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Abstract. Variations of the curves and trajectories in 1D can be anal-
ysed efficiently with functional data analysis tools. In particular, the
main sources of variations in 1D curves have been identified as amplitude
and phase variations. Dealing with the latter gives rise to the problem of
curve alignment and registration problems. It has been recognised that
it is important to incorporate geometric features of the curves in devel-
oping statistical approaches to address such problems. Extending these
techniques to multidimensional curves is not obvious, as the notion of
multidimensional amplitude can be defined in multiple ways. We pro-
pose a framework to deal with the curve alignment in multidimensional
curves as 3D objects. We propose a new distance between the curves that
utilises the geometric information of the curves through the Frenet-Serret
representation of the curves. This can be viewed as a generalisation of the
elastic shape analysis based on the square root velocity framework. We
develop an efficient computational algorithm to find an optimal align-
ment based on the proposed distance using dynamic programming.

Keywords: Curve Registration · Functional Data Analysis · Frenet-
Serret frames.

1 Introduction

We consider the general problem of aligning multidimensional curves as 3D ob-
jects. The curve alignement and registration problems are well studied for scalar
curves (1D) under functional data analysis framework [4, 7]. The richness of
the registration problem comes from the variety of the criterion for compar-
ing and measuring the similarity between the curves, which may also depend
on the context. Nevertheless, in practice, good registration techniques “want”
to align significant features of the curves, called landmarks, such as peaks and
valleys, and more generally geometric patterns of the curves. Many statistical
approaches have been developed to automate this process, without the need of
manually identifying the landmarks. As the geometric information is contained
in the derivatives, it is often better to align the curves based on the derivatives.
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A related problem is to identify the sources of variations, in particular, decou-
pling amplitude and phase variations has been the main framework to study the
variations of 1D curves [3].

While the notion of amplitude is univocally defined for scalar curves, the
generalisation to curves in Euclidean space Rd can be done in multiple ways
[2]. Among possible approaches, the use of geometric features is shown to be
effective for registering curves. This idea is formalised within the framework of
elastic shape analysis [6], by considering significant landmarks and looking for
invariant properties through group actions such as isometries or invariance by
re-parametrisation. The basis of shape analysis is provided by the definition of
proper spaces for representing objects, and the definition of an adapted dis-
tance. One of the successful applications of shape analysis for curves in general
Euclidean spaces or more exotic ones is found with the use of the square root
velocity transform (SRVT, [6]). The geometric feature is embedded in the first
order derivative of the curves, the tangent of the curves.

In this article, we generalise the methodology based on the SRVT for the
registration of two curves. Instead of using only the tangent information, we
use an exhaustive description of the geometry of curves given by the so-called
Frenet frame, which corresponds to the higher order information. This moving
frame gives an explicit link to the complete geometric characterisation of a curve
(curvature and torsion) through the Frenet-Serret formula. We propose a new
distance between the curves based on the Frenet frame and demonstrates that the
registration of the curves based on the Frenet frames is equivalent to stretching
the curvatures and torsions. We show how to find an optimal solution using
dynamic programming.

The article is organised as follows. In Section 2, we introduce the Frenet
framework and review the square root velocity framework. Section 3 present our
proposed methodology of curve alignment under the Frenet framework. Section 4
develops a computational algorithm.

2 Preliminaries

2.1 Frenet-Serret Framework

We consider regular curves x, i.e, functions such that the derivatives x(k)(·), k =
0, . . . 3 exist, are continuous, and for all t in [0, T ], we have ẋ(t) = x(1)(t) 6= 0
and det

(
x(1)(t), x(2)(t), x(3)(t)

)
6= 0. Consequently, we can write x(t) = X (s(t))

where s 7→ X(s) is the arclength parametrised curve and t 7→ s(t) is the curvi-

linear speed ṡ(t) = ‖ẋ(t)‖ and s(t) =
∫ t
0
‖ẋ(u)‖ du. The length of the curve is

L = s(T ). For clarity, we write d
dtx = ẋ(t) for differentiation with respect to time

and d
dsX = X ′(s) for differentiation with respect to the curvilinear abscissa s.

The parametrised curve {s 7→ X(s), s ∈ [0, L]} is the geometric curve associ-
ated with x. For each s ∈ [0, L], the tangent vector T (s) = X ′(s) is normalised,
and we can define additional normalised vectors N and B such that N(s) ∝ T ′(s)
and B(s) ∝ N ′(s). Then, the matrix Q(s) = [T (s)|N(s)|B(s)] is an orthonormal
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frame, which can be obtained by Gram-Schmidt orthonormalisation of the frame
[X ′(s)|X ′′(s)|X ′′′(s)]. Quite remarkably, the Frenet frames are shown to be the
solution of the following ODE:T ′(s) = κ(s)N(s) ,

N ′(s) = −κ(s)T (s) + τ(s)B(s) ,
B′(s) = −τ(s)N(s) ,

where the functions s 7→ κ(s), τ(s) are the curvature and torsion, respectively
(κ(s) > 0). An alternative interpretation of this Frenet-Serret formula is that it
defines an ODE in the Lie group SO(p) as:

Q̇(s) = Q(s)Aθ(s)

where

Aθ(s) =

 0 −κ(s) 0
κ(s) 0 −τ(s)

0 τ(s) 0

 ,
is in the Lie algebra of skew-symmetric matrices, with the generalised curvature
θ = (κ, τ) and the initial condition Q(0) = Q0.

The fundamental theorem of Differential Geometry of curves assures that
two curves x0, x1 with the same θ (hence L0 = L1) differ only by a translation
(a), a rotation (O) and a reparametrisation (h), i.e.,

x1(t) = a+Ox0 ◦ h(t) .

Obviously this means that the Frenet frames Q0 and Q1 satisfy Q0(s) = OQ1(s)
for all s ∈ [0, L]. It is clear then that Qi and θi represents the shape of the
curves xi, for i = 1, 2, because they are invariant with respect to rigid Euclidean
transformation, or to reparametrisation.

2.2 Elastic Shape analysis

Elastic shape analysis is a framework for comparing shapes by removing unnec-
essary and irrelevant variations between complex objects, typically Euclidean
transformations and reparametrisation. It is also an efficient way of finding
a good “time warping” function h : [0, T ] −→ [0, T ] such that x1 (h(t)) =
X1 (s1 (h(t))) “looks like” x0(t) = X0 (s0(t)). We denote the space of time-
warping diffeomorphisms h as HT .

Curves are compared with a geodesic distance between them (defined through
optimal deformations), which is based on the SRVT [6]. For each curve x, its
square root velocity function is defined as

qx(t) =
ẋ(t)√
‖ẋ(t)‖

=
√
ṡ(t)T (s(t)) ,

which can be viewed as a representation of the shape of the curve. The dis-
tance between two curves is then defined as the L2 distance between qx and is
parametrisation-independent.
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The SRVF transformation F : x 7→ ẋ(t)/
√
‖ẋ(t)‖ helps defining a pre-shape

space that is used for characterising the underlying shape of a given function.
The pre-shape space for unit length open curves is CO =

{
q ∈ L2([0, T ] ,Rp)

}
and is simply the hypersphere of L2([0, 1] ,Rp). In order to align the curves x0, x1
with SRVF, we solve the following minimisation problem that defines at the same
time a geodesic distance:

dsrvf (x0, x1) = inf
O∈SO(3),h∈HT

∫ T

0

∥∥∥∥q0(t)−O
√
ḣ(t)q1(h(t))

∥∥∥∥2 dt ,
which can be written as∫ T

0

∥∥∥∥√ṡ0(t)T0(s0(t))−
√
ṡ1(h(t))ḣ(t)OT1(s1(h(t))

∥∥∥∥2
2

dt .

The distance dsrvf between two curves x0 and x1 is invariant to translation,
rotation and re-parametrisation.

Exploiting this invariance, we can introduce the “space warping” diffeomor-
phism γ : [0, L0]→ [0, L1] for any h ∈ HT such that s1 ◦ h = γ ◦ s0 and define

R(O, γ) =

∫ L0

0

∥∥∥T0(s)−
√
γ̇(s)OT1(γ(s))

∥∥∥2
2
ds .

We introduce the function space ΓS of “space warping” diffeomorphisms, and the
registration is obtained for (O∗, γ∗) = minγ,OR(O, γ) for γ ∈ ΓS and R(O∗, γ∗)
is the elastic distance. In particular, the effective minimisation of R in γ is done
by dynamic programming.

3 Elastic Shape Analysis and curvature stretching

3.1 Registration with Frenet-Serret frames

We extend the registration of the curves within the Frenet-Serret framework.
Specifically, our proposition is to find a “time warping” function h : [0, T ] −→
[0, T ] that tries to reduce the discrepancy between the moving framesQ1 (s1 (h(t)))
to Q0 (s0(t)). Similarly to the elastic distance, we propose the following distance
between the curves

D(x0, x1) =

∫ T

0

d (Q0 (s0(t)) , Q1 (s1(t)))
√
ṡ0(t)ṡ1(t)dt ,

where d(Q0, Q1) is a distance between the frames in SO(3). Standard choices are

the Frobenius norm ‖Q0 −Q1‖2F or the geodesic distance
∥∥logQ>1 Q0

∥∥2
F

, where
log is the matrix logarithm. More generally, we can consider a distance based
on the weighted norms such as ‖Q‖2W,F = Trace(Q>WQ), indicating preferred
directions in the frame.
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Introducing the “space warping” diffeomorphism s1 ◦ s−10 = γ ∈ ΓS from
[0, L0] to [0, L1] leads to

D(x0, x1) =

∫ T

0

d (Q0 (s0(t)) , Q1 (γ (s0(t))))

√
ṡ0(t)

d

dt
(γ ◦ s0)dt .

This can be expressed as

D(x0, x1) =

∫ L0

0

d (Q0 (s) , Q1 (γ (s)))
√
γ′(s)ds .

The distance between curves can be seen as a weighted distance between the

Frenet path D (Q0, Q1; γ) =
∫ L0

0
d (Q0 (s) , Q1 (γ (s)))

√
γ′(s)ds. A direct exten-

sion of the distance dsrvf is then the elastic Frenet-Serret distance

DFS (x0, x1) = min
h∈ΓT ,O∈SO(3)

D(x0, Ox1 ◦ h). (1)

We can also consider a distance that does not respect rotation invariance, but
only reparametrisation, defined by

D0
FS (x0, x1) = min

h∈ΓT

D(x0, x1 ◦ h). (2)

As with elastic distance based on the SRVF, the registration problem is the
computation of the distance function:

γ∗0 = arg min
γ∈ΓS

∫ L0

0

d (Q0 (s) , Q1 (γ (s)))
√
γ′(s)ds . (3)

Then, the optimal “time warping” function for aligning x1 (h(t)) to x0(t) is given
by h∗0 = s−11 ◦γ∗0 ◦s0, where γ∗0 is the optimal “space warping”. Similarly, we can
find the best reparametrisation and rotation (γ∗, O∗) that solves the optimisation
problem (1), and the curve O∗x1 (h∗(t)) is aligned to x0(t) with h∗ = s−11 ◦γ∗◦s0.

We note the “naive” distance
∫ T
0
d (Q0 (s(t)) , Q1 (γ(s(t)))) dt between the

Frenet paths Q0 and the warped one Q1 ◦ γ is not invariant with respect to
reparametrisation by any γ i.e., the distance Q0 ◦ γ and Q1 ◦ γ is different
from the distance Q0 and Q1. It is worth noting that our elastic distance is not
based on the L2 distance between two SRVF qx that defines a sort of isometry
between shapes, which decouples the distance between geometry (the tangent or
the Frenet frame) and the influence of the arclength speed ṡ(t).

Remark 1 D0
FS is a direct generalisation of the standard elastic distance. If

d (Q0, Q1) = ‖Q0 −Q1‖2F =
(
‖Q0‖2F + ‖Q1‖2F − 2Trace

(
Q>0 Q1

))
, the minimi-

sation of
∫ L0

0
d (Q0 (s) , Q1 (γ (s)))

√
γ′(s)ds is then equivalent to the maximi-

sation of
∫ L0

0
Trace

(
Q>0 (s)Q1 (γ (s))

)√
γ′(s)ds. On the contrary, the minimi-

sation of
∫ L0

0

∥∥∥T0(s)−
√
γ′(s)OT1(γ(s))

∥∥∥2
2
ds is equivalent the maximisation of∫ L0

0
T>0 (s)T1 (γ (s))

√
γ′(s)ds. This demonstrates that warping Frenet-Serret frames

requires a higher degree of agreement between the geometries of x0 and x1.
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3.2 Elastic distance and geometry stretching

The previous section shows the alignment of x0, x1 is not done by changing the
curvilinear speed but by changing the geometry of the curves. Indeed, elastic
distance induces a specific family of transformations on the geometry of the
curves. We have seen that the warping γ∗0 defined in (3) permits to align (and
transform) a curve of length L1 to a curve of length L0. More importantly,
the space warping is a transformation of the geometry by stretching. For Q0 :
[0, L0] −→ SO(p) and Q1 : [0, L1] −→ SO(p), the two Frenet paths, the curves
are stretched using a diffeomorphism γ : [0, L0] −→ [0, L1]. From section 2.1,
the Frenet path s 7→ Q̃1(s) = Q1(γ(s)) is also the solution of the following
Frenet-Serret ODE:

d

ds
Q̃1(s) = Q′1(γ(s))γ′(s) ,

= Q1 (γ(s))Aθ(γ(s))γ′(s) ,

= Q̃1(s)Aθ̃(s) ,

where θ̃(s) = θ(γ(s))γ′(s). The curve X1 is stretched nonlinearly in order to
look like the geometric curve similar to X0, and θ̃ is the corresponding stretched
generalised curvature.

This is a “spatial” or geometric registration based on the family of deforma-
tions defined as θ 7→ γ · θ = γ′θ ◦ γ, for any increasing diffeomorphism γ. This is
a group action, i.e. for all γ1, γ2 diffeormophisms, and any generalised curvature
θ, we have

(γ2 ◦ γ1) · θ = γ2 · (γ1 · θ) .

Note that the stretching action does not permit to transform any geometry
into another. Indeed, if θ0 and θ1 are two generalised curvatures such that the
torsion τ0 > 0 and τ1 < 0, then we cannot find γ such that γ′τ1(γ) = τ0. The
problem of finding a proper stretching γ between θ0 and θ1 is somehow related
to a boundary value problem of finding γ such that θ1(γ(s))γ′(s) = θ0(s) for all
s ∈ [0, L1] with the constraint γ(0) = 0, γ(L0) = L1 and γ′ > 0. The registration
problem gives an efficient way to characterise the proper stretching by solving a
variation calculus problemminγ

∫ L0

0
d (Q0(s), Q1(γ(s)))

√
γ′(s)ds

γ(0) = 0, γ(L0) = L1

γ′ > 0

,

which can be solved with the corresponding Euler-Lagrange program. Instead,
we introduce in the next section a dynamic programming algorithm that gives
an efficient computation. But we should remark that the registration of two
curves x0 and x1 with an elastic distance (based on SRVF or Frenet-Serret) is
not equivalent to aligning curvatures and torsions.
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4 Algorithm for pairwise alignment

We introduce an iterative algorithm that computes the best space warping and
rotation. It starts by finding γ[0], the minimum of (2), and then implements an
alternative optimisation until convergence, i.e for m ≥ 0

1. O[m] = arg minO DN
(
Q0, Q1; γ[m], O

)
by weighted averaging of rotations.

2. γ[m+1] = arg minγ DN
(
Q0, Q1; γ,O[m]

)
by dynamic programming.

4.1 Discretisation and dynamic programming

We consider the problem of pairwise registration of two curves in Rd, s 7→
X0(s), X1(s) when these two curves are arc-length parametrised, with differ-
ent lengths L0, L1, respectively. We start by considering only the criterion for
finding the optimal stretching

D (Q0, Q1; γ) =

∫ L0

0

d (Q0(s), Q1 (γ(s)))
√
γ′(s)ds.

We discretise the integral and use Dynamic Programming: we introduce points
sk = kL0

N , k = 0, . . . , N and define

DN [γ] =
L0

N

N−1∑
k=0

gk(xk, uk) + gN (xN ) ,

where xk = γ(sk) is the current state, uk = γ′(sk) is the decision variable and

gk(xk, uk) = d (Q0(sk), Q1 (xk))
√
uk.

The terminal cost gN (xN ) is the usual terminal cost. In our case, it is not impor-
tant as the final state is controlled and known, as xN = L1 should be satisfied.
As we have γ(sk+1) = γ(sk) + L0

N γ
′(sk), i.e., for k ≥ 0,

xk+1 = xk +
L0

N
uk .

We have then the following constraints on the state and control variables:

1. x0 = 0, xN = L1 and for k ∈ [1. . .N − 1], 0 < xk < L1.
2. For k = 0, . . . N − 1, uk > 0 and xk + L0

N uk ≤ L1. In addition, we impose
(for sparsity), that uk ≤ min(L1 − xk, umax).

3. sk ∈
{
kL0

N , k = 0, . . . , N
}

.

The discretised criterion is gk(x, u) = d
(
Q0(kL0

N ), Q1 (x)
)√

u for k ≤ N − 1 and

gN (x) = L0

N d (Q0(L0), Q1 (L1)) if x = L0 and ∞ if x 6= L0. The state dynamics

is xk+1 = xk + L0

N uk, which gives the following algorithm: for every initial state
x0, the optimal cost is given by{

JN (xN ) = gN (xN )
Jk(xk) = minu∈Uk(xk) gk(xk, u) + Jk+1

(
xk + L0

N u
)
, k = 0, 1, . . . , N − 1 .
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The optimal alignment function is given by the optimal path sk 7→ x∗k = γ∗(sk),
starting from J0(x0), and taking the optimal configuration

x∗k = arg min
x
Jk(xk) .

4.2 Optimal rotation

We consider now the estimation of the best rotation for minimising the diver-
gence between the discretised aligned Frenet path from the previous stage:

min
O∈SO(3)

DN (Q0, Q1; γ∗, O) =
L0

N

N−1∑
k=0

d (Q0(sk), OQ1 (x∗k))
√
u∗k .

The computation of the minimum depends on the type of the distance function
used. For the standard Frobenius distance, the solution can be found by solving

min
O

N−1∑
k=0

L0

√
u∗k

N
Trace

(
Q1(x∗k)Q>0 (sk)O

)
. (4)

This has a closed-form solution, which is the polar part of the weighted mean∑N−1
k=0

L0

√
u∗
k

N Q0(sk)Q>1 (x∗k). If we use the geodesic distance, the solution is ob-
tained by gradient descent in SO(3), see [5, 1].
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