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Abstract 

Many environmental time-series measurements are characterised by irregular sampling.  A 
significant improvement of the Dynamic Harmonic Regression (DHR) modelling technique to 
accommodate irregular sampled time-series, without the need for data pre-processing, has been 
developed.  Taylor’s series is used to obtain the time-step state increments, modifying the transition 
equation matrices. This allows the user to avoid artefacts arising and insertion of assumptions from 
interpolation and regularisation of the data to a regular time-base and makes DHR more consistent 
with the Data-Based Mechanistic approach to modelling environmental systems.  The new technique 
implemented as a Matlab package has been tested on demanding simulated data-sets and 
demonstrated on various environmental time-series data with significantly varying sampling times.  
The results have been compared with standard DHR, where possible, and the method reduces 
analysis time and produces unambiguous results (by removing the need for pre-processing – always 
based on assumptions) based only on the observed environmental data. 

 

1.0 Introduction 

In analysing environmental data and modelling environmental processes there is a significant need 
to identify and estimate trends, cycles, and seasonal components. Dynamic Harmonic Regression 
(DHR) provides a cogent analytical tool to generate such results. It is, however, firmly based in the 
classical time series analysis domain and relies on the data being sampled at specific intervals. 
However, in many disciplines dealing with the natural environment, data-sets are not sampled at 
regular intervals. Presented here is a significant update to DHR allowing direct use of irregularly 
sampled time series data in estimation of trends, cycles and seasonal components. In addition, there 
is a distinct need for such a method to be accompanied by software that is easy to use and with 
results directly interpretable in the terms of the specific discipline, be it climatology, hydrology or 
environmental chemistry, to cite a few of the disciplines where these methods have been 
successfully applied by the authors.  

Dynamic Harmonic Regression is a nonstationary time-series analysis approach used to identify 
trends, seasonal, cyclical and irregular components within a state space framework (Young, 1989). 
The DHR method is implemented in the CAPTAIN Toolbox for Matlab and has been used extensively 
by many researchers (Young et al., 1999, Taylor et al., 2007). The DHR methodology has a wide range 
of applications, and is particularly useful in analysing environmental data; such as atmospheric 
pollutants (Becker et al., 2006, Venier et al., 2012) where, importantly, it is cited as a recommended 
method in the 2011 UNEP Air Report in the Persistent Organic Pollutants section (UNEP, 2011). 
Other significant applications include paleoclimatology data based on isotope dating (Smith et al., 
2016), impacts on catchment water balance (Chappell and Tych, 2012), groundwater-surface water 
fluxes (Keery et al., 2007), geomorphology (Carling et al., 2005), water quality cycles (Halliday et al., 
2013), or solar irradiation forecasting (Trapero et al., 2015), but also in forecasting of phone-call 
numbers within the call-centre context (Tych et al., 2006), medicine (Sofianopoulou et al., 2017) and 



finance (Bhar, 2010).  However, when data are irregularly sampled, the existing DHR and related 
methods cannot be applied directly. For instance, paleoclimatic data-series from core samples and 
speleothems are interpolated onto a fixed time-base prior to analysis (e.g. Smith et al., 2016). 
Historic water quality data, geomorphological data and atmospheric chemistry data (e.g. Becker et 
al., 2006, Carling et al., 2005) are treated in the same way using prior processing. 

The problem is that the original state-space filtering-based DHR cannot handle irregular sampling 
without applying resampling techniques making the time sampling uniform prior to the analysis. As 
useful as resampling is, it is still manipulation of the observed data and leads to increased 
uncertainties in model outputs and to potential artefacts resulting from the interpolation techniques 
applied, such as aliasing (Chappell et al., 2017) or spectral features of the approximation functional 
base applied in the interpolation process. Importantly, where the actual samples become sparser it 
can lead to ‘false certainty’ - introducing interpolated samples where there are no data available. 
The uncertainty estimates then become tainted, usually unduly lower.  Conversely, where samples 
are denser it can lead to a removal of information, also leading to increasing uncertainty (fewer 
samples - less averaging) and potentially losing information in the upper part of the signal spectrum.  
Common anti-aliasing methods for down-sampling (such as low-pass filtering) will have the latter 
problem.   

With interpolation, resampling is a step away from the Data Based Mechanistic approach (DBM, 
Young, 1999) to modelling and data analysis which DHR is designed to be consistent; allowing the 
observed data to tell us about the systems prior to process interpretation. This is because 
interpolation always has an underlying model or assumptions, which may form an introject affecting 
the data. 

It has to be pointed out that the developed algorithm is not aimed purely at dealing with irregular 
sampling, but at augmenting the existing DHR model which has proven to be highly effective and 
widely used in Environmental Science due to the natural interpretation of its object and of the 
model components, as well as the inherent stochastic information provided by it. 

Analysing irregularly sampled time series data has a large body of literature addressing it. Irregularly 
sampled Auto-Regression is one of them. Broersen et al. (2004) derive a method for handling AR 
models with missing samples (a very specific and limited form of irregular sampling – with missing 
samples the sampling is regular). In general, AR and other methods relying on solving stochastic 
equations (such as Brockwell’s (2001) Levy process driven approach) are not directly comparable 
with the proposed technique because they are usually much more general, and so rely on additional 
mathematical analysis and assumptions in every specific application. Other approaches to irregularly 
sampled time series address whole spectrum estimation (such as irregularly spaced approaches to 
Fourier estimation, such as O’Toole et al. (2007) or wavelet-based approaches of e.g. Mathias et al., 
2004), which is exactly what is avoided here in order to reduce the uncertainty of results. The 
reduction of uncertainty in the presented approach is achieved through minimising the number of 
spectral components that are estimated, to only the dominant periodicities. Various machine 
learning approaches tend to require high data volumes and suffer from difficulty with obtaining 
justified uncertainty estimates. We work with often expensive to obtain environmental data sets of 
necessarily limited length, and normally address univariate time series, so direct comparison with 
most published machine learning approaches is not easily achieved.  

The term “arbitrary sampling” is introduced in the specific DHR context and used to describe how 
the irregular sampled time-series is used within the irregular sampled DHR technique.  The temporal 
distance between each sample in the irregularly sampled time-series is stored as a 1x(n-1) vector 



complementing the irregularly sampled time-series itself. The term ‘temporal distance’ is used here 
deliberately to highlight the possibility of using this technique in analysis of spatial series, as for 
example in Carling et al. (2005) where DHR was used on regularised spatial data to analyse the pool-
riffle sequence in river geomorphology. The arbitrary sampling processing uses both series – the 
measured values and their sample times.  This approach can be used also for sparse regularly 
sampled series with many missing values, where the time index for the missing values are removed, 
creating an irregular sampled time-series.   The creation of the temporal distance vector is the only 
pre-processing required for the updated DHR and for the purposes of differentiating between the 
current DHR methodology and the proposed updated methodology, the latter will be referred to as 
‘Arbitrary Sampled Dynamic Harmonic Regression’ (ASDHR). 

The update implements an arbitrary sampling technique in the Kalman Filter (KF) and Fixed Interval 
Smoother (FIS) algorithms.  While the irregular sampling has been previously used with Kalman 
Filtering (e.g. Li et al., 2008), the FIS algorithm implementation here is a novel element, not used 
elsewhere (except for Mindham et al., 2018) and necessary for the use of ASDHR.  Overall the 
Arbitrary sampling technique eliminates the need for any pre-analysis or resampling and puts DHR 
back in line with the DBM approach by not inserting any assumptions or artefacts into the observed 
data. 

The aim of this paper is to introduce the arbitrary sampling technique and to demonstrate the 
benefits of ASDHR for analysis of environmental data sets, which so often are irregularly sampled or 
contain numerous missing values. This is achieved by: 

• Providing a brief background to DHR and then introduce the arbitrary sampling methodology 
(Section 2.0) 

• Demonstrating the capability, benefits and necessity of ASDHR when using environmental 
data: 

o Paleo-climatology (Smith et al., 2016) – comparing ASDHR and DHR outputs to 
demonstrate the arbitrary sampling capability (Section 3.1). 

o Persistent organic pollutants (Becker et al., 2006) – demonstrating the necessity for 
extending DHR to accommodate irregular sampled time-series (Section 3.2, 3.3) 
especially for noisy data series. 

o Forecasting Atmospheric CO2 – introducing and demonstrating ‘arbitrary 
forecasting’, the ability to forecast at arbitrary points into the future with different 
sampling times to the observed data (Section 3.4). 

• Evaluation of ASDHR robustness to data sparseness and observational noise (Section 4.0) 

2.0 Dynamic Harmonic Regression 

The DHR model assumes that the observable variable of a system is composed of four components 
(1); trend (T), sustained cyclical (C) with period different to the seasonality, seasonal (S) and white 
noise (e) (Young et al., 1993). 

𝑦" = 𝑇" + 𝐶" + 𝑆" + 𝑒"     (1) 

The measured values of y are the output (observations) series of a system of stochastic state space 
equations, which can then be broken down to allow for estimation of the four components.  

𝑇"  is the trend component, which can be considered a stochastic time-varying ‘intercept’ parameter 
and is interpreted spectrally as a zero frequency term (i=0, where 𝜔* or f0 = 0), in practice -  



occupying the lowest part of the spectrum, and modelled as Integrated (or Smoothed) Random Walk 
(see Young et al., 1999) with states termed level and slope of the trend.  

The seasonal component 𝑆"  is defined as: 

𝑆" = ∑ ,𝑎.," cos(𝜔.𝑡) + 𝑏.," sin(𝜔.𝑡)9
:;
.<=      (2) 

where ai,t and bi,t are stochastic Time-Varying Parameters (TVP) and 𝜔.  are the fundamental and 
harmonic frequencies associated with the seasonality in the series (i=1,2,…,Rs). 

𝐶" = ∑ ,𝛼.," cos(𝑓.𝑡) + 𝛽.," sin(𝑓.𝑡)9
:A
.<=      (3) 

where αi,t and bi,t are stochastic TVP and 𝑓.  are the frequencies associated with the longer cyclical 
component (i=1,2,…,Rc). The cyclic component 𝐶"has an identical definition to the seasonal and is 
isolated here to allow for a different physical interpretation.  

Whereas the white noise component 𝑒" is the remaining information after the other 3 components 
have been removed from y (i.e. model residuals).  Note that the full Unobserved Components Model 
(Young et al., 1999) also incorporates the Irregular component, here omitted for simplicity. 

Typically, the TVP (ai,t, bi,t, αi,t, bi,t and both Tt  states) are defined by a two dimensional state vector 

𝑥.," = C𝑙.," , 𝑑.,"F
G

, where 𝑙.,"  and 𝑑.," are, respectively, the changing level and slope of the associated 
TVP.  The stochastic evolution of each 𝑥.," is assumed to be described by a generalised random walk 
process (4). 

       𝑥.," = 𝐹.𝑥.,"I= + 𝐺.𝜂.,"I=					𝑖 = 1,2, … , 𝑅   (4) 

where, R = 1+Rc+Rs and F and G defined in their time-varying form in (7a) and (7b) respectively (see 
also Young et al., 1999 for fixed form). 

2.1 State Space and Observation Equations 

The state space model is constructed by aggregation of the subsystem matrices defined in (2) and is 
defined in Young et al. (1999).  However, both the state transition and noise-input matrices are fixed 
and thus can only work for uniformly sampled data, hence the need to apply regularisation 
techniques on irregularly sampled data.  The method proposed here replaces these fixed matrices 
with time-step dependent ones, where the values depend on the time between each sample; thus, 
allowing them to work for irregularly sampled data. 

For the rest of the paper, the temporal positioning of samples (t) at regular intervals  ∆𝑡 is replaced 
with the arbitrary positioning of samples (∆𝑡S), where k – the sample number - keeps the temporal 
order.  

If 𝑦T(𝒚S) is the vth derivative of 𝑦(𝒚S), and the form of the function y(.) is not specified, a data point 
distant from 𝒚S provides very little information about 𝑦(𝒚S).  Using the local polynomial modelling 
reasoning (e.g. Fan and Gijbels, 1996) only the local data points in the vicinity of 𝒚S are used.  
Assuming 𝑦(𝒚S) has the (q+1)th derivative at the point 𝒚S, then following Taylor’s expansion for 𝒚 in 
the local neighbourhood of 𝒚S we have: 

𝑦(𝒚) = 𝑦(𝒚S) + 𝑦V(𝒚S)(𝒚 − 𝒚S) +
XYY(𝒚Z)
[!

(𝒚 − 𝒚S)[ + ⋯+ X^(𝒚Z)
_!

(𝒚 − 𝒚S)_      (5) 

If the value of y and its derivatives are known at the tth point as 𝒙𝒌= [y(ςk)  y’(ςk)  y’’(ςk)  ⋯  y (q)(ςk)]T 
and the highest derivative of y(y) with respect to y with  yk = y(ςk) and y(q+1)(ςk) = 𝜂S , where 



𝜂S~𝒩d0, 𝜎g[h and ςk is the approximation point (knot) at sample k, then Taylor’s expansion (3) can 
be applied in the local neighbourhood of ςk for all derivatives of y resulting in the GRW model with 
state space (6a) and observation (6b) equations with the now time-varying state transition (in 7a) 
and system noise-input (in 7b) matrices: 

𝑥S = 𝑭S𝑥SI= + 𝑮S𝜂SI=     (6a) 

𝒚S = 𝑯S
G𝑥S + 𝑒S     (6b) 

where 𝐻S  is the observation matrix (dimension of nxR for RW trend and RW harmonics’ amplitudes). 
Observation equation (6b) implements the regressive structure of DHR, with 𝑥S being the estimated 
amplitudes of harmonics (or trend levels) for each k and their corresponding elements of  𝐻S  contain 
the i-th’s harmonic values (cos(𝜔.𝑡S) or sin(𝜔.𝑡S)) or ones for the trend level.  
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(7b) 

where, ∆S= ςS − ςSI= is the temporal distance between the temporal samples number k and k-1 
(time difference between the knots ςS and ςSI=).  When α	=	1 and q	=	0,1,2… this equation 
describes, respectively, random walk, integrated random walk, double integrated random walk, etc.  
When α	ranges between 0 and 1 referring to smoothed random walk with orders q as above. 

The choice of Random Walk order depends on the application. Where variation is expected q of 1 or 
higher is used naturally depending on the shape of the trend, where no assumptions are made and 
suspicion of stationarity needs to be evaluated, the simple RW model (q=0) is usually more 
appropriate.  In practice the analysis starts with q	of 0 for the harmonic components and 1 for the 
trend.	 

2.2 Algorithmic Considerations 

To reiterate, the term ‘arbitrary sampling’ is used because the new state space equations (section 
2.1) do not constrain the time between each sample to be fixed, as long as they are in temporal 
order; the regularity or amount of irregularity in the sampling process does not impact the modelling 
process so long as the temporal positions of each sample are known and the finite Taylor expansion 
(5) is a satisfactory approximant of y.  

To keep the algorithm numerically well defined (keeping the spectrum of the transition matrix 
“sensible” as its inverse is used in the smoothing algorithm), the temporal distances between each 
sample (∆S) may need scaling to keep the ‘majority’ or average sampling rate close to one. This is 
equivalent to choosing the time unit suitable for the analysis, e.g. if the sampling process is typically 
once a week, then ∆S provided in days needs to be divided by seven.  In formal terms, as ∆S affects 
the spectrum of the transition matrix 𝐹S and its invertibility (condition), the time must be expressed 
in the units that will not cause poorly conditioned 𝐹S for any (or at least for very few) steps k.  In the 
state space matrices (section 2.1) a ∆S of 1 for all k implies regular sampling as a special case.  

2.3 Variance Intervention  



Amongst the numerous algorithmic advantages of the Stochastic State-Space techniques, such as the 
ease of forecasting, smoothing and interpolation, including arbitrary times between the existing 
samples, the variance intervention technique seems particularly well suited to environmental data 
analysis and modelling. Very often the researcher is looking for confirmation or detection of a 
discrete change in the system.  Variance intervention technique has been introduced by Box and 
Tiao (1975) and in the context of stochastic state space models it was developed and evaluated by 
Young and Ng (1989). With regular DHR, intervention points are used to account for abrupt changes 
in the data, such as a sharp calibration change or a shift in environmental system behaviour (e.g., 
Chappell and Tych, 2012). It can be used to model and evaluate the potential for specific breaks in 
the time series, whether background level, slope changes or sudden amplitude changes of the 
harmonic components in the dynamic harmonic regression context. Without intervention points any 
abrupt changes are smoothed in the model estimate and give poorer models that are not true to the 
system, not reflecting the mechanisms governing the observed processes and so not consistent with 
the DBM approach.  In Bayesian terms interventions amount to introducing diffused priors at the 
intervention a-priori step, causing the recursive estimator to “doubt” the current estimate by 
increasing the covariance matrix significantly.  

Introducing intervention points requires either assumptions or knowledge of the time of the change. 
Alternatively, a search for a significant parametric change may be made using a sliding intervention 
technique, as applied in Chappell and Tych (2012) to detect discrete changes in streamflow and 
evaporation records due to forest cover change, or to other such interventions. 

This advantage is not lost with the introduction of the arbitrary sampling technique, as one of the 
examples below demonstrates. 

2.4 Period Identification  

In many environmental data series there is a need for identification of dominant periodicities, as 
these are likely to indicate the phenomena active or dominant in the processes generating the time 
series.  Spectral estimators such as FFT and the various families of parametric spectral estimators 
(from Burg’s to wavelets), while commonly used, are (a) sensitive to noise, especially coloured noise, 
and (b) their uncertainty is very high: as Fisher (1929) has shown, the uncertainty of spectral 
estimators is of the same order as their magnitude. These issues are aggravated for noisy processes 
within time varying spectra, for the simple reason of the number of estimated values of the spectral 
characteristics being of a similar magnitude to that of the number of data points. So, while using the 
standard methods, we are getting a picture for a range of frequencies, this picture is highly uncertain 
for spectral estimators. With DHR and ASDHR, one periodicity (a handful of harmonic frequencies) is 
analysed in each step of the periodicity sweep, as we show below. The powerful handling of 
uncertainty by the Kalman Filter and Fixed Interval Smoother allows for a significant improvement of 
detection and estimation process, and in addition, importantly and nearly uniquely, provides an 
uncertainty estimate of the identified periodicities.  

The periodicity identification method used for ASDHR involves scanning through a predetermined 
selection of periods and selecting the most statistically likely period(s). This is relatively time 
consuming for wider sweeps, but the search could be optimised using variations of common search 
algorithms. Computation time is arguably not such a critical issue, as (a) this is an off-line process, 
and (b) with high speed modern computers it is not significant.   

The question of identification criterion for spectral peaks is quite critical.  The standard R2, being the 
proportion of variance of observed data explained by the model (8), 



𝑅[ = 1 − ‖�Z‖�

‖XZ‖�
     (8) 

with 𝑒S being the model residuals, could be used as the statistical measure, but this was found to be 
less reliable, as many periods were found to have similar R2 values leading to poor sensitivity, 
especially in trend-dominated series, and so the statistically best period was hard to distinguish from 
other significant periods. The same approach will apply to multi-periodic signals thanks to the 
orthogonality of the harmonic components. 

Introduced here is an analogue of the standard R2, a new measure easily described as the proportion 
of data explained by the seasonal or cyclic component (9).  

𝑅�[ =
‖�Z‖�

‖XZIGZ‖�
      (9) 

Where, 𝑆S is the estimated seasonal component (section 2.0). Its quadratic norm (variance) is 
compared with that of the detrended data term in the denominator of (9). Environmental data often 
have a significant slow (or trend) component, which dominates the standard R2, while Rs

2 focuses on 
the detrended data and seasonal component. Note that in the process of identification the trend is 
estimated together with the seasonal component for each case, so there is no danger of introducing 
artefacts due to this procedure, effectively a spectral decomposition. In addition, (9) provides a 
standardised measure of a relative strength of periodicity, comparable across different time series. 

2.5 Noise Variance Ratio (NVR) 

The introduction of Taylor’s expansion to the GRW models indirectly influences the selection of 
hyperparameters by introducing the sampling rate directly into the state transition equation. For the 
original DHR spectral model fit was used, as it was relatively easy to formulaically express the DHR 
spectrum and compare it to the AR spectrum of the data. This becomes more complex and 
ambiguous for irregularly sampled data. However, NVRs also carry the interpretation of time scaling 
of the model (spectral boundary of the low pass filter interpretation of the process, as explained in 
Young, 1999.)  In this case, with the challenging application examples we found that choosing the 
NVRs needs to reflect the time scale of the modelled process, rather than the best fit in any 
particular sense. The latter would have been arbitrary and would introduce additional assumptions 
into the modelling process.  

3.0 Demonstrating ASDHR on environmental time-series 

The examples compare, where possible, the proposed ASDHR methodology with the original DHR 
methodology.  Direct comparison is often difficult as both methods operate on different data sets, 
DHR works with regularised and sometimes pre-filtered data whereas ASDHR works with the raw or 
‘unedited’, observed data.  In terms of the DBM approach or philosophy it should already be 
apparent that ASDHR is a more appropriate tool for analysing environmental systems. 

The first example (3.1) has more comparable data sets (interpolated and raw data) and is a good 
demonstration of a working ASDHR methodology that is comparable to DHR.  The second example 
(3.2) demonstrates the need for ASDHR to achieve data analysis that is in line with the DBM 
philosophy, i.e. the data tells the story and not the assumptions used to manipulate the data for DHR 
analysis.  The third example (3.3) introduces a new type of forecasting, termed ‘arbitrary 
forecasting’, that allows predictions to occur at chosen points in the future, not just from the end of 
the observed time-series, and at different sampling rates and points to that of the observed time-
series. 



3.1 Paleo-climatology example 

Analysing patterns such as trends and cycles in paleoclimatic data is a common theme in this 
discipline. The example we used was a typical one and previously published in Nature: Scientific 
Reports indicating the importance of the problem for the community.  A carbonate oxygen isotope 
(δ18O) record derived from speleothems contained within Cueva de Asiul situated in the Matienzo 
depression (Cantabria), North Spain, was used to reconstruct the precipitation delivery to northern 
Spain during the last 12100 years using DHR analysis to find the trends and periods (for full details 
and the analysis see Smith et al., 2016). 

Here the DHR analysis, in terms of trend and harmonic amplitudes, is compared with the proposed 
ASDHR.  Similar results are expected as both methods are operating on the same data, but the result 
specifics should be different due to the differences in the data pre-processing and analysis 
algorithms. 

3.1.2 Data Pre-processing 

With current DHR the data needs pre-processing to make uniform the sampling rate and this 
involves linear interpolation followed by removing the interpolated samples where there are gaps in 
the observed data to avoid introduction of artefacts.  In this case (analysed in Smith et al., 2016 by 
the corresponding author) a highly irregularly sampled data-series of 1919 values is reduced to a 
uniformly sampled data-series of 815 (62 of which are missing values, mainly due to a single large 
gap in the data-series), which is a significant data loss, even if the key characteristics of the data are 
preserved (Figure 1). 

 

Figure 1.  Comparing the full collected data and the resampled data.  The two lower plots are 
zoomed-in to clearly demonstrate the differences between the full data range and the resampled 

range. 



With current DHR, the large gap (872 years) in the data-series needs to be interpolated and due to 
its size, any interpolation across it is meaningless (in terms of physical interpretation) and could 
affect the immediate estimates either side of it. 

With the proposed ASDHR procedure all that is required is to provide the temporal distance 
between each pair of samples.  This means ASDHR has the full range of data (1919 values) to utilise 
and ignores the effect of the large gap (there is no interpolation).  

3.1.3 Period Identification 

The periodicities of the data were identified by scanning across a range of periods to find the two 
that fit the data best (as in Smith et al., 2016), although as noted above, the current DHR method 
only uses 815 resampled values while ASDHR has the original 1919 values to use; current DHR 
method (1290 and 1490 years), ASDHR (1320 and 1540 years), well within the accuracy of the age 
estimate based on 18O isotope levels. This new result confirms the findings of Smith et al. (2016), 
only providing a small adjustment when compared to the samples’ timing error.  

3.1.4 Comparing Current DHR with Proposed ASDHR 

To compare the model fit of the two methods, the fit from DHR was rescaled back to the original 
time base and this showed that the arbitrary sampling procedure yielded slightly better results 
(Figure 2).  The estimated trends and amplitudes were similar between the two methods (Figures 3 
and 4 respectively) with the main difference with the behaviour over the gaps.  The grey shaded area 
highlights the large gap in the data and a period of suspect data immediately before it. 

 

 

Figure 2. Model fit - comparing ASDHR (R2 of 0.6741) with DHR (R2 of 0.6452) on the original time 
base. 



 

Figure 3. Trend - comparing ASDHR with DHR on the original time base. 

 



Figure 4. Amplitudes of seasonal components – comparing ASDHR with DHR on the original time 
base. 

The distributions of residual errors were also similar between the two methods, with both being 
approximately Gaussian and very close to symmetric (Figure 5).  This demonstrates how the 
introduction of the arbitrary sampling technique does not affect the fundamentals of the DHR 
method. 

 

Figure 5. Residual error distributions of both methods. 

Using ASDHR for paleo-climatic series not only simplifies the analysis procedure (no prior data 
manipulation) and preserves the data (i.e. no data loss/artefacts introduced), but also returns 
slightly better models (in this case a more pronounced seasonal component). 

3.2 Persistent Organic Pollutant example 

Identifying patterns and trends in atmospheric concentrations of Persistent Organic Pollutants 
(POPs) is an important part of monitoring and understanding how anthropogenic activities affect 
them.  Weekly air samples have been collected since January 1992 at the High Arctic station of Alert 
in Canada and are filtered for various POPs and have a high signal to noise ratio (3:1). For further 
background and DHR analysis see Becker et al. (2006). 

Two examples are taken from the data collected at Alert, Benzo(a)pyrene (reported in Becker et al., 
2006) and α-Hexachlorocyclohexane (α-HCH, not reported) and both are members of the polycyclic 
aromatic hydrocarbons subset of POPs.  Prior to DHR analysis the data were pre-processed; missing 
values due to data below the instrumental detection limits were replaced by values 2/3 of the 
detection limits, and data points situated outside 3x the standard deviation of any fitted trend where 
considered outliers and removed from the data set.  The data were then resampled to fortnightly, 



due to the weekly data having significant irregularity, and finally ran through a low pass filter to 
reduce aliasing. 

In the first example the observed data, with missing values and outliers, were used with ASDHR and 
compared to pre-processed data with DHR.  In the second example both use the pre-processed data 
but without the resampling or pre-filtering for ASDHR.  Both model fit and trend were compared 
between the two techniques as that was the aim of DHR in the original paper. 

3.2.1 Benzo(a)pyrene 

In Becker et al. (2006) an annual cycle was identified, and using the highly irregularly sampled raw 
data, this same annual cycle was identified using the ASDHR identification procedure. 

The subsequent estimated fit (Figure 6) and trend (Figure 7) show that data pre-processing (unless 
required for a specific analysis question) is no longer necessary for DHR analysis if the arbitrary 
sampling technique is used, where a good model fit and trend estimate were obtained from the raw, 
unfiltered data.   

 

Figure 6.  Comparing model fit and data used. 

The uncertainty estimate is higher for ASDHR, which can be attributed mainly to the prefiltering 
used necessarily prior to DHR application, where data were brought onto fortnightly time base. This 
pre-filtering reduced the variance of the irregular component, which is clearly visible in Figure 6.  

 



 

Figure 7.  Comparing trend and seasonal adjusted data. 

In addition, in ASDHR, as expected, uncertainty grows when data are absent, so the less frequent 
sampling between 1995 and 1999, as visible in Figure 7, leads to the increase of estimated 
uncertainty.   

3.2.2 α-Hexachlorocyclohexane 

Here both DHR and ASDHR used the pre-processed data, where values under detection limits were 
set to 2/3 of the instrumental detection limits, but for DHR the data were then resampled and pre-
filtered. 

An annual cycle was identified again, and the subsequent estimation of trend shows how pre-
filtering the data can lead to bias in its analysis.  In this case (Figure 8), the trend estimated by 
ASDHR is ‘pulled’ down by the observed data, data that are missing in the resampled and pre-filtered 
time-series 



 

Figure 8.  Showing the extent of the data loss from resampling and pre-filtering the data.   

3.3 Arbitrary Forecasting – Atmospheric CO2 example 

Below we present a simple example of forecasting of the well-known Keeling Mauna Loa CO2 series 
(see Acknowledgments). In this example we do not aim at perfect forecasts, but rather at showing 
the flexibility and versatility of even the basic version ASDHR in this application. Better forecasts 
could be achieved with more assumptions being included in the model, such as a model of the 
business cycle or the industrial growth projections.  

The Mauna Loa CO2 monthly mean data set was used to demonstrate arbitrary forecasting, that is 
forecasting from any point in the future and not just from the end of the data-set.  Additionally, the 
time-base of the forecasting period is not limited to that of the observed data, something that the 
original DHR cannot do. 

This is easily implemented by extending vector ∆S by the values corresponding to the arbitrary 
points chosen.  In this example (Figure 9) the monthly Mauna Loa data are used to forecast the year 
2018 on a weekly basis, for five different periods of data: 1960 to 1970, to 1980, to 1990, to 2000, 
and to 2010 as shown with colour code in Figure 8. In this example the forecast shown as purple is 
based solely on the data up to 1970.  

 



 

Figure 9.  Arbitrary forecasting of Mauna Loa CO2 data.  Observed data is monthly averages and 
forecasts are weekly averages.  Purple, 1960:1970. Yellow, 1960:1980. Orange, 1960:1990. Blue, 

1960:2000. Green, 1960:2010.  Shading, uncertainty of each forecast. Black dots, observed weekly 
average data for 2018. 

This (Figure 9) demonstrates how the rate of change of CO2 grows with time – as the knowledge is 
increasing (e.g. the 1960:1970 based predictions for 2018 have levels observed in 2000), except 
during the 1990s where the 1960:2000 based predictions are lower than that of the 1960:1990, 
clearly relating to the visible dip during the 1990s. 

The size of the uncertainty, shown here as a single standard error estimate band, increases as the 
forecasting horizon increases; purple for 48 years, green for 8 years. Testing on this data set and on 
simulated data sets indicates that the forecasts are largely unaffected by data sparseness or the 
forecasting horizon magnitude.  Only the observation noise level impacts the predictions.  

In the past the DHR technique was successfully used for forecasting various processes, in both 
broadly environmental and industrial applications: from demand for electricity (Young and Pedregal, 
1998) to numbers of calls to a banking call centre (Tych et al, 2002) to, anecdotally, demand for beer 
(unpublished Lancaster University thesis). ASDHR naturally broadens the application area of this 
robust method. 

4.0 Robustness and reliability evaluation 

Before the methodology was applied to real data, it was tested on a variety of challenging simulated 
data-sets (with known “unobserved” components) to test the robustness and sensitivity to data 
sparseness, size of temporal distancing, and observational noise. 



The methodology was found to be very robust with very sparse data-sets. It also produces 
meaningful estimates for a very wide range of temporal distances between the samples, limited by 
the Taylor expansion (3) and condition of the recursive estimate of the covariance matrix within the 
Fixed Interval Smoother algorithm applied.  Subject to these constraints, the technique can be used 
to estimate the observed values and components no matter how irregularly sampled the time-series 
is. 

Sensitivity to observation noise is similar between the time-tested and commonly used DHR (with 
about 300 citations) and ASDHR.  

In terms of physical interpretation, the extent of data sparseness needs to be considered when 
interpreting the estimated components as very sparse data may effectively under-sample higher 
frequency components.  

5.0 Conclusions 

Presented here is a technique to improve the DHR analysis of irregularly sampled time-series that 
removes the need for data pre-processing: regularisation, decimation, interpolation etc.  The 
technique also does not involve estimation of missing values and so any subsequent analysis is free 
from assumptions and bias and only uses the available observed data.  This brings DHR closer to the 
DBM philosophy of allowing the data to inform us of the processes and mechanisms that result in 
the observed time-series. It also makes it uniquely suitable for analysis of environmental irregularly 
sampled observational data. 

Data pre-processing was a necessary step to allow DHR to work on irregularly sampled data-sets but 
it comes with artefacts, bias and increased uncertainties in the model estimates.  However, with the 
arbitrary sampling technique, this step can be avoided and provides model estimates with lower 
uncertainties and no bias. 

The technique has been tested on challenging simulated data and is robust enough to work on 
extremely sparse data, however, in terms of physical interpretation there is a limit to how sparse the 
data can be due to e.g., under-sampling (Chappell et al., 2017).  Additionally, the technique was 
found to have similar observation noise sensitivity to that found in standard DHR method. 

The technique has been demonstrated here on three different types of observed environmental 
time-series data and has yielded slightly better model outputs than the standard DHR method.  
Without data pre-processing, there will be no introduction of any assumptions, artefacts or bias into 
the data prior to analysis and thus these results should be closer to observed reality. 

The technique also allows for forecasting at arbitrary points and at different sampling rates than in 
the observed data.  This means the frequency of the forecast is not limited to the frequency of the 
observations, and with a non-stationary forecast horizon may allow forecasting to yield more 
insights into environmental processes. 

Finally, while it may not be apparent from the equations, ASDHR is easily and inherently generalised 
so that all aspects of estimation are either time-varying or state-dependent: from periodicity to 
dynamics of random walk model, to NVRs.  For each sample k, the periodicity, random walk model 
and NVR can be set.  So, for example, one section of observed data could be analysed for one set of 
periodicities and another section analysed for another set, or the random walk model could be 
changed to match a significant change in the data, or the NVRs can be varied to suit the smoothness 
of the data.   



Software format and availability 

The method has been implemented within the Matlab computing environment. The input 
arguments specify the time-series variable, the State-Space format, meta-parameters for the trend 
and for harmonics’ amplitudes, which essentially specify the time-scale of the trend and amplitude 
variability. Additional arguments control variance interventions, initial conditions etc, with sensible 
default values provided. The output arguments have also been constructed with ease of use in mind, 
and include model fit, estimated trend, harmonic components and their amplitudes with their 
respective uncertainty estimates, so are immediately interpretable in terms of the modelled 
environmental process.  

Matlab functions and example scripts are available from the corresponding author upon request. 
The functions will be included in the CAPTAIN Toolbox for Matlab in due course. 
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