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Abstract 
 

An important problem in the nuclear power industry in the UK is the reprocessing of the legacy 

waste storage ponds at Sellafield in Cumbria. Understanding the solvation structure of the ions 

present in these ponds, as well as the stability of their hydroxide complexes, is vital for 

effective clean-up.  

This work used ab initio molecular dynamics (AIMD) to characterise the solvation structure of 

Mg2+, Ca2+, Sr2+, Cs+, U6+ in the form of uranyl (UO2
2+), La3+ and Lu3+. These ions have been found 

in the legacy storage ponds and have previously been studied through gas phase or implicit 

solvation Density Functional Theory (DFT) methods. The properties of the first solvation shell 

have been categorised, and when compared to current experimental and computational 

literature the results are in excellent agreement, justifying the solvation model developed. 

The understanding of the solvation structure of the ions in the storage ponds has been 

developed further, with the introduction of hydroxide ions to replicate the storage ponds 

alkaline conditions. The coordination and bonding of the hydroxide complexes was 

characterised, as was the proton transfer behaviour, through quantifying the Proton Transfer 

Events (PTEs) of each system. The introduction of hydroxides generally led to reduction in 

coordination number and bond length of the first solvation shell. It was found that PTEs were 

more prevalent away from the central ion of the system and occurred more frequently in the 

less charge dense ionic systems, where direct hydroxide coordination to the ion is less 

prevalent.  

The final focus of the work was a DFT examination of the adsorption of Sr2+ onto a solvated 

CeO2(111) surface. The results showed a preference for some ion coordination to the surface, 

which lessened when hydroxide ions were introduced to the solvation model. The aim of this 

chapter was to investigate the validity of the surface-solvation model using a surface relevant 

to the nuclear waste disposal problem for use in future AIMD simulations of the fuel pond 

environment. 
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Chapter 1: Introduction 

Nuclear power has been a reliable source of low carbon electricity in the UK for over 60 years, 

and the government has remained committed to including nuclear power in efforts to ensure 

the 2050 targets for lower CO2 emissions are met.1 The storage and long term disposal of 

nuclear waste remains an issue across the UK, as does the decommissioning of nuclear sites, 

altogether amounting to costs of ~£3 billion annually.2 On top of this, there is the continued 

disposing of nuclear waste from operational sites, such as Dungeness B, Hinkley Point and 

Heysham. The Nuclear Decommissioning Authority (NDA) forecast in 2018 states that future 

clean-up across the UK will cost £121 billion spread across the next 120 years.3 

The Sellafield site in Cumbria houses legacy facilities from the early days of the UK’s nuclear 

power program which began in the 1950s and is the UK’s main nuclear fuel reprocessing and 

decommissioning plant. In 2018 the reprocessing of nuclear waste ended at Sellafield, with 

the complete closure of the Magnox reprocessing plant scheduled for 2020.4  Part of the legacy 

of the Sellafield site is the storage ponds and silos where spent nuclear waste, such as used 

fuel rods, are stored.  Over time, a large quantity of sand-like sludge has formed in these 

storage facilities, which has a varied composition and behaviour. These initial facilities were 

built with little thought for ‘future-proofing’ and the records of the contents of these ponds 

and silos no longer match the contents, further exacerbating this issue.5 As the ponds are 

aging, the waste management and future storage of the nuclear waste is a top priority. 

However, these legacy waste storage ponds pose a difficult decommissioning challenge as the 

sludge, pond liquor and, indeed, the nuclear waste itself must be removed and dealt with via 

separate routes.  

Working with nuclear waste materials is difficult and requires highly specialised facilities and 

training.  As such, computational methods have become popular amongst the research fields 

associated with nuclear waste management as it enables research to be done without the risk, 

and cost, associated with working with radioactive substances. For example, modelling used 

by Sellafield Ltd and the National Nuclear Laboratory (NNL) provide detailed descriptions of 

the chemical reactions, speciation and solubility of solids which may exist in the ponds.6 

The aims of this PhD project were to investigate the dynamics of radionuclides and other ions 

present in the aqueous environment of the storage ponds, including Mg2+, Ca2+, Sr2+, Cs+, U6+ 

in the form of uranyl (UO2
2+), La3+ and Lu3+. The work presented within focusses on the 

solvation structures of these ions and how they are impacted by the introduction of hydroxide 

ions, which are present in the ponds due to the high pH of the water. In addition, this thesis 
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examines the possibility of modelling radionuclide adsorption in an aqueous environment 

onto a CeO2(111) mineral surface, to emulate ion adsorption to uranic components of the 

sludge in the storage ponds.  

1.1 Nuclear Waste Problem 

95% of the UK’s radioactive waste arises from the nuclear power industry, including waste 

from the enrichment of uranium, making of nuclear fuel and the reprocessing of spent fuel.7 

The total volume of nuclear waste, as per the 2016 NDA inventory, is 132,000 m3 of which 75% 

is generated at Sellafield. Nuclear waste is classified according to its level of radioactivity and 

is either low-level (LLW), intermediate-level (ILW), or high-level (HLW) waste.7 LLW comprises 

90% of the volume of radioactive waste but contributes only 1% of the radioactivity, it does 

not require shielding and can be disposed of in near surface facilities. ILW requires some 

shielding, comprises of resins, sludge and contaminated materials and contributes 4% of the 

radioactivity of waste. HLW contains the fission products and transuranic elements from the 

burning of uranium fuel and the reactor core, and is responsible for 95% of the total 

radioactivity.  

Radioactive waste from nuclear reactors result from the nuclear fission process, which is used 

to generate heat, and hence electricity.8 In the nuclear fission process, 235U is bombarded with 

neutrons and will capture a free neutron to form 236U, a short lived isotope which will split 

apart into smaller fission products, releasing neutrons and heat energy.9,10 If the liberated 

neutrons then collide with surrounding 235U isotopes, the process repeats and a fission chain 

reaction occurs.8,9,11 From a nuclear waste management perspective, understanding the fission 

products with longer half-lives is crucial as they will be the source of the radioactivity in the 

waste storage facilities. For example, the fission of 235U results in a ~6% yield of 137Cs (t1/2 = 

30.2 y)12 and 90Sr (t1/2 = 28.8 y)12 13 which are among the most abundant radioactive elements 

in the HLW and ILW, other fission products include minor actinides Np, Am, Cm and 

lanthanides.6,13–15  

1.2 Magnox Fuel Reactors 

A total of 26 Magnox reactors were built in the UK in the 1950s to 1970s, which were initially 

designed to run for only 20 years. However, most ran for twice as long, with the last reactor 

shutting down in 2015.16–19 Magnox reactors used unenriched uranium metal as the fuel 

source, containing around 0.7% 235U, which was cast and machined into rods.11 The uranium 

rods were sealed with an external cladding made from a magnesium aluminium alloy called 
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Magnox (Magnesium Non-Oxidising).7 The composition of the alloy used varied, for example 

the A12 alloy was composed of between 0.7 and 0.9 % aluminium, while the ZA alloy was 

composed of between 0.45 and 0.65 % zirconium, though both had a magnesium content of 

up to 90%.20–22 The fully formed fuel rods were loaded into vertical channels in a graphite block 

core which was cooled by blowing pressurised carbon dioxide (CO2) gas past the fuel cans. The 

gas carried the heat from the reactor core to heat exchangers which generated steam to 

power turbines which generated then electricity.7 A typical fuel rod is depicted in Figure 1.1, 

the shape of the cladding was often ribbed or finned to improve heat transfer to coolant gas 

in the reactor.11 

 

Figure 1.1: Typical magnox fuel element7 

In a Magnox reactor the fuel rod has a useful life of 5 to 7 years before it must be replaced. 

Upon removal from the reactor, fuel rods were stored in underwater cooling ponds at the 

reactor site for a minimum of 90 days to allow the short-lived radioactivity to decay and heat 

generation to reduce. After the 90 days, the rods were packed into flasks of thick steel and 

transported to the Magnox reprocessing plant at Sellafield where they were housed in storage 

ponds to await reprocessing.7  

The use of Magnox alloys as cladding came with drawbacks, namely a lower operating 

temperature compared to other alloys. At temperatures higher than 500 °C the grain structure 

of Magnox changes and there is a loss of strength impacting cladding integrity.11,18,20 Another 

downside of the Magnox cladding is its tendency to corrode in water. The main product of 

cladding corrosion is magnesium hydroxide (MgOH)2, or brucite, which is soluble at neutral 

and acidic pHs.23,24 Excessive corrosion of the Magnox cladding would result in the exposure 

of the uranium fuel rod in the storage ponds. To overcome these difficulties, later reactors 

used stainless steel cladding and a uranium dioxide fuel which increased the possible 
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operating temperatures to 650 °C and as such made the reactors more efficient, with a higher 

power output, reducing capital costs.25  

1.3 First Generation Magnox Storage Ponds 

The Magnox fuel reprocessing plant at Sellafield in Cumbria began operations in 1964 after 

the First Generation Magnox Storage Ponds (FGMSP) were constructed in the 1950s26, a recent 

image of the FGMSP is shown in Figure 1.2.27 The FGMSP are open air, reinforced concrete 

structures filled with water to act as a radioactivity shield.26 The storage ponds are dosed with 

NaOH to maintain a pH range of 10 to 12 to inhibit the corrosion of the Magnox cladding.22–

24,28 Fuel was transported from the reactor sites and transferred to the FGMSP for cooling and 

storage while awaiting reprocessing.7,26,29  

 

Figure 1.2: Sellafield’s First-Generation Magnox Storage Pond27 

The corrosion of the Magnox cladding was accelerated by a long period of reprocessing 

shutdown in the 1970s, variation outside of ideal pond pH, and the continued addition of spent 

fuel into the 1990s. As a result, a layer of Corroded Magnox Sludge (CMS) has formed at the 

base of the ponds, made up of significant quantities of waste materials, fuel fragments, and 

fuel skips as well as organic matter which has fallen or been blown into the ponds.7 Currently 

around 1000 to 2000 m3 of the waste housed at Sellafield is defined as sludge.30  

The legacy storage ponds are an aging facility and continue to degrade. The nuclear fuel, 

sludge, ILW and pond water contained within all need to be safely removed and either 

processed or sent for long term storage through separate routes.7,26,30,31 The processing route 

of the waste depends on the radioactivity content and the chemical speciation of the waste, 
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i.e. whether the radioactive ion is found in the solid phase of the storage ponds or the liquid 

phase. Currently, the main disposal method for ILW waste is cement encapsulation in 500 litre 

drums, which will then be transferred to a purpose built store in a geological disposal facility.7 

The approximate elemental composition of a single sample of CMS was reported by the 

NNL32,33 and contained 12.9% Mg, 4.28 % U and 0.18% Ca, as well as ~2.64% of other elements 

including Al, Na, Fe, Ba, Zn, B, Cu and Si, with the remainder being water. This sludge sample 

was taken from the ‘main pond area’ of the FGMSP, rather than the more contaminated areas 

or the skips held inside the ponds. The sludge sample was analysed by Gregson et al.34 who 

identified the solid phase as mainly brucite, a mineral which readily adsorbs radionuclides and 

other ions which are present in the liquor31,35,36, as well as solid uranium oxide particles 

typically formed from the oxidation of the fuel rod.  

Based on the sample analysed by Gregson et al.34 and knowledge of the nuclear fission process 

the primary radionuclides across the different storage ponds are thought to be 238U and its 

two fission products, 137Cs, 90Sr, as well as much smaller amounts of U235 and trace U232 and 

U236.6,37 The ions in the ponds exist as both aquo and hydroxide complexes, as well other 

species such as carbonates.6,34,38 In an aqueous environment, uranium readily forms the highly 

soluble uranyl ion (UO2
2+) which most likely will be present in both the liquid and solid phase, 

as well as forming uranium hydride (UH3) and releasing diatomic hydrogen(H2).34 The ground 

water outside the legacy storage ponds and in the surrounding areas of Sellafield have been 

shown to contain 137Cs, 90Sr and UO2
2+, these ions have also been found at other reactor sites 

as well as in the cooling water of damaged power plants such as Fukushima Daiichi.39–44  

The leaching of products of the nuclear fuel cycle into the groundwater surrounding Sellafield 

poses a risk to both the environment and human health.45,46 Both 137Cs and 90Sr are water 

soluble, however 137Cs binds strongly to soil so is less likely to move through the groundwater 

than 90Sr.47 Due to the biochemical behaviour similarity of Sr2+ to Ca2+ it easily deposits in 

bones, bone marrow and teeth and its build up can cause cancer in humans.37,48–50 The 

radioactive 137Cs is also a risk to human health, where upon ingestion it evenly distributes 

through the body with the highest concentrations found in soft tissue.51 

Understanding the solvation structure of the different species in the legacy storage ponds and 

how they are affected by changes in pond conditions, such as pH, can help inform the nuclear 

waste clean-up process. Many of the radionuclides listed above have been well studied in 

previous computational investigations, however information on how the dynamics and 
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presence of bulk water impacts their solvation is sparse. The focus of this PhD thesis is to build 

on this foundation of understanding regarding these ions and expand it in a novel way.  

An overview of the theory which underpins the computational calculations used in this thesis 

is given in Chapter 2. The investigation into the solvation structure of the alkaline earth metals 

Mg2+, Ca2+ and Sr2+ using ab initio Molecular Dynamics (AIMD), along with a justification for 

the analysis methodology used throughout the thesis, is given in Chapter 3. The focus of the 

work then turns to the impact of hydroxides on the solvation structure of the alkaline earth 

metals in Chapter 4, including an in-depth explanation of the analysis of hydroxide 

environments and how proton transport is quantified. The investigation of the more complex 

uranyl ion (UO2
2+) and the results of AIMD simulations of its solvation structure in an aquo, 

monohydroxide and dihydroxide environment are summarised in Chapter 5. The work 

detailed in Chapter 6 investigates solvation structure and hydroxide complexation as a 

function of increasing cation charge, examining the ions Sr2+, Cs+, La3+ and Lu3+. Specifically, the 

monohydroxide environment of Sr2+, the aquo and monohydroxide environments of Cs+ and 

the aqueous and trihydroxide environments of the lanthanides La3+ and Lu3+ are examined. 

Finally, in Chapter 7 the viability of modelling Sr2+ adsorption on a CeO2(111) surface, 

analogous to the UO2 surface, is explored. The work in this chapter uses DFT geometry 

optimisations, rather than AIMD, on a 4x3x2 CeO2(111) surface with a water model of 32 

waters. In this final chapter ion adsorption of Sr2+ ion and the impact of hydroxide ions on the 

ion adsorption is investigated. 

1.4 Aims and Objectives 
Understanding the interactions of the chemical species held within the legacy waste storage 

ponds at Sellafield is key for the development of strategies for the continued storage and 

disposal of nuclear waste. This research project aims to investigate the dynamic behaviour and 

structure of various radionuclides and ions present in the legacy waste storage ponds at 

Sellafield. It also aims to examine the impact of hydroxide ions as a proxy for increasing pH has 

on the solvation structure of the ions of interest. Finally, the research will focus on 

investigating how a mineral surface interacts with the ions of interest.  

In order to fulfil the research aims ab initio molecular dynamics (AIMD) will be used in all 

calculations relating to the dynamics of solvation structure, and density functional theory 

(DFT) will be used to investigate the energetic favourability of surface ion interactions. Initially 

the solvation structure of Mg2+, Ca2+, Sr2+ in an aqueous environment will be characterised to 

benchmark the methodology against existing literature. Then hydroxide ions will be included 
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in the alkaline earth metal aqueous environment to examine the impact of increasing pH on 

the solvation structure. The investigation into the effects of increasing pH on the solvation 

structure of ions will be broadened to include more complex ions including Cs+, UO2
2+, La3+ and 

Lu3+.  

Finally, a model surface of CeO2(111) will be optimised to investigate the interactions between 

water, hydroxide ions and previously investigated radionuclides with the mineral surface, to 

ascertain which environments are most energetically favourable. It is intended that the 

research findings will inform the nuclear industry on the speciation of various ions in the 

nuclear waste storage ponds and provide an insight into how the ions are likely to behave in 

proximity to a mineral surface. 
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Chapter 2: Methodology 

This chapter provides an overview of the quantum chemical theory and computational 

techniques used in the work given. For a more in-depth derivation of these techniques the 

reader is directed to the referenced sources.  

2.1 Bra-Ket Notation 

In parts of this chapter, where necessary, bra-ket notation is used to describe the quantum 

states using the following abbreviations: 

⟨𝑓| = 𝑓∗(𝐚)   (′𝑏𝑟𝑎′) 𝐄𝐪. 𝟐. 𝟏 

|𝑓⟩ = 𝑓(𝐚)   (′𝑘𝑒𝑡′) 𝐄𝐪. 𝟐. 𝟐 

For every vector ket there is a bra which corresponds to its complex conjugate. The 

combination of a bra and a ket describes the overlap of states, for example: 

⟨𝛹|𝛹⟩ =  ∫ 𝛹∗(𝐚)𝛹(𝐚) 𝑑𝐚 𝐄𝐪. 𝟐. 𝟑 

Using bra-ket notation the expectation value of an observable represented by an operator �̂� 

for a system in the state |𝛹⟩ is: 

⟨𝛹|�̂�|𝛹⟩ 𝐄𝐪. 𝟐. 𝟒 

2.2 The Schrödinger Equation 

In order to solve the wavefunction for a given system, the time-independent Schrödinger 

equation must be solved, which is as follows:52 

�̂�𝛹 =  𝐸𝛹 𝐄𝐪. 𝟐. 𝟓 

where �̂� is the Hamiltonian operator and 𝐸 is the energy of the system represented by the 

wavefunction, 𝛹. It is possible to calculate the exact solution for a single electron system, i.e. 

a hydrogen atom,53 but for a many electron system the Schrödinger equation is impossible to 

solve. Hence it is necessary to make approximations to solve the Schrödinger equation in order 

to evaluate the ground state of a many electron system. Two examples of quantum chemical 

approaches to approximating the solution to the Schrödinger equation are Hartree-Fock 

theory and Density Functional theory (DFT), which are discussed in Sections 2.9 and 2.10.   
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2.3 The Hamiltonian 

The Hamiltonian, �̂�, is an operator corresponding to the total energy of the system and is 

defined explicitly in terms of kinetic, �̂�, and potential energy, �̂�, operators:  

�̂� =  �̂� + �̂� 𝐄𝐪. 𝟐. 𝟔 

where the kinetic energy operator, �̂�, for a molecular system is defined as: 

�̂� = −
ℏ2

2𝑚
∑ ∇𝑖

2

𝑛

𝑖

− ∑
1

2𝑚𝐴
𝐴

∇𝐴
2 𝐄𝐪. 𝟐. 𝟕 

where 𝑖 indicates that the operator only acts on the 𝑖th electron, ℏ is the reduced Planck’s 

constant, 𝐴 indexes the nucleus, 𝑚 is the mass of an electron, and ∇𝑖
2 is the Laplacian operator 

defined as: 

∇𝑖
2=

𝜕2

𝜕𝑥𝑖
2

+
𝜕2

𝜕𝑦𝑖
2

+
𝜕2

𝜕𝑧𝑖
2

𝐄𝐪. 𝟐. 𝟖 

The potential energy operator, �̂�, can be further defined as the sum of the terms of the 

electron-electron interactions, �̂�𝑒𝑒  , nuclear-nuclear interactions, �̂�𝑛𝑛  , and electron-nuclear 

interactions, �̂�𝑛𝑒 . Which are defined as follows: 

�̂�𝑒𝑒 =
1

4𝜋𝜀0
∑ ∑

𝑒2

𝐫𝑖,𝑗
𝑗>𝑖𝑖

𝐄𝐪. 𝟐. 𝟗 

�̂�𝑛𝑛 =
1

4𝜋𝜀0
∑ ∑

𝑍𝐴𝑍𝐵𝑒2

𝐫𝐴,𝐵
𝐵>𝐴𝐴

𝐄𝐪. 𝟐. 𝟏𝟎 

�̂�𝑛𝑒 = −
1

4𝜋𝜀0
∑ ∑

𝑍𝐴𝑒2

𝐫𝐴,𝑖
𝐴𝑖

𝐄𝐪. 𝟐. 𝟏𝟏 

where 𝜀0 is the permittivity of free space, 𝑍𝐴 is the charge on nucleus 𝐴, 𝑒 is the elementary 

charge, and 𝐫𝐴,𝐵  and 𝐫𝐴,𝑖 are the distances from nucleus 𝐴 to nucleus 𝐵 and from nucleus 𝐴 to 

electron 𝑖, respectively. 

The Hamiltonian, �̂�, can then be written in atomic units, (a.u.) for simplicity, where the 𝑚, 𝑒, 

ℏ and 4𝜋𝜀0 equal one: 

�̂� =  − ∑
1

2
∇𝑖

2

𝑖

− ∑
1

2𝑚𝐴
∇𝐴

2

𝐴

− ∑
𝑍𝐴

𝐫𝐴,𝑖
𝐴,𝑖

+ ∑ ∑
𝑍𝐴𝑍𝐵

𝐫𝐴,𝐵
𝐵>𝐴𝐴

+ ∑ ∑
1

𝐫𝑖,𝑗
𝑗>𝑖𝑖

𝐄𝐪. 𝟐. 𝟏𝟐 
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2.4 The Variational Principle 

The variational method can be used to find approximations to the ground state or lowest 

energy of a system. First, a trial wavefunction, 𝛹’, which contains variational parameters, is 

chosen. These parameters are adjusted until the energy is minimised. The minimised trial 

wavefunction and its energy are variational approximations to the exact wavefunction, 𝛹0 , 

and exact energy, 𝐸0.  

The variational principle states that the energy of 𝛹’ must be greater than or equal to the 

energy of the exact wavefunction 𝛹0.  The energy of the trial wavefunction is defined as the 

expectation value of the wavefunction: 

𝐸𝛹′ =
⟨𝛹′|�̂�|𝛹′⟩

⟨𝛹′|𝛹′⟩
𝐄𝐪. 𝟐. 𝟏𝟑 

 

 

The exact energy, 𝐸0, of a system can then be written in terms of the trial wavefunction 

according to the variational principle: 

𝐸0 ≤
⟨𝛹′|�̂�|𝛹′⟩

⟨𝛹′|𝛹′⟩
𝐄𝐪. 𝟐. 𝟏𝟒 

This forms a basis for convergence in optimisation calculations. The difficulty is finding the 

wavefunction which minimises the energy of the system.  

2.5 The Born-Oppenheimer Approximation 

Born and Oppenheimer simplified the problem of determining the electronic structure of a 

many body system by assuming that the position of the nuclei are fixed on the timescale of 

electron motion.54 The basis of the Born-Oppenheimer approximation is that nuclei are several 

thousand times heavier than electrons, and move much more slowly. Due to the large 

difference in timescales of electronic and nuclear motion, electrons respond instantaneously 

to the motion of the nuclei. The Born-Oppenheimer approximation states that the 

wavefunction for a molecule can be separated into electronic and nuclear components. 

The electronic part of the Schrödinger equation can be solved with nuclear positions assumed 

to be fixed, and the resulting potential energy surface is solved according to nuclear 
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coordinates being constant. The Hamiltonian can be simplified by removing the nuclear kinetic 

energy term, giving the electronic Hamiltonian as  follows:55 

�̂�𝑒𝑙 =  − ∑
1

2
∇𝑖

2

𝑖

− ∑
𝑍𝐴

𝐫𝐴,𝑖
𝐴,𝑖

+ ∑ ∑
𝑍𝐴𝑍𝐵

𝐫𝐴,𝐵
𝐵>𝐴𝐴

+ ∑ ∑
1

𝐫𝑖,𝑗
𝑗>𝑖𝑖

𝐄𝐪. 𝟐. 𝟏𝟓 

2.6 Basis Sets 

A basis set is a set of basis functions which can be used to build a mathematical description of 

the molecular orbitals of a system. For a molecular calculation, the molecular orbitals are built 

using the linear combination of atomic orbitals (LCAO) approach, written as: 

𝜑𝑘(𝐫) = ∑ 𝑐𝑖𝑘𝜙𝑖(𝐫)

𝑖

𝐄𝐪. 𝟐. 𝟏𝟔 

where 𝜑𝑘 is a molecular orbital, 𝜙𝑖  are the atomic orbitals which constitute the basis set and 

𝑐𝑖𝑘 are the expansion coefficients which can be varied to minimise the energy of the system 

and hence obtain the molecular orbitals which correspond to the minimum energy. In general, 

a better description of the orbitals of a molecule and hence a higher quality calculation comes 

from using a larger basis set, although computational cost becomes a limiting factor. 

2.6.1 Atom Centred Basis Sets 

Slater Type Orbitals (STOs)56 and Gaussian Type Orbitals (GTOs)57 are the main types of atom 

centred basis functions used for defining atomic orbitals. The form of STOs and GTOs can be 

seen in Figure 2.1. 

STOs are defined as: 

𝜙𝜁,𝑛,𝑙,𝑚(𝑟, 𝜃, 𝜙) = N𝑌𝑙,𝑚(𝜃, 𝜙)𝑟(𝑛−1)𝑒−𝜁𝑟 𝐄𝐪. 𝟐. 𝟏𝟕 

GTOs are used in most quantum chemistry programs and are defined as: 

𝜙𝜁,𝑛,𝑙,𝑚(𝑟, 𝜃, 𝜙) = N𝑌𝑙,𝑚(𝜃, 𝜙)𝑟(2𝑛−2−𝑙)𝑒−𝜁𝑟2
𝐄𝐪. 𝟐. 𝟏𝟖 

where N is a normalisation constant, 𝑌𝑙,𝑚 are spherical harmonic functions, 𝑟 is the distance 

from the nucleus, 𝜁 is used to define the rate of decay of the basis function, and 𝑛, 𝑙 and 𝑚 

are quantum numbers.  

STOs are a more accurate description of the atomic orbital, they exhibit exponential decay at 

long range and a cusp at the atomic nucleus. STOs have a 𝑒−𝑟  dependence while GTOs have 

an 𝑒−𝑟2
 dependence, GTOs fall off too rapidly from the nucleus and have no cusp and are less 
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accurate at describing long range behaviour. For a given level of accuracy, more GTOs are 

needed than STOs to make up the basis set. However, the integrals of GTOs are easier to solve, 

and by taking linear combinations of GTOs the same level of accuracy as STOs can be achieved. 

It is computationally more efficient to use multiple GTOs and they are preferentially used for 

most computational calculations.  

 

Figure 2.1: Example of a STO (blue) and a GTO (red). 

The smallest number of basis functions which describe all electrons of a system is the minimal 

basis set or single-ζ (SZ) basis set. For hydrogen and helium the minimal basis set would include 

a single s-function, whereas for first row periodic elements a basis set would include two s 

functions, and one set of p functions. The number of basis functions for each atomic orbital 

can be increased to introduce more flexibility and a higher level of accuracy. Doubling the basis 

functions for each atomic orbital produces a double-ζ (DZ) type basis set, tripling the basis 

functions for each atomic orbital produces a triple-ζ (TZ) type basis set, and so on. However, 

the increase in accuracy from increasing the number of basis functions comes with an 

increased computational cost. This cost can be reduced by increasing the basis functions for 

only the valence electrons, since these are the ones involved in bonding interactions, 

maintaining a minimal basis for the core electrons. This is denoted as valence double zeta 

(‘VDZ’), valence triple zeta (‘VTZ’), etc.  

Further increased accuracy can be achieved by adding polarisation and diffuse functions. 

Polarisation functions introduce functions of a higher angular momentum than those of the 

basis function of the orbital they are added to, for example s orbitals can be polarised by 

adding p functions. They account for the asymmetric distortion of the electron density which 

occurs during bonding. When polarisation functions are added to the basis set, the notation 
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becomes DZVP, TZVP etc. Polarised basis sets are good general purpose basis sets for 

describing chemical bonding in neutral molecules. Diffuse functions have small exponents and 

they are designed to give an accurate representation of the regions of the orbital most distant 

from the nucleus. The addition of diffuse functions can be important for anionic systems or 

excited states.  

2.6.2 Plane Wave Basis Sets 

Plane wave basis sets are used in computational calculations of periodic systems; first a 

periodic system must be defined. A periodic system is made up of a fundamental unit cell, as 

shown in Figure 2.2, which is repeated to form an infinite system. Three dimensional unit cell 

periodicity is defined by the lattice vectors 𝐚1, 𝐚2, and 𝐚3.58 The combination of a unit cell and 

the positions of atoms or molecules within the unit cell is known as the Bravais lattice. It is the 

translation of the Bravais lattice along 𝐑 , the translation vector which generates the periodic 

system. 

 

Figure 2.2: A cubic unit cell defined by three vectors. 

The expansion of plane waves as basis functions follows Blöch’s theorem59 which states that 

wave functions must be composed of a wave-like part and a periodic part which satisfies 

𝑉(𝐫) = 𝑉(𝐫 + 𝐑), where in a periodic system the external potential, 𝑉, felt by the electrons 

will also be periodic.  

The wavefunction can be written as: 

𝛹(𝐫) = 𝑒(𝑖𝐤𝐫)𝑢𝑖𝑘(𝐫) 𝐄𝐪. 𝟐. 𝟏𝟗 

where 𝑢𝑖𝑘(𝐫) is the periodic part with the same periodicity as the potential V and 𝑒(𝑖𝐤.𝐫) is the 

wave-like part where 𝐤 is the wave vector related to the frequency of the wave. 
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𝑢𝑖𝑘 can be expanded as a set of plane waves: 

𝑢𝑖𝑘(𝐫) = ∑ 𝑐𝑖,𝐆𝑒(𝑖𝐆.𝐫)

𝐆

𝐄𝐪. 𝟐. 𝟐𝟎 

where 𝑐𝑖  is the expansion coefficient, and 𝐆 is the wave vector related to the wavelength.  

The wavefunction can then be written as the sum of the plane waves: 

𝛹(𝐫) = ∑ 𝑐𝑖,𝐆𝑒(𝑖(𝐆+𝐤).𝐫)

𝐆

𝐄𝐪. 𝟐. 𝟐𝟏 

The quality of plane wave basis sets are typically described by the energy cutoff which sets the 

maximum magnitude of 𝐆. The cutoff energy controls the accuracy of the basis set, for a given 

system it is not known in advance and must be converged for a calculation to be successful. 

Plane wave basis functions are ideal for describing delocalised slowly varying electron 

densities such as the valence bands in metal, and larger systems. However, for the core 

electrons where the electron density varies rapidly, a plane wave function with a high 𝐆 value 

is needed, increasing computational cost. Instead plane wave functions which adequately 

describe the valence electrons can be used, with pseudopotentials to describe the core 

electrons.  

2.7 Pseudopotentials  

Pseudopotentials can be used to describe the core regions of an atom implicitly, since 

electrons in this region do not generally participate in bonding, excitations, or conductivity, 

while the valence electrons can be treated explicitly.55,58 This reduces the size of the basis set 

necessary to describe molecular orbitals and reduces the cost of a calculation.58,60 

Using a relativistic pseudopotential for the core electrons also provides indirect relativistic 

effects to the valence electrons. The relativistic motion of core electrons is partly responsible 

for the chemical and physical properties of heavy atoms, such as the lanthanides and actinides, 

although it is less important for lighter atoms. A notable example of the importance of 

including relativistic effects is the yellow colour of gold.61,62 Non-relativistic calculations of the 

excitation energies of gold predict the transition responsible for its yellow colour to be in the 

ultraviolet region. It is only with the inclusion of relativistic effects that this transition is 

predicted in the visible region. The inclusion of relativistic effects increases the accuracy of the 

pseudopotentials used with little impact on the computational cost.    
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2.6.1 Goedecker, Teter and Hutter Pseudopotentials 

The pseudopotentials used in this thesis were developed by Goedecker, Teter and Hutter 

(GTH-pseudopotentials).63 The pseudopotential is separated into a local one electron term, 

and a non-local two electron term, as follows: 

𝑉PP(𝐫, 𝐫′) = 𝑉loc
PP(𝐫) + 𝑉nl

PP(𝐫, 𝐫′) 𝐄𝐪. 𝟐. 𝟐𝟐 

the GTH-pseudopotentials were developed for use with plane wave basis sets. These 

pseudopotentials are relativistic, norm-conserving, separable and dual-space meaning they 

are defined in both real and Fourier space.  

2.8 The Hartree Approximation 
The many-electron wavefunction can be approximated by the Hartree or orbital 

approximation using the product of 𝑛 one-electron orbitals. This is known as the Hartree 

product:55,64 

𝛹HP(𝐱1, 𝐱2 , . . , 𝐱𝑛) = 𝜑1(𝐱1)𝜑2(𝐱2) … 𝜑𝑛(𝐱𝑛) 𝐄𝐪. 𝟐. 𝟐𝟑 

where 𝐱𝑛  is the spin and spatial coordinates of one electron in spin-orbitals 𝜑𝑛. Spin orbitals 

are the product of a spatial orbital and a spin function i.e. 𝜑𝑛(𝐱n) = 𝜑𝑖(𝐫𝑖)𝜎(𝑖) where 𝐫𝑖  is 

the spatial coordinates of electron 𝑖 and 𝜎(𝑖) is the z-component of the spin of the electron 

which can be either spin up (𝛼) or spin down (𝛽).  

The Hartree product neglects electron-electron interactions and treats the electrons as 

distinguishable particles rather than indistinguishable spin ½ particles (fermions). It violates 

the antisymmetry principle, which states that a wavefunction of a system of fermions must be 

antisymmetric with respect to the exchange of any two of the fermions.55 

2.9 Hartree-Fock Method 

The defects of the Hartree product were corrected by Pauling65, Slater66 and Fock67. The 

Hartree-Fock method improves upon the Hartree approximation by approximating the total 

molecular wavefunction 𝛹 using a Slater determinant composed of occupied spin orbitals: 55   

𝛹HF(𝐱1 , 𝐱2 … 𝐱𝑛) =
1

√𝑛!
|

𝜑1(𝐱1)

𝜑1(𝐱2)
⋮

𝜑1(𝐱𝑛)

 

𝜑2(𝐱1) ⋯ 𝜑𝑁(𝐱1)

𝜑1(𝐱2) … 𝜑𝑁(𝐱2)
⋮ ⋱ ⋮

𝜑2(𝐱𝑛) ⋯ 𝜑𝑁(𝐱𝑛)

| 𝐄𝐪. 𝟐. 𝟐𝟒 
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The Slater determinant satisfies the antisymmetry principle, as when two rows are exchanged 

the sign changes, and the wavefunction is zero if any two rows are identical which satisfies the 

Pauli principle.55  

Fock developed the explicit form of the Fock operator, �̂�𝑖, which acts on the molecular spin-

orbitals, to produce the energy of each orbital, as shown in the Hartree-Fock equations:55   

�̂�𝑖𝜑𝑖(𝐫) = 𝐸𝑖𝜑𝑖(𝐫) 𝐄𝐪. 𝟐. 𝟐𝟓 

where 𝜑𝑖  are the set of spin-orbitals used to generate the Hartree-Fock potential. The Fock 

operator takes the form:  

�̂�𝑖 = ℎ̂𝑖 + ∑[2𝐽𝑗(𝑖) − �̂�𝑗(𝑖)]

𝑛

𝑗=1

𝐄𝐪. 𝟐. 𝟐𝟔 

where ℎ̂𝑖 is the one electron Hamiltonian, 𝐽𝑗 and �̂�𝑗  are the electron-electron Coulomb and 

exchange operators respectively. 

The Hartree-Fock energy is minimised iteratively with respect to the variational parameters. 

The initial set of molecular spin-orbitals making up a wavefunction generate an initial 

potential. The energy of the wavefunction is minimised with respect to the initial potential, 

forming a new set of molecular spin-orbitals and in turn a new potential. This new potential is 

again used to minimise the energy of the wavefunction and this cycle is repeated until self-

consistency is achieved, i.e. the energy of the molecular orbitals generated is the same as the 

energy of the input molecular orbitals to within a predefined tolerance.55 This is known as the 

self-consistent field procedure.  

2.10 Electron Correlation 

A major deficiency of the Hartree-Fock method is that electron-electron repulsion is treated 

as if a single electron moves through an average electrostatic field from all other electrons, 

rather than being influenced by the repulsion of individual electrons. Fermi correlation, or 

exchange, which is due to the fact that two electrons of like spin cannot occupy the same 

space, is dealt with by the Slater determinant in Hartree-Fock Theory. However, Coulomb 

correlation, which is the correlation in motion due to electrostatic repulsion between 

electrons, is neglected by the Hartree-Fock method.55 This leads to an overestimation of the 

repulsion and an increase in the electronic energy of a system regardless of the size of the 

basis set. 
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The Hartree-Fock energy, 𝛦HF, is always greater than the exact energy, 𝛦0, of the system. 

Therefore the correlation energy is defined as the difference between them:55,68  

𝛦C = 𝐸0 − 𝛦HF 𝐄𝐪. 𝟐. 𝟐𝟕 

2.11 Density Functional Theory 

Density Functional Theory (DFT) is an alternative method to Hartree-Fock theory for obtaining 

the ground state electronic structure of many-body systems. Using DFT, the properties of a 

many electron system can be determined via the use of functionals i.e. functions of another 

function. DFT derives the positions of atomic nuclei and the ground state energy of a system 

from its electron density, or charge density, 𝜌(𝐫), rather than from the wavefunction. It 

improves how electron-electron interactions are dealt with and recovers the correlation 

energy. It is one of the most routinely applied computational investigative techniques and is 

instrumental for understanding the electronic, structural and thermodynamic properties of 

molecular systems.  

2.11.1 Thomas-Fermi Theory 

Thomas69 and Fermi70 proposed calculating the energy of an electronic system solely in terms 

of the electronic density, it was a precursor to the modern Density Functional Theory. The 

Thomas-Fermi expression for the total electronic energy is as follows: 

𝐸𝛼[𝜌] = ∫ 𝜌(𝐫)𝜀𝛼[𝜌(𝐫)]𝑑𝐫 𝐄𝐪. 𝟐. 𝟐𝟖 

where 𝜀𝛼[𝜌(𝐫)] is the energy density of contribution α (kinetic, exchange or correlation 

energies), calculated locally at every point in space. This is a local density approximation, or 

LDA.68 The original Thomas-Fermi approximation was too crude a description of the electronic 

ground state as only the kinetic energy of electrons was considered, while the nuclear-electron 

and electron-electron contributions were treated completely classically.71 

2.11.2 Hohenberg-Kohn Theorems 

In 1964, Hohenberg and Kohn introduced two theorems which form the basis for modern 

density functional theory.72 The first theorem states that all the ground state properties of a 

molecule can be determined from the electron density 𝜌0(𝐫). Therefore the ground state 

energy of a many electron system can be calculated given 𝜌0(𝐫), represented as:55 

𝜌0(𝐫) → Ε0 𝐄𝐪. 𝟐. 𝟐𝟗 
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the second theorem states that the variational principle applies to the density of a system and 

therefore any value of the molecular energy calculated from the density will be greater than 

or equal to the true energy. The ground state energy of the system can be minimised by 

varying the density, and the exact ground state energy is given by the density which minimises 

the total energy. The second theorem can be stated as: 55 

𝛦[𝜌𝑡] ≥ 𝛦0[𝜌0] 𝐄𝐪. 𝟐. 𝟑𝟎 

where 𝜌𝑡 is a trial electronic density, and 𝛦0 is the true ground state energy corresponding to 

the true electronic density 𝜌0.55  

Electrons move under the influence of an external potential, 𝑉ext(𝐫), which is determined by 

𝜌(𝐫). The total energy of a system, 𝐸[𝜌(𝐫)], is a functional of the electron density and can be 

written in terms of the external potential: 

𝐸[𝜌(𝐫)] = 𝐹[𝜌(𝐫)] +  ∫ 𝜌(𝐫)𝑉ext(𝐫) d𝐫 𝐄𝐪. 𝟐. 𝟑𝟏 

where 𝐹[𝜌(𝐫)] is the Hohenberg Kohn universal functional. Knowing the universal functional 

would allow the computation of the exact ground state energy as the second term in 𝐄𝐪. 𝟐. 𝟑𝟏 

can be calculated exactly. Unfortunately, it is not known, and so approximations must be 

made. 

The two theorems provide a basis for an electronic structure theory based on the electron 

density, rather than the wavefunction. Hohenberg and Kohn proved the existence of the 

dependence of the total energy on the electron density and showed that the universal 

functional exists, however, they did not provide a way to calculate the total energy using this 

approach. 

2.11.3 Kohn-Sham Equations 

Kohn and Sham73 later provided an efficient method to evaluate the ground state energy of a 

system using the density. The premise of the Kohn-Sham equations is that the exact ground 

state density of a real fully interacting system can be written as the ground state density of a 

fictitious system of non-interacting particles.  Rather than needing to find the universal H-K 

functional, the challenge is to find a fictitious system with the same density as the real one. 

This allows more accurate DFT calculations as the expression for the kinetic energy of non-

interacting electrons is in terms of orbitals.  
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A general expression for the Kohn-Sham DFT energy, 𝐸𝐾𝑆, can be written as: 

𝐸KS[𝜌(𝐫)] = 𝑇NI[𝜌(𝐫)] + 𝑉ne[𝜌(𝐫)] + 𝐽[𝜌(𝐫)] + 𝐸xc[𝜌(𝐫)] 𝐄𝐪. 𝟐. 𝟑𝟐 

𝑇NI is the kinetic energy of the non-interacting system, 𝑉ne, the interactions between the 

nuclei and the electrons and 𝐽, the Coulombic interactions. The only unknown term, 𝐸xc, is the 

exchange-correlation term which includes the small amount of remaining kinetic energy from 

the interaction of particles and the exchange-correlation interactions between electrons: 

𝐸xc[𝜌(𝐫)] =  𝑇[𝜌(𝐫)] − 𝑇NI[𝜌(𝐫)] + 𝑉ee[𝜌(𝐫)] − 𝐽[𝜌(𝐫)] 𝐄𝐪. 𝟐. 𝟑𝟑 

The Kohn-Sham equation 𝐄𝐪. 𝟐. 𝟑𝟒 is a Schrödinger-like equation of a single electron 

interacting with the external potential 𝑉KS where 𝜀𝑖  is the energy corresponding to the orbital 

𝜑𝑖. The effective potential needed to generate the same electron density as the fully 

interacting system: 

(−
1

2
𝛻2 + 𝑉KS(𝐫)) 𝜑𝑖(𝑟) =  𝜀𝑖𝜑𝑖(𝐫) 𝐄𝐪. 𝟐. 𝟑𝟒 

Kohn-Sham one electron molecular orbitals, φ𝑖
KS(𝐫), are used to solve 𝐄𝐪. 𝟐. 𝟑𝟒 and the total 

electron density is given in terms of the occupied Kohn-Sham orbitals: 

𝜌(𝐫) = ∑|𝜑𝑖
KS(𝐫)|

2

𝑖

𝐄𝐪. 𝟐. 𝟑𝟓 

The Kohn-Sham equations can be solved, as in HF theory, with an initial set of approximate 

molecular orbitals and a self-consistent field procedure. As the Exc term is only known for a 

free electron gas and must be approximated for all other systems.  
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2.11.4 Exchange-Correlation Functionals 

Different approximations of various levels of accuracy exist for 𝐸xc which allow for the 

calculation of ground state energies of molecular systems. They are categorised in Figure 2.3 

as a ladder approaching the goal of Chemical accuracy from the starting point of the Hartree 

Fock theory.  

 Heaven of Chemical Accuracy 

Ψ𝑖(𝐫)(unoccupied)  

 5th: Double Hybrid-GGA 

Ψ𝑖(𝐫)(occupied)                    

 4th: Hybrid-GGA 

𝜏(𝐫)  

 3rd: Meta-GGA 

∇𝜌(𝐫)  

 2nd: GGA 

𝑛(𝐫)  

 1st: LDA 

 Hartree World 

Figure 2.3: The Jacob’s Ladder of Chemical Accuracy, reproduced from Perdew J.P. and Schmidft, K. 

ref74. 

2.11.4.1 The Local Density Approximation 

The bottom rung of the DFT Jacob’s ladder is the simplest form of the exchange-correlation 

functional, the Local Density Approximation (LDA). LDA does not assume that the electron 

density in a molecule is homogenous. It assumes that the 𝐸xc density is only dependent on the 

value of 𝜌 at each point in space. The LDA functional can be written as: 

𝐸xc
LDA[𝜌(𝐫)] = ∫ 𝜌(𝐫)𝜀xc[𝜌(𝐫)] d𝐫 𝐄𝐪. 𝟐. 𝟑𝟔 
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The LDA has several problems, it is exact for an uniform electron gas but it fails for molecules 

which have strongly varying electron density, the total energy is underestimated and it tends 

to cause over-binding between atoms in molecules.55,60 

2.11.4.2 The Generalised Gradient Approximation 

The Generalised Gradient Approximation (GGA) for the exchange correlation energy improves 

on the LDA by considering both the electron density at a given point and the gradient, ∇𝜌, at 

that point: 

𝐸xc
GGA[𝜌(𝐫)] = ∫ 𝜌(𝐫)𝜀xc[𝜌(𝐫), ∇𝜌(𝐫)] d𝐫 𝐄𝐪. 𝟐. 𝟑𝟕 

Multiple GGA functionals exist which increase the accuracy of ground state calculations 

without a large increase in computational cost compared to LDA. The parameters of GGA 

functionals can be non-empirical, for example the Perdew-Burke-Ernzerhof (PBE)75,76 

functional, or semi-empirical, for example the BLYP77 functional, which is dependent upon 

parameters fitted to experimental data.  

2.11.4.3 Meta-GGA and Hybrid-GGA xc-Functionals 

An improvement over standard GGA functionals can be gained using meta-GGA functionals, 

such as TPSS75,78 which consider the second derivatives of 𝜌:  

Exc
mGGA[𝜌(𝐫)] = ∫ 𝜌(𝐫)𝜀xc[𝜌(𝐫), ∇𝜌(𝐫), ∇2𝜌(𝐫)] d𝐫 𝐄𝐪. 𝟐. 𝟑𝟖 

Hybrid-GGA functions, such as PBE075,79,80 and B3LYP,77,81,82  can also be used which combine a 

percentage of exact Hartree-Fock exchange energy with the approximate DFT exchange. These 

can be more accurate than standard GGA functionals, but this comes with an increase in 

computational cost.  

2.11.5 DFT+U 

One of the failures of DFT is the inability of LDA and GGA functionals to account for the strong 

correlation of localised d and f electrons, often leading to incorrect orbital occupation 

numbers. Failure to describe these correlations can misrepresent physical properties, for 

instance in the case of uranium dioxide GGA functionals predict metallic character.83 The 

DFT+U correction proposed by Liechtenstein et al.84 corrects this using an additional Hubbard-

like term. The effective Coulomb correction is given as: 

𝑈𝑒𝑓𝑓 = 𝑈 − 𝐽 𝐄𝐪. 𝟐. 𝟑𝟗 
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where 𝑈 and 𝐽 describe the strength of the on-site interactions for the Coulomb and exchange 

parameters respectively. The addition of the  𝑈𝑒𝑓𝑓   term applies a penalty to delocalised 

electrons which forces their orbital occupancy so they become localised instead of being 

shared by several atoms.  

The determination of 𝑈𝑒𝑓𝑓  can be done empirically or obtained from a series of total energy 

calculations where the occupancy of localised d or f orbitals is varied.85,86 DFT+U is often used 

when investigating actinide dioxides where DFT functionals find the AnO2 systems to be 

insulators.87–89 It is also used when investigating catalytic materials such as silver, copper and 

iron oxides, which often have variable occupations of d or f states in their catalytic phase.90   

2.11.6 DFT with Dispersion 

Dispersion is defined as the response of electron density to fluctuations of density in other 

regions of space. Standard LDA and GGA DFT functionals fail to account for long-range 
1

𝑟6 

electron correlations that are responsible for van der Waals dispersion forces between 

atoms.55,91  

Grimme et al.92,93 developed a method for calculating the dispersion forces for a small addition 

to computational cost. The DFT-D method adds an additional term to the DFT total energy to 

account for dispersion forces: 

ΕDFT−D = ΕDFT + ΕDisp 𝐄𝐪. 𝟐. 𝟒𝟎 

In D2 dispersion the coefficients are empirically derived and the D2 dispersion correction is 

given by an attractive semi-empirical pair potential: 

ΕD2 = ∑ ∑  𝑠𝑛

𝐶𝑛
𝐴𝐵

𝑟𝐴𝐵
n 𝑓𝑑,𝑛(𝑟𝐴𝐵)

𝑛=6,8,10,…𝐴𝐵

𝐄𝐪. 𝟐. 𝟒𝟏 

Where the first sum is over all atom pairs in the system, 𝐶𝑛
𝐴𝐵  is the 𝑛th order dispersion 

coefficient for atom pair 𝐴𝐵, 𝑠𝑛 is a global scaling factor, 𝑟𝐴𝐵 is the interatomic distance 

and 𝑓𝑑,𝑛 is a damping function defined as: 

𝑓𝑑,𝑛(𝑟𝐴𝐵) =
1

1 + 6 (
𝑟𝐴𝐵

𝑠𝑟,𝑛𝑅0
𝐴𝐵)

−𝛼𝑛
𝐄𝐪. 𝟐. 𝟒𝟐

 

where 𝑠𝑟,𝑛 is the order dependent scaling factor of the cutoff radii 𝑅0
𝐴𝐵 . 
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Grimme et al.93 later improved upon their initial dispersion correction with DFT-D3. In this case 

Ε𝑑𝑖𝑠𝑝  is the sum of two and three body energies: 

Ε𝐷3 = Ε2 + Ε3 𝐄𝐪. 𝟐. 𝟒𝟑  

Ε2 takes the form of the 𝐄𝐪. 𝟐. 𝟒𝟏 but 𝑛 is truncated at 8, and Ε3 is defined as: 

Ε3 = ∑ 𝑓𝑑,(3)(�̅�𝐴𝐵𝐶)𝐸𝐴𝐵𝐶

𝐴𝐵𝐶

𝐄𝐪. 𝟐. 𝟒𝟒 

where the sum is over all atom triples 𝐴𝐵𝐶, the geometric radii  �̅�𝐴𝐵𝐶  is used as a dampening 

factor with 𝑓𝑑, 𝐄𝐪. 𝟐. 𝟒𝟐, which has the parameters 𝛼 = 16 and 𝑠𝑟 =
4

3
, and 𝐸𝐴𝐵𝐶describes 

the long range interactions between atoms 𝐴𝐵𝐶. 

For small molecules the two centre terms dominate the dispersion correction so that the Ε3 

has no impact on the value of dispersion correction, and so the three body term is neglected 

and the D2 term is calculated with 𝑛 = 6,8 for atoms 𝐴𝐵, as in 𝐄𝐪. 𝟐. 𝟒𝟏. The improved D3 

method for calculating dispersion introduced atom-pairwise specific dispersion effects and a 

cutoff radii computed from first principles. The descriptions of dispersion have been calculated 

for elements with nuclear charge Z = 1-94.93  

2.11.7 Density Functional Theory Implementation in CP2K  

The CP2K Quickstep94 DFT module implements a mixed Gaussian and plane wave method. This 

combines the advantages of two representations of density in terms of Gaussians and plane 

waves using the Gaussian and plane wave method (GPW)95 or the Gaussian Augmented Plane 

wave method (GAPW)96 where augmented plane waves are used.  

2.11.7.1 Gaussian and Plane Wave Method 

The starting point for the GAPW method is the hybrid Gaussian and Plane Wave (GPW) 

method.95  The GPW method uses an atom-centred Gaussian type basis to describe the wave 

function and plane wave basis to describe the density. Using a dual representation allows for 

an efficient treatment of the electrostatic interactions, and results in a scheme which has 

linear scaling cost for the computation of the total energy with respect to the number of atoms 

in a system.94 

The representation of the electron density 𝜌(𝐫) can be written in terms of Gaussian functions: 

𝜌(𝐫) =  ∑ 𝑃𝑖𝑗𝜑𝑖(𝐫)

𝑖𝑗

𝜑𝑗(𝐫) 𝐄𝐪. 𝟐. 𝟒𝟓 
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where 𝑃𝑖𝑗 is the density matrix element in the atomic basis, and 𝜑𝑖(𝐫) are contracted Gaussian 

basis functions. Core electrons are represented using pseudopotentials such as GTH 

pseudopotentials described in Section 2.6.2. 

The representation of the electron density in plane waves is given by: 

�̃�(𝐫) =
1

Ω
∑ �̃�(𝐆)𝑒(𝑖𝐆 .𝐫)

𝐆

𝐄𝐪. 𝟐. 𝟒𝟔 

where Ω is the volume of the unit cell, and 𝐆 are the reciprocal lattice vectors. The expansion 

coefficients �̃�(𝑮) are such that 𝜌(𝐫) is equal to �̃�(𝐫) on a regular grid in a unit cell. Conversion 

between the two representations is achieved by expressing Gaussians numerically on a real 

space grid and the use of Fast Fourier Transforms (FFTs). 

The Kohn-Sham DFT energy expression as employed within the GPW framework is defined in 

𝐄𝐪. 𝟐. 𝟑𝟐. All integrals and derivatives are computed using Gaussian basis functions, except 

for the integrals of the Coulomb term 𝐽[𝜌] which is evaluated using plane waves according to 

𝐄𝐪. 𝟐. 𝟒𝟔. ΕXC[𝜌] is approximated by functionals such as those described in Section 2.11.4. 

The GPW method combines the benefits of Gaussians and plane waves as basis sets. The use 

of FFTs to convert between real and reciprocal space makes the algebraic manipulations 

simple in the plane wave basis set. However, a combination of high energy plane waves is 

needed to reproduce the wavefunction close to the nuclei to compute the Coulomb term. 

While this is alleviated by the use of pseudopotentials it can lead to unreasonably large basis 

sets with some elements. In regions of empty space, a plane wave basis set needs to represent 

empty space with the same accuracy as the atom filled region which can be very 

computationally demanding. To remedy these deficiencies while preserving the advantages 

the Gaussian Augmented Plane wave (GAPW) method can be used.95,96 

2.11.7.2 Gaussian Augmented Plane Wave Method  

The GAPW method96 as used in this thesis extends the GPW method using augmented plane 

waves instead of pure plane waves to describe the electron density. The GPW method 

assumes that the plane wave cutoff is high enough that the plane wave basis is sufficiently 

large to describe the electron density correctly. However, even with the use of 

pseudopotentials, the cutoff needed for a converged calculation can lead to an unfavourably 

high number of FFT grid points. The use of augmented plane waves in the GAPW method 

reduces the energy cutoff needed, and as a result reduces the number of FFT grid points 

needed for the plane wave representation of the density. 
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The electron density of a molecular system has different characteristics depending on the 

region in space. 𝑈𝐴 is the spherical atomic region around nucleus 𝐴 where the density is 

strongly varying. In the interstitial region, I, away from the nucleus the density varies slowly. 

It can be assumed the total density is the sum of three contributions: 

𝜌(𝐫) = �̃�(𝐫) − �̃�1(𝐫) + 𝜌1(𝐫) 𝐄𝐪. 𝟐. 𝟒𝟕 

where �̃�(𝐫) is smoothed and distributed over all space, and 𝜌1(𝐫) and �̃�1(𝐫)  are the sums of 

atom-centred contributions, 𝜌𝐴
1(𝐫) and �̃�𝐴

1(𝐫), which are hard and soft respectively.  

𝜌1(𝐫) = ∑ 𝜌𝐴
1(𝐫)

𝐴

𝐄𝐪. 𝟐. 𝟒𝟖 

�̃�1(𝐫) = ∑ �̃�𝐴
1(𝐫)

𝐴

𝐄𝐪. 𝟐. 𝟒𝟗 

It is assumed the difference between 𝜌𝐴
1 and �̃�𝐴

1  is zero outside 𝑈𝐴. For 𝑈𝐴 it is assumed that 

the atomic regions around different atoms do not overlap. Inside 𝑈𝐴, the soft density, �̃� is 

equal to its atom-centred contribution �̃�1: 

�̃�(𝐫) = �̃�1(𝐫) for 𝐫 ∈ 𝑈𝐴 𝐄𝐪. 𝟐. 𝟓𝟎 

Outside the atomic regions in the interstitial region, 𝐼, it is assumed that the soft density is 

equal to the total density: 

�̃�(𝐫) = 𝜌(𝐫) for 𝐫 ∈ 𝐼 𝐄𝐪. 𝟐. 𝟓𝟏 

These requirements lead to the four assumptions made to set up the GAPW representation of 

the electron density: 

𝜌(𝐫) − �̃�(𝐫) = 0 for 𝒓 ∈ 𝐼  𝐄𝐪. 𝟐. 𝟓𝟐 

𝜌𝐴
1(𝐫) − �̃�𝐴

1(𝐫) = 0 for 𝒓 ∈ 𝐼 𝐄𝐪. 𝟐. 𝟓𝟑  

�̃�(𝐫) − �̃�𝐴
1(𝐫) = 0 for 𝒓 ∈ 𝑈𝐴 𝐄𝐪. 𝟐. 𝟓𝟒  

𝜌(𝐫) − 𝜌𝐴
1(𝐫) = 0 for 𝒓 ∈ 𝑈𝐴 𝐄𝐪. 𝟐. 𝟓𝟓 

Partitioning the density in this way means that the Coulomb and exchange correlation terms 

can be calculated independently for �̃�, 𝜌1 and �̃�1. The Coulomb potential is separated into 

smooth non-local contributions expanded in planewaves and local contributions described 

with Gaussians and treated analytically. 
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The exchange correlation functional for the GAPW method can be written as:  

ΕXC[𝜌] = ΕXC[�̃�] − ∑ ΕXC[�̃�𝐴
1] + ∑ ΕXC[𝜌𝐴

1]

𝐴𝐴

𝐄𝐪. 𝟐. 𝟓𝟔 

The first term can be evaluated according using plane waves as in the GPW method, and the 

last two terms are evaluated using atom centred expanded Gaussians.  

The GAPW method maintains the advantages of the plane basis sets, including periodic 

boundary conditions naturally but reducing the planewave cutoff needed to converge the 

system which reduces the computational cost of calculations.   

2.12 Molecular Dynamics 
Molecular dynamics allows the study of thermodynamic and dynamic properties of a many 

body system over a set time period. There are two main groups of molecular dynamics 

simulations, classical molecular dynamics (MD) and ab initio molecular dynamics (AIMD), 

which describe the interatomic interactions in different ways. In MD, simulation particles are 

treated as classical objects and potentials are used to describe interatomic interactions, 

whereas in AIMD interatomic interactions are calculated from first principles. Both the 

classical and ab initio methods aim to describe the interatomic interactions sufficiently to 

approximate the movement of ions at equilibrium. However, due to differences in the way the 

forces are calculated MD is suitable for dynamic studies of large systems made up of many 

thousands of atoms for nanosecond timescales while the computational cost of AIMD 

becomes unfeasible for systems and timescales of this size.97 

2.12.1 Classical Molecular Dynamics 

In MD, molecules are treated as classical objects obeying the laws of classical mechanics which 

describe the position, velocity and acceleration of each atom as they vary with time.98,99 For 

the system of interest a set of initial conditions are specified which define the positions and 

velocities of all particles, and an interaction potential which derives the forces between 

particles. The trajectory of a system is followed by solving the differential equations from 

Newton’s equation of motion, (𝐅𝑖 = 𝑚𝑖𝑎𝑖), where 𝑎𝑖 is the acceleration of each particle:98 

𝐅𝑖 = 𝑚𝑖

𝑑2𝐫𝑖(𝑡)

𝑑𝑡2
𝐄𝐪. 𝟐. 𝟓𝟕  

Where 𝐅 is the force acting upon the particle 𝑖 at position 𝐫 at time 𝑡 and 𝑚 is the mass of the 

particle.  
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The force can also be expressed as the gradient of the potential energy of the system: 

𝐅𝑖 = −∇𝑖𝑉 𝐄𝐪. 𝟐. 𝟓𝟖 

combining equations 𝐄𝐪. 𝟐. 𝟓𝟕 and 𝐄𝐪. 𝟐. 𝟓𝟖 relates the derivative of the potential energy to 

changes in the position of atoms as a function of time: 

−
𝑑𝑉

𝑑𝐫𝑖
= 𝑚𝑖

𝑑2𝐫𝑖(𝑡)

𝑑𝑡2
𝐄𝐪. 𝟐. 𝟓𝟗  

New atomic positions from time 𝑡 to 𝑡 +  𝛿𝑡 are progated through the solving of integrators 

such as the Verlet algorithm.100–103 The time step, 𝛿𝑡, has to be chosen carefully in order to 

guarantee the stability of the integrator and reduce drift in the system’s energy. Interaction 

models or potentials, such as the Lennard-Jones pair potential,104 describe the interaction a 

systems constituents. The pressure, temperature or the number or particles of a simulation 

are controlled using a statistical ensemble. For example, in the micro canonical (NVE) 

ensemble the number of atoms (N), the volume (V) of the simulation cell, and the energy (E) 

are kept constant, essentially representing an isolated system. These three parts, the 

integrator, the interaction model and the ensemble, define a MD simulation and are varied to 

describe the system precisely over the timescale of a simulation. 

In systems where temperature control is essential a thermostat can be used such as in an NVT 

ensemble.97 The Nosé-Hoover thermostat105,106 is an algorithm for constant temperature 

simulations used across MD and AIMD simulations. The thermostat introduces a fictitious 

‘heat bath’ term with an associated mass, 𝑄. At the correct value of 𝑄, the thermal interaction 

between the heat reservoir and the dynamic system maintains the temperature of the system. 

A 𝑄 value which is too high would result in slow energy flow between the system and the 

reservoir while a 𝑄 value which is too low results in rapid temperature fluctuations. The Nosé 

-Hoover thermostat is commonly used as one of the most accurate and efficient methods for 

constant-temperature molecular dynamic simulations.107  

The use of potentials instead of describing particle interactions means that MD is an ideal 

method for examining the dynamics within a system of millions of atoms for timescales in the 

nanosecond range without an excessive computational cost. However, there are limitations to 

the atom-atom interactions which can be simulated using potentials and as electron 

configurations are undefined any changes in bonding and reactions between molecules cannot 

be easily simulated.103,108  
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2.12.2 Ab Initio Molecular Dynamics 

Ab initio molecular dynamics (AIMD) unifies molecular dynamics and electronic structure 

theory by computing the forces acting on the nuclei from electronic structure calculations 

performed “on-the-fly” as the dynamic trajectory is generated. One of the advantages of this 

method over the classical molecular dynamics approach is that electrons are explicitly 

included, meaning that it is possible to see how chemical processes occur over the timescale 

of the calculation. However, the introduction of the first principles (ab initio) basis for 

calculations comes at significant computational cost. 

The computational cost of calculating the ground state energy of each step reduces a AIMD 

calculation to a few hundred atoms and a few picoseconds of length compared to the million 

atom, nanosecond long classical molecular dynamics calculations.109 A shorter timescale raises 

concerns that a chemical system is not fully equilibrated, resulting in a highly variable energy, 

temperature or pressure.110 In the case of the total energy of a system, an erratic energy or a 

system where the energy drifts across the timescale of a simulation can be controlled with a 

well-chosen SCF convergence criteria.111 In contrast to 0 K static gas phase DFT calculations, a 

carefully parameterised thermostat and barostat can maintain a constant temperature and 

pressure.97   

The periodic nature of AIMD calculations and the relatively small periodic box compared to 

classical MD means that self-interaction error can be a concern.112 Self-interaction error is 

where a molecule or atom in one periodic box will interact with itself in an adjacent box. The 

size of simulation box must be large enough that the distance between a molecule and its 

periodic image minimises any self-interaction.113 In the case of bulk solid calculations or 

material slabs, a vacuum between periodic boxes can also be used.97  

In spite of these concerns with AIMD, for the calculations laid out in the subsequent chapters, 

it is the appropriate computational method, and the theory behind all AIMD techniques is the 

time-dependent Schrödinger equation. In principle the use of the time-dependent Schrödinger 

equation describes how a molecular system evolves over time: 

�̂�Ψ =  𝒾ℏ
𝜕Ψ

∂𝑡
𝐄𝐪. 𝟐. 𝟔𝟎 

Where �̂� is the standard Hamiltonian given in 𝐄𝐪. 𝟐. 𝟏𝟐. There are three approaches to AIMD, 

Ehrenfest molecular dynamics (EMD)97, Car-Parrinello molecular dynamics (CPMD)114 and 

Born-Oppenheimer molecular dynamics (BOMD).54 
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EMD is a mixed approach where the classical equations of motion for electrons are solved 

simultaneously with the Schrödinger equation for the electrons. The energy of a molecular 

system is minimised in the first time step, the time scale and time step are determined by the 

dynamics of the electrons and thus EMD needs a very short time-step to allow the integration 

of the electronic equations of motion. This confines the MD trajectory to much smaller time 

scales than BOMD which depends on nuclear motion.  

CPMD also calculates the forces at each time step using DFT, however the electrons and nuclei 

are considered to be moving at the same time, and the electrons are kept close to the ground 

state by use of “fictitious dynamics” which keeps the electrons in a low electronic fictitious 

temperature oscillation around a constant value. The evolution of a trajectory according to 

CPMD does not require an energy minimum to be reached in each time step.  

Born-Oppenheimer molecular dynamics (BOMD)54, is the AIMD method used for the 

calculations presented in this thesis, and in the CP2K package.115 It uses the assumptions of 

the Born-Oppenheimer Approximation, described in Section 2.5. BOMD includes the 

electronic structure in dynamics simulations by solving the static electronic structure problem 

at each trajectory step using the set of fixed nuclear positions at that time step.  

The BOMD method can be written: 97 

𝑚𝑖

𝑑2𝑹𝐼(𝑡)

𝑑𝑡2
= −𝛻𝑖 𝑚𝑖𝑛𝛹{⟨𝛹|�̂�𝑒𝑙|𝛹⟩} 𝐄𝐪. 𝟐. 𝟔𝟏 

for the nuclear, 𝐑𝐼, degrees of freedom, where �̂�𝑒𝑙  is the electronic Hamiltonian (𝐄𝐪. 𝟐. 𝟏𝟓) 

and 𝑚𝑖 is the mass of electron 𝑖. An energy minimum has to be reached in each time step using 

Kohn-Sham DFT, described in Section 2.10.3, to ensure accurate results.97 The electronic 

structure is solved from the time-independent Schrödinger equation, 𝐄𝐪. 𝟐. 𝟓, while the nuclei 

positions are propagated according to 𝐄𝐪. 𝟐. 𝟔𝟏. Therefore, the time-dependence of the 

electronic structure is a consequence of nuclear motion. As the energy must be minimised at 

each time step the efficiency of the BOMD approach depends on how effectively ground state 

energy can be reached. 

 

 

 



48 
 

2.12 Software Packages 
The work presented in this thesis makes use of the software packages described below: 

CP2K (https://www.cp2k.org/) 

CP2K115–117 is an open source quantum chemistry and solid state software package able to 

perform atomistic and molecular simulations of the solid state, liquid, molecular and biological 

systems. The CP2K Quickstep module provides a framework for DFT and AIMD using periodic 

boundary conditions and the mixed Gaussian and plane wave approaches GPW and GAPW. 

CP2K is capable of other methods not used in this work such as Hartree-Fock, post-Hartree-

Fock methods (MP2, RPA), classical molecular dynamics, and mixed QM/MM calculations.  All 

DFT and AIMD calculations in this work were performed using CP2K. 

VMD (http://www.ks.uiuc.edu/Research/vmd/)  

Visual Molecular Dynamics (VMD)118 is a molecular graphics program used for the display and 

analysis of large molecular systems. VMD has a graphical user interface and a script parser to 

allow the analysis of structure files. VMD was used in this work to visualise .xyz files and to 

generate radial distribution functions.  

Matlab (https://uk.mathworks.com/products/matlab.html)  

Matlab119 is a multi-functional computing environment and programming language, capable 

of intense data manipulation. The analysis and presentation of data can be achieved either 

through prewritten scripts or using the graphical interface. All the data analysis and figures 

present in this work have been done with the use of Matlab scripts. 

GaussView (http://gaussian.com/)  

Gaussview120 is a graphical interface used to construct and view molecular systems of interest. 

In this work Gaussview was used to modify, build and inspect starting structures for both DFT 

and AIMD calculations.  

 

 

 

 

 

https://www.cp2k.org/
http://www.ks.uiuc.edu/Research/vmd/
https://uk.mathworks.com/products/matlab.html
http://gaussian.com/
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Chapter 3: Aquo Complexes of the Alkaline Earth 
Metals: Mg2+, Ca2+, Sr2+ 

In this chapter, the results of investigations into the solvation structure of Mg2+, Ca2+ and Sr2+ 

from 75 ps of ab initio Molecular Dynamics trajectories are analysed and compared to existing 

computational and experimental literature. In addition, the parameters for the computational 

model used to investigate the solvation structure are presented. The analysis methodology 

used in this and later chapters of this thesis is explained in detail.  

The coordination environment of aqueous Mg2+, Ca2+ and Sr2+ complexes have been well 

studied with both computational and experimental methods and Sr2+ is a direct product of the 

nuclear fission process with the other ions present in the nuclear waste storage ponds. These 

initial studies provide a way to test the validity of the solvation model and computational 

methodology against existing literature. 

3.1 Introduction 
The liquid of the nuclear waste storage ponds contains aquo complexes of Mg2+, Ca2+ and Sr2+, 

as well as hydroxide and carbonate species, and all three species have been found in the 

groundwater around Sellafield.121–123 To fully investigate the dynamics of the ion behaviour in 

aqueous solution an accurate model of their solvation environment is necessary. This model 

provides a useful benchmarking opportunity for the underlying methodology presented in this 

thesis as the hydration structure of these alkaline earth metals have been studied previously 

both experimentally and computationally.  

The literature on the hydration structure of Mg2+ is relatively unambiguous. X-ray Diffraction 

(XRD)124,125, Neutron Diffraction (ND)126, Raman Spectroscopy127,128, Density Functional Theory 

(DFT)129,130, Classical Molecular Dynamics(MD)124,127,131 and ab initio Molecular 

Dynamics(AIMD)46,132–134 investigations all report a coordination number (CN) of 6. One gas 

phase DFT study investigating the successive binding energies of water to Mg2+ by Pavlov et 

al.135 found stable structures up to a CN of 7. A CN of 6.8 was reported in an XRD study by 

Albright136 but the author warned that the poor resolution of the peaks was the likely cause of 

the inconsistent result and a lower CN of 6 was more likely. The first shell Mg—O distance is 

found experimentally to be between 2.10 and 2.12 Å.126–128,136–139 Computationally, the Mg—

O distance varies to a slightly greater extent, with CPMD studies reporting bond lengths of 

2.08 Å46, 2.10 Å133, 2.13 Å132,134. The molecular dynamics study of Obst et al.140 reported a CN 
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of 6.2 and a longer bond length of 2.20 Å, which has not been replicated in the literature and 

is untypical.  

The hydration structure of Ca2+ is less well-defined, with experimental investigations reporting 

CNs between 6141,142 and 7.9136, and Ca—O distances of 2.40143 to 2.45 Å.141 Combined 

experimental computational investigations report CNs of 6144 to 9.5145, and Ca—O distances of 

2.45146 to 2.51 Å145. Katz et al.147 used ab initio molecular orbital calculations to examine 

experimental crystal structures of Ca2+, similar total energies were found for CNs 6, 7, and 8 

while all other CNs had considerably larger energies. A DFT study into the successive binding 

energies of Ca2+ by Pavlov et al.135 found the most stable CN to be 6 with a Ca—O distance of 

2.35 Å but identified stable structures up to a CN of 8. MD calculations report similar variation 

with CNs ranging from 5.95148 to 8140 and Ca—O lengths of 2.35148 to 2.45 Å149. The Quantum 

Chemical Statistical Mechanical Simulations (QMSTAT) study by Tofteberg et al.150 reported a 

CN of 6.9 with a Ca—O length of 2.50 Å. 

Various Car-Parrinello Molecular Dynamics (CPMD) studies of the hydration structure of Ca2+ 

calculated CNs in the range 5.946 to 7.2151 and Ca—O distances of 2.3646 to 2.45 Å152. A 22 ps 

CPMD study by Ikeda et al.132 took snapshots of hydrated Ca2+ at CNs of 5.4, 6.9 and 7.6 with 

associated Ca—O distances of 2.36 Å, 2.52 Å and 2.58 Å respectively. Noor et al.151 conducted 

a CPMD study on the hydration properties of Ca2+ and found the CN fluctuated between 7 and 

8, with an average value of 7.2 over a 14.2 ps simulation.151 A Born-Oppenheimer Molecular 

Dynamics (BOMD) study by Mehandzhiyski et al.153 found a CN of 7 with a Ca—O distance of 

2.45 Å, in agreement with earlier CPMD studies.  

The hydration structure of Sr2+ is similarly varied in the literature. Extended X-ray Absorption 

Fine Structure (EXAFS) studies identified structures with CNs from 6154 to 10.3155, with CNs 

around 8 being typical and first shell Sr—O distances of 2.57154 to 2.63 Å.155 X-ray Absorption 

Fine Structure (XAFS) studies report a smaller CN range of 6.22156 to 7.3157 and first shell Sr—

O distances of 2.60156 to 2.62 Å157, while XRD studies report a CN of around 8128,136,158–160 and 

first shell distances of 2.60136 to 2.64 Å128. A ND study by Neilson et al.161 of Sr(ClO4)2 reported 

a much higher CN of 15 with a Sr—O first shell distance of 2.65 Å, however this data was later 

found to be inaccurate and was re-examined in conjunction with an Anomalous X-ray 

Diffraction (AXD) study to find a CN of 9.160  

Many computational methods have been used to evaluate the first shell solvation structure of 

Sr2+ including DFT162, Quantum Mechanical/Molecular Mechanics (QMMM)163, QMSTAT150 as 

well as MD131 and AIMD46,153,164 and report widespread CNs between 6.746 and 9.8139 and Sr—
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O distances of 2.58131 to 2.69.150 A recent paper by D’Angelo et al.165 combined experimental 

and computational techniques to investigate the coordination shell of Sr2+ using X-ray 

Absorption Near-Edge Spectroscopy (XANES) of [Sr(H2O)8](OH)2, MD (using both the Åqvist and 

Dang potentials), and CPMD. The authors concluded that a CN of 8 with a first shell Sr—O 

distance of 2.60 Å was the most accurate description, reporting that the 2.72 Å bond length 

calculated with CPMD was inaccurate compared to their classical simulations and other AIMD 

literature. Earlier AIMD investigations report a Sr—O distance of 2.60 Å164 and 2.65 Å46 and 

coordination numbers of 6.7 and 8.0. A BOMD study by Mehandzhiyski et al.153 included a DFT-

D2 dispersion correction to better model the interactions of the water molecules, something  

absent from other AIMD investigations, and found a CN of 7.6 with 2.60 Å Sr—O first shell 

distance.  

3.2 Computational Details 
Born-Oppenheimer molecular dynamics simulations were performed using the QUICKSTEP 

module of CP2K, version 3.0 on simulations cells with periodic boundary conditions containing 

a single dication of either Mg2+, Ca2+ or Sr2+ and 64 water molecules.94,115 Temperature and 

pressure were kept constant using a NPT_I ensemble, where the simulation cell is isotropic. A 

0.5 fs time step was used, the average temperature 𝑇 = 400 K was maintained using a Nosè-

Hoover thermostat and a barostat maintained pressure of 1 atm.105 Initial cubic cell 

parameters were set to 𝑎 = 𝑏 = 𝑐 = 11.99 Å. The computational parameters are discussed 

in length later in this chapter.  

The Gaussian Augmented Plane Wave method (GAPW) was used for the calculation of forces 

and energies.96 The PBE75,76 functional was used including the DFT-D2 dispersion correction as 

proposed by Grimme.76,166 The calculations used double-ζ plus polarization quality Gaussian 

basis set (DZVP-MOLOPT-SR-GTH), a planewave cutoff of 500 Ry and a relative cutoff of 60 

Ry.167  

Charge neutrality is achieved through the use of a uniform neutralising background charge. 

Each calculated trajectory was 20 ps long, the first 5 ps of each trajectory was treated as an 

equilibration period, and was not considered in subsequent analysis. A total of 100 ps of 

trajectory time was collected for each system, with 75 ps used in analysis once the 

equilibration period was discarded.  

Convergence test results for the planewave cutoff and the relative cutoff can be found in 

Appendix A1, A2 and A3 for Mg2+, Ca2+ and Sr2+ respectively. 
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The DFT-D2 dispersion correction has been used for the alkaline earth metals in Chapters 3 

and 4. For other ions considered in this thesis in Chapters 5 to 7 the improved DFT-D3 

dispersion correction is used as there are no DFT-D2 dispersion corrections available. A 

comparison of the difference between using the D2 correction and the D3 correction for Sr2+ 

in water can be found in Appendix B.  

3.3 Simulation Parameter Investigation 

In order to ensure the validity of the water model used to study the solvation structure of the 

alkaline earth metals, and other ions presented in later chapters, certain parameters needed 

to be chosen to accurately represent the bulk structure of water. These parameters are 

investigated below and compared to available experimental data to ensure accuracy in the 

calculations.  

3.3.1 Temperature Dependence 

Initial geometry optimisations were carried out on a simulation cell containing 64 water 

molecules using the Grimme D2 dispersion correction.166 Pure GGA functionals, such as PBE, 

have a tendency to overbind in water simulations.168–170 The overbinding manifests by over 

structuring water to such an extent that at room temperature PBE simulations do not 

accurately represent liquid water.171,172 To overcome the effects of overbinding, previous 

studies46,170,173,174 have selected a simulation temperature of 400 K in order to ensure a liquid 

phase. As such, an appropriate simulation temperature for the studies presented in this thesis 

needed to be selected to accurately represent liquid water.  

Figure 3.1 presents O—H, O—O and H—H radial distribution functions (RDFs) obtained from 

simulations at 300 and 400 K and compares them to experimental data for liquid water. The 

experimental data used for comparison discarded the peak which appears at approximately 1 

Å in Figure 3.1a. Each RDF shows a clear improvement in agreement with experimental data 

for the higher temperature simulations, in particular when considering the second and third 

peaks in the O—H and O—O RDFs. Although there is still deviation from the experimental data 

which might perhaps be improved with further optimisation of the simulation temperature, 

400 K is used throughout the remainder of this thesis in line with other literature to allow for 

better comparison.46,170,173,174  
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a) 

 

 
 

b) 

 

 
 

c) 

 

Figure 3.1: a) O—H, b) O—O and c) H—H radial distribution functions, g(r), generated using simulation 

temperatures of 300 K (dashed blue) and 400 K (solid black), compared to experimental data from 

reference [ref175] (dotted red). 
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3.3.2 Impact of Temperature on Ion Solvation Structure 

As a simulation temperature of 400 K is essential to ensure a liquid water environment for the 

ions it is important to investigate if this has an impact on any calculated M—O bonds lengths. 

To investigate this further, the effect of temperature was considered in simulations of the Sr2+ 

ion in a simulation cell with 64 water molecules. A 20 ps AIMD trajectory at temperatures of 

300 and 400 K were run, and the resulting 15 ps of non-equilibration data was analysed.  

 
Figure 3.2: Sr—O radial distribution function, g(r), generated from 15ps simulations at 300K (dashed 
blue) and 400k (solid black). 

 

Figure 3.2 compares the RDFs from each trajectory, with peaks indicating the Sr—O bond 

distance at 2.65 and 2.62 Å at 300 and 400 K, respectively. While both these values are within 

the literature ranges presented for the Sr—O bond distance, the 2.62 Å value from the 400 K 

calculation agrees better with the range of the experimental data from 2.57154 to 2.63 Å155. In 

particular the calculated value of 2.62 Å agrees excellently with the 2.62 Å value obtained by 

the XAFS study of Pfund et al.157 and the XRD study of Persson et al.176 Due to the agreement 

of the Sr—O bond lengths with the literature values it was apparent that an increased 

simulation temperature of 400 K did not negatively impact the bonding of the ions and could 

be used going forward. 
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3.3.3 Dispersion Effects 

a) 

 

 

b) 

 

 

c) 

 

Figure 3.3: a) O—H, b) O—O and c) H—H radial distribution functions , g(r),  calculated at 400 K with 

(solid black) and without (dashed blue) Grimme’s D2 dispersion correction, and compared to 

experimental data from reference [ref175] ( dotted red) 
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While GGA functionals can describe the hydrogen bonds with good accuracy they fail to 

account for the long-range dispersion interactions or van der Waals interactions in water. The 

effect of introducing a dispersion correction on the structure of water was investigated by 

applying the Grimme D2 dispersion correction.166 Two AIMD simulations of 64 water 

molecules at 400 K with and without the dispersion correction were run for 20 ps. The resulting 

15 ps of non-equilibration trajectory time was used to generate RDFs.  

Figure 3.3 presents the O—H, O—O and H—H RDFs obtained for these simulations and 

compares them to experimental data for liquid water. The experimental data used for 

comparison discarded the peak which appears at approximately 1 Å in Figure 3.3a. Each RDF 

shows an improvement in agreement with experimental data at longer separation when the 

dispersion correction is included. As a result of this small improvement and the modest 

additional computational cost, a dispersion correction was included in all AIMD simulations to 

better represent bonding interactions and again leads to improved agreement with 

experimental data at 400K. 

3.3.4 Choice of Ensemble 

As detailed in Chapter 2.22 the choice of ensemble used in molecular dynamics simulations is 

important in order to accurately describe the parameters of the simulation shell. Two different 

ensembles were investigated for use in the AIMD simulations. An NVT ensemble, which 

maintains a constant Number of atoms, Volume, and Temperature, and an NPT_I ensemble, 

which maintains a constant Number of atoms, Pressure, and Temperature. The NPT_I 

ensemble uses an isotropic cell which can expand and contract keeping the cell lengths and 

angles constant.  

 

Figure 3.4: Sr—O radial distribution functions, g(r), generated from NVT trajectories (dotted red) or 

NPT_I trajectories (solid black). 
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A 20 ps AIMD simulation of the Sr2+ ion surrounded by 64 molecules was performed using the 

NVT and a second AIMD simulation using the NPT_I ensemble was performed to consider the 

effect of the simulation box parameters varying through a trajectory. Figure 3.4 compares the 

RDFs for the Sr—O distance obtained with the NVT ensemble to one generated using the NPT_I 

ensemble. The first peak of the Sr—O RDF occurs at 2.60 Å and 2.63 Å, for the NVT and NPT_I 

simulations, respectively. Both within the experimental literature range of 2.57154 to 2.63 Å155. 

While the differences in using the NPT_I ensemble are small, the improved agreement with 

literature values obtained led this approach to be adopted for the remainder of the study. 

3.4 Results  

3.4.1 Aquo Analysis Method 

Each CP2K AIMD trajectory generates a large volume of output files detailing the bonding, 

coordination and charge information for each of the 40 000 time steps, which corresponds to 

20 ps of trajectory time. As 5 ps is discarded as the equilibration zone the remaining 15 ps of 

data or 30 000 time steps needs to be fully analysed to obtain meaningful results. A robust 

analysis method was developed and tested on the alkaline earth metals and water simulations 

in preparation for use in all subsequent AIMD simulations presented in this thesis. This analysis 

method is presented below. 

3.4.1.1 Solvation Shell Cutoff  

To fully characterise the first solvation shell for the ions used in AIMD simulations, a cutoff 

distance was selected. This cutoff value needed to identify when water molecules surrounding 

the ion were no longer considered to be bonded to the ion, or in the first solvation shell. 

Initially, RDFs were calculated averaged over the entire 75 ps of analysable simulation time, as 

shown in Figure 3.5, which resulted in M—O peak values of 2.10, 2.44 and 2.63 Å for Mg2+, 

Ca2+ and Sr2+, respectively.  
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a) 

 

 

b) 

 

 

c) 

 

Figure 3.5: M—O radial distribution functions, g(r), generated using a total of 75 ps of simulation time 

for a) Mg2+, b) Ca2+, c) Sr2+. 
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A trajectory plot of all of the Mg—O bonds at a distance of less than 4 Å from the ion is shown 

in Figure 3.6a. The first solvation shell for Mg2+ can be clearly identified around 2.10 Å, 

however it is not easy to identify the number of oxygens which surround the ion at any one 

point. A simpler way of depicting the first solvation shell is with a single line plot of the total 

coordination number (CN), that is how many oxygens are coordinated to the metal ion. Initially 

the RDF peak of 2.10 Å was used as the first solvation shell cutoff, as in Figure 3.6b, however 

it was clear from examining Figure 3.6b that it fails as a useful representation of Figure 3.6a 

and that simply using the RDF peak does not account for slightly longer Mg—O bonds or bond 

stretching character across the timescale of trajectory. This results in a large amount of 

variation in the total CN, rather than identifying genuine changes in CN. 

a) b) 

  

 

c) d) 

  

Figure 3.6: a) Trajectory plot for all Mg—O bonds at a distance of < 4 Å from the ion. Coordination 

number plot of Mg2+ using a first shell cutoff of b) 2.10 Å, c) 2.40 Å, d) 2.7 Å for a representative 15 ps 

AIMD run. 

In order to make an accurate representation of Figure 3.6a as a total CN plot, a larger first shell 

cutoff was needed. Total CN plots using a cutoff value of the RDF peak + 0.30 Å, 2.40 Å, is 

shown in Figure 3.6c and the RDF peak + 0.60 Å, 2.70 Å, shown in Figure 3.6d, all cutoffs are 
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rounded to 2 decimal places. Examining all Figure 3.6b to d it is clear that Figure 3.6d produced 

the most accurate representation of the total CN for the first solvation shell of Mg2+. Therefore, 

a first solvation shell cutoff of 2.70 Å was identified for use in all further analysis of Mg2+. 

a) b) 

  

 

c) d) 

  

Figure 3.7: a) Trajectory plot for all Ca—O bonds at a distance of < 4 Å from the ion. Coordination 

number plots of Ca2+ using a first shell cutoff of b) 2.44 Å, c) 2.7 Å, d) 3 Å. For a representative 15 ps 

AIMD run. 

Appropriate first solvation shell cutoffs are also needed for Ca2+, and Sr2+. It is evident from 

Figure 3.7a and Figure 3.8a, which are trajectory plots of all the M—O bonds at a distance of 

less than 4 Å from the ion for Ca2+ and Sr2+ respectively, that the first solvation shell for these 

ions are more labile. Therefore, the process to identify an appropriate solvation cutoff was 

repeated for Ca2+ and Sr2+ as with Mg2+. Three first shell cutoffs were tested based on the value 

given for the RDF peak, the RDF peak + 0.30 Å and the RDF peak + 0.60 Å, all cutoffs are 

rounded to 2 decimal places. For Ca2+ this corresponded to cutoffs of 2.44 Å (Figure 3.7b), 2.70 

Å (Figure 3.7c) and 3.00 Å (Figure 3.7d), whereas for Sr2+ the cutoffs used were 2.63 Å (Figure 

3.8b), 2.90 Å (Figure 3.8c) and 3.20 Å (Figure 3.8d). For both ions adding 0.6 Å to the RDF peak 

provided the best representation of the first solvation shell trajectory plot as seen in Figure 

3.7a and 3.8a. The final first shell cutoffs were therefore 2.70 Å, 3.00 Å and 3.20 Å for Mg2+, 
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Ca2+ and Sr2+ respectively. The analysis of all AIMD trajectories in this and the following 

chapters use a first solvation shell cutoff of the RDF peak value +0.60 Å. 

a) b) 

  

 

c) d) 

  

Figure 3.8: a) Trajectory plot for all Sr—O bonds at a distance of < 4 Å from the ion. Coordination number 

plots of Sr2+ using a first shell cutoff of b) 2.63 Å, c) 2.9 Å, d) 3.2 Å. For a representative 15 ps AIMD run. 

3.4.1.2 Analysing Large Volumes of Data  

Initially, data for each AIMD trajectory was analysed using data from every timestep. However, 

as the complexity of simulations increased so did the amount of data produced at each 

timestep, which became too large to effectively analyse. In an attempt to make the data 

produced more manageable, the impact on accuracy of using only every 10th timestep in 

analysis was investigated.  

The total CN plots for using each timestep for analysis are shown in, Figures 3.9a, 3.9c, and 

3.9e for Mg2+, Ca2+ and Sr2+ respectively. The same data has been analysed using every 10th 

time step shown in Figures 3.9b, 3.9d, and 3.9f for Mg2+, Ca2+ and Sr2+ respectively. Comparing 

the CN plots using every timestep to those using every 10th timestep there is no loss in accuracy 
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when using only every 10th timestep, therefore the analysis method was adapted to use data 

from every 10th timestep.  

 
a) b) 

  

 

c) d) 

  

 

e) f) 

  

Figure 3.9: Coordination number plot for a representative 15 ps trajectory of; Mg2+ a) using all time 

steps b) using every 10th timestep; Ca2+ c) using all timesteps, d) using every 10th timestep; Sr2+ e) using 

all timesteps, f) using every 10th timestep. 
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3.4.1.3 True Coordination Number Changes  

In order to accurately analyse any coordination number (CN) changes for the first solvation 

shell, any noise in the data, whereby waters move in and out of the first solvation shell for 

only a brief amount of time needed to be removed. This can be done with the use of a 

smoothing value whereby a change in CN is discounted unless the change occurs for a set 

period of time. This has previously been done with the direct method approach as per Hofer 

et al.177 who detail the best approach to identify true transitions is to ignore any change in CN 

that occurs for less than 0.5 ps: in the work presented in this thesis this corresponds to 100 

data steps. However, when approaching the analysis for the hydroxide trajectories, as 

described in Chapter 4, a shorter timescale was needed to capture the motion of protons 

throughout the simulation box. As proton transfer events occur on the scale of 0.1 ps178–180, 

using a value of 0.5 ps to eliminate CN changes could also eliminate any visible proton transfer 

in the system. For this reason, two smoothing values for CN changes were tested: CN changes 

needed to last for either 0.1 ps (equivalent to 20 steps) or 0.5 ps (equivalent to 100 steps) in 

order to see which was most likely to capture the true coordination changes of the AIMD 

trajectories.  

Figures 3.10a to 3.10c plot the CN changes for representative examples of Mg2+, Ca2+ and Sr2+ 

using both of 20 step and 100 step smoothing values represented by orange dots and blue 

dashes respectively. Table 3.1 compares the total CN and average bond distances for all the 

aquo complexes using the two smoothing values. Table 3.2 and Table 3.3 show the percentage 

time that each ion spends at each different CNs, or residence time, across the 75 ps of 

simulation time collected. A wider variation in CN is seen in the Figure 3.10b and Figure 3.10c 

when using the 20 step smoothing value, and when comparing the calculated percentage 

residence times in Tables 3.2 and 3.3. However, when examining the calculated CN and bond 

lengths in Table 3.1 there is only a small reduction for both calculated values of Ca2+ and Sr2+. 

Combining the information for the CN and average bond length data the first solvation shell 

for each ion can be accurately characterised when using the 20 step smoothing approach, 

reducing the risk that any proton transfer or proton migration behaviour will be unnecessarily 

ignored in the later analysis of the hydroxide systems as described in Chapter 4. 
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a) 

 

 

b) 

 

 

c) 

 

Figure 3.10: Coordination number plot comparing smoothing every 20 steps (orange dots) and every 
100 steps (blue dash) for a) Mg—O b) Ca—O c) Sr—O. 
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Table 3.1: Coordination numbers (CN) and Average bond distances for rM—O for using both 20 step and 

100 step smoothing accompanying standard deviation (SD). 

Ion 

CN  rM-O (Å) 

20 step 100 step  20 step 100 step 

Mg2+ 6.00 (0.01) 6.00 (0.00)  2.134 (0.02) 2.134 (0.02) 

Ca2+ 7.50 (0.24) 7.39 (0.29)  2.508 (0.02) 2.507 (0.02) 

Sr2+ 8.02 (0.14) 7.99 (0.03)  2.692 (0.01) 2.696 (0.01) 

 

Table 3.2: Percentage residence time of different coordination environments, averaged over a total of 

75 ps for each ion with 20 step smoothing. 

Ion 
CN 

5 6 7 8 9 10 

Mg2+ 0.35 99.65 0.00 0.00 0.00 0.00 

Ca2+ 0.00 3.38 45.69 48.29 2.63 0.00 

Sr2+ 0.00 0.23 14.09 69.57 15.28 0.83 

 

Table 3.3: Percentage residence time of different coordination environments, averaged over a total of 

75 ps for each ion with 100 step smoothing. 

Ion 
CN 

5 6 7 8 9 10 

Mg2+ 0.00 100.00 0.00 0.00 0.00 0.00 

Ca2+ 0.00 0.57 60.27 39.16 0.00 0.00 

Sr2+ 0.00 0.00 5.65 90.13 4.29 0.00 

 

3.4.2 Characterisation of Alkaline Earth Aquo Complexes  

In order to accurately benchmark the solvation structure of the alkaline earth metals against 

existing literature, 5 separate starting structures each of Mg2+, Ca2+ or Sr2+ surrounded by 64 

water molecules were generated for use in the AIMD calculations. These 15 structures 

underwent a cell optimisation whereby both the geometry and the cell size were optimised 

simultaneously. The resulting 75 ps of trajectory time for each ion, after the 5ps equilibration 

period was discarded, was analysed using the analysis methodology described above.  

The calculated M—O bond lengths and metal coordination numbers for each simulation are 

summarised in Table 3.4 and compared to the experimental literature ranges. There is an 

increase in the M—O bond distances down the group from Mg2+ to Sr2+ along with an increase 

in first shell coordination number. While the calculated M—O bond lengths are slightly longer 
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than the experimentally reported values the literature values are predominately defined by 

the M—O peaks of the RDFS. As stated in Section 3.4.1.2, the RDF peaks obtained from the 

total 75ps of AIMD simulations were 2.10, 2.44 and 2.63 Å for Mg2+, Ca2+ and Sr 2+, which are 

well within the literature reported ranges.  

Table 3.4: Calculated M—O separations (rM—O) and mean coordination numbers (CN) for each AIMD 

trajectory (Traj.) and accompany standard deviation (SD). 

Traj. 
rM—O (Å)  CN 

Mg2+ Ca2+ Sr2+  Mg2+ Ca2+ Sr2+ 

1 2.133 2.499 2.701  6.00 7.45 8.12 

2 2.133 2.521 2.702  6.00 7.71 8.19 

3 2.136 2.526 2.677  5.99 7.61 7.91 

4 2.130 2.487 2.692  5.99 7.11 8.06 

5 2.137 2.510 2.688  6.00 7.64 7.83 

Mean 

(SD) 

2.134 

(0.023) 

2.508 

(0.017) 

2.692 

(0.009) 
 

6.00 

(0.01) 

7.50 

(0.24) 

8.02 

(0.14) 

The literature values, both experimental and computational, for the Mg—O bond distance 

cluster around 2.12 Å, in excellent agreement with the calculated value of 2.13 Å. 

Experimentally reported bond lengths for Ca2+ and Sr2+ aquo complexes vary by 0.11 Å and 

0.15 Å respectively, indicating significant uncertainty and dependence on experimental 

conditions. Typical experimental values for the Ca—O are reported around 2.45 Å, in excellent 

agreement with the calculated RDF value of 2.44 Å. The calculated value also compares well 

to other simulation data, which range from 2.35147 to 2.68151 Å, comparing excellently with the 

Mehandzhyski et al.153 BOMD study which also reported a Ca—O distance of 2.45 Å. 

Experimentally reported values of the Sr—O distance cluster around 2.63 Å, again in excellent 

agreement with the value of 2.63 Å obtained from the simulations. This value is, again, in 

agreement with existing simulation data, which range from 2.59164 to 2.69163 Å.  

The CN values calculated are, in all cases, within the range of values reported experimentally. 

The largest variation in the CN is for Ca2+, as evidenced by a standard deviation of 0.24. This is 

reflected in the percentage residence times of different coordination environments as 

reported in Table 3.5 for each ion. The CN plots for each AIMD trajectory are given in Figure 

3.11, Figure 3.12 and Figure 3.13 for Mg2+, Ca2+ and Sr2+ respectively.  
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a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 3.11(a-e): Total coordination number plots for each 15 ps AIMD trajectory of Mg2+. 
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a) b) 

  

 

c) 
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Figure 3.12(a-e): Total coordination number plots for each 15 ps AIMD trajectory of Ca2+. 
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a) b) 

  

 

c) 

 

d) 
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Figure 3.13(a-e): Total coordination number plots for each 15 ps AIMD trajectory of Sr2+. 
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Table 3.5: Percentage residence time of different coordination environments (CN), averaged over a 

total of 75 ps for each ion. 

Cation 
CN 

5 6 7 8 9 10 

Mg2+ 0.35 99.65 0.00 0.00 0.00 0.00 

Ca2+ 0.00 3.38 45.69 48.29 2.63 0.00 

Sr2+ 0.00 0.23 14.09 69.57 15.28 0.83 

While Mg2+ has a stable CN of 6 and only spends a brief percentage of time at a CN of 5, Ca2+ 

exists as the 7 and 8 coordinated complex for approximately equal periods of time. This 

indicates the significant lability of the eighth coordinating water molecule and, along with the 

brief time periods in which the 6- and even 9 coordinated complexes exist, explains the large 

standard deviation in the calculated coordination number. The larger Sr2+ more easily 

accommodates an eighth water molecule, spending the majority of the simulation time as an 

eight coordinated species, but also exists for significant periods of time with coordination 

numbers of both 7 and 9. These results are in excellent agreement with previous 

computational literature which found CNs of 6181 for Mg2+, CNs of 6135 to 8135 for Ca2+, and CNs 

of 7162 to 9163 for Sr2+.  

3.5 Conclusion 

This chapter focused on developing the computational and analysis method used throughout 

this thesis, by examining the solvation structure of the alkaline earth metals Mg2+, Ca2+ and 

Sr2+. As these ions are well studied in literature, as well as being relevant to nuclear waste 

storage and treatment, they are ideal candidates to develop a robust computational model 

which can be taken forward and used on more complex systems.  

The parameters for the proposed computational model were explained and justified, using 

existing literature parameters and experimental results to ensure an accurate solvation model 

was used in the subsequent AIMD simulations. The analysis methodology for full AIMD 

trajectories was then explained with the testing for each analysis parameter included.  

Finally, 75 ps of analysable AIMD trajectories for each of the alkaline earth metal ions in an 

aqueous environment were collected. These initial structures were optimised using the PBE 

functional with a DFT-D2 dispersion correction and AIMD calculations were run using Born-

Oppenheimer molecular dynamics. The structure of the first solvation shell was characterised 

by averaging the radial distribution functions over the entire trajectory time, and calculating 
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average M—O bond lengths. First shell coordination numbers were also calculated with 

accompanying percentage residence times.  

The results from characterising the first solvation shell compared excellently to existing 

literature, particularly with experimental literature. Highlighting that this method can be 

accurately used to investigate the solvation structure of these and other ions found in the 

nuclear waste storage ponds. An increase in both average bond length and coordination 

number was identified descending the alkaline earths from Mg2+ to Sr2+. Correctly identifying 

this trend and demonstrating the accuracy of these results in comparison to current literature 

indicates that an accurate solvation model has been developed and that the analysis method 

is correctly representing the data obtained from each AIMD trajectory.  
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Chapter 4: Proton Transfer or Hydroxide 
Migration? Exploring the Alkaline Earth Metal 
Hydroxides 
In this chapter, a novel investigation into the dynamics and solvation structure of the Mg2+, 

Ca2+ and Sr2+ hydrated hydroxides is presented, as a way to probe how the solvation structure 

of the ions alters with increasing pH. It builds on the aquo complexes studied in Chapter 3, to 

characterise the nature of the hydrated hydroxide complexes in bulk water environments, 225 

ps of analysable AIMD trajectories have been collected for each of the ions.  

The analysis method used to investigate the solvation structure and the method of proton 

transport through the bulk system is discussed, alongside testing done to ensure the validity 

of the method. The results of the AIMD trajectories are presented and discussed in the context 

of the prevalence of proton transfer and stabilities of the hydroxides residing in the first or 

second solvation shell. 

4.1 Introduction 
As previously discussed, the pH level of the nuclear waste storage ponds is maintained in the 

range 10 to 12. As a result of the alkaline pH hydroxide complexes form in the storage ponds. 

Little is known about the microsolvation environments of the alkaline earth hydroxides 

species, especially with regards to the dynamics of the hydroxide ions. However, there is some 

literature which has begun to probe both the structure and behaviour of the alkaline earth 

metal hydroxides.    

Kluge et al.182 used gas phase Density Functional Theory (DFT) with the B3LYP exchange-

correlation functional and found that in Mg2+ complexes the introduction of a hydroxide ligand 

reduces the total coordination number (CN) of the first solvation shell from 6 to 5. In repeat 

calculations it was found that on the inclusion of a hydroxide ion, one water molecule migrated 

to the second solvation sphere causing a change in coordination geometry from octahedral to 

bipyramidal. It was also found that the inclusion of a second hydroxide ion causes a further 

change to tetrahedral coordination.  

The gas phase DFT studies of Felmy et al.183 explored the hydrolysis of both Ca2+ and Sr2+ aquo 

complexes. In hydrolysing calcium aquo species from [Ca(H2O)6
2+ to [Ca(H2O)5OH]+, there was 

no change in first solvation shell CN, and no migration of the hydroxyl group from Ca2+. 

However, the removal of a proton from [Sr(H2O)6]2+ and [Sr(H2O)8]2+ had different effects. The 

[Sr(H2O)5OH]+ structure predicted the OH- directly bonded to the Sr2+, whereas for 
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[Sr(H2O)7OH]+ the OH- dissociated from the central ion and formed hydrogen bonds with three 

first shell H2O molecules. This difference in behaviour suggested that the addition of 

successive water molecules has a destabilising effect on the OH- although the authors note 

that lack the of an explicit second solvation shell in their calculations may have overestimated 

this effect.  

There is a larger body of information on strontium hydroxides, the structure of Sr(OH)2.8H2O, 

has been examined with X-ray Diffraction (XRD)155,184, Neutron Diffraction (ND)185 and X-ray 

Absorption Near Edge Structure (XANES)165 which all indicated that 8 water molecules 

coordinate to the ion, but find the hydroxide ions do not coordinate directly to the Sr2+ centre. 

Instead the hydroxide oxygen forms chains of acceptor and donor bonds with the first 

coordination shell, and forms hydrogen bonds with neighbouring waters.  

Kerridge and Kaltsoyannis186 used DFT to investigate the gas phase structures of the strontium 

hydroxide complexes with the form [Sr(H2O)8−n(OH)n](2−n) up to n = 4. A broad trend was found 

that the coordination of Sr2+ by n hydroxyl groups resulted in the destabilisation of complexes 

with a coordination number greater than 8 – n. Quantum Theory of Atoms in Molecules 

(QTAIM) calculations revealed the hydroxide ions have a weakening effect on the Sr2+ 

interactions with water oxygens. This results in waters preferentially occupying the second 

solvation shell rather than directly coordinating the Sr2+ ion. 

The effects of the inclusion of an explicit second solvation shell on the microsolvation of 

strontium hydroxides was studied using DFT by Makkos et al.187 who used the COSMO 

continuum solvation model to investigate bulk solvation. Overall they found that as the 

number of hydroxides increased the Sr-Ow bond distances increased, as the extra hydroxide 

coordination weakens the bonds. The authors found a low energetic barrier to proton transfer 

for the most stable dihydroxide species. When both hydroxide ions resided in the first 

solvation shell the complex was 3.0 kJ mol-1 higher in energy than a species with only one 

hydroxide in the first solvation shell.  

4.2 Computational Details 
Born-Oppenheimer molecular dynamics simulations were performed using the QUICKSTEP 

module of CP2K version 3.0. All simulation cells had periodic boundary conditions and contain 

a single cation of either Mg2+, Ca2+ or Sr2+, 62 water molecules and 2 OH- ions.94,115 A NPT_I 

ensemble, where the simulation cell is isotropic, was used with the initial cubic cell parameters 

set to 𝑎 = 𝑏 = 𝑐 = 11.99 Å, the temperature was set at 𝑇 = 400 𝐾 and was maintained using 

a Nosè-Hoover thermostat and a barostat maintained pressure of 1 atm.105  
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The Gaussian Augmented Plane Wave method (GAPW) was used for the calculation of energies 

and forces.96 The Perdew-Burke-Ernzerhof (PBE) generalised gradient approximation was used 

including the DFT-D2 dispersion correction as proposed by Grimme.76,166 The calculations used 

a double-ζ plus polarization Gaussian basis set (DZVP-MOLOPT-SR-GTH), a planewave cutoff 

of 500 Ry, and a relative cutoff of 60 Ry.167 The Mulliken charge188 was calculated on each atom 

throughout the trajectory. 

Each calculated trajectory was 20 ps long, with a timestep of 0.5 fs, the first 5 ps of each 

trajectory were treated as an equilibration time, and was not considered in subsequent 

analysis. In total 300 ps of trajectory time was collected for each ionic system, which resulted 

in 225 ps of analysable trajectory time per ion. 

4.3 Results  
Each AIMD trajectory generated output files with bonding, coordination and charge 

information for each timestep, it was therefore possible to identify and track the movement 

of hydroxides across the timescale of a trajectory. Initially all trajectories were analysed 

according to the methodology described in Chapter 3.4.1 to gain information on the bonding 

and coordination of the first solvation shell. Additional analysis was done, as described below, 

to provide information on the movement of hydroxide ions, proton transfer events and 

hydroxide coordination. 

For consistency the first solvation shell cutoff for the hydroxide environments was maintained 

as those identified in Chapter 3 for the aquo complexes. While the pH of the storage ponds 

was kept between pH 10 and 12, the inclusion of two hydroxide ions into the simulations 

presented herein result in a pH of 14, due to the relatively smaller number of water molecules 

in the simulation cells. The cutoff was used to calculate the total number of oxygens 

coordinated to the central metal ion, and to identify hydroxide coordination to the ion. The 

analysis method described below was based on Mg2+ dihydroxide environments, however 

testing was done with the Ca2+ and Sr2+ structures which indicated the same results.  

4.3.1 Hydroxide Analysis Method 

4.3.1.2 Identifying Hydroxides  

A representative magnesium dihydroxide system is used to illustrate the analysis approach 

used for all AIMD trajectories involving hydroxides in this thesis. Each oxygen in the simulation 

cell is numbered, and the calculated Mulliken charge is used to differentiate the hydroxide 
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oxygens, OOH, from water oxygens, Ow. An example of how the number of the oxygens 

associated with hydroxides, nO, varies over an AIMD trajectory is shown in Figure 4.1. 

 

Figure 4.1: The hydroxide oxygen number, nO, changing over a representative 15ps Mg2+ AIMD 

trajectory, for both hydroxides. 

As is evident from Figure 4.1 there is a large amount of variation in nO followed by periods of 

stability. The change in nO indicates that the hydroxides migrate through the water of the 

simulation cell by proton transfer, rather than by hydroxide migration. If hydroxide migration 

were the main method of hydroxide transport, then nO would not change as the simulation 

progressed. 

The mechanism of proton transfer through water is known as the Grotthuss mechanism189, 

and has previously been thought of as a stepwise process whereby a proton from a water 

molecule transfers to a OH- or from a H3O+ to a water molecule. However, more recently this 

mechanism has been examined and the mechanism of transfer of charge through water is no 

longer thought to be stepwise, but rather through specific chains of water molecules known 

as proton wires.178,190,191 Bursts of activity involving several protons along the proton wires 

leads to a new hydroxide, followed by periods of stability. This mechanism appears to be 

evident in Figure 4.1 where on multiple occasions nO varies wildly before settling on a single 

nO value for a period.  

While the variation in the data presented in Figure 4.1 potentially identifies the mechanism 

by which proton transfer occurs, for the purposes of quantifying proton transfer and the 

whereabouts of the hydroxides in the simulation cell it is most useful to only consider the 

periods of hydroxide stability. Therefore, the variation in the data where nO varies or oscillates 
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between two numbers should be discounted for analysis purposes. Initially nO was smoothed 

using the timescale prescribed in the Hofer et al.177 direct method, where any transition in 

coordination which resulted in a new hydroxide but did not last 0.5 ps or 100 timesteps was 

removed, as shown in Figure 4.2. However, this is not an accurate representation of the 

different stable hydroxides which exist in Figure 4.1, and reduces the change in hydroxide to 

once over the 20 ps timescale.  

 

Figure 4.2: Hydroxide oxygen number, nO, against time ignoring any change which lasted less than 100 

steps, for both hydroxides. 

 

Figure 4.3: Hydroxide oxygen number, nO, against time ignoring any change which lasted less than 20 

steps, for both hydroxides. 

The entire Grotthuss mechanism is thought to take place on a timescale of 1 to 2 ps189 with 

the bursts of activity which result in a full proton transfer occurring on a shorter timescale of 



77 
 

hundredths of a femtosecond.178,179,192 However, there is evidence that proton transfer can 

occur on a timescale of < 0.1 ps.189,193–195 Therefore, an alternative smoothing value of 0.1 ps, 

equivalent to 20 steps, was used to identify proton transfers, as shown in Figure 4.3. This 

smoothing value appears to have identified the periods of hydroxide stability, as evidenced in 

Figure 4.1, and was also verified against other AIMD trajectories to confirm it was an 

appropriate value to use in the analysis of hydroxide systems. 

4.3.1.3 First Shell Hydroxide Coordination  

Identifying each hydroxide at each step of the AIMD simulation means the distance of the 

hydroxide from the central ion and first solvation shell residence time, the total time each ion 

spent at a given CN, can be calculated. Figure 4.4 is an example plot of the distance from the 

central Mg2+ ion of each hydroxide ion at each point of the simulation. However, this plot only 

relays that at each point there are two hydroxides, rather than where the hydroxides have 

travelled from in relation to the ion. 

 

Figure 4.4: Mg—OH distance for each hydroxide at each step of a representative 15 ps AIMD trajectory. 

The distance of each hydroxide from the metal ion is used to summarise if the hydroxide is in 

the first solvation shell, as in Figure 4.5, as an alternative to Figure 4.4. Both the total Mg—O 

coordination, and Mg—OOH CN, and how they vary across a trajectory are shown in Figure 4.5. 
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Figure 4.5: Coordination Number (CN) plot for total first shell CN (orange dotted line) and hydroxide 

first shell CN (blue solid line) for a representative 15 ps Mg2+ dihydroxide AIMD trajectory.  

4.3.1.4 Identifying Proton Transfer Events 

The process of a proton transferring which generates a new hydroxide, or Proton Transfer 

Event (PTE), can be quantified in relation to the distance from the ion that the new hydroxide 

is identified. Initially a smoothing value of 20 ps was used on the AIMD trajectory data to 

identify any true PTEs. However, due to the variation in Figure 4.1 of the unsmoothed no, three 

smoothing values, of 10 steps, 20 steps and 30 steps, equivalent to 0.05 ps, 0.1 ps and 0.15 ps, 

were used to detect PTEs. 

 

Figure 4.6: Total trajectory plot for Mg2+ dihydroxide system showing total CN (orange dashed line), 

hydroxide CN in the first shell (blue solid line), and PTEs based on the (○), 20 (○) or 30(○) step smoothing 

value. PTEs are plotted at the distance which the new hydroxide appears. 
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Figure 4.6 presents the total first shell coordination number, total hydroxide coordination 

number in the first shell and the circles each represent a PTE at the distance from the ion that 

the proton was donated from. The size of the circle indicates the smoothing value which 

detected the PTE, 10 (○), 20 (○) or 30 (○). When visually inspecting the data used in Figure 4.6 

for which smoothing value was the most appropriate, the 10 step smoothing value resulted in 

PTEs being identified which were a result of bond vibration rather than proton transfer, while 

the 30 step smoothing proved to be overcautious and resulted in not identifying PTEs which 

had occurred. The initially chosen 20 step smoothing value proved to be the most robust value 

with which to find true PTEs in an AIMD trajectory.  

While the information presented in Figure 4.6 is accurate it does not tell us if the proton is 

transferring into or out of the first solvation shell. There are four possibilities for proton 

transfer which relate the direction of proton transfer to the first solvation shell cutoff. Proton 

transfer can either be: 

1. 1st shell to 1st shell (○) – this results in a new hydroxide in first shell and number of 

hydroxides in the first solvation shell staying the same.  

2. 1st shell to 2nd shell (∆) –  this results in a new hydroxide in first solvation shell and 

the number of hydroxides in the first solvation shell increases. 

3. 2nd shell to 2nd shell (○) – this results in a new hydroxide outside the first solvation 

shell with no change in the number of hydroxides in the first solvation shell.  

4. 2nd shell to 1st shell (∇) – this results in a new hydroxide outside the first solvation 

shell and the number of hydroxides in the first solvation shell decreases.  

The intrashell proton transfers are marked with the same symbol, ○, whereas the intershell 

proton transfers are indicated by arrows in the direction of proton transfer across the first 

shell cutoff. Collating all the information regarding coordination of the first solvation shell and 

proton transfers it is possible to present an entire AIMD trajectory on a single graph. As in 

Figure 4.7, which summarises an AIMD trajectory for Mg2+ with 2 hydroxides and 62 water 

molecules, displaying both the total and hydroxide CN, the first shell cutoff and classifies the 

PTEs at the distance they occur.  
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Figure 4.7: Total (dotted orange line) and hydroxide (solid blue line) coordination numbers, and proton 

transfer events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for an example Mg2+ 

dihydroxide AIMD trajectory. The dashed black line indicates the first shell cutoff distance of 2.7 Å. 

4.3.2 Characterisation of Alkaline Earth Dihydroxide Complexes 

To investigate alkaline earth metals in dihydroxide environments DFT and AIMD were 

employed. The dihydroxide starting structures were generated by taking snapshots of aquo 

AIMD trajectories of Mg2+, Ca2+ and Sr2+, from Chapter 3, and removing two protons from 

waters. These structures then underwent cell optimisation to optimise both the cell size and 

the geometry. The initial hydroxide placement was varied such that the starting structure had 

either both hydroxides coordinated to the ion, one hydroxide coordinated the ion or the ion 

was uncoordinated by hydroxides. This resulted in 5 structures for each dihydroxide starting 

placement, a total of 15 unique dihydroxide environments per metal ion.  

RDFs were calculated over the entire 225 ps simulation time, as shown in Figure 4.8, which 

gave peak positions of 2.12, 2.41 and 2.59 Å for Mg2+, Ca2+ and Sr2+ respectively. There is a 

slight change in the peak positions compared to the aquo simulations with Mg2+ peak 

increasing by 0.02 Å and peaks for Ca2+ and Sr2+ decreasing by 0.03 and 0.04 Å respectively. 

The single peak indicating the first solvation shell shows that in terms of bond length the metal 

hydroxide bonds, M—OOH, and metal water bonds, M—Ow, are indistinguishable from the 

RDFs.  
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a) 

 
 
 

b) 

 
 
 

c) 

 

Figure 4.8: M—O radial distribution functions, g(r), generated using a total of 225 ps of simulation time 

for the dihydroxide environment of a) Mg2+, b) Ca2+, c) Sr2+. 
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a) 

 

 

b) 

 

 
c) 

 

Figure 4.9: Example of a first shell plot for all M—O bonds across the time of a trajectory at a distance 

<4 Å for a) Mg2+, b) Ca2+, c) Sr2+ in a dihydroxide environment. 
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Examples of the first shell trajectory for all M—O bonds at a distance of less than 4 Å from the 

central ion of either Mg2+, Ca2+, Sr2+ in a dihydroxide environment are shown in Figure 4.9a to 

c. The calculated average M—O bond lengths for each trajectory are summarised in Table 4.1, 

the total and hydroxides CNs for each trajectory and the overall CN, hydroxide CN and bond 

lengths averaged over 225 ps are also given.  

Table 4.1: Calculated M—O separations (rM-O), total coordination numbers (CN) and hydroxide 

coordination numbers (CNOH) and accompanying standard deviation (SD) for each AIMD trajectory 

(Traj.) considered in this study.  

Traj. 
rM—O (Å) 

 

CN  CNOH 

Mg2+ Ca2+ Sr2+ 
 

Mg2+ Ca2+ Sr2+ 
 

Mg2+ Ca2+ Sr2+ 

1 2.150 2.471 2.705 
 

5.97 6.84 7.99 
 

0.51 0.61 0.41 

2 2.151 2.449 2.681 
 

5.97 6.43 7.56 
 

0.88 1.08 0.20 

3 2.149 2.470 2.708 
 

5.98 6.61 7.84 
 

0.80 0.75 0.26 

4 2.159 2.436 2.676 
 

6.00 6.15 7.44 
 

1.38 0.98 0.25 

5 2.155 2.473 2.668 
 

5.98 6.69 7.36 
 

1.39 0.52 0.60 

6 2.149 2.488 2.688 
 

5.99 6.97 7.49 
 

0.72 0.46 0.52 

7 2.148 2.435 2.667 
 

6.00 6.15 7.42 
 

0.67 1.28 0.11 

8 2.127 2.458 2.689 
 

5.57 6.48 7.64 
 

1.23 0.92 0.06 

9 2.151 2.470 2.689 
 

5.95 6.63 7.73 
 

0.98 0.78 0.14 

10 2.153 2.490 2.686 
 

5.98 6.96 7.51 
 

0.99 0.51 0.77 

11 2.141 2.490 2.699 
 

5.67 6.82 7.97 
 

1.56 0.71 0.05 

12 2.152 2.472 2.681 
 

6.00 6.55 7.53 
 

0.98 1.03 0.13 

13 2.154 2.481 2.679 
 

5.99 6.83 7.61 
 

0.97 0.60 0.15 

14 2.155 2.471 2.682 
 

5.85 6.72 7.63 
 

1.29 0.35 0.08 

15 2.147 2.479 2.683 
 

5.99 6.82 7.47 
 

0.38 0.32 0.57 

Mean 

(SD) 

2.150 

(0.008) 

2.469 

(0.018) 

2.685 

(0.012) 

 

5.93 

(0.13) 

6.64 

(0.26) 

7.61 

(0.19) 

 

0.98 

(0.34) 

0.73 

(0.28) 

0.29 

(0.23) 

 

Compared to the aquo environments explored in Chapter 3 the average M—O bond length for 

Mg2+ increased by ~0.02 Å, while the average bond length for Ca2+ and Sr2+ decreased by ~0.04 

Å and 0.01 Å, respectively. In all cases the inclusion of hydroxide species resulted in a decrease 

in mean coordination number of 0.07, 0.86 and 0.39 for Mg2+, Ca2+ and Sr2+ when compared 

to the aquo complexes. This reduction in CN can be understood when examining the results 

presented in Table 4.2 which reports the residence times of each CN identified for each ion as 

a percentage of total trajectory time. As in Chapter 3, Ca2+ exhibited the greatest lability, with 

comparable time spent 6 and 7 coordinated in the dihydroxide environment, compared to 

equal time spent as 7 and 8 coordinated in aquo complexes. This shift in coordination 
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environments combined with higher 9 coordinated Ca2+ not found is reflected in the 

substantial reduction in the average CN reported in Table 4.1. The Sr2+ complex, showed a 

propensity for an 8 coordination complex, also spent significant time in 7 coordinated, but the 

higher CN of 10 was not seen. While Mg2+ retained a CN close to 6, the time spent at lower CN 

of 4 and 5 increased compared to the aquo environments.  

Table 4.2: Percentage residence time of different coordination environments (CN) averaged over a total 

of 225 ps for each ion. 

Cation 
CN 

4 5 6 7 8 9 

Mg2+ 0.13 6.54 93.33 0.00 0.00 0.00 

Ca2+ 0.00 0.21 41.29 52.46 6.03 0.00 

Sr2+ 0.00 0.21 2.67 37.97 54.16 4.99 

 

The decrease in total CN for Mg2+ with the inclusion of hydroxides is not as pronounced as 

suggested by the gas phase calculations of Kluge et al.182 and the decrease in CN for Ca2+ was 

not evidenced in the studies of Felmy et al.183 However, the CN decrease for Sr2+ mirrors that 

found in previous literature.183,186 Both Kluge et al.182 and Felmy et al.183 used gas phase DFT 

calculations with only the first shell waters explicitly included. It is likely that the explicit 

inclusion of 62 water molecules in the AIMD solvation model more accurately models the bulk 

solvent and allow the water molecules to structure into first and second shells around the 

central ion as shown in the RDFs of Figure 4.7.  

The percentage residence time of each hydroxide coordination environment is summarised in 

Table 4.3 with the mean hydroxide coordination number (CNOH) averaged over 225 ps for each 

ion. The CNOH for Mg2+ is close to one, however a static view of the hydroxide coordination 

number is not accurate when examining the percentage residence times in Table 4.3: while 

Mg2+ spends half the trajectory time coordinated to one hydroxide, the remaining time is 

divided between dihydroxide and uncoordinated species. The hydroxide coordination is 

similarly dynamic for Ca2+ with a lower CN of 0.73 indicating that it is not often coordinated by 

a hydroxide, however the percentage residence times in Table 4.3 show that for 57 % of the 

trajectory time Ca2+ is coordinated by either one or two hydroxide ions. A low coordination 

number of 0.29 was found for Sr2+ which spends the majority of trajectory time uncoordinated 

by hydroxides for the majority, although both the monohydroxide and dihydroxide species are 

found, albeit the latter only for 3% of the simulation time.  
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Table 4.3: Percentage residence time of different hydroxide coordination environments, (CNOH) along 

with mean coordination number < CNOH> standard deviation in parentheses, averaged over a total of 

225 ps for each ion. 

Cation 
CNOH 

<CNOH> 
0 1 2 

Mg2+ 23.45 54.95 21.60 0.98 (0.34) 

Ca2+ 42.99 41.36 15.65 0.73 (0.28) 

Sr2+ 74.22 23.00 2.78 0.29 (0.23) 

 

When examining this data in the context of the reduced charge density of the alkaline earth 

metals, as in Figure 4.10, as the ions get larger the strength of the interaction of the ion with 

both water and hydroxide species reduces. This is reflected in both the increased lability of 

water CN and the decrease in hydroxide coordination from Mg2+ to Sr2+. The charge dense 

Mg2+ ion preferentially binds to one hydroxide which replaces a water to maintain a CN of 6 

as in the aquo complexes, rather than ejecting a 6th water to the second solvation shell. Ca2+ 

also preferentially binds to a single hydroxide, however its reduction in charge density also 

leads to a reduction in coordination number from aquo to hydroxide species. The charge 

density of Sr2+ has reduced such that it is no longer energetically favourable for a hydroxide to 

bind to the ion and only small reduction in CN is seen compared to that of the aquo complex 

 

 

Figure 4.10: The hydroxide coordination (CNOH) against the ionic radius123 of each cation Mg2+, Ca2+, Sr2+.  
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4.3.2.1 Dynamics of Hydroxide Coordination 

Each trajectory has been analysed in accordance with the methodology described in Section 

4.3.1. Care was taken to ensure that the starting position of the hydroxides did not influence 

the variation in the position of the hydroxides in the AIMD trajectories. The full trajectory plots 

are shown in Figure 4.11 to Figure 4.19, indicating total and the hydroxide coordination 

numbers. These show the significant variation in both across the course of each simulation, 

particularly prevalent for the larger Ca2+ and Sr2+ ions. The total CN exhibits higher values when 

the hydroxide CN is low as discussed previously. The PTEs for each trajectory are indicated on 

Figure 4.11 to Figure 4.19 with the position of each symbol indicating the distance between 

the ion and the oxygen in the water molecule donating the proton. While in almost all cases a 

change in hydroxide coordination is accompanied by a PTE, there are a few occasions where 

no PTE takes place, such as in Figure 4.18b at 8 ps, and the hydroxide coordination change is 

a result of hydroxide migration into or out of the first solvation shell.  
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Figure 4.11: Total (dotted orange) and hydroxide (solid blue) coordination number and proton transfer 

events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each Mg2+ 15 ps dihydroxide 

AIMD trajectory where both hydroxides started in the first solvation shell. The dashed black line 

indicates the first shell cutoff distance of 2.7 Å.  
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Figure 4.12: Total (dotted orange) and hydroxide (solid blue) coordination number and proton transfer 

events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each Mg2+ 15 ps dihydroxide 

AIMD trajectory where neither hydroxide started in the first solvation shell. The dashed black line 

indicates the first shell cutoff distance of 2.7 Å.  
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Figure 4.13: Total (dotted orange) and hydroxide (solid blue) coordination number and proton transfer 

events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each Mg2+ 15 ps dihydroxide 

AIMD trajectory where one hydroxide started in the first solvation shell. The dashed black line indicates 

the first shell cutoff distance of 2.7 Å.  
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Figure 4.14: Total (dotted orange) and hydroxide (solid blue) coordination number and proton transfer 

events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each Ca2+ 15 ps dihydroxide 

AIMD trajectory where both hydroxides started in the first solvation shell. The dashed black line 

indicates the first shell cutoff distance of 3.0 Å.  
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Figure 4.15: Total (dotted orange) and hydroxide (solid blue) coordination number and proton transfer 

events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each Ca2+ 15 ps AIMD 

dihydroxide trajectory where neither hydroxide started in the first solvation shell. The dashed black line 

indicates the first shell cutoff distance of 3.0 Å.  
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Figure 4.16: Total (dotted orange) and hydroxide (solid blue) coordination number and proton transfer 

events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each Ca2+ 15 ps AIMD 

dihydroxide trajectory where one hydroxide started in the first solvation shell. The dashed black line 

indicates the first shell cutoff distance of 3.0 Å.  
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Figure 4.17: Total (dotted orange) and hydroxide (solid blue) coordination number and proton transfer 

events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each Sr2+ 15 ps AIMD 

dihydroxide trajectory where both hydroxides started in the first solvation shell. The dashed black line 

indicates the first shell cutoff distance of 3.2 Å.  
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Figure 4.18: Total (dotted orange) and hydroxide (solid blue) coordination number and proton transfer 

events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each Sr2+ 15 ps AIMD 

dihydroxide trajectory where neither hydroxide started in the first solvation shell. The dashed black line 

indicates the first shell cutoff distance of 3.2 Å.  

 

 



95 
 

a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 4.19: Total (dotted orange) and hydroxide (solid blue) coordination number and proton transfer 

events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each Sr2+ 15 ps AIMD 

dihydroxide trajectory where one hydroxide started in the first solvation shell. The dashed black line 

indicates the first shell cutoff distance of 3.2 Å.  
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Table 4.4: Number and type of proton transfer events (PTE), obtained from 225 ps of AIMD data for 

each ion. Percentage values are given in parentheses 

Cation 
PTE 

1st—1st 1st—2nd 2nd—1st  2nd—2nd Total 

Mg2+ 15 (4) 77 (24) 79 (24) 155(48) 326 

Ca2+ 9 (2) 80 (22) 82 (22) 200 (54) 371 

Sr2+ 6 (1) 59 (14) 55 (13) 306 (72) 426 

The total number of PTEs found during the simulations is summarised by the direction of 

proton transfer, with respect to the first solvation shell cut off, in Table 4.4. There is a 

significant increase in the number of PTEs from Mg2+ to Sr2+, due to the increase in intrashell 

PTEs outside the first solvation shell. The intrashell PTEs in the first solvation shell decrease 

down the group, although this should be considered in the context of a lower probability of a 

hydroxide coordinating to the large metal ions, as in Table 4.3. For all the ions the number of 

PTEs involving a transfer into the first solvation shell is generally equal to the number involving 

transfer out of the shell, further indication of the lack of bias in the starting configuration. The 

total number of intershell PTEs also reduces with increasing ion size and this decrease can be 

explained with the results presented in Table 4.3 indicating the reduced probability of a 

hydroxide coordinating with the larger ions.  

The increase in intrashell PTEs outside the first solvation shell can partly be attributed to the 

increase in hydroxide species outside of the first solvation shell for the large ions. However, 

this does not explain the corresponding increase in total PTEs. The classical simulations of 

Hellström and Behler196 have demonstrated that proton transfer from water molecules 

directly coordinating to an Na+ ion is less likely than that from a bulk water molecule. This 

difference in probability is due to an increase energetic barrier to donation when the water 

molecules are coordinated to the ion. The authors also suggested that, generally, proton 

transfer is affected by the change in hydrogen bonding in waters surround the ion, compared 

to the waters in the bulk. As is seen Figure 4.8a and 4.9a the Mg2+ structures water into well-

defined first and second solvation shells, more than Ca2+ and Sr2+, which provides credence to 

the argument that a well-structured solvation environment suppresses proton transfer, and 

explains the increase in PTEs for the large Ca2+ and Sr2+ ions.  
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4.3.2.2 Relative Energetics of Strontium Hydroxides 

The static DFT simulations of strontium hydroxides using the meta-GGA TPSS exchange-

correlation functional by Makkos et al.187 used 22 explicit water molecules to represent the 

first and second hydration shells of the Sr2+ ion, with bulk solvation effects modelled using the 

COSMO continuum solvation model. These investigations found that the most stable 

dihydroxide species was just 3.0 kJ mol-1 higher in energy than the monohydroxide species.  

To investigate if the energy difference could be replicated with the more realistic solvation 

structure used in the AIMD simulations, analogous complexes were optimised. Snapshots of 

the dynamic simulations with either one or two hydroxide species in the first solvation shell 

were optimised. To ensure calculated energies were comparable the simulation cell size was 

fixed to 11.99 Å. The results of the optimisations found that the complex with both hydroxides 

coordinated to the Sr2+ ion was 3.1 kJ mol-1 less stable than those with only one hydroxide 

coordinated to the ion, in excellent agreement with the previous study. 

4.4 Conclusion 

This chapter focuses on novel investigations of the coordination of alkaline earth metals in 

hydroxide environments. 225 ps of analysable AIMD trajectories were collected for the 

dihydroxide environments of the Mg, Ca and Sr ions. Initial structures were randomised by 

varying the hydroxide placement and optimised using the PBE functional with a DFT-D2 

dispersion correction. AIMD simulations were carried out using Born-Oppenheimer molecular 

dynamics. 

A robust analysis for dynamics of hydroxide movement through the simulation box over the 

timescale of an AIMD reaction was presented. This chapter also describes a novel way to 

analyse proton transfer events for them to be characterised for further discussion. The full 

analysis method was thoroughly tested on multiple chemical environments and is applicable 

to all other hydroxide environments beyond the alkaline earth metals to allow for easy 

comparison.  

Bonding in the first solvation shell was characterised by averaging the radial distribution 

functions over the entire AIMD trajectory time and by calculating the average bond lengths of 

M—O, for M = Mg2+, Ca2+ or Sr2+. For both the total coordination and hydroxide coordination 

the percentage of trajectory time for each coordination mode was also calculated with an 

average total coordination number and average hydroxide coordination number. 
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The resulting data was compared to the aquo environments investigated in Chapter 3 and in 

the context of the available literature. Overall a decrease in total CN with hydroxides of each 

metal ion system was found as a result of the improved solvation model used in the AIMD 

simulations compared to those of previous literature investigations. Changes in average bond 

length reflected those found in existing literature but in the context of both total and 

hydroxide coordination number identified a different trend. The average bond for magnesium 

complexes increased compared to its aquo complexes, in contrast the average bond length for 

both calcium and strontium complexes decreased in the hydroxide environments.  

From the results presented in this chapter it could be inferred that in the higher pH 

environment, such as those of the nuclear waste storage ponds at Sellafield, magnesium and 

calcium are likely to exist as a mono or di hydroxide. However, in the case of strontium it will 

most likely not be present as a hydroxide. A further study investigating the competing 

interactions of multiple radionuclides in a hydroxide rich environment would further inform 

this. 

Proton transfer events were quantified and found to be most prevalent in the strontium 

hydroxide systems, likely due to the lack of hydroxide coordination to the central ion. In all 

cases the intrashell proton transfers which occurred outside of the first solvation shell were 

most prevalent, with the numbers of proton transfer events from the first to second shell and 

vice versa roughly equal. This corroborates the Hellström and Behler196 investigation which, 

although used a different methodology, found a similar pattern with PTEs most likely occurring 

away from the ion. 225 ps of analysable data was obtained to reduce the bias in the starting 

structures due to placement of the hydroxide ions, however there seem to be no correlation 

between the starting structure and the resulting level of PTEs and hydroxide CN when 

analysed.  

Snapshots of the strontium dihydroxide AIMD simulations were optimised to obtain the 

energy difference of structures where the ion was coordinated by either one or both 

hydroxides were performed. A small energy difference between the two coordination modes 

was found, which was in excellent agreement with a previously reported DFT investigation.  

The investigation presented in this chapter applies the solvation model developed in Chapter 

3 and expands it to a new area of interest; the solvation structure of the alkaline earth metals 

in the presence of hydroxide ions. The dynamics of the cations, has been thoroughly analysed 

to highlight the effects a hydroxide environment for the solvation structure of each alkaline 

earth metal.  
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Chapter 5: Aquo and Hydrated Hydroxide 
Complexes of UO2

2+ 

In this chapter, the results of an investigation into the bulk solvation of the hydrated uranyl 

ion (UO2
2+) in both the absence and presence of hydroxide are reported. 5 AIMD trajectories 

were simulated for each of the aquo, monohydroxide and dihydroxide environments and then 

summarised and compared to current literature. In addition, the dynamics and proton transfer 

events of the hydroxide systems are contrasted with the results from the alkaline earth metals 

presented in Chapters 3 and 4. As well as being industrially relevant, due to the prevalence of 

UO2
2+ in the nuclear waste storage ponds, the study of UO2

2+ was an opportunity to investigate 

a more complex dication, which has uranium centre in the +6 oxidation state.  

5.1 Introduction 

In the aqueous environment uranium readily forms uranyl (UO2
2+) which has a linear structure, 

shown in Figure 5.1, and been found to be present in nuclear waste storage ponds as both 

aquo and hydroxide complexes, as well as carbonate species such as UO2(CO3)2
2- and 

UO2CO3(OH)3
-.6,34,197 At increasing pH uranyl complexation with hydroxide ions increases, 

species at a lower pH range of 3 to 6 include UO2OH+ and (UO2)3(OH)5
+ whereas at a higher pH 

range of 9 to 12 complexes include UO2(OH)3
-, (UO2)3(OH)8

2- and (UO2)3(OH)10
4-.198,199 In 

addition to being contained in the ponds the uranyl ion is the dominant uranium species in 

contaminated groundwater systems around both reactor sites and uranium mines.44 Due to 

the solubility and the strength of the metal-oxygen bonds in uranyl its presence in the ponds 

makes effective clean-up difficult.38 

 

Figure 5.1: The structure of uranyl [UO2]2+. 

Experimental techniques such as Extended X-ray Fine Structure Spectroscopy (EXAFS)200,201, 

High Energy X-ray Scattering (HEXS)202, High Field Nuclear Magnetic Resonance (NMR)203, X-

ray Absorption Fine Structure (XAFS)204, X-Ray Scattering205 and X-ray Adsorption Near Edge 

Spectroscopy (XANES)206 have been used to probe the solvation structure of aquo complexes 

of UO2
2+. They report equatorial coordination numbers (CN) of 4.5200 to 5.3207, axial uranyl (U—
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Oyl) bond distances of 1.70208 to 1.77 Å205 and equatorial (U—O) bond distances of 2.41200,207,209 

to 2.45 Å210. Both the HEXS study Soderholm et al.202 and the X-ray scattering investigation by 

Neuefeind et al.205 of various concentrations of UO3.0.8H2O in dissolved in perchloric acid by 

found a dynamic equilibrium between a four and five coordinated uranyl, [UO2(H2O)4]3+ and 

[UO2(H2O)5]2+ respectively, in which the five coordinated species was favoured. XAFS spectra 

were collected for uranyl in aqueous solution as a function of chloride concentration by Allen 

et al.207 and a CN of 5.3 and U—O of 2.41 Å were found at low chloride concentration. As the 

concentration of chloride was increased the CN of uranyl decreased due to chloride 

complexation and the U—O bond length increased.  

Various density functional theory (DFT) investigations of the aquo solvation structure of uranyl 

found a equatorial CN of uranyl as 5211–218, with equatorial U—O bond lengths of 2.4215 to 2.53 

Å214,217. Siboulet et al.211 used DFT, with the hybrid functional B3LYP, to investigate the effect 

of including an explicit second solvation shell on the solvation structure of UO2
2+. They 

identified a shortening of the U—O equatorial bond distance of 0.06 - 0.08 Å with the inclusion 

of a 10 water molecule second solvation sphere for both the 4 and 5 coordinated species from 

2.44 Å to 2.36 Å and from 2.50 Å to 2.44 Å respectively. Kumar et al.213 found a similar, albeit 

less significant, shortening in bond lengths from 2.47 to 2.45 Å when using a conductor-like 

polarizable continuum model and the hybrid functional B3PW91.  

In general both ab initio Molecular Dynamics (AIMD)219–221 and Classical Molecular Dynamics 

(MD)206,222–225 simulations of the uranyl solvation environment indicate a coordination number 

of 5 and the U—O bond distance is identified as 2.36222 to 2.48 Å.224,225 The Classical MD study 

by Rodríguez-Jeangros et al.226 identified an average CN of 4.39 as uranyl is equatorially 

coordinated by either 4 or 5 waters. In their ab initio Quantum Mechanical Charge Field 

Molecular Dynamics (QMCF-MD) study or uranyl in aqueous solution, Frick et al.227 used 

Hartree-Fock theory to investigate the first solvation shell of uranyl and found a CN of 4 with 

a U—O average distance of 2.51 Å. The Car-Parrinello Molecular Dynamics (CPMD) study of 

Bühl et al.219, using the functional BLYP, initially optimised different geometries of gaseous 

[UO2(H2O)5]2+  followed by aqueous AIMD simulations for 2 ps. They found an average U—O 

distance of 2.54 Å in the gas phase for 5 CN structures and when the same 5 CN structure was 

placed in a water box the average U—O distance decreased to 2.47 Å.  

The impact of hydroxide on the first solvation shell of uranyl has been documented in both 

experimental and computational literature alike. Experimental EXAFS and X-ray Diffraction 

(XRD) data indicate U—Oyl distances of 1.79228 to 1.83200,229. EXAFS investigations of solid 
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[UO2(OH)4]2- by Moll et al.229 identified a U—Oyl distance of 1.83 Å and U—OOH distance of 2.26 

Å.229 The EXAFS and XRD analysis by Clark et al.228 crystals of of UO2(OH)n
2-n (n = 4,5) found U—

Oyl distances of 1.80 to 1.82 Å and U—OOH distances of 2.21 to 2.26 Å. The combined 

computational and experimental investigation of Wahlgren et al.200 used EXAFS and DFT 

calculations, at the MP2 level of approximation, to investigate the structure of uranyl with 

hydroxide ions. For the fixed structure [UO2(OH)4]2-, U—Oyl distances of 1.8 Å and U—OOH 

distances of 2.36 to 2.38 Å were found with computational methods. Their EXAFS data 

suggested a CN of 5 +/- 0.5 oxygens and a U—OOH distance of 2.25 Å with a U—Oyl bond length 

of 1.82 Å. However, the authors note that EXAFS is more accurately able to measure bond 

length than CN and suggest a CN of 4 due to the decrease in bond length compared to aquo 

species, in line with their computational calculations.  

Various DFT217,218,238,239,230–237 studies investigate the impact on the solvation structure of 

uranyl with hydroxide ions. DFT investigations have found U—Oyl distances of 1.75239 to 1.88233 

Å, U—OOH distances of 2.09218 to 2.46232 Å, U—Ow distances of 2.47240 to 2.60238 Å. However, 

these bond distances are dependent on the number of hydroxides coordinating the uranyl ion. 

In the hybrid DFT study of UO2(OH)2 by Hratchian et al.218, using B3LYP, shorter U—OOH bond 

distances of 2.09 to 2.11 Å, and U—Oyl distances of 1.78 to 1.82 Å were found, whereas 

multiple DFT studies of [UO2(OH)4]2- found longer distances of 1.84231 to 1.88233 Å for U—Oyl 

and 2.29233 to 2.31232 U—OOH. The gas phase DFT investigation, using the GGA functionals 

BP86, PW91 and PBE,by Ingram et al.234 into the relative energies and ground state structures 

of [UO2(H2O)m(OH)n](2-n)) (n + m = 5) using PBE found that as successive hydroxides are added 

to uranyl’s first solvation shell the U—Oyl distance lengthened from 1.77 to 1.88 Å, the U—Ow 

distance increased from 2.49 to 2.80 Å, while the U—OOH distance increased from 2.11 to 2.46 

Å. 

Cao et al.239 used B3LYP and MP2 with 20 explicit water molecules and a continuum solvent 

model to investigate the solvation structure of uranyl with a one or two hydroxides. In each 

case a CN of 5 was found, with the first solvation structure of UO2(OH)(H2O)4
+ for the 

monohydroxide system and UO2(OH)2(H2O)3 for the dihydroxide system. For the 

monohydroxide structure they found U—Oyl distances of 1.76 to 1.79 Å, U—OOH distances of 

2.16 to 2.19 Å and U—Ow distance of 2.47 to 2.60 Å.  For the dihydroxide structure these bond 

lengths increased to distances of 1.79 to 1.82 Å for U—Oyl and 2.53 to 2.66 Å for U—Ow. 

Compared to the monohydroxide structures a wider range of U—OOH bond lengths was found 

from 2.04 to 2.21 Å. 
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There is little dynamic data on the presence of hydroxides in the first solvation shell of uranyl. 

The computation investigation of Austin et al.236 into [UO2(OH)5]3- used MD simulations to 

obtain solvated uranyl hydroxide structures which were then optimised using DFT with the 

BP86 and B3LYP functionals and a continuum solvation model. This investigation found a U—

Oyl distance of 1.88 Å and U—OOH distance of 2.42 Å. Bühl and Schreckenbach241 used  CPMD 

with an explicit 55 water molecule solvent and an NH4
+ counter ion and the BLYP functional to 

examine the exchange of the axial and equatorial oxygen atoms in [UO2(OH)4]2-. They found 

that the structure can be deprotonated to form [UO3(OH)3]3- which then undergoes proton 

transfer via cis-[UO2(OH)4]2- complex. The rate limiting step in the transformation is the proton 

transfer which is assisted by a water molecule from the solvent, there was a computed barrier 

for the exchange of 12.5 kcal mol-1.  

5.2 Computational Details 

Born-Oppenheimer molecular dynamics simulations were performed using the QUICKSTEP 

module of CP2K version 3.0 and simulation cells with periodic boundary conditions.94,115 

Temperature and pressure were kept constant using a NPT_I ensemble, where the simulation 

cell is isotropic. The average temperature 𝑇 = 400 𝐾 was maintained using a Nosè-Hoover 

thermostat and a barostat maintained pressure of 1 atm.105 The GAPW96 method was 

implemented using the PBE functional with Grimme’s DFT-D3 dispersion correction 

applied.76,166 The calculations used a double-ζ plus polarization quality Gaussian basis set 

(DZVP-MOLOPT-SR-GTH) and a planewave cutoff of 600 Ry with a relative cutoff of 80 Ry.167 

The results from converging the relative and planewave cutoff can be found in Appendix A7. 

The DFT+U approach was taken for all calculations with an effective 𝑈𝑒𝑓𝑓 = 𝑈 − 𝐽 value of 

3.96 eV applied to the f orbitals. The U value of 4.5 eV and J value of 0.54 eV has been 

employed in keeping with many previous studies,83,87,242–245 this value is based on the XRD 

measurements of Kotani and Yamazaki.246 This value was used for both the cell optimisation 

and the generation of AIMD trajectories. 

All initial structures underwent a cell optimisation prior to the start of the AIMD trajectory run, 

where both the cell parameters and the geometry were optimised simultaneously. The final 

cell parameters for each structure were then used for the starting AIMD trajectory, and 

allowed to vary as in the NPT_I ensemble. For the aquo and monohydroxide systems charge 

neutrality was achieved through the use of a uniform neutralising background charge. Each 

AIMD trajectory was 20 ps long and was comprised of 40,000 steps, each of length 0.5 fs. The 
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first 5 ps of each trajectory was treated as an equilibration period and was not considered in 

subsequent analysis.  

A total trajectory time of 100, 100 and 120 ps for the aquo uranyl, uranyl monohydroxide and 

uranyl dihydroxide respectively was collected. Once the equilibration time was discarded 75, 

75 and 90 ps of trajectory time were analysed for the aquo uranyl, uranyl monohydroxide and 

uranyl dihydroxide systems respectively. 

5.3 Results 

5.3.1 Characterisation of the Uranyl Aquo Complexes 

To investigate the solvation structure of uranyl in an aqueous environment, 5 separate starting 

structures of 64 waters with a central UO2
2+ underwent a cell optimisation. These 5 structures 

were used for AIMD trajectories with initial cubic cell parameters of 𝑎 = 𝑏 = 𝑐 = 12.31 Å for 

the first structure, and 11.99 Å for the final 4 structures. The resulting 75 ps of trajectory was 

analysed in the same method as described in detail in Chapters 3 and 4.  

 

Figure 5.2: U—O radial distribution function, g(r), generated from a total 75 ps of simulation time for 

the uranyl aqueous environment. 

Radial distribution functions (RDFs) were calculated for the entire 75 ps simulation time, as 

shown in Figure 5.2. The RDF yielded peak positions of 1.80 Å and 2.39 Å, clearly defining the 

U—Oyl bond distances and the U—O bond distances, respectively. As in various DFT 

investigations including that of Siboulet et al.211 and Kumar et al.213  the shorter equatorial 

bond length has resulted in a lengthening of the U—Oyl bond length as indicated in the RDFs. 
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These values are in generally good agreement with the experimental data, with most literature 

reporting a U—Oyl distance of 1.76 Å201,202,205,207 and U—O distance of 2.42 Å202,205,208.  

The calculated average U—Oyl and U—O bond lengths and uranium coordination number are 

summarised in Table 5.1. The experimental literature data has a range of 1.70 to 1.76Å for the 

uranyl bond and 2.41 to 2.45 Å for the U—O bonds, while the computational literature data 

differs from 1.70 to 1.85 Å for the uranyl bond and 2.36 to 2.53 Å for the U—O Å bonds which 

indicates that the bond distances obtained are dependent on the methodology used to obtain 

them.  

Table 5.1: Calculated U—Oyl, U—O bond lengths and mean coordination numbers (CN) for each AIMD 

trajectory run and accompanying standard deviation (SD) in parenthesis.  

Trajectory 
rM—O (Å)  

CN 
U—Oyl U—O  

1 1.809 2.417  5 

2 1.806 2.420  5 

3 1.806 2.416  5 

4 1.804 2.422  5 

5 1.806 2.420  5 

Mean (SD) 1.806 (0.002) 2.419 (0.003)  5(0.00) 

The average U—Oyl bond distances of 1.81 Å from the AIMD simulations are slightly longer 

than those obtained experimentally but fall in the middle of the range given by computational 

literature, comparing excellently with the CMPD219 calculated value of 1.81 Å. The average U—

O bond length of 2.42 Å compares excellently with the U—O distance of 2.42 Å found 

experimentally from a range of techniques including XRD208, XAFS207, XANES206, EXAFS 200,201 

and X-ray scattering205. It also falls within the range of both computational and experimental 

literature of 2.36222 to 2.53214,217 Å. 

Table 5.2: Percentage residence time for coordination environments averaged over 75 ps. 

CN 4 5 

% 0 100 

Analysis of the trajectories yielded percentage residence times as summarised in Table 5.2. 

The calculated CN of 5 agreed with the available experimental and computational literature. 

While some studies202,205,226 reported a variation in the coordination number between 4 and 5 

with a dominance for 5 CN, this was not seen in the AIMD data. The chosen first shell cutoff of 

3 Å for the first solation shell ensured a complete picture of how the coordination environment 
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varied across a trajectory, eliminating any noise in the data from bond stretching and bending 

which did not produce a true coordination change. The analysis of the trajectory showed that 

the first solvation shell did not vary in coordination number across the whole 75 ps of 

trajectory time. 

 
Figure 5.3: Example of a first shell trajectory plot for all U—O bonds at a distance of < 4 Å for uranyl 

aqueous environment. 

An example of a trajectory plot for the first solvation shell of uranyl is shown in Figure 5.3 

plotting the distance of all U—O bonds within 4 Å. The U—Oyl bonds can be seen in the orange 

and yellow lines varying around 1.8 Å, whereas the U—O bonds indicating the first solvation 

shell can be seen around 2.4 Å. For ease of analysis the trajectory plots are redrawn as 

coordination plots indicating the CN of the first solvation shell across the time of a trajectory 

such as those show in Figure 5.4 (a-e).  
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a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 5.4(a-e): Total coordination number plots for each 15 ps AIMD trajectory of UO2
2+. 
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5.3.2 Characterisation of Uranyl Monohydroxide Complexes 

To investigate the impact of a single hydroxide on the solvation structure of uranyl, DFT and 

Born-Oppenheimer Molecular Dynamics were employed. The monohydroxide simulation 

structures were generated using 5 separate simulation snapshots from the aquo AIMD 

trajectories in section 5.3.1 with a single proton removed. These monohydroxide systems 

underwent cell optimisations and the initial cubic cell parameters for the AIMD trajectories 

were set to 𝑎 = 𝑏 = 𝑐 = 12.60 Å for all 5 structures based on cell optimisations. The initial 5 

ps of trajectory time for each AIMD run were discarded for equilibration for a total of 75 ps of 

trajectory time. The data was analysed in the same method as described in detail in Chapter 

4. In the mono-hydroxide systems the initial hydroxide placement was varied before geometry 

optimisation. Several attempts were made to optimise a geometry with a hydroxide outside 

of the first solvation shell, however these resulted in the proton migrating out of the first shell 

to generate a hydroxide inside the first solvation shell. 

The RDFs were calculated over the entire 75 ps simulation time, as shown in Figure 5.5. The 

RDF gave peak positions of 1.83 Å, defining the U—Oyl bond distances, and 2.47 Å, identifying 

the U—Ow bond distance. A new maximum at 2.12 Å clearly indicates the U—OOH distance, a 

peak which is absent in the aquo RDF in Figure 5.2 and in the RDFs of the simulations of the 

alkaline earth metals with hydroxide presented in Chapter 4. This new peak could be due to 

the increased oxidation state of the uranium metal centre in comparison to the alkaline earth 

metals, causing the uranium centre to bind more tightly to the hydroxide than the water. 

 

Figure 5.5: U—O radial distribution function, g(r), generated from a total of 75 ps of simulation time for 

the uranyl monohydroxide system. 
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To appropriately analyse the impact of the hydroxides on the first solvation shell the bond 

lengths have been calculated separately for the U—OOH, U—Ow and the uranyl bond U—Oyl 

and are summarised in Table 5.3. The introduction of a hydroxide ion into the first solvation 

shell impacts both the axial and equatorial bond lengths. The average U—Oyl bond length 

increases by 0.02 Å and the U—Ow bond length increased by 0.07 Å compared to those 

obtained the aquo AIMD trajectories. Combined with the shorter U—OOH bond distances 

suggests that the U—OOH interaction is stronger than the U— OOw interaction. The increase in 

bond length mirrors the trend seen in the DFT study by Ingram et al.234 where the introduction 

of a hydroxide ion induced a U—Oyl lengthening of 0.03 Å and U—O lengthening of 0.1 Å.  

Table 5.3: Average bond distances for rM—O and coordination numbers (CN) and hydroxide coordination 

numbers (CNOH) for each AIMD trajectory (Traj.) with accompanying standard deviation (SD) in brackets.  

Traj. 
rM—O (Å)  

CN CNOH 
U—Oyl U—Ow U—OOH  

1 1.827 2.491 2.167  5 1 

2 1.821 2.481 2.182  5 1 

3 1.820 2.482 2.191  5 1 

4 1.817 2.496 2.198  5 1 

5 1.820 2.482 2.205  5 1 

Mean (SD) 1.821 (0.003) 2.486 (0.007) 2.189 (0.015)  5 (0.00) 1 (0.00) 

The average U—OOH value of 2.19 Å is significantly longer than the Ingram et al.234 value of 

2.12 Å for a monohydroxide. However it is best compared to the Cao et al.239 DFT investigation, 

as their systems included 20 explicit water molecules and a continuum solvent model. For their 

monohydroxide system they obtained a U—OOH bond distance of 2.19 Å, U—Ow bond 

distances of 2.47 to 2.50 Å and a U—Oyl bond distance of 1.79 Å yielding a 5 CN system 

comprised of 1 hydroxide and 4 waters.  

There is no dynamic data on uranyl monohydroxide systems to compare the calculated values 

in Table 5.3 against. However, given the accuracy of the aquo systems when compared to 

experimental data and how well the calculated average bond lengths for the monohydroxide 

compare to the available computational literature it is reasonable to assume these results 

based on dynamics have the same level of accuracy. 

Analysis of the trajectories yielded coordination residence times as shown in Table 5.4. As for 

the aquo system the CN did not deviate from 5 over the 75ps of trajectory time. An example 

of a full trajectory plot of all U—O bond lengths at a distance less than 4 Å over the trajectory 

time can be seen in Figure 5.6. The shorter hydroxide bond as indicated in the RDF at 2.12 Å 
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is evidenced as the light blue line in Figure 5.6 around 2.2 Å. The first shell coordination plots 

for all 5 AIMD trajectories can be seen in Figure 5.7(a-e) where the orange dotted line indicates 

the total U—O CN, the solid blue line indicates the total U—OOH coordination number, and the 

dashed black line indicates the cutoff for the first solvation shell.  

 
Figure 5.6: Example of a first shell trajectory plot for all U—O bonds at a distance < 4 Å for the uranyl 

monohydroxide system. 

Table 5.4: Percentage residence time for each coordination environment (CN) averaged over 75 ps. 

CN 4 5 

% 0 100 

 

Table 5.5: Percentage of hydroxide coordination (CNOH) averaged over 75 ps.  

CNOH 0 1 

% 0 100 

Mulliken charges were calculated on each of the atoms and used to identify the hydroxide 

over the timescale of each AIMD run. The AIMD trajectories were analysed for proton transfer 

events in accordance with the methodology explained in Chapter 4. However, no proton 

transfer events were seen across the 75 ps simulation time. This is likely due to increased 

charge on the uranium ion and the strength of the metal-oxygen bonds compared to the 

metal-oxygen bonds of the alkaline earth metals. As established in Chapter 4 proton transfer 

events are more likely to occur outside of the first solvation shell; the continued coordination 

of the hydroxide ion to the uranium metal therefore limits the potential for proton transfer.  
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a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 5.7(a-e): Total (dotted orange) and hydroxide (solid blue) coordination number for each UO2
2+ 

monohydroxide 15 ps AIMD trajectory. The dashed black line indicates the first shell cutoff distance of 

3.0 Å. 
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5.3.3 Characterisation of the Uranyl Dihydroxide Complexes 

To investigate the impact of two hydroxide ions on the first solvation shell of uranyl complexes 

DFT and Born-Oppenheimer Molecular Dynamics were employed. The dihydroxide systems 

were made by removing two hydrogens from each of the 6 separate simulation structures 

taken from the AIMD trajectories of the aquo complexes. These 6 structures underwent cell 

optimisations with the final cell parameters being used for the start of each AIMD trajectory. 

Initial cubic cell parameters were set to 𝑎 = 𝑏 = 𝑐 = 12.31 Å for the first 5 systems with 𝑎 =

𝑏 = 𝑐 = 12.99 Å used for the final 6th structure.  

Initially only 5 structures were optimised and used for AIMD trajectories, as in Chapter 4, 

however the analysis of the structures appeared to indicate two separate uranyl 

environments: one environment where a 5 coordinated uranyl structure was constant, and 

one environment where the coordination number of uranyl easily dropped from 5 to 4. A 6th 

random snapshot was optimised and used for an AIMD trajectory to see if one environment 

was more prevalent than the other. On closer analysis there was nothing specific to the 

coordination environments or the water structure which could cause the drop in coordination 

number.  

Each AIMD trajectory was 20 ps long with the initial 5 ps of trajectory time discarded for 

equilibration for a total of 90 ps of analysable trajectory time. The data was analysed in the 

same method as described in detail in Chapter 4. As in the monohydroxide systems the initial 

hydroxide placement was varied before geometry optimisation. Several attempts were made 

to optimise a geometry with a hydroxide outside of the first solvation shell however these all 

resulted in proton transfer from the first solvation shell to generate two hydroxides in the first 

solvation shell. 

RDFs were calculated for the entire 90 ps simulation time, as shown in Figure 5.8, which 

yielded peak positions of 1.83 Å, 2.21 Å and 2.45 Å, identifying the U—Oyl, U—OOH and the U—

Ow bond distances respectively. The introduction of a second hydroxide did not have an impact 

on the U—Oyl bond distance, however the peak position for U—OOH increased by 0.09 Å and 

the peak position for U—Ow decreased by 0.07 Å compared to the monohydroxide systems. 
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Figure 5.8: U—O radial distribution function, g(r), averaged over 75 ps simulation time for the uranyl 
dihydroxide system. 

 

Figure 5.9 is an example of a full trajectory plot of all U—O bond lengths over the trajectory 

time at a U—O distance of < 4 Å. The shorter hydroxide bonds, which are indicated in the RDF 

at 2.21 Å, are shown by the red and purple lines in Figure 5.9. 

 

Figure 5.9: Example of a first shell trajectory plot for all U—O bonds at a distance < 4 Å for the uranyl 

dihydroxide system. 

The calculated average U—Oyl, U—Ow and U—OOH bond lengths and uranium coordination 

number are summarised in Table 5.6. A first shell cutoff of 3 Å was used for the calculation of 

bond lengths. Compared to the monohydroxide systems, the average bond lengths increased 

by 0.01 Å for the U—Oyl bond, 0.04 Å for U—Ow bonds and 0.04 Å for the U—OOH bonds. This 
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increase in bond lengths reflects the trend reported by both Ingram et al.234 and Cao et al.239 

who found that bond lengths increased as successive hydroxides were added to the system. 

The calculated average bond lengths for the first solvation shell for U—Ow and U—OOH are 0.08 

Å and 0.07 Å longer than those reported by Cao et al.239, and 0.07 Å longer than those reported 

by Ingram et al.234 However, neither of these DFT models included explicit water molecules 

beyond the first solvation shell, and used continuum solvent models to model the long range 

interactions of the water, which has been shown to impact the accuracy of the first solvation 

shell in studies with uranyl in water.211,213,247 

Table 5.6: Average rM—O, coordination numbers (CN) and hydroxide coordination numbers (CNOH) for 

each trajectory (Traj.). Overall means for each value with accompanying standard deviation (SD) in 

brackets.  

Traj. 
rM—O (Å)  

CN CNOH 
U—Oyl U—Ow U—OOH  

1 1.827 2.575 2.258  5.00 1.99 

2 1.826 2.564 2.246  5.00 2.00 

3 1.838 2.549 2.229  5.00 2.00 

4 1.827 2.502 2.227  4.49 2.00 

5 1.830 2.483 2.213  4.29 2.00 

6 1.832 2.485 2.212  4.37 2.00 

Mean (SD) 1.830 (0.005) 2.526 (0.041) 2.231 (0.018)  4.69 (0.34) 2.00 (0.01) 

The total and hydroxide coordination environments for all 6 trajectories are shown in Figure 

5.10(a-e) where the orange dotted line indicates the total U—O CN, the solid blue line 

indicates the total U—OOH coordination number, and the dashed black line indicates the cutoff 

for the first solvation shell of 3.0 Å.  
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a) b) 

 
 

 

c) 

 

d) 

  

 

e) 

 

f) 

  

Figure 5.10(a-e): Total (dotted orange) and hydroxide (solid blue) coordination number and proton 

transfer events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each UO2
2+ 

dihydroxide 15 ps AIMD trajectory. The dashed black line indicates the first shell cutoff distance of 3.0 

Å. 
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Analysis of the trajectories yielded average residence times for the first shell as summarised 

in Table 5.7. Compared to the aquo and monohydroxide complexes where a CN of 5 is seen 

throughout, 30.1% of the trajectory time in the dihydroxide systems indicates a CN of 4. The 

introduction of a second hydroxide triggered a reduction in coordination number, from 5 to 4, 

in 3 of the dihydroxide systems as shown in Figure 5.10(d-f). The overall CN reduced to 4.69. 

However, the 5 CN structure dominates with the majority of the trajectory time collected 

indicating that a 5 CN uranyl species is preferred.   

Table 5.7: Percentage residence time for each coordination environment (CN) averaged over 90 ps. 

CN 4 5 

% 30.82 69.18 

The percentage of time the uranyl ion spent coordinated by 1 or 2 hydroxide ions is 

summarised in Table 5.8. Only a short amount of time (0.23%) was spent with only 1 hydroxide 

coordinated to the uranium metal, suggesting that the strength of the U—OOH bonds remain 

too great to overcome for a long period of time.  

Table 5.8: Percentage of hydroxide coordination environment (CNOH) averaged over 90 ps. 

CNOH 0 1 2 

% 0 0.23 99.77 

The dynamics of proton transfer were analysed in accordance with the methodology laid out 

in Chapter 4. These values are summarised in Table 5.9, over the 90 ps total trajectory time 

only 3 proton transfer events were identified, all in one dihydroxide trajectory. The PTEs are 

shown in Figure 5.10a at 12.5 ps., initially a proton moves into the first solvation shell (∇) 

reducing the number of hydroxides in the first solvation shell to 1. The proton then transfers 

out of the first solvation shell (∆), before another proton transfers from an adjacent water (○). 

Table 5.9: Number and characterisation of proton transfer events (PTE), obtained from 90 ps of AIMD 

data for the uranyl dihydroxide system. 

PTE 

1st—1st  1st—2nd 2nd—1st  2nd—2nd Total 

1 1 1 0 3 

 

The relative absence of PTEs and both hydroxides being coordinated to the uranyl for the 

majority of the trajectory time indicates the increased strength of the U—OOH bond in 

comparison to the M—OOH bonds in the alkaline earth metals, as mentioned earlier this is likely 

a result of the increased charge of the central uranium ion. In Chapter 4 the number of PTEs 

inside the first solvation shell was less than outside the first solvation shell. As the uranyl ion 
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is only in one instance coordinated by less than 2 hydroxides the opportunity for intrashell 

PTEs, involving hydroxides which resulting in a new hydroxide outside the first solvation shell, 

is eliminated. However, it is worth noting that such a low number of PTEs may not be 

statistically relevant and any future work would need to probe the probability of proton 

transfer with uranyl carefully. 

The increase in hydroxides from 1 to 2 in the system appears to have increased the likelihood 

of a proton transfer occurring. In the same way that in the Bühl and Schreckenbach241 

investigation the presence of hydroxide ions allows a solvent assisted proton transfer to occur 

in the first solvation shell, it appears that the presence of hydroxide in the system is weakening 

the equatorial bonding in the uranyl first solvation shell which allows proton transfer to occur.  

5.4 Conclusion 

This chapter focuses on the solvation structure of the uranyl ion in the absence and presence 

of hydroxide ions. The +6 oxidation state of the uranium dication introduced a more complex 

aspect to the investigations. 75 ps of analysable AIMD trajectories were collected for the aquo 

and monohydroxide environments and 90 ps were collected for the dihydroxide environment. 

Initial environments were optimised using the PBE functional with Grimme’s DFT-D3 

dispersion correction and the DFT+U Hubbard correction. AIMD simulations were carried out 

using Born-Oppenheimer molecular dynamics. 

Bonding in the first solvation shell was characterised by averaging the radial distribution 

functions over the entire AIMD trajectory time and by calculating the average bond lengths of 

U—Oyl, U—Ow, as well as U—OOH for the last two investigations. An average coordination 

number of the first solvation shell was calculated, and for the hydroxide systems an average 

time where the ion was coordinated by either one or both hydroxide ions was also calculated. 

The first solvation shell of the aquo systems compared well to existing experimental and 

computational literature, with bond lengths well within values measured previously and 

coordination numbers in line with previously calculated values. The addition of successive 

hydroxides identified similar trends as in past literature, but with a novel computational 

methodology. The addition of hydroxides increased bond lengths in all cases, as previously 

identified through DFT and AIMD calculations. A reduction in coordination number was also 

seen when two hydroxides were present in the system.  

Attempts were made to identify proton transfer events in both the mono- and dihydroxide 

systems and PTEs were more prevalent in the dihydroxide system. However, only three such 

events were identified in the dihydroxide environment, indicating the clear impact of the 
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increased charge density of uranium and its propensity for forming strong metal-oxygen bonds 

in aqueous solution. The impact on the metal-oxygen bonds is similar as that seen in the 

alkaline earth metals, as the more charge dense Mg2+ environments have significantly less PTEs 

than environments containing the less charge dense Sr2+. 

Overall the data presented here indicates that a good model for uranyl solvation has been 

developed. The investigation into the behaviour of the uranyl ion, commonly found in the 

nuclear waste storage ponds, in a high pH environment indicate that uranyl tightly binds to 

the hydroxide species and prohibits proton transfer.  
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Chapter 6: Impact of Increasing Ionic Charge  
This chapter is separated into three parts which each apply the solvation model developed in 

previous chapters to different ionic systems to examine the impact of increasing pH and 

expand the understanding of proton transfer in different chemical environments. In Part 1, 

results from Sr2+ monohydroxide systems are reported and the difference in solvation 

structure of the strontium dication in a monohydroxide and dihydroxide system are 

summarised. Part 2, focuses on the aquo and monohydroxide complexes of Cs+, a known by-

product of the nuclear waste process, to contrast the impact of a single hydroxide interacting 

with a monocation compared to a dication. Finally, Part 3 presents calculations of La3+ and Lu3+ 

in aquo and trihydroxide environments expanding the solvation model to include trications 

ions in the presence of hydroxide and examining further elements which have relevance to 

the nuclear industry. Investigating mono-, di- and tri cations allows a broad picture to be 

developed of the difference in of hydroxides complexation with increasing cation charge, while 

verifying the solvation models against existing aquo literature.  

6.1 Part 1: Strontium Monohydroxide Complexes 
Investigating the solvation structure, hydroxide coordination and proton transfer in a 

strontium monohydroxide system further applies the solvation model developed in Chapters 

3 and 4. By investigating the monohydroxide environment and comparing it to the same 

dication in a dihydroxide environment the results should reveal if a single hydroxide is enough 

to alter the coordination and bonding of the first solvation shell, and highlight any differences 

between the two environments. While there is not extensive literature on strontium 

monohydroxide there are gas-phase Density Functional Theory (DFT) investigations on the 

impact of a single hydroxide ion on the microsolvation structure of strontium.  

Kerridge and Kaltsoyannis186 used DFT to optimise the molecular structures of the aquo 

complexes of strontium monohydroxides. The most highly coordinated complex found had a 

coordination number (CN) of 7, and all attempts to obtain complex with a CN of 8 resulted in 

the migration of one ligand to the second coordination shell. The most stable structure had a 

CN of 5 with the hydroxide ion in the second shell hydrogen bonded to waters in the first shell. 

For higher coordinated structures with CNs of 6 and 7 the lowest energy structures were just 

3.0 and 2.1 kJ mol-1 higher in energy than the most stable CN = 5 structure, respectively. As 

the CN of the first solvation shell increased from 5 to 7 the calculated Sr—OOH bond lengths 

increased from 2.346 Å to 2.530 Å. Quantum Theory of Atoms in Molecules (QTAIM) analysis 

revealed a small reducing effect of the hydroxide ion with increasing coordination to the Sr2+. 



119 
 

The strontium charge, which is formally +2, decreases from +1.87 to +1.84 going from mono 

to tri hydroxide. The authors note, however, that the use of the COSMO continuum solvation 

model alone is inadequate to accurately model the energetics of multi hydroxide systems and 

that an explicit water model is required.  

Makkos et al.187 used DFT at the meta-GGA level to build on the work of Kerridge et al.186 using 

both COSMO and explicit water molecules to study the aqueous solvation of strontium mono-

, di- and trihydroxides. The full first and second solvation shell was modelled by including 22 

explicit waters in the solvation environment. It was found initially that the inclusion of only 

the first solvation shell led to unavoidable energetic instabilities due to gaps in the solvation 

structure. The inclusion of a second shell increased the CN of the most stable complex with a 

preference for a 6-coordinated structure preferred, compared to a 5-coordinated structure 

with only the first solvation shell modelled explicitly. As referred to previously in Chapter 4 

this investigation highlighted the small energetic difference of just 3.0 kJ mol-1 between a 

dihydroxide coordinated strontium and a monohydroxide coordinated strontium. 

6.1.1 Computational Details 

The computational details were kept in line with previous Sr2+ simulations. AIMD simulations 

were performed with the QUICKSTEP module of CP2K version 3.0.94,115 All calculations involved 

simulation cells with periodic boundary conditions. A NPT_I ensemble, where the simulation 

cell is isotropic with initial cubic cell parameters were set to 𝑎 = 𝑏 = 𝑐 = 11.99 Å. The 

average temperature was set at  𝑇 = 400 K and was maintained using a Nosè-Hoover 

thermostat and a barostat maintained pressure of 1 atm.105 

The Gaussian Augmented Plane Wave method (GAPW) was used for the calculation of forces 

and energies.96 The Perdew-Burke-Ernzerhof (PBE) generalised gradient approximation was 

used including the DFT-D2 dispersion correction as proposed by Grimme.76,166 The calculations 

used double-ζ plus polarization Gaussian basis sets (DZVP-MOLOPT-SR-GTH) and a planewave 

cutoff of 500 Ry and a relative cutoff of 60 Ry.167 The Mulliken charge188 was calculated on 

each atom throughout the trajectory. 

Each AIMD trajectory was 20 ps long and each timestep was 0.5 fs. The first 5 ps of each 

trajectory was treated as an equilibration period and was not considered in subsequent 

analysis. A total of 100 ps of trajectory time was collected, with 75 ps used in analysis once the 

equilibration period was discarded. 
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6.1.2 Results 

Both DFT and AIMD were employed to investigate the impact of a single hydroxide on the 

solvation environment of Sr2+. 5 snapshots from the AIMD aquo trajectories of Sr2+ were taken, 

from which a single proton was removed to create a hydroxide ion. These systems then 

underwent a cell optimisation in which the cell parameters and geometry were optimised 

simultaneously. Each simulation cell contained 63 waters, 1 Sr2+ ion and 1 OH- ion, the starting 

cell parameters were set to 11.99 Å. A total of 100 ps trajectory time was collected resulting 

in 75 ps of analysable simulation time.  

Each trajectory was analysed in accordance with the methodology described in Chapter 4, but 

instead accounting for only one hydroxide in the system. For consistency with other Sr2+ 

calculations, a first shell cutoff of 3.2 Å was used for all relevant analysis. The RDF was 

calculated over the entire 75 ps of trajectory time, and is shown in Figure 6.1. The peak at 2.62 

Å indicates the first shell Sr—O distance, there is a slight decrease in peak position of 0.01 Å 

compared to aquo complexes. 

 

 

Figure 6.1: Sr—O radial distribution function, g(r), generated from 75 ps of simulation time for a 

monohydroxide environment. 

The calculated average Sr—O bond lengths, total CN and hydroxide CN for each trajectory are 

summarised in Table 6.1. The average total CN of 7.92 is higher than the computationally 

predicted CN of 7 of Kerridge et al.186, and the average Sr—O bond length is significantly longer 

than the reported 2.53 Å. However, this increase is likely to be due to the difference in 

methodology, as using AIMD and a larger solvation model of 64 waters both impact the CN 

and bond length, as discussed by Makkos et al.187 The Sr—O distance and the average CN are 
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within the calculated experimental ranges for the aqueous investigations of 2.57154 to 2.69150 

and 6.00154 to 10.30155, respectively.  

Table 6.1: Calculated Sr—O separations (rSr—O), coordination numbers (CN) , and hydroxide coordination 

numbers (CNOH) with accompanying standard deviation (SD), for each AIMD trajectory (Traj.) considered 

in this study. 

Traj. rSr—O (Å) CN CNOH 

1 2.693 7.91 0.00 

2 2.683 7.74 0.00 

3 2.690 7.90 0.02 

4 2.706 8.19 0.15 

5 2.694 7.88 0.15 

Mean (SD) 2.693 (0.01) 7.92 (0.16) 0.06 (0.08) 

Further analysis of the trajectories yielded the residence time for each total coordination 

environment, given in Table 6.2. Sr2+ is predominantly 8 coordinated with significant periods 

of time spent as a 7 and 9 coordinated species. The percentage of time the Sr2+ spent 

coordinated by a hydroxide is summarised in Table 6.3. For the majority of the time the 

hydroxide ion is not coordinated to the central Sr2+ ion, as evidenced by there being only 6 % 

of the trajectory time which shows a CNOH of 1. The CNOH in the dihydroxide environment was 

higher, with an overall CNOH of 0.23 and with 26 % of trajectory time spent coordinated by 

either 1 or 2 hydroxides. The low CNOH in Table 6.1 and the low hydroxide residence time in 

Table 6.3 provide further evidence that a single hydroxide ion has little to no impact on the 

first solvation shell, with two trajectories indicating no coordination by the anion at all and a 

third trajectory having a low CNOH of just 0.02.  

Table 6.2: Percentage residence time in different total coordination environments (CN), averaged over 

75ps. 

CN 

6 7 8 9 

0.85 18.20 68.64 12.28 

 

Table 6.3: Percentage residence time in different hydroxide coordination environments, (CNOH), 

averaged over 75 ps. 

CNOH 

0 1 

93.79 6.21 
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For ease of comparison, the RDF peak, average Sr—O bond distance, average total CN and 

average hydroxide CN are reported in Table 6.4 for Sr2+ in the aqueous, monohydroxide and 

dihydroxide environments. The averages are calculated over the 75 ps of AIMD trajectory time, 

collected for each environment after 5 ps of equilibration time has been discarded. In all cases 

there is a more pronounced change when comparing the aqueous environment to the 

dihydroxide than the monohydroxide environment. The RDF peak and average CN decrease 

significantly with the introduction of two hydroxide species; however, the difference between 

the aqueous and monohydroxide environment is not as large as the difference between the 

monohydroxide and dihydroxide environment, as the RDF peak and Sr—O distance remains 

the same with the introduction of a single hydroxide. The introduction of a single hydroxide 

reduces the Sr2+ CN by 0.1 but with the introduction of a second hydroxide there is further 

reduction in the average CN of 0.3, again indicating that the second hydroxide has a larger 

impact on the bonding of the first solvation shell. 

Table 6.4: Calculated Sr—O RDF peak, Sr—O bond distance (rSr—O), mean coordination numbers (CN), 

and mean hydroxide coordination numbers (CNOH) averaged over 75ps with accompanying standard 

deviations (SD), for the aqueous, monohydroxide and dihydroxide environments.  

 Aqueous Monohydroxide Dihydroxide 

RDF Peak (Å) 2.630 2.620 2.590 

rSr—O (Å) 2.692 (0.01) 2.693 (0.01) 2.685 (0.01) 

CN 8.02 (0.14) 7.92 (0.16) 7.61 (0.19) 

CNOH - 0.06 (0.08) 0.29 (0.23) 

Table 6.5 summarises the percentage residence times for Sr2+ at different CNs for the aqueous, 

monohydroxide and dihydroxide investigations. Across all three investigations the 8 

coordinated Sr2+ species dominates, with significant periods of time spent as 7 or 9 

coordinated. As hydroxides are introduced, the range of total coordination numbers shifts 

from 6 to 10, to 5 to 9, with CNs of 5 and 10 only found in the dihydroxide and aqueous 

environments, respectively.  

Table 6.5: Percentage residence time of different total coordination environments (CN), averaged over 

75ps, for the aqueous, monohydroxide and dihydroxide environments. 

  CN  

 5 6 7 8 9 10 

Aqueous 0.00 0.23 14.09 69.57 15.28 0.83 

Monohydroxide 0.00 0.85 18.20 68.64 12.28 0.00 

Dihydroxide 0.21 2.67 37.97 54.16 4.99 0.00 
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The comparison of CNOH in the mono and dihydroxide environments shown in Table 6.4 

indicates the small impact that a single hydroxide has on the solvation shell. Although the 

results in Chapter 4 indicate that the Sr2+ is coordinated by a single hydroxide for 23% of the 

trajectory time, this is only when there is a second hydroxide present.  

Table 6.6: Number and characterisation of proton transfer events (PTE), obtained from 75 ps of AIMD 

data considered in this study. Percentage values are given in parentheses. 

PTE 

1st—1st 1st—2nd 2nd—1st  2nd—2nd Total 

0 (0) 6 (9) 5 (7) 57 (84) 68 

The lack of coordination by the hydroxide ion in the monohydroxide environment has a clear 

effect on the classification of the PTEs found. Table 6.6 lists the total number of PTEs classified 

by the direction of proton transfer across the first solvation shell cutoff. The majority of the 

PTEs are intrashell and outside the first solvation shell, with roughly an equal number of inter 

shell PTEs in both directions across the first solvation shell boundary. In contrast to the 

dihydroxides, no intrashell PTEs in the first solvation shell are identified. The periods of 

coordination by the hydroxide ion are seemingly too brief for intrashell proton transfer to 

occur. The rate of PTEs in monohydroxide environments is approximately 0.90 PTEs per ps, 

compared to the slightly more frequent rate of 0.94 PTEs per ps for each hydroxide present in 

the dihydroxide environments. 

The low hydroxide coordination in the monohydroxide environment is further evidenced in 

the full trajectory plots in Figures 6.2a to 6.2e.  The full trajectory plots indicate the total first 

shell CN, CNOH and PTEs for each trajectory, and the first solvation shell cutoff is also shown. 

Figures 6.2a and 6.2b indicate no hydroxide coordination, whereas Figures 6.2c to 6.2e 

indicate brief hydroxide coordination with longer periods of coordination lasting for around 2 

ps, in contrast to the dihydroxide simulations where periods of a single hydroxide coordinating 

the Sr2+ are found for up to 10 ps.  
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a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

 

Figure 6.2(a-e): Total (dotted orange line) and hydroxide (solid blue line) coordination numbers, and 

proton transfer events ((∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each Sr2+ 

monohydroxide 15 ps AIMD trajectory. The dashed black line indicates the first shell cutoff distance of 

3.2 Å. 
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6.1.3 Part 1: Conclusion  

This section examines the impact on the solvation structure of strontium by the introduction 

of a single hydroxide ion. 75 ps of trajectory time for a system with a central Sr2+ ion in the 

presence of 63 water molecules and a single hydroxide ion were collected. All AIMD 

simulations were carried out using Born-Oppenheimer molecular dynamics. Initial structures 

had randomised hydroxide placement and were optimised using the PBE functional with DFT-

D2 dispersion correction applied. 

Following the previous analysis of the solvation structure of strontium in both aquo and 

dihydroxide environments in Chapter 3 and 4, this further investigation of the monohydroxide 

environment provides a more complete overview of the effect of the increasing number of 

hydroxides. Both the bonding and the total coordination number of the strontium ion remain 

essentially unchanged compared to the aquo complexes. The introduction of a single 

hydroxide ion has a limited impact on the microsolvation of strontium compared to the 

dihydroxide systems, with essentially no change in coordination number or average bond 

length. The monohydroxide exhibits broadly similar proton transfer behaviour to the 

dihydroxide, and PTE frequency is also similar, with the majority of proton transfers occurring 

outside of the first solvation shell. However, in contrast to the dihydroxide environment, there 

are no proton transfers inside the first solvation shell for the monohydroxide environment due 

to the lack of coordination of the hydroxide ion to the central ion. 

These results combined with those in Chapter 4 indicate that the strontium ion is the least 

likely to form hydroxide species in the high pH environment of the nuclear waste storage 

ponds, and waste clean-up should be focused on removing the ion in its aqueous form, rather 

than as a hydrated hydroxide complex. 
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6.2 Part 2: Aquo and Hydrated Hydroxide Complexes of 
Cs+ 

As was detailed in Chapter 1 caesium is one of the most abundant species in nuclear waste 

and has a long half-life and as such it is of relevance to this thesis. In this section, the solvation 

structure of Cs+ in both an aqueous environment and in the presence of hydroxide has been 

considered. Cs+ has a large atomic radius and hence weaker ion-water electrostatic 

interactions as a hydrated ion compared to other metal cations. The examination of the 

solvation structure of a monocation in both the presence and absence of a single hydroxide 

provides a useful comparison to the same solvation environments for the Sr2+ dication. 

Several experimental techniques have been used to investigate the solvation structure of 

caesium, including Anomalous X-ray Diffraction (AXD)248,249, X-Ray Diffraction (XRD)250–253, 

Large Angle X-ray Scattering (LAXS)254, X-ray Scattering255, Inelastic Neutron Scattering256, 

Neutron Diffraction (ND)257 and Nuclear Magnetic Resonance (NMR)258. Typically a 

coordination number (CN) of 8248,252–254,256–258 is found in experimental investigations within 

the total range of 4.73251 to 8.4255. The Cs—O distances for the first solvation shell were 

reported to be between 2.95257 to 3.15250,252 Å. Both Lawrence et al.250 and Tamura et al.251 

used XRD to investigate the effect of increasing concentration of CsI on the solvation shell of 

Cs+, and found a reduction of CN with increasing concentration as the water coordinating to 

the ion is replaced with the counter-ions. Tamura et al.251 also found that the hydration shell 

was sensitive to an increase in temperature with an increase from 298 K to 343 K lowering the 

CN from 5.75 to 4.73 at the same CsI concentration of 2.78 M. The X-ray scattering 

investigation of Yongquan et al.255 found a CN of 8.4 at an average Cs—O distance of 3.12 Å, 

the authors used Monte Carlo simulations to refine the results but were unable to identify a 

second hydration sphere. The lack of second hydration sphere is replicated by several other 

authors who attribute it and the formation of a weak first hydration shell to the low charge 

density of the Cs+ ion.248,249,253,255,256 

The combined experimental and computational investigation of Kolaski et al.259 used B3LYP 

and MP2 levels of theory to investigate caesium water structures of the form Cs(H2O)n (n=1 - 

8) and compared them to IR absorption studies. The Cs—O separation for the first solvation 

shell was defined as less than 3.8 Å, while Cs—O separations greater than 4.5 Å defined the 

secondary hydration shell. The analysis of the results using these cutoff parameters gave a CN 

of 8 and an average Cs—O bond length between 3.40 Å to 3.46 Å.  
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Several classical MD studies149,260–266 calculated the Cs—O distance to be between 3.10262 and 

3.30261 Å with a CN between 7.8261 to 10260. Deublein et al.262 used classical MD to identify the 

first solvation shell of Cs+ in aqueous solution as CsF, CsBr and CsI with the first shell cutoff set 

at 3.7 Å. In all cases the RDF yielded a Cs—O distance of 3.10 Å, a higher CN of 8 was found for 

Cs+ when the counter ion was F-, while a Cs+ CN of 7.5 was found for the Br- and I- counter-ions. 

It was also found that an increase in salt concentration from 1 M to 5 M caused a reduction in 

CN.  

Schewenk et al.261 used QM/MM methodology at different levels of theory (HF, B3LYP and 

BP86) to investigate the structure breaking effect of Cs+. Structure breaking ions, which are 

mainly large weak interacting ions, have little influence on water when they are solvated and 

fail to form a defined solvation shell. In all cases the Cs—O RDFs indicate the structure breaking 

behaviour of the ion, with a broad asymmetric first-shell peak and with a flat but recognisable 

second shell. A CN of 8 with a Cs—O RDF peak of 3.25 Å was found using HF whereas both 

B3LYP and BP86 calculations gave a CN of 9 with Cs—O RDF peaks of 3.20 Å and 3.30 Å, 

respectively. The CN of 5 to 11 were identified over the timescale of the simulation. This broad 

distribution of CNs indicates the extremely fast dynamics and rapidly changing character of 

the first hydration shell.  

Ikeda et al.267 used CPMD to investigate the hydration structure of Cs+ in 63 water molecules, 

and were unable to define a first solvation shell. The CNs were therefore obtained using three 

first shell cutoff distances of 3.8, 3.9 and 4 Å, identifying overall CNs of 7 to 8.2. Upon 

investigating the distribution of coordination modes over the timescale of the simulation, a 

broad range of CNs from 4 to 11 was found. A similar CN range as found by Schewenk et al.261 

and mirroring the structure breaking effect  of Cs+ which they investigated. 

There are no computational or experimental investigations into the solvation structure of 

caesium monohydroxide in an aqueous environment. Several studies exist reporting the 

length of the isolated Cs—OH bond. The microwave spectrum of Cs—OH investigated by 

Kuczkowski et al.268 showed a Cs—OH distance of 2.40 Å, with their later study269 refining the 

results to 2.391 Å. Theoretical investigations found longer Cs—OH distances, the molecular 

orbital study by Stiakaki et al.270 found a Cs—OH bond length of 2.447 Å whereas Lee et al.271 

used Couple Cluster Singles and Doubles (CCSD) level theory to identify a Cs—OH distance of 

2.635 Å. Bauschlicher et al.272 used ab initio computational methods with a fixed O—H bond 

length to derive the Cs—OH bond length of 2.419 Å using SCF and CISD levels of theory. 

However, a lower Cs—OH distance of 2.393 Å was found by Brown et al.273 using MP3 level 

calculations to determine the equilibrium geometries of the alkali hydroxides. 
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The dissociation of CsOH in water clusters was investigated by Odde et al.274 using MP2 level 

calculations of CsOH.(H2O)n  (n = 0 to 4). The equilibrium structures were calculated using the 

B3LYP functional and MP2. On the addition of water molecules, the Cs—OH bond lengthened 

from 2.64 Å for n = 1 to 3.08 Å for n = 4. A total of 3 water molecules are needed for the 

dissociation of Cs—OH, compared to strong acid dissociation which requires a minimum of 

four waters.  

6.2.1 Computational Details 

Born-Oppenheimer molecular dynamics simulations were performed using the QUICKSTEP 

module of CP2K version 3.0 on simulation cells with periodic boundary conditions.94,115 

Temperature and pressure were kept constant using a NPT_I ensemble, where the simulation 

cell is isotropic and the average temperature 𝑇 = 400 𝐾 was maintained using a Nosé-Hoover 

thermostat and a barostat maintained pressure of 1 atm.105 The GAPW96 method was 

implemented using the PBE functional with the DFT-D3 dispersion correction applied.76,166 The 

calculations used a double-ζ plus polarization Gaussian basis set (DZVP-MOLOPT-SR-GTH) and 

a planewave cutoff of 600 Ry and a relative cutoff of 80 Ry, convergence test for both cutoffs 

can be found in Appendix A4.167  

The solvation structure of caesium in an aqueous environment was studied using 5 separate 

starting structures of 64 waters and a central Cs+ ion. All initial structures underwent a cell 

optimisation prior to the start of the AIMD trajectory run, where both the cell parameters and 

the geometry were optimised simultaneously. The resulting optimised cell parameters of 𝑎 =

𝑏 = 𝑐 = 12.50 Å were used as the starting cell parameters for each AIMD trajectory.  For the 

aquo systems charge neutrality was achieved through the use of a uniform neutralising 

background charge. Each AIMD trajectory was 20 ps long with a timestep of 0.5 fs. The first 5 

ps of each trajectory was treated as an equilibration period and was not considered in 

subsequent analysis. A total of 100 ps of trajectory time was collected, with 75 ps used in 

analysis once the equilibration period was discarded. 

6.2.2 Results 

6.2.2.1 Characterisation of Caesium Aquo Complexes  

The results from the AIMD simulations were analysed using the methodology described in 

Chapter 3. The RDF was calculated for the entire 75 ps of trajectory time and is given in Figure 

6.3. The first solvation shell is ill defined, with a broad asymmetric peak with a maximum at 

3.24 Å but no minima to indicate its end. The running integral, nCsO(r), does not indicate a first 

or second solvation shell. 
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Figure 6.3: Cs—O radial distribution function, g(r), generated from 75 ps of aquo simulation time. 

The lack definition of the first solvation shell is also evidenced in Figure 6.4, a plot of all Cs—

O distances over the timescale of a single AIMD trajectory. In contrast to the previously 

investigated ions there is no clear first solvation shell surrounding the ion, rather a large 

distance of ~3 Å between Cs+ and the 64 water molecules which form a seemingly bulk-like 

configuration. 

 

Figure 6.4: Full trajectory plot for all Cs—O distances over the timescale of an example AIMD trajectory.  

The lack of a defined solvation shell adds a layer of complexity to the analysis method. The 

approach used in previous chapters where the cutoff for the first solvation shell is set as the 

RDF peak + 0.6 Å is potentially inappropriate given the lack of definition for the end of the 

solvation shell. However, this approach does provide a useful starting point for the 

investigation. The RDF peak (3.24 Å) + 0.6 Å, 3.80 Å, was used as the first shell cutoff, as well 
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as 3.7 and 3.9 Å, in a method the same as Ikeda et al.267 who investigated using three first shell 

cutoffs of  3.7, 3.8 and 3.9 Å.  

The calculated average Cs—O bond lengths are summarised in Table 6.7. While none of the 

calculated values agree with previous literature investigations, in all cases the average bond 

lengths are slightly larger than the experimental values of 2.95257 to 3.15250,252Å, and outside 

the computationally obtained range of 3.10262 to 3.30261 Å. The mean bond lengths vary within 

a 0.08 Å range and are within 0.05 Å of the Cs—O distance of 3.38 Å calculated from the 3.8 Å 

cutoff.  

Table 6.7: Calculated Cs—O bond lengths (rCs—O) and mean bond length for each AIMD trajectory run 

and accompanying standard deviation (SD), at cutoffs of 3.7, 3.8 and 3.9 Å. 

Trajectory 
 rCs—O (Å) 

Cutoff (Å) 3.7 3.8 3.9 

1  3.342 3.369 3.436 

2  3.347 3.386 3.416 

3  3.310 3.399 3.411 

4  3.305 3.366 3.397 

5  3.346 3.374 3.402 

Mean (SD)  3.330 (0.02) 3.379 (0.01) 3.412 (0.02) 

 

Table 6.8: Calculated total and mean coordination numbers (CN) for each AIMD trajectory run and 

accompanying standard deviation (SD), at cutoffs of 3.7, 3.8 and 3.9 Å. 

Trajectory 
 CN 

Cutoff (Å) 3.7 3.8 3.9 

1  7.40 7.85 9.15 

2  7.62 8.36 8.97 

3  6.87 8.59 8.78 

4  6.46 7.61 8.18 

5  6.99 8.96 8.27 

Mean (SD)  7.07 (0.46) 8.27 (0.55) 8.67 (0.43) 

There is a large difference in the range of calculated average CN, which are summarised in 

Table 6.8 for each of the three cutoffs employed. The average CNs found vary from 7.07 to 

8.67, which is slightly larger than the 7 to 8.2 range reported in the Ikeda et al.267 AIMD study. 

Each calculated average CN has a standard deviation of around 0.5, indicating that there is a 

noticeable variation in the CN for each trajectory. Both computational and experimental 

literature values cluster around a CN of 8 for Cs+, but the calculated value of a CN of 8.3 for 
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the 3.8 Å cutoff is longer, and within the range of 7.5249 to 8.4255 reported experimentally and 

7.8261 to 10260 computationally. In addition, the calculated value agrees excellently with the CN 

of 8.3 obtained from the Koneshan et al.149 MD investigation and the CN of 8.4 found from the 

X-ray Scattering investigation of Yongquan et al.255 

Further evidence of the variation in CN is seen in the percentage residence times for each 

coordination environment as given in Table 6.9. The lower cutoff of 3.7 Å found coordination 

modes from 5 to 10, 3.8 Å found a wider range from 5 to 11 and 3.9 has the largest variation 

with coordination environments of 5 to 13 found. There is no clear preference for a particular 

coordination mode across the three cutoffs, with a CN of 6 most dominant for the lowest 

cutoff, 8 for the 3.8 Å cutoff and 9 for the highest cutoff.  In contrast the Ikeda et al.267 AIMD 

investigation found a smaller range of coordination environments from 4 to 11, and the 

majority of the trajectory time was 7 or 8 coordinated across all three cutoffs. For the 3.8 Å 

cutoff in particular ~35% of the simulation time was spent as a 7 coordinated structure and 

~25 % of time Cs+ was either 8 or 6 coordinated, with a total range of CNs from 4 to 10 

identified. 

Table 6.9: Percentage residence time for coordination environments (CN) at cutoffs of 3.7, 3.8 and 3.9 

Å averaged over 75 ps. 

Cutoff (Å) 
CN 

5 6 7 8 9 10 11 12 13 

3.7 5.43 35.65 21.89 24.87 8.05 4.12 0.00 0.00 0.00 

3.8 1.39 6.78 24.08 30.60 21.33 14.87 2.32 0.00 0.00 

3.9 0.34 1.68 17.15 26.19 28.84 20.68 3.03 1.05 0.34 

The total CN variation across each 15 ps trajectory are shown in Figure 6.5, 6.6 and 6.7 for the 

3.7, 3.8 and 3.9 Å cutoffs, respectively. There appears to be no fluctuation around a single CN 

as reported in previous AIMD investigations of other ions. Instead there is considerable 

variation and rapid transitions between different coordination modes. The frequently altering 

coordination environment is further evidence of the lack of definition in the first solvation 

shell for Cs+, and indication that the large size of the ion, and therefore low charge density, 

impacts its ability to form a defined solvation structure.  

Based on the calculated values for each cutoff value, the cutoff of 3.8 Å provides the best 

approximation for the first solvation shell character of Cs+ in an aquo environment. The 

calculated average CN is closer to the frequently reported value of 8, the average bond length 

of 3.38 Å within previously calculated ranges combined with the distribution of coordination 
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numbers from 5 to 10 in line with Ikeda et al.267 all indicate that this is an appropriate cutoff 

value to use.  

a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 6.5(a-e): Total coordination number (CN) plots for each 15 ps trajectory of Cs+ in water using a 

first shell cutoff of 3.7 Å. 
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a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 6.6(a-e): Total coordination number (CN) plots for each 15 ps trajectory of Cs+ in water using a 

first shell cutoff of 3.8 Å. 
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a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 6.7(a-e): Total coordination number (CN) plots for each 15 ps trajectory of Cs+ in water using a 

first shell cutoff of 3.9 Å. 
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6.2.2.2 Characterisation of Caesium Monohydroxide Complexes 

The monohydroxide solvation structure of caesium was investigated with DFT and AIMD. To 

generate the initial starting structures, 5 snapshots were taken from separate aquo 

simulations of Cs+ AIMD trajectories and a single proton was removed to make a OH- ion. The 

initial hydroxide placement was varied prior to the optimisation. These 5 structures had both 

their cell parameters and geometry optimised simultaneously before being used in the AIMD 

simulations. The starting cell parameters 𝑎 = 𝑏 = 𝑐 = 12.50 Å were used for all AIMD 

trajectories as in the aquo trajectories. Each AIMD trajectory lasted 20 ps with the initial 5 ps 

discarded for equilibrium. A total of 75 ps trajectory time was collected and analysed according 

to the methodology described in Chapter 4 but accounting for only a single hydroxide in the 

systems.  

The RDFs for the monohydroxide systems was calculated over the entire 75 ps, as shown in 

Figure 6.8. As in the aquo environments, the first solvation shell of Cs+ is undefined with a 

shallow slope and there is no minimum indicating the end of the solvation shell. A full 

trajectory plot of all Cs—O distances across the entire timescale of the trajectory is shown in 

Figure 6.9, confirming the lack of a defined first solvation shell, as seen for the aquo systems. 

 

 

Figure 6.8: Cs—O radial distribution function, g(r), generated from 75 ps of simulation time for the 

caesium monohydroxide environment. 
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Figure 6.9: Full plot for all Cs—O bonds in a monohydroxide environment for one 15 ps AIMD trajectory.   

As the first solvation shell was no more defined in the monohydroxide systems than in the 

aquo systems, the same approach for choosing a cutoff was taken. The average bond lengths 

and average CNs were calculated for cutoffs of 3.7, 3.8 and 3.9 Å. The calculated average Cs—

O bond lengths and CNs are listed in Table 6.10 and Table 6.11 respectively. All three cutoffs 

produce similar average bond lengths, with a difference of 0.05 Å, and with little variation 

across trajectories. Comparing the 3.8 Å cutoff results for both the aquo and hydroxide 

environments, the trends are in line with the hydroxide investigations of previous ions in this 

thesis. As seen for other hydroxide species the average bond length decreases slightly, by 0.02 

Å, with the addition of a hydroxide ion. 

Table 6.10: Calculated Cs—O bond lengths (rCs—O) and mean bond length for each AIMD trajectory run 

and accompanying standard deviation (SD), at cutoffs of 3.7, 3.8 and 3.9 Å. 

Trajectory 
 rCs—O (Å) 

Cutoff (Å) 3.7 3.8 3.9 

1  3.317 3.359 3.397 

2  3.324 3.361 3.399 

3  3.321 3.350 3.390 

4  3.318 3.352 3.408 

5  3.316 3.352 3.407 

Mean (SD)  3.319 (0.00) 3.355 (0.00) 3.400 (0.01) 

A similar distribution of average CN was seen as for the aquo complexes, with the lowest CN 

found for the 3.7 Å cutoff and the highest CN at the 3.9 Å cutoff. The average CN found for the 

cutoffs range from 6.46 to 8.11, with average CNs reducing by 0.61, 1.06 and 0.56, respectively 
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with respect to the aquo values. The results from first shell cutoff using 3.8 Å indicated the 

largest reduction in CN with the introduction of a hydroxide, from 8.27 to 7.21. Across the 

trajectories there is also less variation in the coordination modes identified compared to the 

aquo trajectories. Although the introduction of the hydroxide has not impacted the bond 

lengths in the first solvation shell, it does appear to have followed the trend found previously 

where hydroxide systems have lower average CN than their aquo counterparts.  

Table 6.11: Calculated total and mean coordination numbers (CN) for each AIMD trajectory run and 

accompanying standard deviation (SD), at cutoffs of 3.7, 3.8 and 3.9 Å. 

Trajectory 
 CN 

Cutoff (Å) 3.7 3.8 3.9 

1  6.69 7.47 8.11 

2  6.65 7.26 7.87 

3  6.33 7.12 7.78 

4  6.64 7.25 8.19 

5  5.98 6.94 7.81 

Mean (SD)  6.46 (0.30) 7.21 (0.20) 8.110 (0.19) 

The coordination of Cs+ varies significantly in the hydroxide trajectories, as in the aquo 

trajectories but with some key differences. The difference in total CN with the inclusion of a 

hydroxide ion is evidenced in the percentage of trajectory time at each coordination 

environment, given in Table 6.12. The range of CNs identified shortens from 5 to 13 in the 

aquo systems to 4 to 11 in the hydroxides. The Cs+  ion is predominantly 7 coordinated and the 

higher CNs of 12 and 13 which were briefly detected in the aquo systems are not present in 

the hydroxide systems for any cutoff, and 4 coordinated species are identified by the 3.7 and 

3.8 Å cutoffs.  

Table 6.12: Percentage residence time for coordination environments at cutoffs of 3.7, 3.8 and 3.9 Å 

averaged over 75 ps of simulation time. 

Cutoff (Å) 
CN 

4 5 6 7 8 9 10 11 

3.7 5.80 17.96 25.13 30.76 15.97 2.85 1.43 0.00 

3.8 0.71 11.14 20.71 34.66 22.57 7.62 2.81 0.38 

3.9 0.00 5.03 10.65 31.14 24.93 18.16 8.33 4.35 

The results of the analysis of the hydroxide CN of caesium for each trajectory and the overall 

hydroxide CN for each cutoff are presented in Table 6.13. For all three cutoffs the hydroxide 

CN is very low, less than 0.1 in all cases, with multiple trajectories for the 3.7 and 3.8 Å cutoff, 

which indicate no coordination by the hydroxide ion. The percentage of time the central ion 
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spent at each hydroxide coordination mode is summarised in Table 6.14, which reinforces the 

lack of hydroxide coordination to the central ion. The cutoff used to define the first solvation 

shell has made little difference to the results as all three cutoffs have less than 4 % trajectory 

time with a hydroxide in the first solvation shell.  

Table 6.13: Hydroxide coordination numbers (CNOH) for each AIMD trajectory with accompanying 

standard deviation (SD). 

Trajectory 
 CNOH 

Cutoff (Å) 3.7 3.8 3.9 

1  0.07 0.08 0.09 

2  0.00 0.00 0.01 

3  0.01 0.01 0.01 

4  0.07 0.07 0.08 

5  0.00 0.00 0.00 

Mean (SD)  0.07 (0.03) 0.03 (0.04) 0.04 (0.04) 

 

Table 6.14: Percentage residence time for hydroxide coordination environments at cutoffs of 3.7, 3.8 

and 3.9 Å averaged over 75 ps. 

Cutoff (Å) 
CN 

0 1 

3.7 97.22 2.78 

3.8 96.65 3.35 

3.9 96.01 3.99 

The dynamics of proton transfer were analysed according to the methodology in Chapter 4, 

with the calculated Mulliken charges on each atom identifying the hydroxides through each 

trajectory. Table 6.15 summarises the PTEs that occurred in the monohydroxide systems for 

75 ps for each cutoff. The total PTEs for each cutoff are the same, with the 3.8 and 3.9 Å cutoff 

identifying identical types of proton transfer. The total number of PTEs is not dissimilar to the 

number of PTEs found in the strontium monohydroxide systems, with a reduction in 

prevalence of PTES from 0.9 PTEs every ps to 0.73 PTEs every ps. In keeping with the trends 

seen across the hydroxide environments modelled in this thesis the most prevalent PTEs are 

those which occur outside the first solvation shell, with similar numbers of PTEs going into and 

out of the first solvation shell. In contrast to other ions studied, all of the PTEs going into and 

out of the first solvation shell are directly at, or very close to, the boundary of the first solvation 

shell; this suggests that the hydroxide is not, in fact, coordinating with the caesium at all, but 

rather interacting with the ion through chance. 
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Table 6.15: Number and characterisation of proton transfer events (PTE) for each cutoff, obtained from 

75 ps of AIMD data for the caesium monohydroxide system, percentages in parenthesis.  

Cutoff (Å) 
PTE  

1st—1st 1st—2nd 2nd—1st  2nd—2nd Total 

3.7 1(2) 2(4) 1(2) 51(93) 55 

3.8 1(2) 2(4) 2(4) 50(91) 55 

3.9 1(2) 2(4) 2(4) 50(91) 55 

The full plots which indicate both the total and hydroxide coordination numbers for each of 

the 5 trajectories which have been analysed using the 3.8 Å cutoff are shown in Figure 55. The 

plots also indicate the first shell cutoff and the distance at which a PTE occurred away from 

the central ion. As in the aquo complexes, the total CN fluctuates frequently and does not 

centre on a particular coordination mode. Instead, over each trajectory a range of CNs is 

found, as reported in Table 6.12. It is clear that the majority of PTEs occur outside the first 

solvation shell, in the bulk water, with very few occurring at the boundary of the first solvation 

shell. Intrashell PTEs are only identified in Figure 6.10d, while in all other trajectories the 

hydroxide coordination is a result of proton migration into the first solvation shell. Due to the 

proximity of the intrashell PTEs of Figure 6.10d to the solvation shell cutoff, these could 

potentially be the result of the proton migration and rapid interchange of the CN coinciding, 

resulting in them being mischaracterised as PTEs.  
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a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 6.10(a-e): Total (dotted orange) and hydroxide (solid blue) coordination number and proton 

transfer events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each 15 ps AIMD 

trajectory. The dashed black line indicates the first shell cutoff distance of 3.8 Å. 
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6.2.3 Part 2: Conclusion 

This section focused on attempting to define the first solvation shell of caesium in both aquo 

and monohydroxide environments. 75 ps of analysable AIMD trajectories were collected for 

each environment. Initial structures were optimised using the PBE functional with a DFT-D3 

dispersion correction and AIMD simulations were carried out using Born-Oppenheimer 

molecular dynamics. 

Bonding in the first solvation shell was characterised by averaging the RDFs over the entire 

AIMD trajectory time, which identified a lack of definition in the first solvation shell. This lack 

of definition resulted in the investigation of the coordination environment using three 

different solvation shell cutoffs (3.7, 3.8 and 3.9 Å), which were then used for the hydroxide 

analysis to enable accurate comparison. For each cutoff, the average coordination numbers, 

average bond lengths, and where applicable, average hydroxide coordination numbers of the 

system were calculated. Analysis of the first solvation shell of the aquo systems was within the 

results found in existing experimental and computational literature. Overall, changing the first 

solvation shell cutoff did not have a large impact on the solvation features identified, with the 

primary difference being the range of caesium coordination numbers identified across the 

trajectory time. 

The addition of a hydroxide to the solvation environment resulted in lower CNs and a smaller 

range of CN seen across the trajectories. However, hydroxide coordination to the caesium ion 

was found to be a rare occurrence, suggesting that the solvation of OH- is competing with the 

solvation of Cs+. Indicating that as with strontium, caesium will not be in a hydrated hydroxide 

form when removed from the nuclear storage ponds. Further, the migration of protons 

through the systems was analysed and proton transfer was found to occur on a slightly less 

frequent timescale than for the alkaline earth metals. Proton transfer events occurred mostly 

outside the first solvation shell, and the few intrashell events observed were found at the 

solvation shell boundary.  

Overall, the investigation into the solvation structure of caesium revealed an ill-defined first 

solvation shell, with rapidly changing coordination environments across all trajectories. The 

investigation into the impact of a single hydroxide produced a similarly ill-defined solvation 

shell, however this lack of definition did not drastically alter the prevalence of proton transfer 

events which occurred on a slightly lower frequency than the strontium monohydroxide 

investigation.   



142 
 

6.3 Part 3: Aquo and Hydrated Hydroxide Complexes of 
La3+ and Lu3+ 

As for the alkaline earth metals studied in Chapter 3, and for the uranyl complexes investigated 

in Chapter 5, the solvation shell structure of lanthanum ion (La3+) and lutetium ion (Lu3+) in 

aqueous environments has been well reported in both computational and experimental 

literature. However, the interactions between the ions and hydroxides, and the dynamics of 

hydroxide solvation structure, have not yet been investigated. Aside from their relevance to 

this thesis as products of the nuclear fuel cycle, as trications they offer a further opportunity 

to explore the impact of increasing ionic charge on the behaviour of hydroxides in an aqueous 

environment. Furthermore, as the ‘book-ends’ of the lanthanide series there is a size 

differential to be explored, with La3+ having a large ionic radius of 1.250 Å, and Lu3+ a smaller 

ionic radius of 0.995 Å.275 

The hydration number for La3+ has been studied experimentally with methods including 

EXAFS275–281, XRD282–285,ND286, Raman287 and X-ray Scattering288. The majority of studies find 

the CN of La3+ to be around 9275–282, with an overall CN range of 7.5286 to 12279 and 

accompanying first shell La—O bond distances from 2.52281 to 2.86275 Å. Näslund et al.281, in a 

combined X-ray diffraction and X-ray absorption spectroscopy investigation, studied a solution 

of lanthanum perchlorate and concluded that the most probable structure was 9 coordinated, 

with 3 waters in the equatorial plane at an average distance of 2.52 Å, and 6 capping water 

molecules at a distance of 2.66 Å. In the EXAFS investigation of P. Allen et al.276 the solvation 

structure of La3+ in increasing chloride concentration was studied and at low concentration a 

CN of 9.2 was identified with an average La—O bond length of 2.52 Å. Díaz-Moreno et al.286 

investigated the structure of 1 M aqueous LaCl3 using H/D isotopic substitution neutron 

scattering and X-ray scattering, and found that La3+ is hydrated by 8 water molecules and 1 Cl- 

ion, compared to being surrounded by 9 water molecules at lower concentrations. Solera et 

al.279 investigated solvated La3+ with EXAFS and proposed a higher CN of 12 with a bond length 

of 2.56 Å, but this was an outlier amongst the experimental literature results.  

The combined EXAFS and MD studies of Duvali et al.289 identified a La—O distance of 2.52 Å 

and a CN of 9.02. A similar study by Migliorati et al.290 found a slightly longer La—O distance 

of 2.57 Å and a CN of 9.5. Rudolph et al.291 combined Raman spectroscopy and DFT to identify 

a La—O bond distance of 2.58 Å and a CN of 9. 

Computational studies reflected trends similar to those found in experimental literature, with 

La—O bond distances from 2.50292 Å to 2.9293 Å and first shell CNs identified as 8294 to 12295, 
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with the majority finding a CN of 9294,296–298. Buzko et al.294 used DFT to examine water clusters 

of La3+ with CNs of 8 and 9 and found that the 9 coordinated complex was the most stable. 

Whereas, Hofer et al.296 used an ab initio QMMM approach to investigate the structure and 

dynamics of La3+ and found that 9 and 10 CN complexes coexist and interchange with an 

average CN of 9.5, the average La—O bond length was 2.65 Å. An MD study by Meier et al.295 

investigated aqueous solutions of LaCl3 at different concentrations: at infinite dilution CN of 

12 with an average La—O distance of 2.64 Å was found but at a concentration of 2M the CN 

lowered to 10.2 with a La—O distance of 2.50 Å.  

Fujiwara et al.297 used AIMD and DFT to identify a La3+ CN of 9 and a first shell La—O length of 

2.64 Å when surrounded by 64 water molecules. The authors attempted a study using 24 water 

molecules which identified a lower La3+ CN of 8, it was observed that 24 waters resulted in a 

first solvation shell with large gaps suggesting that the 24 water model was too small. The 

Terrier et al.298 CPMD study developed three potentials to study the solvation structure of La3+, 

and found bond lengths of 2.58 Å, 2.58 Å and 2.84 Å with corresponding CNs of 9.00, 8.45 and 

9.16. The authors identified that their most accurate potential had produced the CN of 9.16, 

but that the bond length of 2.84 Å was overly long.  

The solvation structure of Lu3+ is similarly well studied, with experimental investigations 

finding a range of CN which cluster around 8 with NMR299, EXAFS275,277,278,280,300,301, XANES302 

finding CNs in the range of 7.7300 to 8.7299 with La—O bond lengths of 2.31277 Å to 2.53302 Å. 

Persson et al.278 used EXAFS to characterise the solvation shell in aqueous solution at ambient 

temperature, and found a Lu—O bond length of 2.36 Å and a total CN of 8.4 with 6 bonds at 

an average distance of 2.28 Å and an average of 2.2 bonds at distance of 2.51 Å. Brücher et 

al.299 used 1H and 35Cl NMR to investigate the hydration of the Lu3+  in a water and acetone 

mixture, finding that the CN decreased as the acetone to water ratio increased, with the ClO4
- 

ions replacing coordinating water molecules. A CN of 8.7 was found for a 0.49 M solution and 

a CN above 9 was deduced for a dilute solution. 

DFT294,303–307 studies indicate an unambiguously 8 coordinated structure with first shell Lu—O 

bond lengths identified as 2.35303 Å to 2.48304 Å. Fujiwara et al.297 used DFT and AIMD to 

investigate the hydration of La3+, geometry optimisations of structures from the AIMD 

trajectories found a La—O of 2.36 Å with a CN of 8 to be the most stable. Buzko et al.294 

investigated the hydration and stability of Lu(H2O)n
3+ (n = 1 to 9), and found a maximum CN of 

9, with calculations attempting to coordinate a 10th water molecule all resulting in the 10th 

water moving to the second solvation shell. Hay308 calculated the geometries of 58 known 

structures with a CN from 8 to 12 using a molecular mechanics force field approach, for the 8 
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coordinated species the Lu—O length was 2.32 Å and for the 9 coordinated species the Lu—O 

length was 2.51 Å for the three capping water molecules and 2.34 Å for the other 6 water 

molecules.  

Classical MD studies investigating the hydration of Lu3+ have found CNs of 8289,308–310 with Lu—

O bond lengths of around 2.32289,308–310 Å. The MD study of Sessa et al.310 found that the 8 CN 

species was dominant for 97% of the time with a low percentage of 9 coordinated complexes 

detected, and the 8 coordinated structure was a square antiprism geometry with a Lu—O of 

2.32 Å. Duvail et al.289 used classical MD to investigate the solvation structure of Lu3+ and 

compared the results to EXAFS data to identify a CN of 8.01 and bond length of 2.32 Å. 

6.3.1 Computational Details 

Born-Oppenheimer molecular dynamics simulations were performed using the QUICKSTEP 

module of CP2K version 3.0 on simulation cells with periodic boundary conditions.94,115 

Temperature and pressure were kept constant using a NPT_I ensemble, where the simulation 

cell is isotropic, the average temperature 𝑇 = 400 𝐾 was maintained using a Nosè-Hoover 

thermostat and a barostat maintained pressure of 1 atm.105 The GAPW96 method was 

implemented using the PBE functional with the DFT-D3 dispersion correction applied.76,166 The 

calculations used a double-ζ plus polarization Gaussian basis set (DZVP-MOLOPT-SR-GTH), a 

planewave cutoff of 600 Ry and relative cutoff of 80 Ry.167 Convergence test results for both 

cutoffs can be found in Appendix A5 and A6 for La3+, and Lu3+ respectively. 

5 initial structures with 64 water molecules and a central ion of either La3+ or Lu3+ were 

optimised. All initial structures underwent a cell optimisation prior to the start of the AIMD 

trajectory run, where both the cell parameters and the geometry were optimised 

simultaneously. For La3+, the optimised cell parameters were 𝑎 = 𝑏 = 𝑐 = 11.65 Å and for 

Lu3+ they were 𝑎 = 𝑏 = 𝑐 = 11.50 Å, these were used for all starting structures. For the aquo 

environments, charge neutrality was achieved through the use of a uniform neutralising 

background charge. Each AIMD trajectory was made up of 40,000 steps, each of length 0.5 fs 

for a total of 20 ps. The first 5 ps of each trajectory was treated as an equilibration period and 

was not considered in subsequent analysis.  

A total of 100 ps of trajectory time was collected for each lanthanide system, with 75 ps of 

trajectory time used in analysis once the equilibration period was discarded. The resulting 

post-equilibration trajectory time was analysed in the same method described in detail in 

Chapter 3. 
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6.3.2 Results 

6.3.2.1 Characterisation of Lanthanide Aquo Complexes 

RDFs were calculated for the entire 75 ps simulation time for each ion and are shown in Figure 

6.11.  

a) 

 

 

b) 

 

Figure 6.11: M—O radial distribution functions, g(r), generated using a total of 75 ps simulation time 

for a) La3+, b) Lu3+ in aqueous environment. 

For both ions a well-defined first solvation shell is evident, with peak maxima at 2.54 Å and 

2.34 Å for La3+ and Lu3+ respectively. For La3+, this indicated a La—O distance well within the 
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ranges of both experimental results of 2.51281 Å to 2.56288 Å, and computational results of 

2.50292 Å to 2.9293 Å. In particular, this value is in excellent agreement with 2.54 Å value 

obtained by the EXAFS of Allen et al.276 and Ishiguro et al.277 The majority of EXAFS 

investigations found a Lu—O distance of around 2.3275,277,278,289,300,301 Å, which is in excellent 

agreement with the RDF peak for Lu3+. This value also agrees well with both experimentally 

derived values of 2.31277,280,301 Å to 2.53302 Å and the computational values of 2.32309–311 Å to 

2.48304 Å. 

a) 

 

 

 

b) 

 

Figure 6.12: Example of a first shell trajectory plot for all M—O bonds at a distance < 4 Å for a) La3+ and 

b) Lu3+. 
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All M—O bonds (where M = La3+ or Lu3+) within 4 Å of the central ion over the timescale of the 

trajectory are plotted in Figure 6.12. The strong definition of the first solvation shells which is 

reflected in the RDF diagrams. The first shell bonds for both La3+ (Figure 6.12a) and Lu3+ (Figure 

6.12b) indicate a tightly bound first solvation shell with a fairly constant number of M—O 

bonds. While in both cases there are instances of longer M—O bonds, these do not result in a 

change of overall coordination number in the two examples given.   

Appropriate first shell cutoffs using the RDF + 0.5 Å (3.0 Å for La3+ and 2.8 Å for Lu3+) for the 

analysis of average bond lengths and coordination numbers were chosen. Table 6.16 

summarises the calculated La—O and Lu—O bond lengths along with the total first shell CN 

which is listed for each trajectory. Both calculated values have small standard deviations, 

indicating a constant average bond length across the different trajectories. The overall means 

for the bond lengths, averaged over 75 ps, with accompanying standard deviations are also 

given. The average La—O bond length of 2.61 Å is well within the literature values of 2.50292 Å 

to 2.9293 Å and compares well with the 2.63 Å value obtained in the AIMD investigation of 

Fujiwara et al.297 and the Hofer et al.296 value of 2.65 Å. Similarly, the average Lu—O bond 

length of 2.36 Å is well within the literature range of 2.3300 Å to 2.53302 Å, and compares 

excellently with both the 2.36 Å value obtained in the Fujiwara et al.297 AIMD investigation and 

the 2.36 Å value obtained in the DFT investigation of Zhang et al.305 Furthermore, it is also in 

excellent agreement with the EXAFS studies of both Persson et al.278 and D’Angelo et al.275 

which both obtained a value of 2.36 Å. 

Table 6.16: Calculated M—O separations (rM-O) and mean coordination numbers (CN) for each AIMD 

trajectory (Traj.) considered in this study, with accompanying standard deviations (SD) 

Traj. 
rM-O (Å)  CN 

La Lu  La Lu 

1 2.611 2.360  9.01 7.99 

2 2.615 2.355  8.96 7.95 

3 2.611 2.360  8.90 7.99 

4 2.612 2.356  8.98 7.93 

5 2.614 2.365  8.99 7.98 

Mean (SD) 2.612 (0.002) 2.359 (0.004)  8.97 (0.04) 7.97 (0.03) 

The CNs for both La3+ and Lu3+ compare excellently with the available literature values of 

9275,276,294,296–298,277–282,289,290 and 8275,277,305–310,278,280,289,294,300,301,303,304 respectively and there is 

very little deviation in the values for the first shell CN across the trajectories. The percentage 

residence times for each ion at different coordination environments are given in Table 6.17 
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and reflect the decrease in ionic radius across the lanthanide series reflected in the 

coordination number change with La3+ ion existing primarily as a 9 CN species and Lu3+ ion as 

an 8 CN species, as evidenced extensively through the literature.  

Table 6.17: Percentage residence time of different coordination environments, averaged over a total of 

75ps for each ion. 

Cation 
CN 

7 8 9 10 

La3+ 0.00 4.20 94.71 1.09 

Lu3+ 4.53 94.11 1.35 0.00 

The coordination plots for the total first shell CN changing over time for each trajectory are 

given in Figures 6.13 and 6.14 for La3+ and Lu3+ respectively. As confirmed by the calculated 

averages given in Tables 34 and 35 the CN of La3+ is mostly 9, and the CN of Lu3+ is 8. There is 

some lability in the coordination with La3+ being found with CNs of 8 to 10, and Lu3+ 

coordination environments of 7 to 9. However, the majority of deviations from the primary 

coordination number are short lived, lasting less than 2 ps.  
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a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 6.13(a-e): Total coordination number plots for each 15 ps AIMD trajectory of La3+. 
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a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 6.14(a-e): Total coordination number plots for each 15 ps AIMD trajectory of Lu3+. 
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6.3.2.2 Characterisation of the Lanthanide Trihydroxide Complexes 

In keeping with the methodology used throughout this thesis, the 5 hydroxide environments 

were created for each ion by taking snapshots of the AIMD trajectories for the aquo 

complexes. Three protons were removed from waters in each structure snapshot to generate 

three OH- ions with the full simulation box containing 61 water molecules, 3 OH- ions and a 

central ion of either La3+ or Lu3+. These structures had both their geometry and cell parameters 

optimised simultaneously to generate the starting structures for each 20 ps AIMD trajectory. 

Initial cubic cell parameters for AIMD trajectories were set to 𝑎 = 𝑏 = 𝑐 = 11.65 Å for La3+ 

and 𝑎 = 𝑏 = 𝑐 = 11.50 Å for Lu3+, in keeping with those used for the aquo trajectories. 5 ps 

of trajectory time was discarded for equilibration resulting in 75 ps of hydroxide simulation 

time for each ion. The resulting trajectories were analysed using the same methodology 

described in Chapter 4, this time taking into account the three hydroxides present in the 

system.  

The RDFs for La3+ and Lu3+ were calculated over the entire 75 ps for each ion and are shown in 

Figure 6.15. The first solvation shells for both ions are well defined. In Figure 6.15a a peak of 

2.61 Å indicates the La—O first shell distance and in Figure 6.15b a peak of 2.18 Å indicates 

the Lu—O distance. The introduction of hydroxide ions into the solvation environment has 

increased the La—O distance by 0.60 Å, although the La3+ peak is much broader than those in 

the aquo simulations.  The peak indicating the Lu—O bond has decreased 0.15 Å compared to 

the water simulations, in keeping with previous hydroxide simulations of other ions where the 

hydroxide environments indicate a smaller first solvation shell compared to their aqueous 

environments. 
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a) 

 

 

b) 

 

Figure 6.15: M—O radial distribution function, g(r), generated using a total of 75 ps simulation time 

for a) La3+, b) Lu3+ in a trihydroxide environment. 
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a) 

 

 

b) 

 

Figure 6.16: Example of a first shell trajectory plot for all M—O bonds at a distance < 4 Å for a) La3+ 

and b) Lu3+. 

Examples of full trajectory plots for all M—O distances less than 4 Å from the central atom are 

shown in Figure 6.16. Both Figure 6.16a and Figure 6.16b, which show the solvation 

environment for La3+ and Lu3+, respectively, reveal defined solvation shells as indicated by the 

RDFs of Figure 6.15. However, in contrast to the aquo complexes, the solvation environment 

around La3+ is much more dynamic, with waters entering and leaving the first solvation shell 

multiple times over the trajectory period. The La—O bond lengths of the first solvation shell 
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fluctuate over a larger distance than seen for the aquo complexes as seen in Figure 6.16a. This 

is reflected in the RDF with the much broader peak for La3+ than for Lu3+. 

The calculated M—O average bond distances, total first shell CNs and hydroxide CNs are 

summarised Table 6.18 for each trajectory. The overall averages of these values, calculated 

over 75 ps, are included along with the standard deviation. First shell cutoffs of 3 Å and 2.8 Å 

were used for La3+ and Lu3+ respectively, for consistency these are the same as those used for 

the aquo calculations. The calculated average bond lengths provide a clearer indication of the 

impact of hydroxides on the first solvation shell than the RDFs: values for both ions decreased 

with the introduction of hydroxides into the system, with a reduction of 0.028 Å and 0.083 Å 

for La—O and Lu—O respectively. The larger reduction in CN for the Lu3+ hydroxide system 

allows the remaining ligands to coordinated more closely to the ion which leads to the 

reduction in average bond length.  

Table 6.18: Calculated M—O separations (rM—O), mean coordination numbers (CN) and mean hydroxide 

coordination numbers (CNOH) for each AIMD trajectory (Traj.) considered in this study with 

accompanying standard deviations (SD).  

Traj. 
rM—O (Å)  CN  CNOH 

La3+ Lu3+  La3+ Lu3+  La3+ Lu3+ 

1 2.594 2.287  7.72 6.24  2.49 3.00 

2 2.580 2.293  7.59 6.39  2.32 2.64 

3 2.578 2.265  7.47 6.00  2.54 3.00 

4 2.587 2.270  7.66 6.00  2.43 3.00 

5 2.584 2.265  7.66 6.02  2.52 2.91 

Mean  

(SD) 

2.584 

(0.006) 

2.276 

(0.013) 

 7.62 

(0.10) 

6.13 

(0.18) 

 2.46 

(0.09) 

2.91 

(0.15) 

In both cases the total CN reduced by more than 1 with the introduction of hydroxides. The 

hydroxide CN (CNOH) indicate that the hydroxide ions preferentially coordinate to the ion over 

existing in the bulk water. This is more pronounced for Lu3+ with the majority of its CNOH values 

equalling 3, indicating that overall there is little or no deviation from full hydroxide 

coordination. There is larger variation in the hydroxide coordination for La3+, with most values 

at around 2.5, indicating there is some fluctuation in the number of hydroxides coordinating 

in the first solvation shell across all trajectories. This difference is likely due to the size 

difference between the two ions as the smaller and more charge dense Lu3+ cation will 

preferentially bind with the hydroxide ions, while the larger and more diffuse La3+ cation allows 

for more lability in the coordination of anions.  
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The residence times for each coordination environment and ion are given in Table 6.19. 

Interpreting the change of total CN in the contexts of these numbers, the range of coordination 

environments for La3+ has shifted from 8 to 10 in the aquo environment to 6 to 8, with the 

majority of trajectory time spent as 8 coordinated species compared to the 9 coordinated 

species found in the aquo species, but with significant time spent in 7-fold coordination. Lu3+ 

has a similar shift, with coordination environments of 5 to 7 found in the hydroxide species 

compared to a range of 7 to 9 for the aquo environments, the majority of trajectory time was 

spent in 6-fold coordination with a significant portion spent in 7-fold coordination.  

Table 6.19: Percentage residence time of different coordination environments (CN), averaged over a 

total of 75ps for each ion. 

Cation 
CN 

5 6 7 8 

La3+ 0.00 1.85 34.36 63.79 

Lu3+ 0.33 86.40 13.27 0.00 

There is a clear difference in the hydroxide coordination to the ion, as shown by the residence 

times for each hydroxide coordination number given in Table 6.20. For the majority of the 

trajectory time Lu3+ is found as a trihydroxide with brief periods as a mono- or di- hydroxide, 

whereas La3+ is found as either a di- or tri-hydroxide for 98 % of time with a brief instance of 

monohydroxide coordination. This difference can again be attributed to the size difference of 

the ions and indicates the increased lability of the first shell of La3+ and the impact of a longer 

and weaker La—O bond. Neither ion is found to be uncoordinated by hydroxides at any point 

through the simulation time, in contrast to the dication alkaline earth metals, suggesting that 

the increased charge of the central ion increases the affinity for the hydroxide ions.  

Table 6.20: Percentage residence time of different hydroxide coordination environments (CNOH), along 

with mean coordination number, averaged over a total of 75 ps for each ion. 

Cation 
CNOH 

0 1 2 3 

La3+ 0.00 1.91 50.30 47.79 

Lu3+ 0.00 2.31 4.35  93.34 

Each hydroxide trajectory is summarised in Figure 6.17 and Figure 6.18 for La3+ and Lu3+ 

respectively. Each figure shows the total coordination and hydroxide coordination to the 

central ion, and the movement of hydroxides through proton transfer is summarised, the first 

shell cutoffs are also indicated on these graphs. The clear difference between the ions at each 

end of the lanthanide series is evident. Both the total and hydroxide coordination number for 
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La3+ are highly variable throughout each trajectory. Conversely, for the smaller and charge 

dense Lu3+ the total CN and hydroxide CN remain relatively stable, and, in periods where these 

numbers do vary, it is for longer periods across a trajectory.  

a) b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 6.17(a-e): Total (dotted orange) and hydroxide (solid blue) coordination number and proton 

transfer events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each 15 ps AIMD 

trajectory for La3+. The dashed black line indicates the first shell cutoff distance of 3 Å. 
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a) 

 

b) 

  

 

c) 

 

d) 

  

 

e) 

 

 

 

Figure 6.18(a-e): Total (dotted orange) and hydroxide (solid blue) coordination number and proton 

transfer events (∆: 1st shell → 2nd shell, ∇: 2nd shell → 1st shell, ○: intrashell) for each 15 ps AIMD 

trajectory for Lu3+. The dashed black line indicates the first shell cutoff distance of 2.8 Å. 
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The total number of PTEs, characterised by transfer of the protons related to the first solvation 

shell, are summarised in Table 6.21. The La3+ systems have 4 times as many PTEs compared to 

the Lu3+ systems. In both environments the intrashell PTEs outside the first solvation shell were 

not the most common, in contrast to all the other ions examined in the hydroxide 

environment. Instead, for La3+ the 1st to 2nd shell PTEs were most prevalent, with a significant 

number of 2nd to 1st and 1st to 1st shell PTEs were also observed. Significant amounts of 

hydroxide migration were indicated by the unequal flow of protons into and out of the first 

solvation shell, however this is not quantified in this analysis. This is likely linked to the increase 

in the hydroxide coordination to the ions, which increases the probability of PTEs in the first 

solvation shell. The low number of PTEs for Lu3+ makes it difficult to identify significant trends, 

although the most common type of PTE is an intra first shell PTE, which is again likely a 

reflection of the increase in CNOH for Lu3+ throughout the simulations. The increase in the 

number of hydroxides in the simulation environment does not seem to have increased the 

total number of PTEs, again likely due to the coordination of the hydroxide to the central ion, 

indicating that the coordination of the hydroxides to the ion inhibits proton transfer. 

Table 6.21: Number and characterisation of proton transfer events (PTE), obtained from 75 ps of AIMD 

data for each ion considered in this study. Percentage values are given in parentheses. 

Cation 
PTE 

1st – 1st 1st – 2nd 2nd – 1st 2nd – 2nd Total 

La3+ 20 (20) 40 (39) 27 (26) 15 (15) 102 

Lu3+ 9 (41) 7 (32) 4 (18) 2 (9) 22 

 

The increased charge of the lanthanides compared to the alkaline earth metals appears to 

have an impact on the total number of PTEs. The higher ionic charge of the lanthanides results 

in higher hydroxide coordination, as well as a decrease in the number of PTEs. Furthermore, 

there is a decrease in the amount of PTEs for Lu3+ compared to La3+. While both ions have the 

same overall charge, they differ in size, and the larger and less charge dense La3+ seems to be 

less able to influence the solvation structure than the smaller, more charge dense Lu3+ ion. 
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Figure 6.19: The hydroxide coordination (CNOH) against the ionic radius123 of each cation Cs+, Mg2+, Ca2+, 

Sr2+, UO2
2+, La3+, Lu3+ 

The CNOH of each ion studied in this thesis is compared with its ionic radius in Figure 6.19, 

highlighting similar trends as the ionic radii increases. Across both the trications of the 

lanthanides and the dications of the alkaline earths, higher charge density is correlated with a 

higher CNOH. In all cases the larger less charge dense ions such as Cs+, La3+ and Sr2+ have lower 

CNOH numbers, indicating a reduced ability to attract the hydroxide anion.  

6.3.3 Section 3: Conclusion 

This section focused on the solvation structure of the lanthanides at each end of the 

lanthanide series, La3+ and Lu3+, in the absence and presence of hydroxide ions. As trications, 

the lanthanides offered the opportunity to continue investigating the increase in central ionic 

charge and its impact on both water and hydroxide coordination. In addition, by studying the 

lanthanides at both ends of the lanthanide series the effect of the increased ionic radius from 

La3+ to Lu3+ and its impact on water and hydroxide coordination can also be investigated. Initial 

geometries were optimised using the PBE functional with a DFT-D3 dispersion correction and 

all AIMD simulations were carried out using Born-Oppenheimer molecular dynamics. For each 

ion, 75 ps of analysable AIMD trajectories were collected for both the aquo and the 

trihydroxide environments.  



160 
 

The first solvation shell for each ion was characterised by averaging the radial distribution 

functions over the entire AIMD trajectories collected, and by calculating the average bond 

lengths for M—O. The first shell coordination numbers were calculated alongside percentage 

residence times for each coordination environment. For the trihydroxide systems the 

coordination of the hydroxide ions to the cation was analysed and the migration of protons 

via proton transfer events was calculated.  

The results characterising the aqueous environment for both La3+ and Lu3+ compared 

excellently with existing literature values. Both the average coordination number for the first 

solvation shell and the average bond lengths are well within the literature ranges given. The 

average coordination numbers correctly identified the change in CN from 9 to 8 across the 

lanthanide series.  

The analysis of the solvation environment with the addition of three hydroxide ions resulted 

in a reduction of both average bond lengths and coordination number for both La3+ and Lu3+. 

The calculated hydroxide coordination numbers indicated that the hydroxide ions 

preferentially coordinate to the ions over migrating through the bulk water, with no periods 

of time identified for either ion where no hydroxide coordination takes place. For Lu3+ the 

coordination of hydroxide ions was found to be more pronounced and the ion was coordinated 

by three hydroxides for the majority of the trajectory time. Proton transfer events were 

identified and quantified for each ion and were 5 times as frequent for La3+ compared to Lu3+, 

which had two trajectories with no PTEs. Compared to the alkaline earth metals PTEs were 

less prevalent in the lanthanides and the most common classification of PTEs were first shell 

intra and inter shell PTEs. 

6.4 Chapter 6: General Conclusions 
This chapter further explored the relationship of different ions in aqueous environments and 

in the presence of hydroxide, by investigating a monocation and a dication with a single 

hydroxide ion, and then trications with three hydroxide ions. In Part 1, the dication Sr2+ with a 

single hydroxide was investigated and the results compared to the results of the AIMD 

simulations to those of the dication with two hydroxide ions. A single hydroxide ion had little 

impact on the solvation shell compared to simulations involving two hydroxides, with no 

change in Sr—O average bond lengths and a small reduction of 0.1 in CN compared to the 

aquo complexes whereas the dihydroxide systems found a reduction in both CN and bond 

length. Hydroxide coordination was limited and was found for less than 2 ps in the 

monohydroxide simulations compared to the dihydroxide simulations where it was evidenced 
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for periods of ~10 ps. However, similar proton transfer behaviour was witnessed in the 

monohydroxide systems and these events occurred predominantly away from the ion.  

In Part 2, the solvation structure of the monocation Cs+ was investigated in both water and in 

the presence of a monohydroxide. The Cs+ solvation shell was difficult to characterise, with no 

solvation shell definition. The aqueous solvation environment was characterised and a range 

of first shell CNs of 5 to 11 was identified. The lack of definition was also found in the hydroxide 

environment which made it difficult to accurately compare the hydroxide environment to the 

Sr2+ monohydroxide AIMD trajectories. Similar to Sr2+, there was a lack of coordination of the 

hydroxide to the ion, although this may be partly due to lack of defined solvation shell. While 

proton transfers did occur they were at a lower rate than all previous AIMD hydroxide 

simulations and all occurred at the boundary of the first solvation shell, or outside the first 

solvation shell. 

In Part 3, the solvation structure of the trications La3+ and Lu3+, were investigated in both water 

and in the presence of three hydroxide ions. The results for ions indicated well defined first 

solvation shells, and calculated bond lengths and coordination numbers compared excellently 

with literature. Both ions exhibited strong hydroxide coordination, likely due to the higher 

ionic charge of the ions compared to the investigations of the mono and di cations. The high 

hydroxide coordination had an altered the types of proton transfer events which were 

identified across the simulations. The most prevalent PTEs were inside first solvation shell in 

contrast to all other hydroxide simulations. A lower PTE rate was identified compared to that 

of the alkaline earths, further adding evidence to the theory that proton transfer occurs more 

readily away from the ion, in the bulk water.  
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Chapter 7: CeO2(111) Surface Investigations 

This chapter represents a probative investigation into a solvated CeO2(111) material surface. 

In contrast to the previous chapters of this thesis, the study presented here is based on 

energetics and not dynamics. Initial calculations focus on the mineral surface itself, then the 

surface-water interface when a water model is included. Further calculations examine the 

adsorption of a Sr2+ ion onto the solvated mineral surface and the favourability of adsorption 

with the introduction of hydroxide ions. In this chapter, cerium oxide, or ceria, is used as an 

analogue of uranium dioxide, which is found in the legacy waste storage ponds. By doing so, 

the capability and viability of the computational model is tested for potential inclusion in 

future AIMD studies of the surfaces of minerals found in the nuclear waste storage ponds.  

7.1 Introduction 

While brucite is the main mineral found in the nuclear storage ponds, there are other minerals 

of interest present. As discussed in Section 1.3, the uranium from the fuel rods readily forms 

uranium dioxide (UO2) in the ponds. Investigating the adsorption of radionuclides onto 

materials surfaces found in the waste storage ponds can contribute to the accurate 

characterisation of the chemical environment and behaviour of the stored nuclear waste in 

the storage ponds.  

The accurate description of f electrons in actinides such as uranium poses a challenge for DFT. 

For example, the use of GGA functionals incorrectly predicts UO2 to be metallic83, which is 

usually overcome with the application of a Ueff term in the DFT+U method, as discussed in 

Section 2.9.5. However, modelling UO2 even with the DFT+U method is not trivial due to the 

2 unpaired f electrons of each uranium centre, which can result in multiple metastable 

states.244,312  

CeO2 has previously been used experimentally313–318 as an analogue for UO2 due to the 

structural similarities and because CeO2 is characterised by unoccupied 4f states of Ce4+ 

(4f0)319, which make it significantly easier to model computationally. The ionic radii of 

cerium(IV) and uranium(IV) are of a similar size at 87 pm and 89 pm respectively.320 In their 

respective dioxide forms the lattice parameters are also similar, for UO2 the lattice parameter 

is 𝑎 = 5.47 Å321 and for CeO2 it is 𝑎 = 5.41 Å.322 Both CeO2 and UO2 crystallise to the same 

fluorite type structure, are face centred cubic, and have the same Fm-3m space group.323,324 

The potential oxidation states of each metal differs as U(IV) can be oxidised to U(VI) whereas 

Ce(IV) cannot, but it can be reduced to Ce(III).319 This difference in possible oxidation states 
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may be important for chemisorption processes, such as when CO forms carbonate-like CO3
2- 

structures on a CeO2(111) surface325. However, for the expected physisorption of an ion 

coordinating weakly to the surface, where the surface lattice is not disrupted, CeO2 is an 

appropriate analogue for UO2.   

Ceria (CeO2) has been well studied as it is a well-known catalytic material. As such, most 

studies focus on the interaction of a single ion with the CeO2(111) surface or on the adsorption 

of water onto the CeO2(111) surface. An overview of the relevant literature is discussed here; 

for more in-depth evaluations of the full surface chemistry of CeO2 the reader is directed to 

the extensive reviews by Paier et al.326 and Mullins et al.327 

The adsorption of single atoms such as Ag328,329, Au330–336, Pt337 and Sn338 on stoichiometric and 

reduced surfaces of CeO2(111) has been investigated using both experimental and 

computational methodologies. In general, it has been found that the adsorption of these 

clusters to the surface of CeO2(111) results in the transfer of charge from the oxide surface to 

the metal, reducing Ce4+ ions on the surface to Ce3+.329,330,332,333,337,338 Farmer et al.328 examined 

the adsorption of Ag on CeO2(111) using micro calorimetry and found that Ag binds more 

strongly on reduced CeO2(111) because of the oxygen vacancies. Bruix et al.337 used DFT + U 

with both LDA and GGA functionals to examine the adsorption of Pt onto a stoichiometric 

CeO2(111) surface, and found the oxidation of Pt to Pt+ and the reduction of the surface Ce4+ 

to Ce3+ to be the most energetically favourable structure. This DFT study also predicted that 

the most favourable geometry corresponded to the adsorption of Pt on top of a site bridging 

two nearest-neighbour surface oxygens (Os).  

The bridge-like adsorption structure was also found in the Zhang et al.333 DFT + U investigation 

on the adsorption of Au onto stoichiometric and defective CeO2(111). Theoretical studies332,333, 

along with resonant photoemission spectroscopy experiments334,339,340, found that the 

adsorption of Au on stoichiometric CeO2(111) surface leads to the spontaneous oxidation of 

Au0 to Au+. However, scanning tunnelling microscopy (STM) and x-ray photoelectron 

spectroscopy (XPS) analysis of single crystals reported by Baron et al.330 and the DFT study by 

Castellani et al.331 found that a reduced surface is required to produce the redox reaction 

where Ce4+ is reduced to Ce3+ and Au0 is oxidized to Au+. The origin of this difference is the 

closeness in energy between the two electronic states which correspond to a neutral or 

charged Au. This closeness in energy was identified by Branda et al.335 who investigated the 

electronic structure of atomic Au adsorbed onto a stoichiometric CeO2(111) surface using DFT 

+ U with LDA, GGA and the HSE06 hybrid functional, and found the results were highly 

dependent on the exchange correlation functional used. 
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Investigations of the interaction of water with the surface of CeO2(111) have revealed that 

water adsorbs either molecularly341–344, where the H2O adsorbs on the surface of cerium and 

forms two hydrogen bonds with neighbouring surface oxygen (Os), or dissociatively345–347, 

where the H2O donates a proton to the neighbouring Os forming a hydroxide, and the 

remaining OH- forms a bond with a surface Ce.
343,347 However, the literature is in disagreement 

about which of these adsorption methods is the most thermodynamically stable, as discussed 

below.348–350  

Experimentally, water on CeO2(111) surfaces has been well studied with a variety of 

methods345,348,351 including X-ray Photoelectron Spectroscopy (XPS)348,349,352,353, Temperature-

Programmed Desorption (TPD)348,349,352–354 and Atomic Force Microscopy (AFM)345,346. 

Henderson et al.352 used XPS and TPD to investigate the surface chemistry of water on the 

CeO2(111) surface. The investigation found three possible molecular configurations for water 

adsorption to the surface. The most likely adsorption configuration was in a C2V geometry with 

the hydrogen atoms of water pointing directly away from the surface. For the alternative 

configurations, the water molecule was adsorbed with either a single hydrogen bond from the 

water oxygen to the surface, or with two hydogen bonds from the water hydrogens to surface 

oxygens. Several studies348,349 including the non-contact AFM investigations by Gritschneder 

et al.345 and Torbrügge et al.346 noted the importance of oxygen vacancies and found that 

water preferentially dissociates onto the surface and forms hydroxide if oxygen vacancies are 

present.  

There have been multiple theoretical studies of the interaction and adsorption of H2O onto 

the CeO2(111) surface, typically including 1 monolayer (ML) or less of 

water.341,342,359,360,343,344,347,350,355–358 Fernández-Torre et al.350 and Yang et al.341 investigated H2O 

adsorption on the CeO2(111) surface using DFT and DFT+U approaches. All methods and 

surface models supported the findings that water adsorbs on to the Ce4+ atom and can be 

found in two states: either as a molecule forming one hydrogen bonds with a Os or as a 

hydroxyl pair where a hydroxide forms on a surface cerium and a proton is donated to an 

adjacent Os. Both structures are stabilised by a hydrogen bond and differ in energy by 10 - 30 

meV depending on the functional used and the unit cell considered. The results of these 

studies rule out complete water dissociation as the thermodynamically stable phase.  

Watkins et al.347 used DFT and DFT+U, both with the GGA functional PW91, to investigate the 

process of dissociating water on the stoichiometric and reduced CeO2(111) surface. The results 

led to the conclusion that water will dissociate upon adsorbing onto either form of the surface, 

in contrast to previous studies.342,343,361 Molinari et al.344 used DFT+U with the PBE functional 



165 
 

to examine molecular and dissociative adsorption of water and the formation of oxygen 

vacancies. In line with the Watkins et al.347 study they concluded that dissociative adsorption 

was favoured over molecular adsorption but that the stability of the dissociative state 

decreases with an increasing amount of hydroxyl groups. However, the results from the study 

also indicated that molecular adsorption becomes more favourable as the water coverage 

increases.  

As well as investigations of ceria it is important to understand the behaviour of the adsorption 

of the strontium ion which will be examined in this chapter. The adsorption of the Sr ion onto 

solid surfaces, such as clay, iron oxide and other sediments, has been studied.45,362–364 In 

general, Sr2+ coordinates weakly as an outer-sphere complex at the surface-water 

interface154,362,363,365, but this behaviour depends on ionic strength and the presence of other 

minerals in the system.366 The adsorption of the dication onto a surface has been found to 

increase with increasing pH.45,362,363,366–368 Sahai et al.363 examined the sorption of Sr2+ on 

kaolinite clay, amorphous silica and the goethite mineral surface using X-Ray Absorption 

Spectroscopy (XAS). They examined the rate of absorption as a function of pH, strontium 

concentration, and the presence or absence of atmospheric CO2. Sorption of Sr2+ was found to 

increase with pH, and an increase in strontium uptake on goethite was found in the presence 

of atmospheric CO2.  

Parkman et al.365 investigated Sr2+ sorption in aqueous solution on the calcite and kaolinite 

mineral surfaces using XANES and EXAFS. For calcite, Sr2+ uptake increased linearly with Sr2+ 

concentration, but the highest update of Sr2+ by kaolinite was found at the lowest initial Sr2+ 

concentration and at higher concentrations the EXAFS data showed only weak binding of Sr2+ 

to kaolinite surfaces. The difference in adsorption behaviour was due to the ion exchange of 

Ca2+ with Sr2+ in calcite, which was corroborated by the XAS study by Pingitore et al.49 who 

found that Sr2+ is incorporated into calcite by substituting with Ca2+. 

Wallace et al.45 examined the sorption of Sr2+ to sediment samples taken from the Sellafield 

site, in sediment water systems made to emulate the ground water around Sellafield. The 

authors found that ion adsorption was observed between pH 4 and 6 with maximum sorption 

occurring at pH 6 to 8, and Sr2+ was found to adsorb as an outer sphere complex. The long-

term sorption of Sr2+ was also examined and it was found that over periods of 365 days Sr2+ 

remained in weakly bound surface complexes, which if the groundwater ionic strength 

increased would lead to a substantial remobilisation of Sr2+.  
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In the thesis of Eszter Makkos368, computational investigations of Sr2+ on the surface of brucite 

using DFT and a COSMO solvation model found that interaction between the surface and the 

ion was not favoured at a pH below 11. However, Ashworth et al.369 investigated the sorption-

desorption interactions of 90Sr with brucite (Mg(OH)2) and the impact of adding natural organic 

matter. The experiments were conducted in pond-like conditions with a pH between 10.5 and 

12.5 and ionic strength of either 2.5 x 10-3, 0.01 or 0.1 M. It was found there is no impact on 

the sorption of Sr2+ to brucite with a change in either ionic strength or pH with no sorption 

found in either environment.369  

7.2 Computational Details 

All calculations in this chapter were DFT optimisations performed using the QUICKSTEP 

module of CP2K version 3.0 on simulation cells with periodic boundary conditions.94,115  The 

GAPW96 method was implemented using the PBE functional with Grimme’s DFT-D3 dispersion 

correction applied.76,166 The calculations used polarised double-ζ Gaussian basis sets (DZVP-

MOLOPT-SR-GTH) and a planewave cutoff of 500 Ry.167 The DFT+U approach was taken for all 

calculations and applied to the Ce4+ f orbitals, using a U value of 7.00 eV and a J value of 0.7 

eV, consistent with previous DFT+U studies of CeO2(111).360,370–373  

7.3 Results 

7.3.1 CeO2(111) Surface Model  

DFT was employed to optimise a surface model of CeO2(111). The initial aim of the 

investigation was to combine the 64 water molecule model used in the aqueous AIMD 

investigations of previous chapters with the CeO2(111) surface. To do this effectively, the 

surface model needed to have parameters approximately the same as the size of the periodic 

box used for the water model, corresponding to ~11.99 Å in length and width. To make a 

surface of this size a 4x3x2 supercell of CeO2(111), was made using Gaussview120, as is shown 

in Figure 7.1, due to the periodic nature of the calculations and the focus on the surface 

interactions a 15 Å vacuum, used in other similar studies342,347,371,374,375, was applied in the c 

direction which is perpendicular to the surface, to prevent interactions between the surface 

atoms and the base of the surface in the box above and the starting cell parameters were set 

to 𝑎 = 11.65 Å, 𝑏 = 13.5 Å, 𝑐 = 20.80 Å. The oxygens at the base of the surface model were 

fixed in place to allow the stability afforded by the bulk structure of the solid to be modelled 

without the computational cost of modelling extra layers. As the investigation is primarily 

interested in surface interactions, the bulk model is of lesser importance. The structure 

depicted in Figure 7.1 underwent a cell optimisation to optimise the periodic cell parameters 
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and geometry simultaneously. The optimised cell parameters were 𝑎 = 11.19 Å, 𝑏 =

12.90 Å, 𝑐 = 21.24 Å. 

a) 

 

b) 

 

c) 

 

Figure 7.1: CeO2(111) 4x3x2 surface. a) Front view, b) side view, c) top view.  
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7.3.2 CeO2(111) Surface Interaction with Water 

Initially, 3 previously optimised sets of 32 water molecules were added on top of the CeO2(111) 

surface to generate 3 unique starting structures as the basis for the investigation of the 

interaction of water coverage on a surface, an example of which is shown in Figure 7.2. 

Previous theoretical investigations focused only on the adsorption of one water molecule onto 

the surface of CeO2(111) with a maximum of 1 monolayer (ML) of water, as detailed in Section 

7.1. In these calculations, 32 water molecules were used to provide a more realistic model of 

surface water coverage. To accommodate the addition of 32 water molecules and to maintain 

a 15 Å vacuum the cell parameters were increased in the c direction and were set to 𝑎 =

11.19 Å, 𝑏 = 12.90 Å, 𝑐 = 36.24 Å. All calculations from this point are geometry 

optimisations with the cell parameters held constant, as this enables an accurate comparison 

of the total energies.  

 

Figure 7.2: CeO2(111) 4x3x2 surface model with 32 water molecules.  

The relative energies of the first three optimised water surface structures are listed in Table 

7.1. The two lowest energy structures optimised with a water molecule dissociatively 

adsorbed onto the surface. This water dissociation behaviour is similar to that seen in the 

computational studies of Molinari et al.344 and Watkins et al.347 although both these 

investigations focused on a single water molecule rather than full surface coverage. Structure 
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1 optimised with a H+ protonating a Os, and an OH- coordinating the adjacent surface Ce4+. 

Structure 2 had a H+ protonating the surface but the OH- did not coordinate a surface Ce4+. 

Structure 3 had an unprotonated surface and the water molecules above the surface had 

become very spread apart, this structure was not used in further investigations. These 

preliminary results suggest that waters can spontaneously dissociate and form low energy 

structures, although 3 data points is not conclusive. 

Table 7.1: The relative energies (Erel) of the starting structures of CeO2(111) 4x3x2 surface with 32 water 

molecules  

Structure Erel (eV) 

1 0.000 

2 0.423 

3 2.041 

The next stage in the investigation was to examine the possibility of protonating the CeO2(111) 

surface multiple times through manually dissociating multiple water molecules. The aim of 

this was to identify which surface environment was more energetically favourable: a surface 

with no protonation, a single protonation or multiple protonations. The two lowest energy 

structures listed in Table 7.1 were taken and multiple water molecules were dissociated across 

the CeO2(111) surface by separating a water molecule and coordinating the H+ ion to a Os and 

the OH- ion to an adjacent surface Ce. Up to a maximum of 4 waters were dissociated on the 

CeO2(111) surface before the structures were re-optimised. From these optimised geometries 

low energy structures were then identified and manipulated by dissociating different water 

molecules or recombining waters on the surface before being re-optimised to try to identify 

the most stable environment. In total 20 different structures were optimised and Figure 7.3 

summarises the relative energies of all the structures by the number of protons on the 

CeO2(111) surface after geometry optimisation (𝑛H+).  

There is a general trend of the total energy increasing as the number of dissociated waters 

increases from 1 to 4, in line with the Molinari et al.344 DFT study which suggested that the 

stability of the ground state decreases with increasing hydroxyl groups. Structures with a range 

of relative energies for each number of dissociated waters were found, likely due differences 

in the hydrogen bonding of the bulk water on the surface. However, due to the preliminary 

nature of this investigation only the lowest energy structures were compared. Overall, 

surfaces where Erel < 0.5 eV are either unprotonated or protonated by a single proton. Multiple 

attempts were made to optimise structures with 0, 2, 3, 4 waters were adsorbed dissociatively; 
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however, as is evident in Figure 7.3, the majority of these structures optimised to structures 

with just a single proton on the CeO2(111) surface.  

 

Figure 7.3: The relative energies (Erel) of the optimised CeO2(111) 4x3x2 surface model with 32 water 

molecules against the number of protons protonating the surface (𝑛𝐻+). 

7.3.3 CeO2(111) Surface interactions with Solvated Sr2+ 

The interaction of Sr2+ with the CeO2(111) surface was studied using DFT. A single Sr2+ ion was 

added to the water model above the surface in the 3 lowest energy optimised structures from 

Section 7.3.2. For each of the three starting structures the distance of the ion from the surface 

was varied to model either inner shell coordination, outer shell coordination, or not 

coordinated to the surface. These three structures were optimised to form the starting 

geometries for the investigation. Each optimised final structure was examined to obtain the 

Sr2+ coordination number (CN), Sr2+ distance from the surface (rSr), and surface protonation. 

As in Section 7.3.2, the optimised structures were then altered to mimic the features of lower 

energy structures and more fully explore the different coordination environments of the ion 

and surface to find lower energy structures. Optimised low energy geometries were altered in 

one of three ways; by either changing the Sr2+ CN, the Sr2+ distance from the surface, or altering 

the protonation of the CeO2(111) surface. In total, 40 separate geometries were optimised to 

try to identify common features in low energy configurations. The data produced from these 

optimisations can be found in Appendix E Table E1. 
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For the purposes of analysis, the distance of Sr2+ from the surface was used to classify the 

surface coordination of the Sr2+ as inner shell, outer shell or uncoordinated. As was established 

in the Chapter 3 AIMD studies of Sr2+ in an aqueous environment, the chosen cutoff for the 

first solvation shell is 3.2 Å. Therefore, any coordination of Sr2+ to the surface at distances of 

rSr < 3.2 Å is classified here as inner shell. Outer shell coordination of Sr2+ to the surface, where 

a water in the first solvation shell is bonded to the surface via hydrogen bonds, was defined 

as 3.2 < rSr < 5 Å based on the edge of the second solvation shell as defined in the Sr—O RDF 

reported in Section 4.3.2. Structures with no Sr2+ surface coordination where the ion was 

considered to be in bulk water were defined at a distance of rSr > 5 Å. All optimised structures 

were visually inspected to identify any direct coordination by the ion to surface species. 

Previous investigations of Sr2+ adsorption onto surfaces have used different cutoffs to 

categorise the bonding of the ion with the surface. Kerridge and Kaltsoyannis376, in their 

periodic electrostatic embedded cluster model (PEECM) of Sr2+ adsorption onto brucite, 

identified the inner shell as a distance of < 4 Å, outer shell complexes at a distance of > 4 Å 

and < 6 Å, and bulk structures at distances of > 6 Å.376 The thesis of E Makkos368 built on this 

study, examining the adsorption of Sr2+ onto brucite using similar parameters, considering only 

inner and outer shell complexes of Sr to the surface with all Sr—surface distances < 8 Å. 

However, cutoff values used in this chapter are consistent with the results from the AIMD 

simulations in Chapter 3 and Chapter 4 for Sr2+ coordination.  

Figure 7.4 shows the relative energy (Erel) of each geometry, relative to the lowest energy 

structure, plotted against the distance of the Sr2+ from the surface. Using the cutoffs for Sr—

surface coordination, with inner shell coordination when rSr < 3.2 Å, outer shell coordination 

when 3.2 < rSr < 4.5 Å, and bulk coordination when rSr > 5 Å, the majority of structures 

optimised to outer shell coordinated structures, with 15 inner shell coordinated structures, 23 

outer shell coordinated structures and 2 bulk structures. The lowest energy structure has a 

Sr—surface distance of 4.45 Å, and is coordinated to the surface via two hydrogen bonds 

between first shell waters and Os with bond lengths of 1.65 Å and 1.86 Å. When examining 

other low energy structures where Erel < 0.5 eV they are either inner or outer shell coordination 

to the surface, indicating that those structures which have some surface coordination are 

more stable than those uncoordinated to the surface.  
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Figure 7.4: The relative energies (Erel) of the optimised CeO2(111) 4x3x2 surface model with a Sr2+ ion 

and 32 water molecules against Sr2+ distance from the surface (rSr). 

 

 

Figure 7.5: The relative energies (Erel) of the optimised CeO2(111) 4x3x2 surface model with a Sr2+ ion 

and 32 water molecules, against total Sr2+ CN. 
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The Erel of each optimised geometry against the total Sr2+ CN is shown in Figure 7.5. The 

majority of structures optimised with a Sr2+ CN of 7 and the lowest energy structure is 7 

coordinated. Multiple attempts were made to optimise low energy structures with CN other 

than 7, however the majority optimised to either a 7 CN structure, or a structure with a higher 

energy. Both 5 CN and 9 CN structures have higher energies (Erel > ~1.5 eV) suggesting these 

CN are the least energetically favourable coordination environments. Optimised structures 

which have a Erel < 0.5 eV are predominantly 7 coordinated but there are also 6 and 8 

coordinated structures suggesting a stability for those coordination numbers.  

In an attempt to identify structural features common to the lowest energy configurations, 

Figure 7.4 was replicated but with each of the data points classified in different ways to clarify 

any trends between low energy structures and the final optimised geometry. The data were 

classified according to Sr2+ CN (Figure 7.6) and degree of surface protonation (Figure 7.7). 

When examining low energy structures where Erel < 0.5 eV in Figure 7.6, they are all either 

inner or outer shell surface complex and have a predominantly 6 or 7 coordinated Sr2+ with 

one 8 coordinated structure. Overall the lowest energy structure is 7 coordinated with outer 

shell surface coordination.  

 

Figure 7.6: The relative energies (Erel) of the optimised CeO2(111) 4x3x2 surface model with a Sr2+ ion, 

and 32 water molecules, against Sr2+ distance from the surface (rSr). Each data point is coloured by Sr2+ 

CN. Blue circle = 5, red triangle = 6, green diamond = 7, magenta square = 8, yellow star = 9.  



174 
 

Based on the correlation between lower energy and lack of surface protonation in Section 

7.3.2, the Erel of the optimised structures were examined to identify any correlation between 

lower energy and surface protonation. These results are summarised in Figure 7.7, generally, 

the Erel increases with increasing surface protonation. All structures with Erel < 0.5 eV have an 

unprotonated CeO2(111) surface, indicating that a protonated surface is not energetically 

favourable. 

 

Figure 7.7: The relative energies (Erel) of the optimised CeO2(111) 4x3x2 surface model with a Sr2+ ion 

and 32 water molecules, against Sr2+ distance from the surface (rSr). Each data point is coloured by 

surface protonation. Blue circle = 0 H+, red triangle = 1 H+, green diamond = 2 H+
.  

Overall the lowest energy structure has a Sr2+ ion outer shell coordinated to the CeO2(111), a 

Sr2+ CN of 7 and a CeO2(111) surface which is unprotonated. Examining the common structural 

features in structures where Erel < 0.5 eV, the Sr2+ CN is 6, 7 or 8, they have an unprotonated 

CeO2(111) surface, and the Sr2+ ion is coordinated to the surface via either inner or outer shell 

coordination. 

7.3.4 CeO2(111) Surface with Sr2+ and 64 Water Molecules 

The previous chapters presented in this thesis used 64 water molecules to ensure the solvation 

model of the ions was adequate. The 32 water molecule model used in Sections 7.2 and 7.3 

provides a good starting point to model solvation. However, there were concerns that 32 

water molecules were not sufficient to model the second shell behaviour of Sr2+ nor to provide 
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enough bulk water above the surface, which may cause an issue if it was more energetically 

favourable for the Sr2+ ion to remain uncoordinated.  

To test if an increase in water molecules impacted the relative energies, an additional 16 water 

molecules were added above the existing 32 water molecules in the 4 lowest energy structures 

from Section 7.3.2, for a total of 48 water molecules. In the 4 lowest energy structures the 

coordination of the Sr2+ ion to the CeO2(111) surface varied, one structure was outer shell 

coordinated, two inner shell coordinated and one with no surface coordination. Once the 

additional 16 water molecules were added, the 4 structures were then re-optimised and the 

relative energies for the 32 and 48 water molecule models compared. 

The structural features of each optimised geometry with both 32 and 48 water molecule 

models are summarised in Table 7.2, each structure is numbered 1 to 4 (S1 to S4). There is no 

significant change in the surface—Sr distance (rSr) with the addition of more waters, with a 

slight increase in the rSr distance of 0.02 Å for S1 and 0.01 Å for S3 and S4. There is also a 

change in the Sr2+ CN in two geometries, in one case increasing by 1 for S4, and for S2 

decreasing by 1. However, the classification of the surface coordination has remained 

unchanged in all cases, combined with the lack of a significant change in rSr this suggests that 

an increased number of waters is unnecessary for simulating bulk water and that the lower 

number of 32 waters does not prevent the Sr2+ from migrating away from the surface.  

Table 7.2: The surface-Sr distance (rSr), Sr2+ coordination number (CN), Sr2+ coordination type (CT) and 

relative energies (Erel) for low energy structures 1 to 4 (S1 to 4) optimised with either 32 water molecules 

(32 H2O) or 48 water molecules (48 H2O). 

 rSr (Å)  CN  CT  Erel/eV 

 32 H2O 48 H2O  32 H2O 48 H2O  32 H2O 48 H2O  32 H2O 48 H2O 

S1 2.73 2.75  7 7  Inner shell Inner shell  0.000 0.000 

S2 4.44 4.43  8 7  Outer shell Outer shell  0.186 0.217 

S3 2.57 2.58  6 6  Inner shell Inner shell  0.209 1.938 

S4 6.86 6.87  6 7  None None  1.161 1.965 

The trend in relative energies remains the same, S1 is the lowest energy structure in both 

cases, and SN4 is the highest in energy. There is an increase in the relative energies with the 

increase in water molecules for S2, S3 and S4, however this does not appear to be attributed 

to the Sr2+ surface relationship. Rather the additional waters may have impacted the structure 

and bonding of the water in such a way that the total energies have been impacted for instance 

increased hydrogen bonding.  
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While the initial aim of these investigations was to have a total of 64 water molecules, the lack 

of evidence that the increased number of water molecules impacted the Sr—surface 

relationship suggests that 32 water molecules is sufficient to model bulk water in similar 

investigations. As there is also an increased computational cost associated with more explicit 

water molecules while maintaining a 15 Å vacuum between layers, using only 32 water 

molecules allows for cheaper calculations and appears to be sufficient for modelling a 

solvation environment for the Sr2+ ion. 

7.3.5 Hydroxide Interaction with Solvated Sr2+ on the CeO2(111) 
Surface 

The next stage of the investigation was to examine the impact of introducing two hydroxide 

ions, and thus increased pH, on the adsorption of Sr2+ to the CeO2(111) surface using DFT. As 

the Magnox storage ponds are kept at a high pH the aim of this investigation was to evaluate 

if an alkaline environment had any effect on ion adsorption. Protons were removed from two 

waters in five separate from Section 7.3.4 to generate two OH- ions. Each geometry was then 

optimised. The placement of the hydroxides, in relation to the distance from the ion, was 

varied in each of the structures. 

The low energy optimised structures were then manipulated as in Section 7.3.2 and 7.3.3, 

altering either the Sr2+ CN, the Sr2+ hydroxide coordination or Sr—surface distance to explore 

if changes structural characteristics resulted in a lower total energy. A total of 54 different 

geometries of various configurations were optimised. The data produced from these 

optimisations can be found in Appendix E Table E2. The final structures were analysed in a 

similar way to the geometries in Section 7.3.4. 

Figure 7.8 shows the relative energies (Erel) of the optimised structures in relation to the 

distance of the Sr2+ ion from the surface. The lowest energy structure is 3.63 Å away from the 

surface and so is considered to be an outer shell Sr2+ complex. On examining the lowest energy 

structure, it has two hydrogen bonds to the surface oxygens, one with a length of 1.83 Å from 

the hydrogen of a first shell OH- to Os, and one with a length of 1.71 Å from a water hydrogen 

to a Os.  
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Figure 7.8: The relative energies (Erel) of the optimised CeO2(111) 4x3x2 surface model with a Sr2+, 32 

water molecules, and 2 OH- against Sr2+ distance from the surface (rSr).  

 

Examining structures where Erel < 0.5 eV, these optimised geometries have an Sr2+ ion which is 

either outer shell coordinated or is uncoordinated to the surface, in contrast to the 

calculations which did not have hydroxide species. From these results it can be inferred that 

the presence of hydroxide ions makes it energetically less favourable for Sr2+ to adsorb fully 

onto the CeO2(111) surface. However, this graph does not identify anything about the 

presence of the hydroxides in the optimised structures.  

To investigate any structural features which were common to the lowest energy geometries 

Figure 7.8 was replicated but with each of the data points colour coded according to number 

of Sr—OH bonds (Figure 7.9), degree of surface protonation (Figure 7.10), and Sr2+ CN (Figure 

7.11). 
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Figure 7.9: The relative energies (Erel) of the optimised CeO2(111) 4x3x2 surface model with a Sr2+, 32 

water molecules, and 2 OH- against Sr2+ distance from the surface (rSr). Each data point is coloured 

according to the number of explicit Sr—OH bonds, blue circle = 0 bond, red triangle = 1, green diamond 

= 2. 

 

As demonstrated by Figure 7.9 there does not appear to be a clear trend between the number 

of Sr—OH bonds and the lowest energy structures. The lowest energy configuration has 1 Sr—

OH bond, but 3 geometries with a Erel < 0.25 eV have 2 Sr—OH bonds, and a further 2 

geometries with Erel < 0.25 eV have a single Sr—OH bond. Structures with no Sr—OH bonds 

are also found at Erel < 0.5 eV, there does not appear to be a strong link between total energy 

and hydroxide ion bonding. In the context of the previous AIMD investigations of strontium 

monohydroxide in Chapter 6 and strontium dihydroxide in Chapter 4 where there was a low 

amount of hydroxide coordination to the ion it is perhaps unsurprising that there is no 

energetically stabilising effect from the hydroxide ions. 
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Figure 7.10: The relative energies (Erel) of the optimised CeO2(111) 4x3x2 surface model with a Sr2+, 32 

water molecules, and 2 OH- against Sr2+ distance from the surface (rSr). Each data point is coloured 

according to the number of surface protonation, blue circle = 0 H+, red triangle = 1 H+, green diamond = 

2 H+. 

In contrast to Figure 7.7, the analogous graph for the surface strontium structures without 

hydroxide, Figure 7.10 shows that the overwhelming majority of geometries have an 

unprotonated surface; of the 54 structures, there are 8 geometries with 1 H+ on the surface, 

and 1 geometry with 2 H+ on the surface. All of the geometries where Erel < 0.5 eV have an 

unprotonated surface, and the structure with the highest Erel has two protons on the surface. 

These results suggest that the presence of hydroxide ions decreases the likelihood of water 

dissociating and protonating the CeO2(111) surface. In a highly alkaline environment, such as 

that modelled here, protonation would be unexpected. The lack of surface protonation 

evidenced in these results suggests that the model is correctly mimicking a high pH. 

Figure 7.11 identifies each optimised geometry by the total Sr—O CN coordination number. 

As in the aqueous surface investigation the lowest energy structure has a Sr2+ CN of 7 and has 

outer shell coordination to the surface. For structures where Erel < 0.5 eV the Sr2+ CN is 6, 7 or 

8 and are predominantly outer shell coordinated or uncoordinated to the surface.  
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Figure 7.11: The relative energies (Erel) of the optimised CeO2(111) 4x3x2 surface model with 32 water 

molecules, a Sr2+, and 2 OH- against Sr2+ distance from the surface (rSr). Each data point is coloured 

according to the Sr2+ CN, yellow star = 4, blue circle = 5, red triangle = 6, green diamond = 7, magenta 

square = 8. 

The total CNs which were identified in these optimisations are shown in Figure 7.12, which 

plots Erel against the Sr2+ CN. Similar to Figure 7.5, the majority of structures optimised to a 

Sr2+ with a CN of 7 and a significant number of 6 and 8 coordinated structures were also 

optimised. The higher CN of 9 is not found in the hydroxide structures, this could be an 

indication of the presence of 2 OH- affecting the overall CN, in the same way that the AIMD 

simulations of Sr2+ in a hydroxide environment the higher CNs of 10 were not identified and 

the average Sr2+ CN reduced.  
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Figure 7.12: The relative energies (Erel) of the optimised CeO2(111) 4x3x2 surface model with 32 water 

molecules, a Sr2+, and 2 OH- against Sr2+ coordination number (CN). 

Overall when looking at the surface interaction of Sr2+ in an aqueous dihydroxide environment 

the lowest energy structure is 7 CN, does not form Sr—Os bonds, does not have a protonated 

surface, has a single Sr—OH bond, and is coordinated to the surface through outer shell 

coordination. Examining the trends for the structures where Erel < 0.5 eV, there are structures 

with Sr2+ CN of 6, 7 and 8, with 0 or 1 Sr—Os bonds, no surface protonation, either 0, 1 or 2 

Sr—OH bonds and are coordinated to the surface via either outer shell coordination or not at 

all. 

It is worth nothing that DFT calculations, such as those described in this chapter, reveal only 

what is energetically favourable with regards to the bonding environment of Sr2+. As the AIMD 

investigations of previous chapters highlighted, when dynamics are introduced to a system 

the solvation environment can change. The most prevalent example of this is the strontium 

hydroxide solvation environment examined in Chapter 4, which in previous static calculations 

indicated that it would form energetically stable mono and dihydroxides162,187, while in 

dynamic simulations the Sr2+ ion was mainly uncoordinated by hydroxide ions.  
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7.4 Conclusion 

This chapter explores the feasibility of using a CeO2(111) surface model as an analogue for UO2 

to investigate the surface interactions of water, the possible surface adsorption of Sr2+ and the 

impact that an alkaline environment, modelled as two hydroxide ions, has on these 

interactions. In contrast to previous chapters of the thesis, the calculations were energetic 

calculations using the DFT+U method rather than dynamic simulations. A prototype 4x3x2 

supercell of the CeO2(111) surface was built and optimised with 32 water molecules to act as 

the water model covering the surface.  

To investigate the dissociation of multiple water molecules, and therefore protonation of the 

CeO2(111) surface, 20 separate structures were optimised with varying levels of surface 

protonation. The most energetically favourable structures were those with a single proton on 

the surface and these were most prevalent. As surface protonation increased, so did the 

relative energy (Erel).  

The adsorption of a single Sr2+ ion was investigated by taking previously optimised low energy 

structures and introducing a Sr2+ ion at various distances from the CeO2(111) surface and 

reoptimising the structure. In total, 40 different structures were examined to fully explore the 

impact of Sr2+ CN, surface protonation and Sr—surface distance on the Erel of the structures. 

In general, the results showed favourability towards surface-ion interaction, with low energy 

structures which had Erel < 0.5 eV had a Sr2+ with either inner or outer shell surface 

coordination.  These low energy structures had stable Sr2+ CN of 6, 7 or 8, and an unprotonated 

CeO2(111) surface. The lowest energy structures typically had a Sr2+ ion which coordinated to 

the surface with either inner or outer shell coordination and with a varying number of Sr—Os 

bonds.  

To verify that 32 waters were sufficient to model the second solvation shell of the Sr2+ ion, the 

4 lowest energy optimised water-surface models with a Sr2+ ion had an additional 16 water 

molecules added on top of the water model, for a total of 48 water molecules. These were 

then reoptimized and the relative energies of the 32 and 48 water models were compared. 

There was found to be no difference in the type of Sr2+ coordination to the surface as a result 

of the extra waters, suggesting that the 32 water model was sufficient for this type of 

investigation. However, the relative energies of the initial structures were strongly impacted, 

suggesting that the additional waters had an impact on the relative energy of the systems. 

An alkaline environment was simulated by introducing 2 OH- ions to the surface model with 

solvated Sr2+. In total, 54 separate geometries were optimised and examined for common 
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bonding features related to the lowest energy structures. As in the aqueous model, the lowest 

energy structure was 7 CN, did not have a protonated surface but did have a single Sr—OH 

bond. The increase in pH appeared to make surface coordination less favourable, with low 

energy structures where Erel < 0.5 eV having Sr2+ which was outer shell coordinated or 

uncoordinated to the surface. As in the aqueous structures the low energy structures had Sr2+ 

CNs of 6, 7 or 8 and 0, 1 or 2 Sr—OH bonds all prevalent in the low energy structures.  

One aim of this thesis was to provide relevant information to the nuclear partners as to how 

their future research should be directed. This chapter begins a study into the adsorption of 

ions to a mineral surface in a high pH environment, finding that at a high pH environment 

appears to destabilise the surface coordination of the radionuclide Sr2+. This can be expanded 

on in a future more involved study into the adsorption of ions onto a mineral surface, using 

different ions, such as those listed in this thesis, using a larger mineral surface more 

representative of the bulk surface and eventually moving onto different mineral surfaces such 

as uranium.   

The purpose of this chapter was to investigate the possibility of using a 4x3x2 CeO2(111) 

surface and a 32 water molecule model to examine Sr2+ adsorption, to identify structural 

features common to the most energetically stable structures and to investigate the impact of 

a hydroxide environment. The developed model has provided a good starting point for these 

types of simulations and shown that there is weak favourability for outer shell surface 

complexation of Sr2+ in a hydroxide environment.  
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Chapter 8: Conclusions 

The aim of this thesis was to explore the solvation structure of a range of ions which are 

present in the nuclear waste storage ponds at Sellafield, and to investigate the impact of 

hydroxide ions on the solvation structure using quantum chemical methods. Ab initio 

molecular dynamics (AIMD) calculations provided a novel way to investigate the interactions 

between the ions found in the ponds and the pond conditions.  

In Chapter 3, the solvation structures of the alkaline earth metals Mg2+, Ca2+ and Sr2+ were 

investigated with AIMD using a 64 water molecule model. This chapter introduced the 

parameters used for all further solvation models and a robust analysis method using the 

results of AIMD simulations was tested and developed for use in the subsequent chapters. The 

structure of the first solvation shell of the alkaline earth metals was characterised using radial 

distribution functions (RDFs) and by calculating the average M—O bond lengths (where M = 

Mg, Ca or Sr), first shell coordination numbers (CN) and coordination environment residence 

times. The results of the AIMD calculations compared excellently with experimental and 

computational literature and correctly identified the trends down the group, Mg2+ to Sr2+, of 

increasing average bond length and increasing coordination number. The results of this 

chapter indicated that an accurate solvation model had been developed and that the analysis 

method was correctly representing the data from each AIMD trajectory.  

The solvation structure of the alkaline earth metals Mg2+, Ca2+ and Sr2+ in the presence of 

hydroxide ions was investigated in Chapter 4. AIMD was used to collected 225 ps of analysable 

trajectory time for each ion, and an analysis method for quantifying proton transport and 

hydroxide dynamics was developed and tested. For all three ions the introduction of hydroxide 

ions resulted in a reduction in total CN. The average bond length of Mg—O increased in the 

hydroxide environment and the average bond length for Ca—O and Sr—O decreased. The 

quantification of proton transfer events (PTEs) identified that proton transfer was most likely 

to be an intrashell PTE which occurred outside the first solvation shell of the ion.  PTEs were 

found to be most prevalent in Sr2+ systems and least prevalent in the Mg2+ systems. Snapshots 

of the AIMD simulations for Sr2+ with different hydroxide coordination environments, where 

Sr2+ was a monohydroxide or a dihydroxide species, were optimised to compare the energetics 

of the systems. The results found a small energy difference between the two coordination 

modes of 3.0 kJ mol-1, which was in line with previous DFT investigations.  

Chapter 5 used the solvation environments developed in Chapters 3 and 4 and applied them 

to the more complex uranyl ion (UO2
2+). AIMD was used to investigate the aquo, 
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monohydroxide and dihydroxide environments of the UO2
2+ ion. This chapter used the 

developed solvation model and applied it to a complex ion of nuclear relevance due to the 

prevalence of uranyl in the storage ponds. For the aquo complexes, the solvation structure 

compared well to existing experimental and computational literature. In the monohydroxide 

system both the axial and equatorial bond lengths increased compared to the aquo system, 

but there was no reduction in total first shell CN. The hydroxide ion remained coordinated to 

UO2
2+ at all times and there were no PTEs identified. In the dihydroxide uranyl environment 

there was an increase in axial and equatorial bond length as well as an increase in the uranyl 

hydroxide bond length. Compared to both the aquo and mono hydroxide systems there was a 

reduction in total CN. There was an increase in PTEs in the dihydroxide system with 3 PTEs 

identified, with no intrashell PTEs outside the first solvation shell. The high hydroxide 

coordination to the uranyl ion combined with the lack of PTEs provides further evidence that 

the coordination of hydroxide ions to a central cation inhibits proton transfer.  

Chapter 6 examined proton transfer as a function of increasing ionic charge. Part 1 examined 

the solvation structure of Sr2+ in a monohydroxide environment using AIMD, it was found that 

the Sr—O bond length was unchanged but the total CN of the Sr2+
 reduces compared to the 

aquo species with the introduction of one hydroxide. Similar proton transfer behaviour to the 

Sr2+ dihydroxides was identified, with PTEs occurring more frequently outside the first 

solvation shell. The hydroxide ion was predominantly uncoordinated to the Sr2+ ion, with no 

intrashell PTEs inside the first solvation shell. Part 2 examined the solvation structure of Cs+ in 

both an aqueous and monohydroxide environments. The solvation structure of the ion was 

undefined in both cases likely due to the size of the Cs+ ion and therefore low charge density 

compared to other ions studied. Three cutoffs were used to try to define the bonding structure 

but varying the cutoff did not have a large impact on the characterisation of the solvation 

structure. The introduction of a hydroxide ion resulted in a lower total CN and smaller range 

of CN identified across the AIMD trajectories, but there was a lack of direct coordination of 

hydroxide to the ion. Part 3 examined the solvation structure of La3+ and Lu3+ in an aquo and 

trihydroxide environment. The solvation structure of the two lanthanides was compared to 

existing literature and found to be in good agreement with both computational and 

experimental literature. The results from the AIMD simulations of the trihydroxide 

environment found that hydroxide coordination was preferred for both ions with no periods 

of time where either ion was uncoordinated by hydroxides. Lu3+ was predominantly found to 

be a trihydroxide, whereas for La3+ the hydroxide coordination was more labile and frequently 

found to be a dihydroxide or trihydroxide. The proton transport behaviour was quantified and 
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PTEs were more frequent for La3+ compared to Lu3+, likely due to the increased variation in 

hydroxide coordination for La3+ compared to Lu3+. PTEs were less prevalent in lanthanides 

compared to the alkaline earth metals due to the high hydroxide coordination to the ion which 

appears to inhibit proton transfer.  

Chapter 3 to 6 examine similar themes, firstly focusing on the solvation structure of an anion 

in water before examining the impact hydroxide ions and thus a higher pH impacts that 

solvation structure. As such the work presented can be extended in similar ways. While the 

dynamic trajectories focus on systems with a single cation, there is the potential to examine 

multiple cations if a larger number of water molecules is used, for example multiple of the 

alkaline earth meals, or to investigate competing interactions of an alkaline earth metal and a 

more complex ion such as a lanthanide, and how increasing pH affects this. Alternatively, this 

work could be extended by examining the solvation behaviour of the individual cations with 

different counter ions found in the storage ponds, for example carbonates, chloride or 

sulfates. 

A preliminary investigation into the adsorption of Sr2+ onto a CeO2(111) surface was detailed 

in Chapter 7. This chapter used CeO2 as a UO2 analogue and energetic rather than dynamic 

calculations. A 4x3x2 supercell of CeO2(111) with a 32 water molecule model was built and 

various strontium-surface interactions modelled to determine which structure characteristics 

were most energetically favourable. It was determined that the most energetically favourable 

structure had a Sr2+ ion with a CN of 7 which coordinated to the surface through its outer shell. 

Stable low energy structures were also found with some form of inner or outer shell Sr2+ 

surface coordination and a Sr2+ CN of 6, 7 or 8. The impact on the ion-surface interactions of 

introducing hydroxide ions was also investigated and was found to reduce the stability of the 

structures with inner shell strontium-surface coordination, there was a weak favourability for 

outer shell surface Sr2+ complexation.  

The surface model developed in Chapter 7 also provides an opportunity for future work. 

Although a basic model has been developed, which showed a weak preference for strontium 

coordination to the surface, further computational calculations would provide more 

verification. This could be done through the use of a larger supercell, further calculations 

probing the surface coordination of an ion, or using AIMD to examine the impact of dynamics 

on the surface coordination. There is also the opportunity to study the absorption of other 

ions relevant to the nuclear waste clean-up process, such as Cs+.  
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The work outlined in this thesis is the first example of an ab initio molecular dynamics 

investigation of the chemical species found in the nuclear waste storage ponds at Sellafield. 

The results have demonstrated that the developed solvation model is accurate and can be 

applied to a range of ions. The results also detail the successful use of AIMD to investigate 

hydroxide species and proton transport through an aqueous environment.  
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Appendix A: Convergence Tests 
Prior to any experimental trajectories being run both the cutoff and relative cutoff were 

converges to an accuracy of 10-8 Ha, as per the instructions: 

 https://www.cp2k.org/howto:converging_cutoff 

A1: Mg2+ Convergence Test Results 
Chosen cutoff: 500 Ry   Chosen relative cutoff: 60 Ry 

Table A1: The results from converging the cutoff for Mg2+, the cutoff, total energy and number of 

Gaussians distributed on Grids 1 to 5.  

Cutoff /Ry Total Energy/Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

50 -1122.6662854047 382295 170490 1327 0 0 

100 -1122.6535936449 348797 151288 53827 200 0 

150 -1122.6974186454 327356 133407 93029 320 0 

200 -1122.6968275573 267293 131965 154534 320 0 

250 -1122.6965322500 265266 117029 170490 1327 0 

300 -1122.6966547341 257631 113936 179063 3482 0 

350 -1122.6967403726 227360 144007 128718 53827 200 

400 -1122.6967114286 227160 121637 151288 53827 200 

450 -1122.6967312108 214377 124911 156465 58159 200 

500 -1122.6967902432 210454 117022 133287 93029 320 

550 -1122.6967902432 208437 118919 133407 93029 320 

 

Table A1.1: The results from converging the relative cutoff for Mg2+, the cutoff, total energy and number 

of Gaussians distributed on Grids 1 to 5.  

Rel_ Cutoff/Ry Total Energy /Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

10 -1125.8755478988 35968 70512 109909 122899 214824 

20 -1122.7800483483 96768 70874 110379 121237 154854 

30 -1122.6992111569 106480 109909 122899 158479 56345 

40 -1122.6967781205 127379 114990 128998 128718 54027 

50 -1122.6967904028 159239 106027 118438 169081 1327 

60 -1122.6967902432 167642 110379 121237 154534 320 

70 -1122.6967902432 206435 115335 138993 93029 320 

80 -1122.6967902432 210454 117022 133287 93029 320 

90 -1122.6967902432 216389 122899 158479 56145 200 

100 -1122.6967902432 227360 121437 151288 53827 200 

 

https://www.cp2k.org/howto:converging_cutoff
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A2: Ca2+ Convergence Test Results 
Chosen cutoff: 500 Ry   Chosen t relative cutoff: 60 Ry 

Table A2: The results from converging the cutoff for Ca2+, the cutoff, total energy and number of 

Gaussians distributed on Grids 1 to 5.  

Cutoff /Ry Total Energy/Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

50 -1098.7232244297 388763 168245 4420 0 0 

100 -1098.3330717075 351489 155246 54453 240 0 

150 -1098.4016127091 326246 144093 90729 360 0 

200 -1098.4032505024 266436 140505 152668 1819 0 

250 -1098.4033642738 262562 126201 168245 4420 0 

300 -1098.4035425780 253705 121242 182061 4420 0 

350 -1098.4034041848 217217 154872 134646 54453 240 

400 -1098.4034962996 212828 138661 155246 54453 240 

450 -1098.4035077300 201724 139609 162606 57249 240 

500 -1098.4035537513 197638 131199 141502 90729 360 

550 -1098.4035537513 197638 128608 144093 90729 360 

 

Table A2.1: The results from converging the relative cutoff for Ca2+, the cutoff, total energy and number 

of Gaussians distributed on Grids 1 to 5.  

Cutoff/Ry Total Energy /Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

10 -1101.5612244425 2568 65075 136963 136727 220095 

20 -1098.4856403422 50728 104933 123113 128167 154487 

30 -1098.4057767430 67643 136963 136727 162606 57489 

40 -1098.4035422984 105196 129889 139662 131988 54693 

50 -1098.4035538849 149042 114961 124760 170846 1819 

60 -1098.4035537513 155661 123113 128167 152668 1819 

70 -1098.4035537513 197638 122342 150359 90729 360 

80 -1098.4035537513 197638 131199 141502 90729 360 

90 -1098.4035537513 204606 136727 162606 57249 240 

100 -1098.4035537513 212828 138901 155006 54453 240 
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A3: Sr2+ Convergence Test Results 
Chosen cutoff: 500 Ry   Chosen relative cutoff: 60 Ry 

Table A3: The results from converging the cutoff for Sr2+, the cutoff, total energy and number of 

Gaussians distributed on Grids 1 to 5.  

Cutoff /Ry Total Energy/Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

50 -1093.8003570372 388820 168232 4396 0 0 

100 -1092.6145430271 346950 159866 54392 240 0 

150 -1092.6422030370 321814 145714 93560 360 0 

200 -1092.6420318184 263978 142926 152725 1819 0 

250 -1092.6420101801 262537 126283 168232 4396 0 

300 -1092.6421740954 246741 128241 182070 4156 240 

350 -1092.6420689549 212944 158953 134919 54392 240 

400 -1092.6420407374 207640 139310 159866 54392 240 

450 -1092.6421324640 200375 139291 164125 57417 240 

500 -1092.6420957122 197719 125752 146951 90666 360 

550 -1092.6420957122 197719 124095 145714 93560 360 

 

Table A3.1: The results from converging the relative cutoff for Sr2+, the cutoff, total energy and number 

of Gaussians distributed on Grids 1 to 5.  

Cutoff/Ry Total Energy /Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

10 -1095.6576504630 2560 76352 118807 128634 235095 

20 -1092.7167114773 50248 83006 129283 144367 154544 

30 -1092.6443084923 78912 118807 128634 144069 91026 

40 -1092.6421183806 91202 121742 158953 134919 54632 

50 -1092.6420958409 110547 145941 130891 169673 4396 

60 -1092.6420957122 133254 129283 144367 152725 1819 

70 -1092.6420957122 152296 137358 173917 96058 1819 

80 -1092.6420957122 197719 124095 145714 93560 360 

90 -1092.6420957122 197719 128634 144069 90666 360 

100 -1092.6420957122 201839 137827 164125 57417 240 
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A4: Cs+ Convergence Test Results 
Chosen cutoff: 600 Ry   Chosen relative cutoff: 80 Ry 

Table A4: The results from converging the cutoff for Cs+, the cutoff, total energy and number of 

Gaussians distributed on Grids 1 to 5.  

Cutoff /Ry Total Energy/Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

50 -1045.6282335323 472001 54320 1707 0 0 

100 -1081.7205469107 362955 159988 4845 240 0 

150 -1082.1909731465 325228 146773 54320 1707 0 

200 -1082.1536194466 292112 145763 88326 1587 240 

250 -1082.1549750860 232083 151076 139784 4845 240 

300 -1082.1543333052 209973 152982 159988 4845 240 

350 -1082.1543298589 194878 155586 172239 3618 1707 

400 -1082.1543895353 162757 182145 130173 51246 1707 

450 -1082.1543896353 153089 172139 146773 54320 1707 

500 -1082.1543548580 143158 168324 160519 54320 1707 

550 -1082.1543548681 140614 161638 138220 85729 1827 

600 -1082.1543866563 135794 156318 145763 88326 1827 

650 -1082.1543866563 133608 131786 171040 89767 1827 

 

Table A4.1: The results from converging the relative cutoff for Cs+, the cutoff, total energy and number 

of Gaussians distributed on Grids 1 to 5.  

Cutoff/Ry Total Energy /Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

10 -1085.0362442948 2560 44912 93142 163305 224109 

20 -1082.2526684199 46408 50227 128489 155141 147763 

30 -1082.1581852996 47472 93142 163305 136553 87556 

40 -1082.1544060291 51880 110877 182145 130173 52953 

50 -1082.1543873464 75042 129576 158337 159988 5085 

60 -1082.1543868484 96635 128489 155141 142678 5085 

70 -1082.1543867502 106699 152467 174710 92325 1827 

80 -1082.1543866563 135794 156318 145763 88326 1827 

90 -1082.1543866562 140614 163305 136553 85729 1827 

100 -1082.1543866562 147011 167365 157625 54320 1707 
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A5: La3+ Convergence Test Results 
Chosen cutoff: 600 Ry   Chosen relative cutoff: 80 Ry 

Table A5: The results from converging the cutoff for La3+, the cutoff, total energy and number of 

Gaussians distributed on Grids 1 to 5.  

Cutoff /Ry Total Energy/Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

50 -1068.5067025117 659114 73570 2907 0 0 

100 -1092.8282680859 518761 204475 12035 320 0 

150 -1093.1503491763 460251 198863 73570 2907 0 

200 -1093.1320561375 426934 183779 121531 3347 0 

250 -1093.1333008665 360460 178609 184167 12035 320 

300 -1093.1333360679 360460 158301 204475 12035 320 

350 -1093.1332461240 344693 157707 220836 12035 320 

400 -1093.1333403499 291351 201718 169957 72245 320 

450 -1093.1332922911 288128 172123 198863 73570 2907 

500 -1093.1333103108 263622 185621 209551 73890 2907 

550 -1093.1332918630 248478 181284 184041 118441 3347 

600 -1093.1332918580 240136 186798 183779 121531 3347 

650 -1093.1332918580 227321 164449 211374 129100 3347 

 

Table A5.1: The results from converging the relative cutoff for La3+, the cutoff, total energy and number 

of Gaussians distributed on Grids 1 to 5.  

Cutoff/Ry Total Energy /Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

10 -1095.6378251129 2560 57712 188206 183329 303784 

20 -1093.1858940790 59208 92657 208595 178609 196522 

30 -1093.1345364079 60272 188206 183329 181996 121788 

40 -1093.1332992260 78976 212375 201718 169957 72565 

50 -1093.1332917616 109530 244379 162291 207036 12355 

60 -1093.1332919013 151865 208595 178609 184167 12355 

70 -1093.1332918454 174183 217587 211374 129100 3347 

80 -1093.1332918580 240136 186798 183779 121531 3347 

90 -1093.1332918580 248478 183329 181996 118761 3027 

100 -1093.1332918580 276013 173230 209551 73890 2907 
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A6: Lu3+ Convergence Test Results 
Chosen cutoff: 600 Ry   Chosen relative cutoff: 80 Ry 

Table A6: The results from converging the cutoff for Lu3+, the cutoff, total energy and number of 

Gaussians distributed on Grids 1 to 5.  

Cutoff /Ry Total Energy/Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

50 -1319.0635414129 732003 53755 400 0 0 

100 -1323.2231276495 606907 170883 8368 0 0 

150 -1321.6901204018 551029 180974 53755 400 0 

200 -1321.7326818242 529875 156529 99234 520 0 

250 -1321.7325630799 469181 154556 157882 4539 0 

300 -1321.7325073758 455696 151211 170883 8368 0 

350 -1321.7326293043 432690 164094 180606 8368 400 

400 -1321.7326249948 391671 189868 150464 53755 400 

450 -1321.7326471609 387644 163385 180974 53755 400 

500 -1321.7326751347 381957 155704 181841 66256 400 

550 -1321.7326750347 375393 154602 156409 99234 520 

600 -1321.7326270847 362981 166894 156529 99234 520 

650 -1321.7326270847 345803 153809 183580 102446 520 

 

Table A6.1: The results from converging the relative cutoff for Lu3+, the cutoff, total energy and number 

of Gaussians distributed on Grids 1 to 5.  

Cutoff/Ry Total Energy /Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

10 -1324.9900100490 2560 163072 209761 154602 256163 

20 -1321.8180308157 94568 194456 179757 154956 162421 

30 -1321.7363269034 165632 209761 154602 156409 99754 

40 -1321.7326559458 217285 174386 189868 150464 54155 

50 -1321.7326270979 258040 181585 167282 170883 8368 

60 -1321.7326272066 289024 179757 154956 157882 4539 

70 -1321.7326270798 314705 174305 194182 98427 4539 

80 -1321.7326270847 362981 166894 156529 99234 520 

90 -1321.7326270847 375393 154602 156409 99234 520 

100 -1321.7326270847 381957 158230 179315 66256 400 
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A7: UO2
2+ Convergence Test Results 

Chosen cutoff: 600 Ry   Chosen relative cutoff: 80 Ry 

Table A7: The results from converging the cutoff for UO2
2+, the cutoff, total energy and number of 

Gaussians distributed on Grids 1 to 5.  

Cutoff /Ry Total Energy/Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

50 -1131.1898767481 737630 57781 440 0 0 

100 -1143.1560452054 625885 150974 18992 0 0 

150 -1142.8748585209 561168 176462 57781 440 0 

200 -1142.8304687276 532476 163736 98639 1000 0 

250 -1142.8129893943 479202 161790 149012 5847 0 

300 -1142.7893639429 449881 176004 150974 18992 0 

350 -1142.7840979677 429365 181432 166062 18552 440 

400 -1142.7803245991 386589 197203 153838 57781 440 

450 -1142.7803245991 379492 181676 176462 57781 440 

500 -1142.7791932624 371657 171427 189420 62907 440 

550 -1142.7782893393 369441 163155 173310 88945 1000 

600 -1142.7782614385 365027 167449 163736 98639 1000 

650 -1142.7782614384 364907 137452 190762 96883 5847 

 

Table A7.1: The results from converging the relative cutoff for UO2
2+, the cutoff, total energy and 

number of Gaussians distributed on Grids 1 to 5.  

Cutoff/Ry Total Energy /Ha Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

10 -1145.7851469054 2882 107867 258692 163155 263255 

20 -1142.8606741289 100869 138262 230389 171472 154859 

30 -1142.7813568305 110749 258692 163155 173310 89945 

40 -1142.7782567489 139840 246749 197203 153838 58221 

50 -1142.7782602535 174535 259562 191788 150974 18992 

60 -1142.7782616312 239131 230389 171472 149012 5847 

70 -1142.7782614239 339402 158512 182604 109486 5847 

80 -1142.7782614385 365027 167449 163736 98639 1000 

90 -1142.7782614385 369441 163155 173310 88945 1000 

100 -1145.7851469054 376498 179012 177434 62467 440 
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Appendix B: Dispersion Correction Comparisons 
for Sr2+ 

In order to check the impact of using Grimme’s DFT-D2 dispersion76,166 and not the improved 

DFT-D3 dispersion93 two AIMD trajectories of Sr2+ in a periodic cell with 64 water molecules 

were run. The AIMD trajectories used the same computational parameters as listed in the 

methodology of Chapter 3 and had identical starting configurations, the only change was the 

change in the dispersion correction used. Each trajectory was run for 20 ps, once the 5 ps of 

equilibration time was discarded the remaining 15 ps of time were analysed.  

 

Figure B1: Sr—O radial distribution function, g(r), generated from 15ps simulations at 400K using a DFT-

D2 dispersion correction (solid black) and DFT-D3 dispersion correction (dotted red). 

 
The RDFs for each AIMD trajectory were averaged over the 15 ps trajectory time and are 

shown in Figure B1. Both dispersion corrections show a defined first and second shell, with 

the D2 correction having a more clearly defined second shell. Analysis of the RDF found that a 

minimal difference in first shell RDF peaks of 2.60 Å and 2.61 Å for D2 and D3 respectively, in 

line with what is expected experimentally for a Sr—O RDF. The average first shell Sr—O 

coordination numbers and first shell Sr—O bond lengths were also calculated. The calculated 

values for D2 gave an average CN of 7.94 and an Sr—O bond length of 2.67 Å, and the 

calculated values for the D3 trajectory have a slightly higher average CN of 7.98 and average 

Sr—O bond length of 2.68 Å. In the context of the values presented for both first shell average 

bond length and first shell Sr—O CN in Table 3.4 there is no appreciable difference using the 

D3 dispersion correction in this case. It appears that D3 is not necessarily superior in this case, 

with minimal changes in both the RDF and first solvation shell bonding for Sr—O.  
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Appendix C: Cell Volume Fluctuations  

a) 

 

b) 

 

c) 

 
Figure C1: Instantaneous (black solid line) and average (red dotted line) cell volume fluctuations over a 
representative a) Mg2+ b) Ca2+ c) Sr2+ in a cell with 64 water molecules, NPT_I AIMD simulation. 
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A 5 ps equilibration time is used throughout this thesis to allow the variables, such as 

temperature and pressure, in the simulation cell to equilibrate before the trajectory time is 

sampled. As the NPT_I ensemble is used for all AIMD simulations, the cell volume is allowed 

to fluctuate across the timescale of a simulation.  

Cell volume fluctuations for an example trajectory for each of the alkaline earth metals are 

shown in graph form in Figure C1. In each case the cell volume oscillates across the timescale 

of a trajectory, typical of a Nose-Hoover temperature controlled system. The magnitude of the 

cell volume oscillation for each example are within reasonable boundaries after 5 ps and do 

not increase as the trajectory progresses. 

The lack of increase in the magnitude of the cell volume oscillations, combined with the 

accuracy of the first solvation shell structure for each ion as demonstrated in the results 

chapters instilled confidence that the 5 ps equilibration time was sufficient for the 

investigation purposes. 
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Appendix D: Timestep Choice 

 
Figure D1: The variation of the conserved quantity over a 2 000 fs trajectory using timesteps 0.2 fs 
(green), 0.3 fs (purple), 0.4 fs (red) and 0.5 fs (black). 

 

The timestep of a molecular dynamics simulation must be short enough to obtain the sampling 

of the smallest movement in the simulation cell, in this case the O—H bond. As a general rule, 

the time step should be no longer than 10% of the shortest vibrational period in the system 

being studied.113 Timesteps of 0.2, 0.3, 0.4 and 0.5 fs were tested for a short 2000 fs AIMD 

trajectory of a Sr2+ ion in 64 molecules of water. The variation in the conserved quantity at 

each timestep, which is the sum of the potential and kinetic energy of a system, is depicted in 

Figure D1. Although the smaller timesteps, in particular 0.2 fs, have smaller variation over the 

trajectory the 0.5 fs timestep was selected for use in this thesis as the increased computational 

cost of using a smaller timestep outweighed the benefits. The variation in a 0.5 fs conserved 

quantity is less than 0.0005 a.u. for the 0.5 fs timestep and it is still smaller than 1/10th the 

smallest vibration in the simulation shell and hence suitable for witnessing bond breaking and 

forming in the context of proton transfer.  
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Appendix E: Chapter 7 Data 
Table E1: Data used to construct Figure 7.4 – 7.7; Sr surface distance (rSr), total Sr2+ CN, number of Sr—

Os bonds (𝑛Sr—Os), number of protons on the surface (𝑛H+), bonding classification and relative energy 

(Erel) for each optimised structure with a 4x3x2 CeO2(111) surface, Sr2+ ion and 32 water molecules.  

rSr /Å Sr2+ CN 𝑛Sr—Os  𝑛H+  Classification Erel/eV 

4.455 7 0 0 Outer Shell 0.000 

2.729 7 1 0 Inner Shell 0.270 

2.156 7 3 0 Inner Shell 0.367 

4.439 8 0 0 Outer Shell 0.456 

2.570 6 1 0 Inner Shell 0.479 

2.571 6 1 0 Inner Shell 0.501 

4.492 7 0 1 Outer Shell 0.643 

2.268 6 2 1 Inner Shell 0.665 

3.428 7 0 0 Outer Shell 0.828 

2.632 7 1 1 Inner Shell 0.911 

2.573 6 1 0 Inner Shell 0.935 

2.453 7 1 1 Inner Shell 0.982 

4.166 6 0 1 Outer Shell 0.988 

4.108 6 0 1 Outer Shell 1.004 

2.498 7 1 0 Inner Shell 1.030 

2.339 8 2 0 Inner Shell 1.048 

2.083 7 3 0 Inner Shell 1.075 

2.399 7 2 1 Inner Shell 1.137 

5.256 8 0 1 Bulk 1.161 

3.278 7 0 0 Outer Shell 1.246 

3.191 7 0 1 Inner Shell 1.312 

5.487 7 0 0 Bulk 1.416 

3.178 7 0 2 Inner Shell 1.430 

6.860 6 0 0 Bulk 1.431 

4.365 8 0 1 Outer Shell 1.431 

3.792 9 0 0 Outer Shell 1.431 

2.184 7 3 0 Inner Shell 1.448 

3.281 7 0 1 Outer Shell 1.461 

2.300 8 3 0 Inner Shell 1.474 

4.288 5 0 1 Outer Shell 1.489 

4.202 7 0 1 Outer Shell 1.496 

2.058 7 3 1 Inner Shell 1.628 

4.183 5 0 0 Outer Shell 1.670 

4.167 5 0 2 Outer Shell 1.735 

3.936 7 0 1 Outer Shell 1.740 

4.103 5 0 2 Outer Shell 1.792 

4.011 7 0 2 Outer Shell 1.882 

4.485 7 0 1 Outer Shell 1.942 

3.970 7 0 2 Outer Shell 2.027 

3.898 7 0 2 Outer Shell 2.161 

 



200 
 

Table E2: Data used to construct Figure 7.8 – 7.12; Sr surface distance (rSr), total Sr2+ CN, number of Sr—

OH bonds (𝑛Sr—OH ), number of Sr—Os bonds (𝑛Sr—Os), number of protons on the surface (𝑛H+), 

bonding classification and relative energy (Erel) for each optimised structure with a 4x3x2 CeO2(111) 

surface, Sr2+ ion and 32 water molecules and 2 OH-.  

rSr /Å Sr2+CN 𝑛Sr—OH  𝑛Sr—Os  𝑛H+  Classification Erel/eV 

3.637 7 1 0 0 Outer Shell 0.000 

3.474 6 2 0 0 Outer Shell 0.195 

4.794 7 1 0 0 Bulk 0.213 

3.379 6 2 0 0 Outer Shell 0.221 

3.624 7 2 0 0 Outer Shell 0.226 

4.799 7 1 0 0 Bulk 0.252 

4.570 8 0 0 0 Bulk 0.367 

3.949 7 0 0 0 Outer Shell 0.450 

2.783 7 0 1 0 Inner Shell 0.464 

2.799 7 1 1 0 Inner Shell 0.502 

2.604 6 1 1 0 Inner Shell 0.516 

4.372 7 0 0 0 Outer Shell 0.521 

2.748 7 0 0 0 Inner Shell 0.550 

4.800 7 1 0 0 Bulk 0.558 

4.104 7 1 0 0 Outer Shell 0.596 

2.640 6 0 1 0 Inner Shell 0.667 

2.878 7 1 1 0 Inner Shell 0.708 

3.824 5 2 0 0 Outer Shell 0.756 

4.488 7 1 0 0 Bulk 0.760 

2.994 4 2 0 0 Inner Shell 0.769 

4.416 7 0 0 0 Outer Shell 0.780 

4.465 7 1 0 0 Outer Shell 0.809 

2.685 7 1 1 0 Inner Shell 0.831 

2.807 7 1 1 0 Inner Shell 0.850 

4.523 8 0 0 0 Bulk 0.885 

3.269 6 0 0 0 Outer Shell 0.902 

2.838 8 2 0 1 Inner Shell 0.918 

2.695 7 1 1 0 Inner Shell 0.947 

2.577 6 1 1 0 Inner Shell 0.960 

3.650 7 0 0 0 Outer Shell 0.971 

2.812 7 0 1 0 Inner Shell 0.976 

2.811 7 1 1 0 Inner Shell 0.980 

4.726 8 1 0 0 Bulk 0.980 

2.182 8 0 3 0 Inner Shell 1.023 

3.611 7 1 0 0 Outer Shell 1.106 

2.416 6 1 2 0 Inner Shell 1.111 

2.773 7 2 1 0 Inner Shell 1.223 

3.939 7 1 0 0 Outer Shell 1.231 

2.413 6 2 2 0 Inner Shell 1.247 

2.738 6 1 1 0 Inner Shell 1.287 
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Table E2 cont: Data used to construct Figure 7.8 – 7.12; Sr surface distance (rSr), total Sr2+ CN, number 

of Sr—OH bonds (𝑛Sr—OH ), number of Sr—Os bonds (𝑛Sr—Os), number of protons on the surface (𝑛H+), 

bonding classification and relative energy (Erel) for each optimised structure with a 4x3x2 CeO2(111) 

surface, Sr2+ ion and 32 water molecules and 2 OH-. 

rSr /Å Sr2+ CN 𝑛Sr—OH  𝑛Sr—Os  𝑛H+  Classification Erel/eV 

2.583 7 2 1 0 Inner Shell 1.353 

3.908 7 1 0 1 Outer Shell 1.453 

2.301 7 2 2 1 Inner Shell 1.497 

3.042 7 2 0 1 Inner Shell 1.583 

4.235 8 1 0 0 Outer Shell 1.584 

2.255 6 1 1 1 Inner Shell 1.632 

5.117 7 1 0 0 Bulk 1.657 

4.192 6 0 0 1 Outer Shell 1.667 

2.691 7 1 1 1 Inner Shell 1.725 

3.918 7 2 0 0 Outer Shell 1.729 

4.199 7 2 0 1 Outer Shell 1.774 

3.773 7 2 0 0 Outer Shell 1.798 

5.110 7 2 0 0 Bulk 2.006 

3.861 6 1 0 2 Outer Shell 2.112 
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