characterizing the devices in a large range

of temperature extending from 20 K to room temperature. Figure 3a shows the density plot

obtained from 100 I-V curves measured at three selected temperatures (20 K, 150 K and

300 K) for device A, with 〈I〉 as inset. From the density plots, the high similarity between

successive I-V curves is observed at all temperatures. This behaviour highlights the high

electronic and mechanical stability of the devices, in stark contrast to the behaviour of

junctions based on molecule C (Fig. 1d). A similar observation can also made in Fig. 3b.

Here, the plot shows the evolution of d〈I〉/dV with temperature. The resonance positions

remain fairly similar throughout the entire range, while the peak amplitude steadily decays

with increasing temperature.

Figure 3c presents the evolution of 〈I〉 as a function of temperature, plotted in a
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logarithmic scale. The plot shows that the current remains fairly constant over the entire

temperature range for various bias voltage values, and in particular in the high temperature

region between 150 K and 300 K. This observation suggests that charge transport though

these graphene-molecule-graphene junctions remains coherent up to 300 K. This appealing

effect is in contrast with studies performed in systems in which electrons are transported

incoherently through the device. In that case a strong reduction in current is observed for

decreasing temperatures, corresponding to activation energies in the 10-100 meV range20–25.

Interestingly, the current through our device even increases slightly with decreasing

temperature. This effect may be related to minor rearrangements of the molecules in the

junction, which may also be the cause for the small jump in current measured around

120 K. The temperature dependence of the empty graphene gaps was also investigated

(see Supporting Information for more details), but no significant effect of temperature was

observed, in agreement with a previous study9. Finally, Fig. 3d presents the evolution of the

I-V curves over time at room temperature. Here, no significant fluctuations were observed

at bias values up to 2.0 V, highlighting the very high stability of the molecular junctions.

To investigate charge transport through these graphene/molecule/graphene junctions,

we calculated the transmission probability T (E) of electrons with energy E passing through

the molecules from one graphene electrode to another (see methods). We obtain the ma-

terial specific mean-field Hamiltonian from the SIESTA implementation of density func-

tional theory26 combined with the Gollum implementation of the non-equilibrium Green’s

function method to calculate T (E)27 (see computational method). The conductance G

was calculated for different Fermi energies and temperatures using the Landauer formula:

G = G0

∫
dET (E)(−df/dE) where f = (1 + exp((E − EF )/KBT))−1 is the Fermi Dirac

distribution function, T is the temperature, and kB = 8.6 × 10−5eV/K is Boltzmann’s

constant.

Figure 4 shows the computed conductance (G/G0) for reference molecule M and molecule

BPC for a particular junction geometry. Transmissions were also calculated for other geome-

tries (see SI section II). The calculations show that the transmission through the reference

molecules is systematically lower than for the BPC molecule, regardless of the choice of

the Fermi energy. This observation also holds for other junction configurations (see SI sec-

tion II). The drastically lower conductance is attributed to the HOMO-LUMO gap of the
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Figure 4: Transport through graphene/molecule/graphene junctions containing the M

and BPC molecule. (a,b) Computed conductance (G/G0) of a junction containing molecules M

for different Fermi energies (EF ) at T = 0 K and T = 300 K. Local density of states (LDOS) for

the shaded region in (b) showing that the wave function does not extended over the alkane groups.

(c,d) Computed conductance (G/G0) of a junction containing molecules BPC for different Fermi

energies (EF ) at T = 0 K and T = 300 K. Local density of states (LDOS) for the shaded region

in (d) shows that wave function is extended over the carbazole groups. Note that EF is the Fermi

energy of the junctions relative to the DFT predicted Fermi energy, and may be different from the

experiments. The grey-shaded area corresponds to the resonance closest to the Fermi energy of

the electrodes.

graphene/molecule/graphene junction being larger for reference molecule M. To investigate

the nature of the transport channels dominating transport for both molecule, Fig. 4a and

4c display the local density-of-states obtained in the energy window highlighted in grey,

corresponding to the resonance closest to the Fermi energy. For the BPC molecule, the

wave function extends over the bi-phenyl N-carbazole groups. For the reference molecule,

on the other hand, no delocalized orbitals are formed and transport occurs via the poorly

conducting silane groups. These calculations demonstrate the crucial role of π − π stacked

head groups in the transport, and rationalize the large difference in current observed exper-

imentally for the two molecules.

We have reported on graphene-based molecular devices which are electronically and me-

chanically stable over a large temperature range. This is achieved by decoupling the me-

chanical anchoring from the electronic pathways by combining a covalent binding of the
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molecules to the substrate and large π-conjugated head groups. The junctions are repro-

ducible throughout several devices and operate from 20 K up to room temperature. Our

approach represents a simple but powerful strategy for the future integration of molecule-

based functions into stable and controllable nano-electronic devices.

Methods

Molecular synthesis: M and C molecules were purchased from Sigma-Aldrich. Details of the

synthesis of the BPC molecule are presented in the supplementary information section I.

Junction formation: The molecular junctions were formed as follows. First, nanogaps were

created in the graphene devices using the electrical breakdown technique, as described in previous

studies9,28,29. The graphene gaps were first characterized at room- and low temperature, before

deposition of the molecules. Only junctions with resistances higher than 1GΩ and showing no gate

dependence were selected for further use. After characterization of the empty gaps, the devices

were immersed for 20 hours at 80 degrees in a solution containing dry toluene and the molecules of

interest (0.1 mM). The samples were then successively rinsed with dichloromethane, acetone and

isopropanol. In the case of the BPC molecule, 46 gaps were formed by electrical breakdown. 29

gaps were characterized at both low and room temperature. After deposition, 23 of these junctions

were measured and 9 out of the 23 showed a signal after transfer.

Molecular Dynamic: In order to understand how the 3-carbazolylpropyltrimethoxysilane

molecules are interacting with graphene electrodes, molecular dynamic simulation was carried out

using ADF30 reaxFF package. The Velocity Verlet+Berendsen MD method were used with 0.250

fs time step. The atomic positions belong to the SiO2 substrate and a part of graphene electrodes

far from scattering region were constrained. The simulation run for 150000 MD-iterations. The

snapshot of atomic coordinates of the junction were taken. These coordinates were used as initial

geometries of the device for the density functional theory calculations.

Density functional theory calculation: The optimized geometry and ground state Hamil-

tonian and overlap matrix elements of each structure studied in this paper were self-consistently

obtained using the SIESTA26 implementation of the density functional theory (DFT). SIESTA em-

ploys norm-conserving pseudo-potentials to account for the core electrons and linear combinations
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of atomic orbitals (LCAO) to construct the valence states. The generalized gradient approximation

(GGA) of the exchange and correlation functional is used with the Perdew-Burke-Ernzerhof (PBE)

parameterization and a double-ζ polarized (DZP) basis set. The real-space grid is defined with an

equivalent energy cut-off of 250 Ry. The geometry optimization for each structure is performed to

the forces smaller than 20 meV/Å.

Transport: The mean-field Hamiltonian obtained from the converged SIESTA DFT cal-

culation was combined with Gollum27 implementation of the non-equilibrium Greens function

method, to calculate the phase-coherent, elastic scattering properties of the each system consist

of left (source) and right (drain) graphene leads connected to the scattering region formed

from 3-carbazolylpropyltri-methoxysilane molecules. The transmission coefficient T (E) for

electrons of energy E (passing from the source to the drain) is calculated via the relation

T (E) = trace(ΓR(E)GR(E)ΓLG
R†(E)). In this expression, ΓL,R = i(ΣL, R(E) − ΣL, R

†(E))

describe the level broadening due to the coupling between left (L) and right (R) electrodes and

the central scattering region, are the retarded self-energies associated with this coupling and

GR = (ES −H −ΣL −ΣR)−1 is the retarded Greens function, where H is the Hamiltonian and S

is the overlap matrix. Using the obtained transmission coefficient, the conductance is calculated

by Landauer formula G = G0

∫
dET (E)(−∂f(E,T)∂E) where G0 = 2e2/h is the conductance

quantum, f(E,T) = (1 + exp((E −EF )/kBT)−1 is the Fermi-Dirac distribution function, T is the

temperature and kB = 8.6−5 eV/K is Boltzmanns constant.
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