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Abstract
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invariant transfer function models can be achieved straightforwardly using
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less straightforward because it requires the updating of the continuous-time
prefilter parameters. This paper shows how such on-line estimation is pos-
sible by using recursive instrumental variable approaches. The proposed
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addition, the proposed recursive algorithms are tested using data from two
real-life systems.

Keywords: Recursive methods; continuous-time model identification;
instrumental variable method; linear time-varying system; linear filter
methods.

∗Corresponding author
Email address: arturo.padilla@ufrontera.cl (A. Padilla)

Preprint submitted to Elsevier September 12, 2019



1. Introduction

A time-varying model can be defined as a model whose properties vary in
time, as reflected by changes in the model parameters. In real-life, processes
are usually time-varying, for example, due to ageing effects or changes in the
environmental conditions such as the temperature. The estimated parame-
ters of a time-varying model can vary in different ways such as slow persis-
tent changes (sometimes called parameter drift), infrequent abrupt changes,
mixed-mode variations (slow and abrupt changes), and all other changes
(also called fast parameter variations) [1, p. 60]. In this paper, we con-
sider continuous-time (CT) linear time-varying (LTV) models for which the
parameter variation is slow compared to the system dynamics.

It is well known that batch estimation, also called non-recursive or off-line
identification, can be used for the estimation of constant parameter discrete-
time (DT) or CT LTV models. In the case of systems whose dynamic be-
haviour is changing very slowly, their parameters can be updated from time-
to-time, for example, estimating ‘local’ linear time-invariant (LTI) models
through weighted least squares in a sliding window. In [1], two approaches
are presented: sliding window least squares, which considers a rectangular
window, meaning that all the weights are equal, and also an exponentially
weighted least squares, where old data are discarded by means of exponential
weights. On the other hand, if the system is changing more rapidly, however,
improved approaches are necessary. Sometimes, prior knowledge is such that
deterministic or near deterministic models for the parameter variations can
be used, and then estimation with a batch sliding window can be performed.
Such a technique is explored for instance in [2] by means of local polynomial
modeling. The current paper is concerned with the general situation where
the nature of the parameter variation is slow but unknown.

The problem of LTV estimation for DT models has been extensively stud-
ied in the literature. In this context, recursive estimation algorithms for LTI
models are usually modified to allow for parameter variation. In this ap-
proach, also called on-line or real-time identification, the model is sequen-
tially updated every time new measurements become available.

In comparison with batch estimation, recursive algorithms are advanta-
geous in terms of having less computational cost for each recursive update.
Nevertheless, the obtained estimates can be less statistically efficient due to
fixed interval smoothing procedures, that are advantageous in the LTI situ-
ation [3], but cannot be utilised in on-line estimation. While a large number
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of studies have been conducted on the real-time recursive estimation of DT
models [see, e.g. 4, 5, 6, 7, 3, 8, and the references therein], comparatively less
attention has been given to CT models. A simple and widely used algorithm
is recursive least squares (RLS). In order to track time-varying parameters
with RLS, two adaptation mechanisms can be used: introducing a forgetting
factor; or using a recursive algorithm that is analogous to the Kalman Filter
(KF) [see e.g. 7, 9, 3], where the latter KF version is more convenient when
tracking parameters that are varying at different rates. Moreover, the noise-
variance ratio (NVR) hyper-parameters that control the rate of variation of
the estimated parameters in the recursive algorithm can be optimized by
maximum likelihood [3].

Different methods are available to estimate CT LTV models. Recent
studies present a frequency domain approach [10] or use a subspace method
to identify MIMO systems [11]. There are also integral methods [see 12,
13], such as block-pulse functions [14], or the CT version of the recursive
prediction error method [15]. Another type of CT identification method
is the modulating function approach proposed in [16] and [17] for on-line
estimation. Additionally, a linear filter method was first suggested by [18] and
considered further in [9, 3, 19, 20], which provides the main stimulus for the
present paper. In batch estimation of CT LTI models, different approaches
based on the linear filter method have been used to tackle the identification
of real-life systems [21, 22]. In the linear filter approach, suitably chosen
linear prefilters are used to generate the filtered derivatives of the measured
input and output signals that are required for CT model estimation. These
prefilters can be chosen based on the system bandwidth or selected to have
optimal properties. A simple linear prefilter approach is the recursive least
squares state-variable filter (RLSSVF) method which is discussed later in
Section 4.1.

On the other hand, identification methods based on recursive instrumen-
tal variable (RIV) can avoid the asymptotic bias that may appear in RLS
estimates. To circumvent this problem in CT model estimation, the refined
instrumental variable method for continuous-time systems (RIVC) or its sim-
plified alternative (SRIVC) can be used [23, 3]. In [3], only some comments
about the recursive on-line version of SRIVC (RSRIVC) are given. More
recently, the RSRIVC approach, which exploits the KF version of the algo-
rithm as an adaptation mechanism, has been developed for the estimation of
CT LTV models in [24].

The identification methods for CT models can be classified between indi-
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rect and direct approaches. In the former case, first a DT model is estimated
and then converted to a CT model. In the latter case, the CT model is di-
rectly estimated from the available data. RLSSVF and RSRIVC correspond
to direct estimation approaches. The indirect estimation of CT LTV models
is considered, for example, in [25].

The current paper proposes a variant of RSRIVC and discusses a robust
implementation, which includes a stability test and a filter that smooths and
delays the parameter estimates before updating the prefilters and the auxil-
iary model. In addition, practical aspects of the algorithms are addressed,
such as the guidelines to choose the hyper-parameters of the IV based ap-
proaches of the proposed algorithms. In order to assess the proposed meth-
ods, measures of estimation performance are also discussed and used. The
proposed direct CT identification methods are also compared with indirect
approaches.

The remainder of the paper is organized as follows: the CT model estima-
tion problem is firstly presented in Section 2. In Section 3, indirect estimation
approaches for CT models are briefly reviewed. Then, the recursive version
of the LSSVF and SRIVC algorithms are developed in Sections 4.1 and 4.2,
respectively. In Section 4.2, a variant of the recursive SRIVC is discussed.
Two implementation issues are addressed in Section 5, namely, the stability
of the estimates, and the correlation between the prefiltered estimates and
the measurement noise. In addition, practical aspects of the proposed algo-
rithms are discussed. In Section 6, measures of the estimator performance are
presented. In Section 7, the application of the IV based approaches are illus-
trated through numerical examples, including Monte Carlo simulations and
two examples using real data. Finally, conclusions are presented in Section
9.

2. Problem formulation

Let us consider a CT LTV OE system with input u(t) and output y(t).
The data-generating system is given by

S

{
Ao(p, t)x(t) = Bo(p, t)u(t)

y(tk) = x(tk) + eo(tk)
(1)

where p is the differentiation operator; tk is the time index sample number
for sampled data; and and eo(tk) is a zero-mean DT white noise sequence. It
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is assumed that the system (1) can be represented by the model set

M

{
A(p, t,θ)x(t) = B(p, t,θ)u(t)

y(tk) = x(tk) + e(tk)
(2)

Here, A(p, t,θ) and B(p, t,θ) are the following polynomials with time-varying
parameters:

B(p, t,θ) = b0(t)pnb + b1(t)pnb−1 + . . .+ bnb(t) (3)

A(p, t,θ) = pna + a1(t)pna−1 + . . .+ ana(t) (4)

where na ≥ nb and e(tk) is a zero-mean DT white noise. The time-varying
parameters can be gathered in the parameter vector θ(t),

θ(t) =
[
a1(t) . . . ana(t) b0(t) . . . bnb(t)

]T
(5)

with θ(t) ∈ Rnθ , and nθ = na + nb + 1.
The following assumptions are made:

A1. The system and the model set have a CT LTV OE representation,
with polynomial degrees na and nb identified or known a priori.

A2. The true parameter vector θo(t) is slowly time-varying in the sense
that, in a local window with time interval s ∈ [ti, tf ], it can be locally
approximated by a constant parameter vector θc, i.e.

‖θ̇o(t)‖ ≤ εθ such that ‖θo(s)− θc‖ ≤ ε∆θ (6)

where εθ and ε∆θ are small numbers.

A3. The input u(t) is persistently exciting.

The identification problem is then to recursively estimate the time-varying
parameters that characterize the model structure given by (2), based on
sequential samples of input and output data Zk = {u(ti); y(ti)}ki=1, where k
is the number of samples which increases by one with every recursion.
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3. Indirect estimation of CT models

From the frozen systems of (1) and considering the appropriate intersam-
ple behaviour for the input, a DT equivalent system can be obtained. Let us
consider that the equivalent DT time-varying OE system is given by

S


x(tk) + αo

1(tk)x(tk−1) + . . .+ αo
nα(tk)x(tk−nα) =

βo
1(tk)u(tk−1) + . . .+ βo

nβ
(tk)u(tk−nβ)

y(tk) = x(tk) + eo(tk)

(7)

For the indirect identification approaches, first a DT model representing (7)
is estimated. Then, the DT parameter estimates are converted to the equiv-
alent CT parameters; in this case, the conversion is done with the MATLAB
routine d2c. Next, two indirect identification methods are presented.

3.1. Indirect approach considering a DT ARX model

It can be assumed that (7) can be represented by the DT ARX model

M

{
y(tk) + α1(tk)y(tk−1) + . . .+ αnα(tk)y(tk−nα) =

β1(tk)u(tk−1) + . . .+ βnβ(tk)u(tk−nβ) + e(tk)
(8)

Equation (8) can be written as a linear regression

y(tk) = φT (tk)ρ(tk) + e(tk) (9)

where φ(tk) is the regressor given by

φT (tk) =
[
−y(tk−1) . . . −y(tk−nα) u(tk−1) . . . u(tk−nβ)

]
(10)

and ρ(tk) is the DT time-varying parameter vector given by

ρ(tk) =
[
α1(tk) . . . αnα(tk) β1(tk) . . . βnβ(tk)

]T
(11)

To estimate (11) it is assumed that the parameter vector can be modeled as
a random walk. Then, the whole model is written as follows

M

{
ρ(tk+1) = ρ(tk) +w(tk)

y(tk) = φT (tk)ρ(tk) + e(tk)
(12)
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where w(tk) is assumed to be an independent, zero-mean, white Gaussian
noise model. (12) corresponds to a state-space representation and then the
Kalman filter can be used to estimate ρ(tk). The KF algorithm is given by
[see e.g. 3],

Prediction step:

ρ̂(tk|tk−1) = ρ̂(tk−1) (13a)

P (tk|tk−1) = P (tk−1) +Qn (13b)

Correction step:

ρ̂(tk) = ρ̂(tk|tk−1) + l(tk)ε(tk) (13c)

ε(tk) = y(tk)− φT (tk)ρ̂(tk|tk−1) (13d)

l(tk) =
P (tk|tk−1)φ(tk)

1 + φT (tk)P (tk|tk−1)φ(tk)
(13e)

P (tk) = P (tk|tk−1)− l(tk)φT (tk)P (tk|tk−1) (13f)

The performance of this method, in terms of tracking ability and noise sensi-
tivity, depends on the noise-variance ratio (NVR) matrix (sometimes called
‘normalized covariance matrix’) Qn, which is defined by

Qn =
Qw

σ2
e

(14)

where Qw and σ2
e are the covariance matrix of w(tk) and the variance of

e(tk), respectively. The KF (13) is implemented in the MATLAB routine
recursiveARX. Note that the Kalman filter is usually presented in terms of
a matrix P ∗(tk), where P ∗(tk)/σ

2
e = P (tk). However, in this paper, the

normalized version of the KF is used, which is defined in terms of P (tk) [3].

Remark 1. Let us consider that the true system is defined by a random walk
and a linear regression, i.e.

S

{
ρo(tk+1) = ρo(tk) + wo(tk)

y(tk) = φT (tk)ρ
o(tk) + eo(tk)

(15)

where wo(tk) and eo(tk) are zero-mean Gaussian noises with covariance ma-
trix Qwo

and variance σ2
eo, respectively. Then, if the system belongs to the
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model set (S ∈ M), and the KF is run with Qwo
and σ2

eo, the KF estimate
ρ̂(tk) is optimal, in the sense that it minimizes the a posteriori parameter
error covariance matrix. Note that in this case, P ∗(tk) is exactly the covari-
ance matrix of the posterior distribution of θ(tk). If the model is not a linear
regression, the KF is an ad hoc algorithm (see [6, p. 379] and [7]).

The random walk model is a way of representing that the parameters are
not constant, without specifying any ‘adequate’ global model for them [1,
p. 232]. As pointed out by Parkum [26, p. 63], if the formal assumptions
connected with the parameters varying as a random walk model cannot be
justified, the update can still be used for ad hoc estimation. Note that the
random walk model can be used for the case where the parameters vary slowly
and/or abruptly. However, the ability of an algorithm, which considers the
random walk model, to track the parameters, will depend on a suitable setting
of the normalized covariance matrix Qn. Actually, in a scenario where there
are both slowly and abrupt parameter changes, the covariance matrix should
be time-varying. Then, the problem is to detect when the jumps occur, in
order to change the covariance matrix [6].

Let us recall that in an LTI identification problem, for an ARX model

A(q−1)y(tk) = B(q−1)u(tk) + e(tk) (16)

the prediction error is given by [7]

ε(tk) = L(q−1)A(q−1)

(
y(tk)−

B(q−1)

A(q−1)
u(tk)

)
(17)

The effect of the prefilter L(q−1) is then to cancel out the effect of an incorrect
noise model. In fact, in the LTV case, by representing (7) with a time-
varying ARX model means that e(tk) in (8) is not actually a white noise
process. From Remark 1, it is known that KF can be used anyway as an ad
hoc algorithm. In order to reduce the effect of a misspecified noise model in
the estimation of (8), a fixed prefilter is used. Notice that such a prefilter
will only partially cancel the effect of an incorrect noise model since the true
system has time-varying parameters.

Once the DT parameters from (8) are estimated, they are converted to
CT parameters. This approach will be called IndirectARX.
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3.2. Indirect approach considering a DT OE model

To represent (7) an OE model can also be considered,

M


x(tk) + α1(tk)x(tk−1) + . . .+ αnα(tk)x(tk−nα) =

β1(tk)u(tk−1) + . . .+ βnβ(tk)u(tk−nβ)

y(tk) = x(tk) + e(tk)

(18)

Equation (18) can be written as a pseudo-linear regression [7],

y(tk) = φT (tk,ρ)ρ(tk) + e(tk) (19)

where the regressor is

φT (tk,ρ) =
[
−x(tk−1) . . . −x(tk−nα) u(tk−1) . . . u(tk−nβ)

]
(20)

Notice that x(tk) depends on ρ, therefore the regressor depends on ρ. Again
it can be assumed that the parameter vector is represented by a random walk
model. Then, the whole model is written as follows

M

{
ρ(tk+1) = ρ(tk) +w(tk)

y(tk) = φT (tk,ρ)ρ(tk) + e(tk)
(21)

Analogously, ρ(tk) is then estimated using the Kalman filter. Such an ap-
proach is implemented in the MATLAB routine recursiveOE.

The algorithm that estimates (18) is initialized with the estimation of an
ARX model (without any prefilter). Therefore, a new hyper-parameter Ns,oe

is introduced; Ns,oe is the sample time at which there is a switch between
the ARX and OE models. Once the DT parameters are estimated, they are
converted to CT parameters. This approach will be called IndirectOE.

4. Direct estimation of CT models

4.1. Recursive least squares based algorithm

Basically, in the direct estimation of CT models through linear prefilter
methods, the following two steps are required: In Step (a) a prefilter is
applied to the model and a filtered linear regression is obtained; in Step
(b) the DT methodology is used to estimate the parameters by applying a
recursive algorithm (see Section 3).
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In CT LTI system identification, time-derivatives can be handled using
linear prefilter methods, i.e. applying a prefilter F (p) to the model. However,
in the LTV case, multiplication with the differentiation operator p is not
commutative with the time-dependent variables, i.e.

F (p)B(p, t,θ)u(t) 6= B(p, t,θ)F (p)u(t)

To circumvent this problem, Assumption (A2) in Section 2 states that the
true parameters are slowly varying in the sense that the system can be locally
approximated by a constant parameter vector, i.e. an LTI model. Recursive
estimation algorithms capable of tracking time-varying parameters have a
finite memory, meaning that the data used for identification is a sliding win-
dow in which the approximation of the LTI system is valid. Then, a prefilter
can be applied to obtain filtered time derivatives as follows,

y
(i)
f (tk) = F (p)y(i)(tk) i = 0, . . . , na (22a)

u
(i)
f (tk) = F (p)u(i)(tk) i = 0, . . . , nb (22b)

or equivalently as

y
(i)
f (tk) = piF (p)y(tk) i = 0, . . . , na (23a)

u
(i)
f (tk) = piF (p)u(tk) i = 0, . . . , nb (23b)

F (p) is a low pass filter which can be specified in a statistically optimal form
or, more simply, chosen to be in the special, suboptimal, state-variable filter
(SVF) form:

F (p) =
1

(p+ λsvf)na
(24)

where λsvf is the cut-off frequency. Applying the SVF to (2) yields

y
(na)
f (tk) + a1(tk)y

(na−1)
f (tk) + . . .+ ana(tk)yf(tk) =

b0(tk)u
(nb)
f (tk) + . . .+ bnb(tk)uf(tk) + vf(tk) (25)

where
vf(tk) = F (p)A(p, t,θ)e(tk) (26)

Equation (25) can be rewritten as a linear regression,

y
(na)
f (tk) = ϕf

T (tk)θ + vf(tk) (27)

10



where
y

(na)
f (tk) = F (p)pnay(tk) (28)

and ϕf(tk) is the filtered version of the regressor vector

ϕT (tk) =
[
−y(na−1)(tk) · · · −y(tk)

u(nb)(tk) · · · u(tk)
]

(29)

i.e.

ϕf
T (tk) = F (p)ϕT (tk)

=
[
−y(na−1)

f (tk) · · · −yf(tk)

u
(nb)
f (tk) · · · uf(tk)

]
(30)

As pointed out before, once the prefiltered linear regression (27) is defined,
Step (b) of the linear prefilter approach can be applied. The parameter
variation can be represented by a random walk model, so that the full model
becomes:

M

{
θ(tk+1) = θ(tk) +w(tk)

y
(na)
f (tk) = ϕf

T (tk)θ(tk) + vf(tk)
(31)

where w(tk) is assumed to be an independent, zero-mean, white Gaussian
noise model. (31) corresponds to a state-space representation and then the
Kalman filter can be used to estimate θ(tk). Thus, the time-varying param-
eters can be tracked by the following algorithm:

Prediction step:

θ̂(tk|tk−1) = θ̂(tk−1) (32a)

P (tk|tk−1) = P (tk−1) +Qn (32b)

Correction step:

θ̂(tk) = θ̂(tk|tk−1) + l(tk)ε(tk) (32c)

ε(tk) = y
(na)
f (tk)−ϕf

T (tk)θ̂(tk|tk−1) (32d)

l(tk) =
P (tk|tk−1)ϕf(tk)

1 +ϕf
T (tk)P (tk|tk−1)ϕf(tk)

(32e)

P (tk) = P (tk|tk−1)− l(tk)ϕf
T (tk)P (tk|tk−1) (32f)
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where y
(na)
f (tk) and ϕf(tk) are defined in (28) and (30), respectively. The

algorithm (32) will be called the recursive least squares state-variable filter
(RLSSVF) method. At each recursion the output error

εy(tk) = y(tk)− ŷ(tk) (33)

can be also computed, where ŷ(tk) is the simulated model output. Here, the
KF approach is considered, but it is also possible to use the forgetting factor
as the adaptation mechanism. Note that vf(tk) in (31) is a filtered noise and
the conditions specified in Remark 1 are not met. Thus, RLSSVF is an ad
hoc approach.

4.2. Recursive instrumental variable based algorithms

In the batch estimation of LTI models, it is well known that LSSVF
yields biased estimates because of the correlation between ϕf(tk) and vf(tk).
Instrumental variable methods, such as the simplified refined instrumental
variable method for continuous-time models (see Appendix A.2), can be
used to obviate this problem. The recursive version of SRIVC (RSRIVC)
for the estimation of CT models with slowly time-varying parameters can be
developed analogously to RLSSVF by considering the following model which
is in state-space form

M

{
θ(tk+1) = θ(tk) +w(tk)

y
(na)
f (tk) = ϕf

T (tk)θ(tk) + vf(tk)
(34)

where

y
(na)
f (tk) = pnaF (p, θ̂(tk−1))y(tk) (35a)

ϕf
T (tk) = F (p, θ̂(tk−1))ϕT (tk) (35b)

vf(tk) = F (p, θ̂(tk−1))A(p, t,θ)e(tk) (36)

with the adaptive prefilter

F (p, θ̂(tk−1)) =
1

Â(p, θ̂(tk−1))
(37)

For the sake of simplicity in the notation, in y
(na)
f , ϕf and vf the dependence

on θ(tk−1) is omitted. Considering the DT counterpart (see [3]), model (34)
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can be estimated using the KF-based recursive instrumental variable ap-
proach. The algorithm is then given by:

Prediction step:

θ̂(tk|tk−1) = θ̂(tk−1) (38a)

P (tk|tk−1) = P (tk−1) +Qn (38b)

Correction step:

θ̂(tk) = θ̂(tk|tk−1) + l(tk)ε(tk) (38c)

ε(tk) = y
(na)
f (tk)−ϕf

T (tk)θ̂(tk|tk−1) (38d)

l(tk) =
P (tk|tk−1)ζf(tk)

1 +ϕf
T (tk)P (tk|tk−1)ζf(tk)

(38e)

P (tk) = P (tk|tk−1)− l(tk)ϕf
T (tk)P (tk|tk−1) (38f)

where filtered instrument ζf(tk) is defined through the instrument

ζ(tk, θ̂(tk−1)) =
[
−x̂(na−1)(tk) . . . −x̂(tk)

u(nb)(tk) . . . u(tk)
]T

(39)

with x̂(tk) given by the ‘auxiliary model’

Â(p, θ̂(tk−1))x̂(tk) = B̂(p, θ̂(tk−1))u(tk) (40)

Then,

ζf(tk) = F (p, θ̂(tk−1))ζ(tk, θ̂(tk−1))

=
[
−x̂(na−1)

f (tk) . . . −x̂f(tk)

u
(nb)
f (tk) . . . uf(tk)

]T
(41)

The method will be abbreviated by RSRIVC and it is initialized with RLSSVF.
The transition from the LS to the IV based method can be set manually by
the user at a time instant denoted ts,iv.

Variants of RSRIVC can be considered by fixing the auxiliary model
and/or the prefilter. Such an approach has been used in [27], where both
the auxiliary model and the prefilter were fixed (in a hybrid, analog-digital
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implementation). Experience shows that a variant of RSRIVC that works
well in practice is the one which uses an adaptive auxiliary model but a fixed
prefilter. Different fixed prefilters can be used: one option is to consider (37)
with θ̂(tk−1) being the result of an estimation performed using some training
data. Alternatively the prefilter can be fixed with the last RLSSVF estimates
obtained just before the switching time ts,iv. This alternative is evaluated in
an example in Section 7.3. A third option is to use the SVF (24), yielding
the recursive instrumental variable state variable filter (RIVSVF) algorithm.

RIVSVF is then given by (38), but with y
(na)
f (tk) and ϕf(tk) defined in (28)

and (30), respectively. In these algorithms, the filtered instrument ζf(tk), is
defined by

ζf(tk) = F (p)ζ(tk, θ̂(tk−1)) (42)

with F (p) given by (24), ζ(tk) by (39) and the auxiliary model by (40).

5. Implementation issues and practical aspects

This section considers implementation issues and practical aspects of the
recursive IV based approaches.

5.1. Stability of the estimates

Low SNR or mismatch model order may lead to unstable estimated LTV
models, similarly as in the LTI system case. Thus, in off-line SRIVC esti-
mation, a stability test is required when updating the estimates so that the
prefilter and auxiliary model remain stable. In the case of RSRIVC, the
prefilter (37) and the auxiliary model (40) depend on the estimates at the
previous recursion θ̂(tk−1) and so a stability check is also required at each
recursion. However, in this recursive situation it is more complicated, since
an LTV system is considered. Both the prefilter and the auxiliary model can
be written as an LTV state-space model

Mss

{
ẋ(t) = F (t)x(t) +G(t)u(t)

y(t) = H(t)x(t) + J(t)u(t)
(43)

A check on the stability of these equations can be achieved using the following
lemma [see 28, p. 206].
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Lemma 5.1. Suppose the system (43) is uniform exponentially stable, and
there exist finite constant τ1, τ2 and τ3 such that, for all t,

‖G(t)‖ ≤ τ1, ‖H(t)‖ ≤ τ2, ‖J(t)‖ ≤ τ3 (44)

Then the state equation also is uniformly bounded-input, bounded-output sta-
ble.

Assuming that G(t), H(t) and J(t) are bounded, i.e. (44) is fulfilled, it
remains to check uniform exponential stability, which can be carried out in
practice by solving a linear matrix inequality problem.

In general, uniform exponential stability of time-varying parameter mod-
els cannot be specified by the location of the eigenvalues of the matrix F (t).
However, if it is assumed that the parameters vary slowly, uniform expo-
nential stability is guaranteed provided the eigenvalues of F (t) are in the
left half plane [29]. This simpler approach is usually considered in recursive
estimation and it is used in the present context.

In RSRIVC, to guarantee the stability of the prefilter and auxiliary model,
the projection algorithm presented in [4, 5] is used. The previous discussion
about stability was done for the state-space representation (43). In practice
however, the poles related to the prefilter and auxiliary model, are considered
in the stability test and projection algorithm.

Let us present the projection algorithm by defining first a set Ds con-
taining stable estimates θ̂(tk), i.e.

Ds = {θ | the poles of the characteristic equation . . .

A(p,θ) = 0 are in the left half plane} (45)

If the estimate before the stability check is denoted by θ̂
?
(tk), and after it by

θ̂(tk), then

θ̂(tk) =

{
θ̂
?
(tk) if θ̂

?
(tk) ∈Ds

θ̂
�
(tk) if θ̂

?
(tk) /∈Ds

(46)

where θ̂
�
(tk) is a stable estimate obtained by reflecting the poles of A(p,θ) =

0 into the left half plane. This means that the sign of the real part of the
unstable poles is changed. Note that in this way, the magnitude characteristic
of the prefilter and auxiliary model is not changed. As mentioned in [7, p.
373], in recursive identification algorithms, stability issues may arise at the
beginning of the data record.
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5.2. Correlation between filtered instruments and filtered noise

In an LTI identification problem, the consistency condition C2 from Ap-
pendix A.1 is not fulfilled when there is correlation between the filtered
instrument and the filtered version of vo(tk). SRIVC is an iterative method
where both the prefilter and the instrument depend on the estimates of a
previous iteration. Then, for SRIVC, condition C2 holds asymptotically as
the number of iterations increases and the estimates get close to the true
parameter vector. Analogously, in RSRIVC both the filter F and the instru-
ment ζ depend on the estimates of a previous recursion. Then, in an LTI
identification problem, we can expect that condition C2 holds asymptotically
as the recursions increase and the estimates get close to the true parameter
vector.

If the true parameters are slowly varying, there will be always some cor-
relation between filtered instruments and the filtered version of vo(tk), and
condition C2 will be slightly violated. In order to reduce this correlation, the
estimates can be filtered, following the approach first used in the DT case
(see [30] and [Chapter 7 in 9]). The filter, denoted here by Mθ(p), has the
additional effect of smoothing the estimates, which improves the stability of
the algorithm [4, p. 315]. A scheme of the RSRIVC approach, including the
filter Mθ(p) and the stability test described previously, is shown in Figure 1.

5.3. Choice of hyper-parameters

It is important to carefully set the values for the different hyper-parameters
introduced in Sections 4 and 5.2 because they ensure that the algorithms are
robust and work well in practice. Some guidelines for choosing them are
presented below.

Choice of θ̂(t0) and P (t0)

To start RLSSVF, the initial conditions θ̂(t0) and P (t0) have to be spec-
ified. If there is no knowledge about θ̂(t0), the ‘diffuse prior’ assumption
can be used: i.e. θ̂(t0) = 0 together with a diagonal P (t0) matrix with
large elements reflecting the lack of prior knowledge. Normally θ̂(t0) = 0
and P (t0) = γ · I, with γ a scalar and I the identity matrix. The value
of γ depends on the order of magnitude of the system parameters and also
on the variance of the output noise σ2

e , because P (tk) is normalized by σ2
e .

Nonetheless, as default value we consider γ = 104. For the IV based methods,
another option is to choose θ̂(t0) and P (t0) as the last estimates computed
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Figure 1: Diagram of RSRIVC including a stability test and a filter Mθ(p) to reduce the
correlation between filtered instruments and filtered noise.

with RLSSVF. That approach is considered in the numerical example in
Section 7.2.

Choice of λsvf

The SVF prefilter is a simple alternative to the optimal prefilter used
in full RIVC estimation. For the choice of λsvf of the SVF prefilter, the
following two aspects have to be considered: (i) Filtering the model to be
identified yields a filtered noise vf(tk) (see (27)). In general, vf is a coloured
noise that deteriorates the accuracy of the estimates. In order to reduce
the effect of high frequency noise, λsvf should be small. (ii) The larger the
value of λsvf , the more informative are the filtered signals, which leads to a
faster convergence rate 1. Thus, there is a trade-off in the choice of λsvf . The
experience shows that a suitable choice is a value in the range

[0.5ωb,max, 1.1ωb,max] (47)

1In [31] it is also shown that the smaller the sampling time, the faster the convergence
rate.
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with ωb,max the largest bandwidth of the LTV system. Assuming that the
sampling frequency 1/Ts is such that,

1/Ts ≈ 10ωb (48)

a first guess for λsvf can be obtained using (47) and ωb,max = ωb. For LTV
systems with relatively large bandwidth variations, the specification of λsvf

can be critical since the system bandwidth is time-varying (see the numerical
example in [24]). In practice, some prior guidance on the selection of the
cut-off frequency for the SVF, λsvf , can be obtained by estimating local LTI
models on segments of the training data using RIVC, SRIVC or LSSVF.
Additionally, the Nyquist frequency can be considered as an upper bound
for λsvf .

Choice of Qn

In order to use the Kalman filter type of recursive updating, the user has
to specify the NVR matrix Qn by defining the matrix Qw and the scalar
σ2
e (see (14)). In general, Qw is a symmetric positive semidefinite matrix.

Usually it is assumed that σ2
e = 1 andQw is set asQw = diag{σ2

w1
. . . σ2

wnθ
},

where σ2
wi

is the variance of the parameter θi(tk). If it can be assumed that
all the parameters vary at the same speed, then Qw = σ2

wI, with I the
identity matrix. Since the parameters are assumed to be slowly varying, it
is possible to detect which parameters are varying by identifying local LTI
models on segments of the training data, as in the selection of λsvf above.
In case the parameter θi(tk) is known to be constant, then σ2

wi
can be set to

zero or a value close to zero. If the parameter θi(tk) is time-varying, then it
is suggested to start setting σ2

wi
= 0.1 and then continue tuning by trial and

error.
A more complex approach, that has worked well in the off-line case (see

Section 4.5.3 in [3]) and has been used in recursive algorithms available in the
CAPTAIN Toolbox for MATLAB2, is to optimize the NVR hyper-parameters
using either maximum likelihood optimization based on prediction error de-
composition, or optimization of the single- or multiple-step-ahead prediction
errors. The simplest approach of this kind can be utilized in low noise situa-
tions (experience suggests with noise levels up to 10% by standard deviation).

2The CAPTAIN Toolbox is freely available via the website http://captaintoolbox.

co.uk/Captain_Toolbox.html/Captain_Toolbox.html
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It involves first using the irwsmooth routine in CAPTAIN Toolbox to differ-
entiate the data (as used successfully in, e.g., [32]). Then the dlropt routine
is employed to optimize the diagonal elements of Qw so that these can be
used in the dlr routine, which provides on-line estimates of the changing
parameters in a time-varying parameter linear regression model of the form
(9). Qw optimized in this manner is then utilized in the proposed on-line
algorithms. This optimization approach is employed later in the example
described in Section 7.2, where the noise level is low.

Choice of ts,iv
The recursive IV based methods are initialized using RLSSVF. The switch

between these algorithms takes place at some time instant ts,iv, when the IV
based approaches are then initialized. The switch at ts,iv should be carried out
once convergence of the RLSSVF estimates is achieved. This can be assessed
by checks on one (or more) of the following: (i) the variability or steady state
condition of ∆θ̂(tk) = θ̂(tk−1)−θ̂(tk), (ii) the size of the parameter covariance
matrix P (tk), which can be measured in terms of trace or determinant, (iii)
the condition number of the parameter covariance matrix P (tk), (iv) the
prediction error ε(tk), and (v) the output error εy(tk) defined in (33).

For instance, the variability of ∆θ̂(tk) can be measured through its vari-
ance, as computed recursively with, for example, a simple exponential moving
average of the kind used in an analogous manner by [33]. The steady state
condition of the output error can be assessed using the approach proposed
in [34]. Note that the automatic detection of the convergence of RLSSVF
requires setting threshold values and these will depend on the system being
studied. A simple option that is considered in the examples in Section 7 is
to use RLSSVF and check its convergence based on the output error.

Choice of Mθ(p)

Noisy data will lead to estimates with high variability, which at the same
time can cause numerical issues in the identification algorithm. Then, in
such cases, a filter Mθ(p) (see Figure 1) should be used. Slowly time-varying
parameters are considered, and thus the signals have low frequency content.
Thus, Mθ(p) should be a lowpass filter such that the frequencies of interest
of the time-varying parameters are not affected. A simple choice is a first
order filter,

Mθ(p) =
1

τθp+ 1
(49)
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with τθ being a hyper-parameter to be chosen. Note that choosing a filter
with a bandwidth close to the largest frequency of interest of the time-varying
parameters can delay the estimates such that the fit between measured and
simulated output will be affected. Thus, the filter bandwidth should be
much larger than the largest frequency of interest. In order to implement
a filter such as (49), it has to be discretized, for instance using the Tustin
method. Alternatively, a low-pass finite impulse response (FIR) filter can be
considered. Similarly to the approach in [30], a simple multi-sample delay
Mθ(q

−m), with m ≥ 1 can also be used3. As default option, Mθ(q
−1) = q−1,

is considered.

Remark 2. The algorithms that have been presented, are available in the
CON- tinuous-Time System IDentification (CONTSID) toolbox, which can
be freely downloaded 4.

6. Measures of estimator performance

In practical applications, the tracking ability of the proposed approaches
can be measured only indirectly in terms of the prediction error ε, or the fit
between measured output and simulated output. The fit is defined as follows

F = 100×

[
1− ‖y(tk)− ŷ(tk, θ̂, u)‖
‖y(tk)−mean(y(tk))‖

]
(50)

In numerical simulations, however, the true parameters are available,
which allows us to assess the performance by means of the tracking error

θ̃(tk) = θo(tk)− θ̂(tk) (51)

The ith element of θo(tk) is denoted by θo
i (tk), i.e.

θTo (tk) =
[
θo

1(tk) θo
2(tk) . . . θo

nθ
(tk)
]

(52)

Analogously, the ith element of θ̂(tk) is denoted by θ̂i(tk). Then, the param-
eter relative error can be defined as follows

θ̃i,r(tk) =
θo
i (tk)− θ̂i(tk)

θo
i (tk)

(53)

3The approach from [30] can be understand as a combination of two different variants
to define the intruments (see [35, p. 25, variants 1 and 3]).

4http://www.contsid.cran.univ-lorraine.fr/
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where θ̃i,r(tk) is the ith element of the parameter relative error vector,

θ̃
T

r (tk) =
[
θ̃1,r(tk) θ̃2,r(tk) . . . θ̃nθ,r(tk)

]
(54)

Finally, the average value of the squared norm of the relative error vector for
the kth time instant can be computed as follows.

MMSE =
1

N · nθ

N∑
k=1

‖θ̃r(tk)‖2 (55)

By adding and subtracting E[θ̂(tk)] in (51), the tracking error can be split
into two parts [8, p. 524], the lag error θ̃l(tk) and the noise error θ̃n(tk), i.e.

θ̃(tk) = θo(tk)− E[θ̂(tk)]︸ ︷︷ ︸
θ̃l(tk)

+E[θ̂(tk)]− θ̂(tk)︸ ︷︷ ︸
θ̃n(tk)

(56)

These errors cannot be minimized simultaneously due to the well-known
trade-off of recursive algorithms between tracking capability and noise sen-
sitivity [6]. For tracking problems, the lag error can be compared to the
standard concept of bias in LTI systems [36, p. 15]. The presence of lag er-
ror is evidence of the non-stationary nature of the environment [8], meaning
that, in the case of time-varying parameters, the lag error is larger than in
the time-invariant case. Indeed, in the latter, the lag error could be zero.

The lag error and noise error can be computed by Monte Carlo simulations
using a given input and different measurement noise realizations. Then, the

expectation E[θ̂(tk)] is replaced by the sample mean
¯̂
θ(tk) over the total

number of simulations. Such analysis is applied in Section 7.1. It is then
convenient to define two additional measures, the average mean squared value
of the lag error defined by

MMSEl[θ̂(tk)] =
1

N · nθ

N∑
k=1

‖θo(tk)− ¯̂
θ(tk)]‖2 (57)

and the average mean squared value of the noise error given by

MMSEi
n[θ̂(tk)] =

1

N · nθ

N∑
k=1

‖¯̂θ(tk)− θ̂(tk)‖2 (58)

where the superscript i means that the computation is carried out w.r.t. the
estimate θ̂(tk) from the ith simulation, which can be chosen arbitrarily.

21



Remark 3. In the identification of LTI models, IV methods are applied to
remove (or reduce) bias. Analogously, in the LTV case, the aim is to reduce
the lag error which comes at the expense of slightly increasing the noise er-
ror. This is the well-known trade-off of recursive algorithms between tracking
ability and noise sensitivity.

It is important to mention that two different estimations of time-varying
parameters, computed with different methods, can have a similar fit; how-
ever that does not mean that the estimates are similar, that is, they can
have different values for MMSE (see the Monte Carlo simulation in the ex-
ample from Section 7.1). This happens because, for a certain estimation, the
errors among the parameters compensate each other; thus the error in the
parameter estimates do not have a significant impact in the fit.

7. Examples

7.1. Numerical example

Let us consider a mass-spring-damper system given by:

(mp2 + c(t)p+ k)x(t) = kuu(t)

with time-varying damping coefficient c(t),

c(t) = 1 + 0.4 cos(2πt/4500 + π) (59)

The other coefficients are constant: m = 0.6, k = 1, ku = 1.2. Then, the
data generating system is given by

S

{(
p2 + ao

1(t)p+ ao
2(t)
)
x(t) = bo

0(t)u(t)

y(tk) = x(tk) + e(tk)
(60)

where ao
1(t) = c(t)/m, ao

2(t) = k/m, bo
0(t) = ku/m. In this example, the DT

measurement noise is a zero-mean Gaussian noise with variance σ2
e = 0.03.

Input-output data is generated using a sampling time Ts = 0.3 s; part of the
data is shown in Figure 2.
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Figure 2: Part of the input-output data.

Single experiment analysis

In this section, the performance of the indirect and direct approaches are
analysed using a single experiment. Considering the usual zero-order hold
(ZOH) assumption for the input, the DT equivalent system is given by

x(tk) + αo
1(tk)x(tk−1) + αo

2(tk)x(tk−2) = βo
1(tk)u(tk−1) + βo

2(tk)u(tk−2)

(61a)

y(tk) = x(tk) + e(tk) (61b)

Considering the discussion in Section 5.3, the hyper-parameters of the
approaches that are being tested are given next.

• IndirectARX: Qn = diag([10−3 10−3 10−5 10−5]). As a prefilter a SVF
of order 2 with λsvf = 2 rad/s is considered. The SVF is discretized
with ZOH.

• IndirectOE:Ns,oe = 1501 (t = 450 s),Qn = diag([10−5 10−5 10−3 10−3]).

• RLSSVF: λsvf = 2 rad/s, Qn = diag([0 10−4 0]).

• RSRIVC: ts,iv = 450 s, λsvf = 2 rad/s, Qn = diag([0 10−4 0]).

• RIVSVF: ts,iv = 450 s, λsvf = 2 rad/s, Qn = diag([0 10−4 0]).
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Figure 3: True CT parameters (dashed lines) and RSRIVC estimates (continuous line).

λsvf has been chosen slightly larger than the maximum system bandwidth
which is approximately 1.8 rad/s. ts,iv has been defined by using RLSSVF
and checking its convergence based on the output error; ts,iv is then used
to set the corresponding value for Ns,oe. In this example, the noise level by
standard deviation is approximately 17%; therefore, the approach presented
in Section 5.3 to estimate Qn cannot be applied, and it is estimated by trial
and error. Keep in mind that the choice of Qn is a trade-off between tracking
ability and noise sensitivity, or in other words a trade-off between noise error
and lag error (see Remark 3). Therefore, there is no unique value of Qn

which yield suitable estimates.
The best result is obtained with RSRIVC (see Figure 3), while from

the indirect approaches the best result is obtained with IndirectARX (see
Figure 4). Note that, the conversion from DT to CT parameters yields two
parameters bi; according to (3), b1 in Figure 4 corresponds to b0 in Figure 3,
and b0 in Figure 4 should be equal to zero.

The correct DT model is OE and not ARX. Therefore, for IndirectOE,
once the switch from ARX to OE takes place, more accurate estimates are
obtained. On the other hand, with the indirect approaches, there is one
additional DT parameter to be estimated and all the DT parameters are
time-varying. That makes more complex the estimation problem and the
choice of the NVR matrix Qn.

During the initial recursions, the DT to CT conversion can fail because
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Figure 4: True CT parameters (dashed lines) and CT estimates obtained from Indirec-
tARX (continuous lines).

the poles are close to the origin; or the model order has increased to handle
real negative poles. In these situations, at recursion tk, the estimates are
set to those obtained at the previous sampling instant tk−1. All these issues
probably make the direct estimation of CT LTV models a better approach.

Monte Carlo simulation

In order to illustrate the benefits of RSRIVC and its variant RIVSVF
over RLSSVF, a Monte Carlo simulation analysis is performed with 100 re-
alizations. Since this is a numerical example, the noise-free output data
is available. Then, the mean and standard deviation of the fits (see (50))
computed with the noise-free output (F0) are shown in Table 1; as it can
be observed, in terms of mean(F0), the IV based approaches outperform
RLSSVF. For each method, also the mean and standard deviation of the fits
computed with the noisy output data (F) are shown in Table 1. It can be
seen that the mean of these fits are very similar; however, the estimates are
different, as it is shown next.

The MMSE is computed for each estimation method and for each sim-
ulation. Also, for each estimation method, the average of MMSE, denoted
by MMSE, is computed. The values of MMSE for the different approaches
are shown in Table 2; notice that the value of MMSE for RIVSVF is much
smaller than the value for RLSSVF, however, the smallest MMSE is obtained
for RSRIVC, as expected. RIVSVF also exhibits good performance, partly
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Table 1: Mean and standard deviation for the fits obtained with the proposed approaches.
F : fits computed with measured output; F0: fits computed with noisy-free output.

Method mean(F0) std(F0) mean(F) std(F)

RLSSVF 96.3 0.1348 82.6 0.1143
RSRIVC 98.3 0.1173 82.9 0.1048
RIVSVF 98.1 0.1449 82.8 0.1037

Table 2: Performance indexes for the different approaches. MMSE: mean of MMSE (see

(55) for definition of MMSE); MMSEl[θ̂(tk)]: average mean squared value of the lag error;

MMSE1
n[θ̂(tk)]: average mean squared value of the noise error considering the run 1 as a

reference.

Method MMSE MMSEl[θ̂(tk)] MMSE1
n[θ̂(tk)]

RLSSVF 37.8 1.41 · 10−2 3.35 · 10−4

RSRIVC 1.6 3.86 · 10−4 3.04 · 10−4

RIVSVF 3.2 8.71 · 10−4 4.53 · 10−4

because of the fortuitous selection of λsvf .
In the LTI case, it is known that the RLSSVF estimates are always biased

due to the measurement noise. Even if the bias cannot be removed, it can
be reduced by a proper choice of the cut off frequency λsvf . In the LTV case,
the issue is more difficult since the system bandwidth is varying. However,
instrumental variable methods, like RSRIVC, can cope with the measure-
ment noise and reduce the lag error, as pointed out previously in Remark 3.
Table 2 shows the average mean squared value of the lag error MMSEl[θ̂(tk)],
and average mean squared value of the noise error MMSE1

n[θ̂(tk)]. Note that
the smallest values are obtained for RSRIVC. On the other hand, the noise
error is smaller for RLSSVF than for RIVSVF. Nonetheless, if these two
approaches are compared in relative terms, it can be observed that the re-
duction of the lag error with RIVSVF is greater than the increase in the noise
error.
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7.2. An electrical circuit example

In [37], real data collected from a second order bandpass filter has been
proposed as a benchmark for both LPV model and LTV model identification5.
The electronic circuit has a parallel connection of an n-type J-FET transistor
and a 470 kΩ resistor. The scheduling variable r(t), the input u(t) and output
y(t) are voltages. The noise level in the measurements is very low, with an
SNR of more than 60 dB. Note that some small non-linear effects are also
present.

Several scenarios are considered in [37], consisting on different excitations
and scheduling signals are provided. In order to evaluate the algorithms
proposed in the present paper, one of the scenarios with smooth parameter
variations is considered. The chosen scenario corresponds to the mat-file:

MS Harm h3 N15640 RMS70 P2P700.mat (62)

According to the qualitative description of the circuit given in [37], the
system has two complex poles and one zero at the origin. Therefore, the
following CT LTV OE model is considered

(p2 + a1(t)p+ a2(t))x(t) = b0(t)pu(t) (63a)

y(tk) = x(tk) + e(tk) (63b)

where the input u(t) and output y(t) are voltages.
The data which is contained in (62) consist of 6 experiments, denoted

here by Ei, with i = 1, . . . , 6. Since only LTV models are identified, the
measured scheduling signal is not used. For the present purposes, only the
following experiments, with a sampling frequency of 156250 Hz, are used: E1
as estimation data and E3 as validation data. As part of the preprocessing,
the mean levels are removed from the data. A section of the input-output
data from experiment E1 is presented in Figure 5.

The goal of the analysis is to assess the performance of RLSSVF, RIVSVF
and RSRIVC. Experiment E1 is used to guide the choice of the hyper-
parameters. λsvf is set equal to the Nyquist frequency, i.e. λsvf = π/Ts ≈
4.91 ·105 rad/s; this is possible to do since the data is not noisy. From [37], it
is known that the parameter b0(t) is constant. In addition, tests have shown

5see http://homepages.ulb.ac.be/~jlataire/BenchmarkSYSID2015_ELEC_LTV_

LPV/
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Figure 5: Part of the input-output data for the identification of the circuit model.

that also a1(t) is nearly constant. This means that, in Qn, the corresponding
NVR values for both a1(t) and b0(t) can be set to zero. As it is confirmed by
the results that are shown next, the noise on the data is low in this example;
thus, it is possible to use the hyper-parameter optimization approach outlined
in Section 5.3, which yields Qn = diag([0 0.67 0]). Regarding ts,iv, noting
the convergence of RLSSVF, ts,iv is set to 20 ms. Finally, in order to choose

θ̂(t0) and P (t0), the order of magnitude of the system parameters has to be
considered. In this example, the values of the system parameter are large, so
the default value for γ (see Section 5.3) might not be suitable. However, in
this case θ̂(t0) and P (t0) are obtained as the last RLSSVF values.

The RSRIVC estimates are shown in Figure 6 but, because the noise on
the measurements is so low, the standard deviations are not visible at the
given scale. For instance, in the last estimation the standard deviations are
7.2 · 10−12 %, 8.3 · 10−11 % and 4.2 · 10−12 %, respectively, for â1, â2 and b̂0.

To assess the quality of the estimates, the benchmark criterion proposed
in [37] is used, which corresponds to the RMS error computed on the second
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Figure 6: RSRIVC estimates and their corresponding standard deviation: because the
noise level is so small, the standard deviations are not visible at this scale.

period of the simulated output signal, i.e.

RMSEy =

√√√√ 1

N −Ntr

2N−1∑
k=N+Ntr

(
y(tk)− ŷ(tk, θ̂, u)

)
(64)

where y(tk) is the measured output from the validation data. The simu-
lated output ŷ(tk, θ̂, u) is computed from the estimate θ̂ and the measured
input u(tk) from the validation data E3. Ntr = 500 is used to eliminate the
transient effects. In addition, the fit between the measured and simulated
outputs is computed. In [37], the proposed model structure for the data set
used here, which is different than ours (see (63)), has 3 poles and one zero,
with none of the parameters in the numerator being set to zero.

The results obtained, using the data set E3 for validation, are shown in
Table 3. The fits are very good, which again indicates that there is a low
noise level in the data. From the RMSEy, it can be seen that RSRIVC is
doing better than RLSSVF and RIVSVF, but this result is still not as good
as that given in [37]. Notice that in our case, however, apart from having
a simpler model structure, only the data set E1 is considered as estimation
data. On the other hand, assuming that the parameters are slowly varying,
they are estimated using a random walk model. The advantage of it is that
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Table 3: Performance indexes using validation data.

Method RMSEy (mV) F (%)

[37] 0.1156 not reported
RLSSVF 0.6487 95.9
RIVSVF 0.6445 96.0
RSRIVC 0.4137 97.4

no fixed global model for the parameter variations is needed. If the system
properties are time-varying due to ageing effects or environmental conditions,
the random walk model can be specially useful in an adaptive control scheme
that includes a recursive identification approach as the one proposed in this
paper.

7.3. A hydrological system example

This example concerns the modelling of the measured daily rainfall-flow
data from the ephemeral River Canning in Western Australia [38], as shown
in Figure 7, for 701 days between 1985 and 1987. The relationship between
rainfall and flow is clearly nonlinear, with rainfall leading to run-off and
flow in the river during the wet periods of the year but no flow occurring
at all during the dry periods. This is because transient rainfall during this
dry period is absorbed by the dry soil. Indeed, this example is used as an
demonstration example for nonlinear DT model estimation in the CAPTAIN
Toolbox for MATLAB. Nevertheless, it can be seen that it is also possible
to represent this system by the following simple first order CT LTV model
between the input rainfall u(t) and output flow x(t):

(p+ a1(t))x(t) = b0(t)u(t) (65a)

y(tk) = x(tk) + e(tk) (65b)

based on the sampled rainfall and flow measurements u(tk) and output y(tk)
shown in Figure 7. This approach is useful because it provides an adaptive
model that can be used for on-line flow forecasting.

In this example, it is known that the rainfall is varying between samples so
the Tustin approach is used for discretization. The hyper-parameter values
were selected partly using the guidelines from Section 5.3 and partly by
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Figure 7: Input-output data for the rainfall-flow system.

trial and error; the latter is simple in this example because there are only
two parameters, one of which appears almost constant. Note that trial and
error is applied seeking that, by using the estimation data, the fit between
measured output and simulated output is maximized. Let us discuss the
choices of the hyperparameters. Choice of λsvf : from the sampling frequency,
an order of magnitude for the bandwidth can be obtained considering (47)
and (48), which yields λsvf ∈ [0.32 0.69] rad/day. That give us an order of
magnitude for λsvf . By trial and error, λsvf = 0.25 rad/day, is finally chosen.
Choice of θ(t0) and P (t0): if the parameter a1 is constant, as it happens to
be, a1(t0) = λsvf = 0.25 rad/day. Therefore, θ(t0) = [0.25 0], and since
there is some knowledge about a1(t0), it is assumed P = diag([10 104]).
Choice of Qn: the estimation of Qn is done by trial and error using RLSSVF.
First it is considered that Qn = σ2

ωI, and then the more involved case where
Qn = diag([σ2

ω1
σ2
ω2

]); finally, Qn = diag([0.0001 0.006]), is chosen. Choice
of ts,iv = 125 days: considering the convergence of RLSSVF, ts,iv = 125 days
is chosen. The filter Mθ(p) is not used for the IV based approaches because
better estimates are obtained without it. The reason for this is probably the
relatively slow sampling rate in this example.

In Table 4 the fits for the different approaches are compared. The result
for RSRIVC with a fixed prefilter is also included; in this case the prefilter
is fixed with the last RLSSVF estimates, that is, the estimates obtained just
before the switching time ts,iv. The best fit corresponds to RSRIVC with
a fixed prefilter; the estimates obtained with this approach are plotted in
Figure 8, together with the standard deviation bounds, shown in grey. The
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Table 4: Fits for the different methods.

Method F (%)

RLSSVF 72.3
RIVSVF 72.2
RSRIVC 72.2
RSRIVC with fixed prefilter 72.5

expansion of these bounds at various stages in the estimation is caused by
the absence of any rainfall input over these sections of the data, so that the
recursive estimate of b0 is zero or nearly zero and the uncertainty in the
estimates grows continually until rainfall occurs. This is to be expected, of
course, and it demonstrates that the algorithm is working well in this regard.
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Figure 8: Estimates obtained with RSRIVC with fixed prefilter and their corresponding
standard deviation.
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9. Conclusions

This paper addresses the problem of estimating slowly variable parame-
ters of continuous-time models in real time, from sampled data. It proposes
and evaluates recursive least squares and instrumental variable algorithms
using both simulated and real data. This includes implementation issues
and the practical aspects of the proposed instrumental variable algorithms.
The numerical example uses both single experiment and Monte Carlo based
simulations; and the results of this analysis demonstrate, through different
measures of estimator performance, the benefit of using the instrumental
variable approach. Finally, the recursive estimation algorithms are tested
on two practical identification problems, using real data, and the results ob-
tained confirm the practical utility of the algorithms and provide important
practical guideline to the user.
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[19] K. Åstrom, B. Wittenmark, Adaptive Control, Dover Publications Inc.,
2008.

[20] R. Isermann, M. Münchhof, Identification of Dynamic Systems. An In-
troduction with Applications, Springer-Verlag, 2010.

34



[21] M. Mensler, S. Joe, T. Kawabe, Identification of a toroidal continuously
variable transmission using continuous-time system identification meth-
ods, Control Engineering Practice 14 (1) (2006) 45–58.

[22] H. Garnier, M. Gilson, P. C. Young, E. Huselstein, An optimal IV tech-
nique for identifying continuous-time transfer function model of multiple
input systems, Control Engineering Practice 46 (15) (2007) 471–486.

[23] P. C. Young, H. Garnier, M. Gilson, Refined instrumental variable iden-
tification of continuous-time hybrid Box-Jenkins models, in: Identifica-
tion of continuous-time models from sampled data, Vol. H. Garnier and
L. Wang (Eds.), Springer, 2008, pp. 1–30.

[24] A. Padilla, H. Garnier, P. C. Young, J. I. Yuz, Real-time identification of
continuous-time linear time-varying systems, in: IEEE 55th Conference
on Decision and Control, Las Vegas, US, 2016, pp. 3769–3774.

[25] L. Gustafsson, M. Olsson, Robust on-line estimation, Master’s thesis,
Lund Institute of Technology (1999).

[26] J. E. Parkum, Recursive identification of time-varying systems, Ph.D.
thesis, Technical University of Denmark (1992).

[27] P. C. Young, An instrumental variable method for real-time identifica-
tion of a noisy process, Automatica 6 (1970) 271–287.

[28] W. J. Rugh, Linear System Theory, Prentice Hall, 1996.

[29] A. Ilchmann, D. Owens, D. Prätzel-Wolters, Sufficient conditions for
stability of linear time-varying systems, System & Control Letters 9
(1987) 157–163.

[30] K. Wong, E. Polak, Identification of linear discrete time systems us-
ing the instrumental variable method, IEEE Transactions on Automatic
Control AC-12 (6) (1967) 707–718.

[31] C. Canudas de Wit, Recursive estimation of the continuous-time pro-
cess parameters, in: 25th Conference on Decision and Control, Athens,
Greece, 1986, pp. 2016–2020.

35



[32] A. Janot, P. C. Young, M. Gautier, Identification and control of elec-
tromechanical systems using state-dependent parameter estimation, In-
ternational Journal of Control 90 (4) (2017) 643–660.

[33] A. Bittencourt, A. Isakson, D. Peretzki, K. Forsman, An algorithm for
finding process identification intervals from normal operating data, Pro-
cesses - Open Access Journal 3 (2015) 357–383.

[34] S. Cao, R. Rhinehart, An efficient method for on-line identification of
steady state, Journal of Process Control 5 (6) (1995) 363–374.
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Appendix A. Identification of a CT LTI system

Appendix A.1. Optimal theoretical estimates

If the parameters in (1) are constant, then the system corresponds to the
following CT LTI OE representation

S

{
Ao(p)x(t) = Bo(p)u(t)

y(tk) = x(tk) + eo(tk)
(A.1)

where eo(tk) is a zero-mean DT white noise sequence. The polynomials Ao(p)
and Bo(p) are assumed to be relatively coprime and are given by

Bo(p) = bo
0p
nb + bo

1p
nb−1 + . . .+ bo

nb
(A.2)

Ao(p) = pna + ao
1p
na−1 + . . .+ ao

na (A.3)

with na ≥ nb. System (A.1) can be written as follows

y(na)(tk) = ϕT (tk)θo + vo(tk) (A.4)

where vo(tk) = Ao(p)eo(tk) and

θo =
[
ao

1 . . . ao
na bo

0 . . . bo
nb

]T
(A.5)

Our goal is to estimate a model for (A.1). The optimal IV estimate is
defined by

θ̂ = arg min
θ∈Rnθ

1

N

∥∥∥∥∥
[

N∑
k=1

F (p)ζ(tk)F (p)ϕT (tk)

]
θ −

[
N∑
k=1

F (p)ζ(tk)F (p)y(na)(tk)

]∥∥∥∥∥
2

W
(A.6)

where ζ(tk) is the instrument vector and F (p) is a stable prefilter and ‖x‖2
W =

xTWx, with W a positive definite weighting matrix.
If S ∈ M, the estimates (A.6) are consistent under the following condi-

tions [35] 6:

C1. Ē{F (p)ζ(tk)F (p)ϕT (tk)} is full column rank.

6The notation Ē[.] = limN→∞
1
N

∑N
k=1E[.] is adopted from the prediction error frame-

work of [7].
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C2. Ē{F (p)ζ(tk)F (p)vo(tk)} = 0.

The instrument ζ(tk) can be computed in different ways. Basically, it is
defined such that the filtered instrument F (p)ζ(tk) is uncorrelated with the
filtered noise F (p)vo(tk), which corresponds to condition C2.

Optimal estimates, i.e. unbiased and minimum variance estimates, are
obtained if the following additional conditions are satisfied (see [39] and ref-
erences therein)

C3. W = I

C4. F (p) = 1
Ao(p)

C5. The instrument vector is computed using the auxiliary model

ζ(tk) =
[
−x(na−1)(tk) . . . −x(tk) u(nb)(tk) . . . u(tk)

]T
(A.7)

where

x(t) =
Bo(p)

Ao(p)
u(t) (A.8)

Appendix A.2. Optimal estimates in practice: the SRIVC method

The optimal estimate (A.6) cannot be obtained in practice since it re-
quires knowledge of the true system. The practical and optimal solution is
the SRIVC method. This is an iterative approach, where both the prefilter
and the instrument are updated in each iteration based on the estimates ob-
tained at the previous iteration. The SRIVC estimate at the ith iteration is
given by [SRIVC : see e.g. 40, 3, 41]

θ̂
i

=

[
N∑
k=1

ζf(tk, θ̂
i−1

)ϕf
T (tk, θ̂

i−1
)

]−1

·

[
N∑
k=1

ζf(tk, θ̂
i−1

)y
(na)
f (tk, θ̂

i−1
)

]
(A.9)

where

y
(na)
f (tk, θ̂

i−1) = pnaF (p, θ̂i−1)y(tk) (A.10a)

ϕTf (tk, θ̂
i−1) = F (p, θ̂i−1)ϕT (tk) (A.10b)

with

F (p, θ̂i−1) =
1

Â(p, θ̂i−1)
(A.11)

38



The filtered instrument ζf(tk, θ̂
i−1) is defined through the instrument

ζ(tk, θ̂
i−1) =

[
−x̂(na−1)(tk) . . . −x̂(tk) u(nb)(tk) . . . u(tk)

]T
(A.12)

with x̂(tk) defined by the auxiliary model

x̂(tk) =
B̂(p, θ̂i−1)

Â(p, θ̂i−1)
u(tk) (A.13)

Then,

ζf(tk, θ̂
i−1) = F (p, θ̂i−1)ζ(tk, θ̂

i−1)

=
[
−x̂(na−1)

f (tk) . . . −x̂f(tk) u
(nb)
f (tk) . . . uf(tk)

]T
(A.14)
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