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ABSTRACT 

  

Fusion energy for use in power plants is a continually developing area and many of 

the related parameters are not yet fixed. The investigation of fusion neutronics and 

development of computational approaches for assessment is imperative in the road to 

commercial realisation of fusion power. This research has explored blanket 

performance, including tritium breeding and the shielding requirements, and assessed 

radioactive waste, utilising the 3-D Monte Carlo transport code MCNP, and the 

activation inventory code FISPACT.  

The performance of some solid and liquid breeder materials has been compared with 

regards to tritium breeding, energy production and shielding. In the case of novel 

spherical tokamak concepts, that make use of high temperature superconducting 

magnets and have no inboard blanket, scoping studies have been performed to 

investigate the impact of shielding requirements on how small the tokamak can be.  

Fusion power plants will not produce high level waste, as seen in nuclear fission 

plants, however the components and structures will become active as a result of 

interactions with high energy neutrons. A suitable radioactive waste management plan 

will be required in order to deal with this material appropriately, with an aim to 

recycle or clear from regulatory control all materials 100 years after shutdown. The 

study indicates that through suitable material selection and the use of component 

dismantling the requirement could potentially be satisfied.  

In terms of computational methods, the neutron flux averaging has been assessed 

throughout the work and has shown in neutronics estimates to produce some 

substantial differences. The recently developed unstructured mesh approach to 

neutronics modelling has been explored and the potential use for more accurate 

radioactive waste inventory calculations. Although the analysis and comparison shows 

promising results, it still requires significant development and improvement in the 

work flow to create a robust neutronic analysis method.  
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1 INTRODUCTION 

1.1 Neutronics analysis for fusion power plants 

Fusion power has the potential to provide a substantial amount of energy for use on 

earth with inherently safe and environmentally favourable features. The fuels required 

for a fusion reaction are deuterium and tritium; this is known as the D-T reaction. 

Deuterium can be extracted from water, with relative ease. Tritium, however, is of low 

abundance and volatile, thus resulting in a requirement to produce a self-sufficient 

tritium supply within a fusion reactor. An important part of the European magnetic 

confinement fusion research programme focuses on tritium breeding using a lithium 

based blanket on the reactor walls. The work presented in this thesis focuses on the 

DEMOnstration (DEMO) facility, which is to form the main stage between the fusion 

research reactor, ITER, and commercial fusion power plants, with the aim of proving 

the economic feasibility and tritium self-sufficiency of fusion power. 

Conceptual studies of DEMO reactors have been carried out throughout Europe as 

part of the European Union (EU) fusion power plant research programme, and 

internationally, such as in China, Japan, the US and Korea. The designs are all based 

on the magnetically confined ‘tokamak’, similar to ITER, but differ mainly in the 

design of the divertor and breeder blanket. A measure of the fusion tokamak 

performance is the beta value (β); a ratio of plasma pressure to the magnetic field. A 

higher β is more efficient and requires less magnetic material, it therefore has the 

potential to be less expensive. A limiting factor in improving β is the size of the 

magnets. The physical dimensions of the rings mean that the hole in the torus can only 
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be reduced so far before the windings of the coil are touching. This limits the 

reduction in the aspect ratio of conventional tokamaks to about 2.5. Spherical tokamak 

designs place the toroidal field coils closer to the plasma and often make use of a 

single centre column conductor allowing for a lower aspect ratio (as low as 

approximately 1.2). Spherical tokamaks hold the fusion plasma in a tighter magnetic 

field than a conventional large aspect ratio tokamak resulting in a more compact 

device. This, coupled with the use of high temperature superconducting (HTS) 

magnets, has the potential for a more economical and efficient method to fusion power, 

and is particularly attractive for component test devices and fusion neutron source 

facilities.  

The first wall (plasma-facing region) of a magnetically confined nuclear fusion reactor 

will be used to produce the tritium fuel and convert the fusion energy into heat that 

can be extracted for electricity generation. This wall, known as the blanket, will need 

to contain a lithium compound and a neutron multiplying material to ensure that the 

tritium breeding ratio (TBR) is greater than or equal to unity. In the case of a spherical 

tokamak, there is no space for this blanket on the inboard side, i.e. the inner radius of 

the tokamak, due to the tight aspect ratio. A dedicated neutron shield is required to 

protect the magnets.   

The neutrons not only cause damage to the magnets but will also cause materials to 

become ‘activated’, generating radioactive wastes. Investigating the waste arising and 

the activation products is crucial to the development of a suitable waste management 

plan for any future power plant. 

There has been significant research on the breeding capabilities of candidate blanket 

designs for test modules to be placed in ITER. In recent years the focus has shifted 

towards the performance of breeding materials in a fusion power plant environment, 

typically increased power and operational life, and the available methods for 

simulating the reactor neutronics of a fusion power plant using 3-D geometry.  

Typically neutronics analysis with 3-D geometry is conducted using simulation 

software, such as the Monte Carlo Neutron Particle transport code (MCNP), that 

simulates the neutron behaviour as described by the Boltzmann transport equation. 

Analysis with MCNP uses a cell-based geometry, however, estimating neutron flux 

with this geometry type assumes the flux to be uniform through the entire cell. In the 
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case of activation and radioactive waste calculations this flux averaging can result in 

an over-estimation of the levels of radioactive waste which will impact on the disposal 

options available and associated costs.  

The use of a superimposed structured mesh with MCNP allows the neutron flux to be 

‘tallied’ (recorded) in a finer resolution without having to rebuild the MCNP geometry. 

This method has been used extensively in neutron flux and activation analysis for 

shutdown dose rate calculations, though not for radioactive waste assessments. These 

methods, along with a recent development from MCNP regarding the use of an 

unstructured mesh representation of the geometry, were investigated as part of the 

research presented in this thesis.  

The capabilities of some proposed breeder blanket and neutron shield materials, and 

the shielding requirements for centre column magnets in novel spherical tokamak 

concepts are also investigated.  

1.2 Thesis outline 

The research conducting over the PhD period is presented in this thesis and draws on 

some published and unpublished works. A summary of the chapters and related 

presentations and publications is given here. 

Background 

• The background chapter assumes the reader may have little knowledge of 

fusion energy and the associated ITER facility and DEMO concepts. Fusion 

power is introduced along with a brief history within the research area. The 

current status on the path towards fusion and the European roadmap is 

described. The main components of a fusion reactor are presented with a focus 

on superconducting magnets and blanket technology.  

Neutronics analysis 

• This chapter introduces, defines and explains the terms and parameters used 

within the work regarding neutronics analysis. The particle transport code 

MCNP is described along with the material activation and inventory code 

FISPACT.  
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Blanket performance; tritium breeding, energy multiplication and shielding 

• Investigations into the neutronic assessment of blanket capabilities is 

performed and presented. The research includes the effect of material 

composition of breeder blankets and optimisation potential for tritium breeding 

performance. A comparison of some proposed solid and liquid breeding 

materials has been performed, drawing on peer-reviewed published 

investigations: 

Development of fusion blanket technology for the DEMO reactor, Bethany R. Colling, 

S D. Monk, Applied Radiation and Isotopes, Volume 70, Issue 7, July 2012 

• The shielding requirements of novel spherical tokamaks with high temperature 

superconducting magnets are investigated through a parametric scoping study. 

The neutronics assessment of blanket performance, shielding capabilities and 

activation considerations is presented for a spherical tokamak model based on 

the Princeton Plasma Physics Laboratory fusion nuclear science facility 

concept. Initial results were presented at the 18th international spherical torus 

workshop. Further results were included in the collaborative paper by                

J. Menard published in Nuclear Fusion. 

Neutronics Analysis of HTS-ST, Bethany Colling, T. Brown, M. J. Joyce, J. Menard, L. 

W. Packer, The 18th International Spherical Torus Workshop (ISTW-2015), Princeton 

University, November 3-6, 2015. 

J. E. Menard, T. Brown, M. Boyer, L. El-Guebaly, J. Canik, B. Colling, R. Raman, Z. 

Wang, Y. Zhai, P. Buxton, et.al., “Fusion Nuclear Science Facilities and Pilot Plants 

Based on the Spherical Tokamak,” Nucl. Fusion, vol. 56, 2016. 

Radioactive waste assessment of DEMO 

• Conventional methods for calculating radioactive waste from fusion reactors 

are compared with the novel unstructured mesh based analysis through the use 

of recent developments in the MCNP6 code and adaptations to the MCR2S 

particle transport and activation coupling code. The radioactive waste 

assessment is performed on the 2015 generic EU DEMO model using an 

assumed homogeneous mix of breeding material based on the EU helium 

cooled pebble bed (HCPB) blanket concept.  
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Final remarks 

• Final comments and areas to be considered for further work are presented.  

 

Other related publication contributions during the PhD period include: 

Neutronics experiments and analyses in preparation of DT operations at JET, R. 

Villari, P. Batistoni, M. Angelone, J.P. Catalan, B. Colling, D. Croft, U. Fischer, D. 

Flammini, A. Klix, S. Loreti, S. Lilley, F. Moro, J. Naish, L. Packer, P. Pereslavtsev, S. 

Popovichev, P. Sauvan, B. Syme, Fusion Engineering and Design, In Press, February 

2016 

• Benchmarking MCR2S with other Rigorous-Two Step approaches, a Direct-

One Step tool and experimental data from the JET 2012–2013 D-D shutdown 

experiments. 

Neutronics analysis for integration of ITER diagnostics port EP10, Bethany Colling, T. 

Eade, M J. Joyce, R. Pampin, F. Seyvetc, A. Turner, V. Udintsevd, Fusion Engineering 

and Design, In Press, January 2016 

• Shielding analysis of the ITER nuclear facility’s equatorial port 10. This 

included investigations of the activation of the port when integrated into the 

ITER C-lite neutronics model and the contribution to shutdown dose rated 

from neighbouring ports.  

Proposal to characterise legacy Sellafield ponds using SONAR and RadLine™, Sarah 

D. Reddy, S D. Monk, D W. Nye, B R Colling, S J. Stanley, Applied Radiation and 

Isotopes, Volume 70, Issue 7, July 2012 

• Gamma radiation through a theoretical tank of water was evaluated using 

MCNP (MCNPX v2.70). This was used to investigate the intensity of gamma 

radiation as a function of depth and the suitability of proposed detection 

systems using RadLine™ for eventual characterisation of legacy ponds at 

Sellafield.  
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2 BACKGROUND 

2.1 Fusion reactions 

The mass of an atomic nucleus is not the sum of the component parts, i.e. the protons 

and the neutrons, there is a mass defect (Equation 1 & 2).  

 

 ∑ 𝑚𝑛 + ∑ 𝑚𝑝  <  𝑚𝐴 ( 1 ) 

 𝑀𝑎𝑠𝑠 𝐷𝑒𝑓𝑒𝑐𝑡 ∆𝑚 =  ∑ 𝑚𝑛 +  ∑ 𝑚𝑝 −  𝑚𝐴 ( 2 ) 

 

where, 𝑚𝑛 is the mass of the neutrons, 𝑚𝑝 is the mass of the protons and 𝑚𝐴 is the 

atom mass.  

This mass defect can be thought of as the energy required to bind the nucleus together, 

or the energy that would be required to break the nucleus apart, and is known as the 

‘binding energy’. The mass difference from the fusing of two light nuclei to form a 

heavier nucleus is released as kinetic energy according to Einstein’s formula 

(Equation 3, where 𝐸 is the kinetic energy of the reaction products,  ∆𝑚 is the mass 

defect, and 𝑐 the speed of light). 

 

 𝐸 = (∆𝑚)𝑐2 ( 3 ) 

 

For a fusion reaction to take place the two light nuclei must overcome the long-range 

Coulomb repulsion force to allow them to be close enough for the short-range nuclear 

force to take effect. Energies in the order of 10 keV to 100 keV [1] are required to 



 

   7 

overcome the Coulomb force. This corresponds to temperatures of 108 K1 to 109 K, at 

which light nuclei are stripped of their electrons creating a plasma.   

The fusion reactions of interest are: 

 𝐷 + 𝐷 → {
𝐻 (1.011 𝑀𝑒𝑉) + 𝑝 (3.022 𝑀𝑒𝑉)3

𝐻𝑒 (0.820 𝑀𝑒𝑉)3 + 𝑛 (2.449 𝑀𝑒𝑉)
 ( 4 ) 

 
𝐷 + 𝑇 → 𝐻𝑒 (3.261 𝑀𝑒𝑉) + 𝑛(14.029 𝑀𝑒𝑉)4  ( 5 ) 

 
𝐷 + 𝐻𝑒 →3 𝐻𝑒 (3.712 MeV)4 + 𝑝 (14.641 MeV) ( 6 ) 

 

The D-T reaction for energy production is the main focus of fusion research world-

wide due to the lower temperature requirements to initiate the fusion reaction      

(Figure 2.1)  [2]–[4]. 

 

Figure 2.1 - The cross-section (barns) of some key fusion reactions as a function of 

projectile energy (keV).  (Reproduced with permission, Kaye & Laby Online [4].) 

 

 

1 A Kelvin (K) is the standard international unit of thermodynamic temperature, beginning its scale at 

absolute zero (-273.15 ºC). Both the Kelvin and degrees Centigrade (ºC) are used within this thesis. 
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2.2 Using fusion energy for power generation 

A power plant using fusion could potentially provide a large amount of power for little 

fuel when compared with other energy sources; just 1 kilogram of fusion fuel could 

produce the equivalent amount of energy as 10 million kilograms of fossil fuel [5]. In 

order to sustain the D-T plasma and ‘hold’ it away from the surfaces of a reactor 

vessel, a form of confinement is required. Without confinement the plasma would 

rapidly cool due to interactions with the wall. The most developed fusion confinement 

technologies are magnetic confinement and inertial confinement. The focus of this 

research is the use of magnetic confinement for a demonstration reactor and future 

fusion power plants. Magnetic confinement uses magnetic pressure to hold the plasma 

at the required temperature and density away from the surrounding walls; as opposed 

to the use of kinetic pressure in the case of inertial confinement. The most common 

magnetic confinement configuration is that of the ‘tokamak’, where the plasma is held 

in a torus shaped chamber (Figure 2.2).  

 

Figure 2.2 - A computerised image of a fusion tokamak with a plasma superimposed. 

(Reproduced with permission, EUROfusion [6].) 

2.3 Main components of magnetic confinement reactors 

The main components of a magnetic confinement reactor are: the magnets to create 

the magnetic fields to hold the plasma, blankets for tritium fuel, heat production and 

shielding of surrounding magnets, the divertor to remove fusion reaction products 

from the plasma, and the vacuum vessel to maintain the vacuum conditions for 

sustaining the plasma. The main components are described in further detail in the 

following sections, making reference to the ITER design for examples. A DEMO 
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fusion power plant will have similar main components, though will differ in size, 

material and final design.  

2.3.1 The magnets 

Magnetic forces are used to confine the hot plasma and prevent the high temperature 

particles touching containment walls. The most developed magnetic confinement 

system is the tokamak. Tokamaks have, in general, three main magnet systems in 

order to produce the confinement and fusion conditions. These are the poloidal field 

coils, toroidal field coils, and the ohmic heating central solenoid. Correction coils may 

also be used for stability.  

The toroidal field coils create the primary confining toroidal field and the poloidal 

field coil system is used for plasma shaping, stability and position control. The plasma 

current is induced by a transformer, with the ohmic heating central solenoid acting as 

the primary winding and the plasma as the secondary winding. Many reactor designs 

make use of superconducting magnets to reduce the power dissipation and minimise 

recirculating power. Superconducting magnets and their use in fusion power are 

discussed in further detail in Section 2.4. 

 

 

Figure 2.3 - An illustrative diagram of the magnetic coil configuration used for fusion 

magnetic confinement. 

 

Poloidal field coils Toroidal field coils 

Centre column poloidal 

field coils 
Central solenoid 
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2.3.2 The breeder blanket 

The blanket surrounding the fusion plasma will be required to fulfil three main 

neutronics criteria. Firstly it must provide a self-sufficient supply of tritium which can 

be recovered for use as new fuel. Secondly, it will extract the heat energy from the 

particle interactions to produce useable power. And thirdly it will need to provide 

shielding to personnel and the superconducting magnets which are required to provide 

the plasma confinement. Some blanket concepts will be tested in the ITER fusion test 

facility, currently under construction in the South of France. (A computer 

representation of a test blanket module is given in Figure 2.4.) The blankets are 

discussed in further detail in Section 2.5. 

 

Figure 2.4 - A computer image of a tritium breeding test blanket module (TBM) for 

ITER. (Reproduced with permission, © ITER Organisation [7].) 

2.3.3 The divertor  

The divertor region is formed at the edge of the plasma confinement and is designed 

to ‘divert’ impurities and helium (resulting from the D-T fusion reaction) away from 

the plasma to minimise contamination. The divertor, a plasma facing component, will 

receive very high heat loads and as a result a large amount of research is on-going 

with regards to possible materials that could withstand such conditions. The most 

viable materials currently under consideration for the critical plasma facing 

TBM shields 

TBM’s 
Port plug 

TBM assembly 
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components are beryllium, tungsten, and carbon fibre-reinforced carbon composite. 

Materials are tested in facilities such as the Joint European Tokamak (JET) located in 

the UK, and further materials information will be gained from the ITER facility once 

available. 

To ease the process of replacement or repair, the divertor is split into sections, referred 

to as divertor cassettes. In ITER 54 divertor cassette assemblies will be used, each 

with supporting stainless steel structure and three plasma-facing components:  the 

inner and outer vertical targets and the dome. The target tiles will be positioned at an 

angle so as to increase the effective area, reducing the power density. In ITER the 

divertor will make use of carbon fibre-reinforced carbon composite in the initial phase 

of ITER operation, moving to tungsten plasma facing components for D-T operations. 

(A computerised image of a divertor cassette for ITER is shown in Figure 2.5.) 

Due to the high temperatures and heat fluxes received by the divertor, it will need to 

be replaced during the lifetime of a fusion power plant. In ITER this is anticipated to 

take place at least once, and will require sophisticated remote handling.  

 

Figure 2.5 - Illustration of an ITER divertor cassette. (Reproduced with permission, © 

ITER Organisation [7].)  

2.3.4 The vacuum vessel 

The vacuum vessel is the airtight container that provides a high-vacuum environment 

for the fusion plasma and acts as the first safety barrier for radioactivity. It also 

Plasma facing targets 
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provides support for the in-vessel components, such as the blanket and divertor. 

Within the ITER design, the vacuum vessel will have forty-four ports to provide 

access for remote handling and diagnostic systems. In ITER the vacuum vessel 

(Figure 2.6) will measure 19.4 m across and 11.4 m high, weighing approximately 

5200 tonnes (t). 

 

Figure 2.6 - Computer illustration of the ITER vacuum vessel, also showing the location 

of the divertor cassette from Figure 2.5. (Reproduced with permission, © ITER 

Organisation [7].) 

 

2.4 Superconducting magnets 

Superconducting materials exhibit a phenomenon of zero electrical resistance to low 

applied currents and expulsion of magnetic fields when cooled below a characteristic 

critical temperature. The complete expulsion of magnetic field lines from the inside of 

a superconductor is characterised by the Meissner effect [8]. A superconductor with 

little or no magnetic field within it is said to be in the Meissner state; this state breaks 

down when the applied magnetic field is too large. Superconducting materials can be 

categorised as type 1 or type 2 superconductors according to how this break down 

occurs. Type 1 superconductors have one critical field, above which all 

Ports 
Inboard first wall 

Outboard first wall 

Divertor cassettes 

Vacuum vessel 

First wall of testing 

and diagnostic ports 
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superconductivity is lost. Type 2 superconductors have two critical fields, having 

perfect superconductivity up to the first critical field, partial penetration of the 

magnetic field between the two critical fields and then losing all superconductivity 

above the second critical field. Most pure elemental superconductors, except niobium 

and carbon nanotubes, are type 1, while the majority of the impure and compound 

superconductors are type 2.  

Characteristics of superconductivity appear when the temperature is lowered below a 

critical temperature. Conventional low temperature superconductors (LTS) usually 

have critical temperatures ranging from around 30 K to < 1 K. The highest critical 

temperature found for a conventional superconductor is 39 K for magnesium diboride 

(MgB2) which is sometimes referred to as a medium temperature superconducting 

(MTS) material [9]. A superconductor is generally considered a high temperature 

superconducting (HTS) material if it reaches superconductivity when cooled using 

liquid nitrogen, i.e. critical temperature > 77 K, or low temperature if more aggressive 

cooling is required to achieve superconductivity; critical temperature < 77 K. High 

temperature superconductors have a number of advantages, most notably that it allows 

liquid nitrogen to be used as a refrigerant replacing the need for the more expensive 

liquid helium. The higher temperatures also help to avoid some of the problems 

associated with liquid helium temperatures, such as the formation of plugs of frozen 

air that can block cryogenic lines and cause pressure build-up. 

There have been significant developments in HTS materials in recent years, primarily 

lead by the commercial electric power transmission sector [10]. The HTS materials 

can be classified into two groups, BSCCO (bismuth - strontium - calcium - copper - 

oxygen) first generation materials and ReBCO (rare earth - barium - copper oxide) 

second generation superconductors. First generation HTS wire has been commercially 

available since 1990, with kilometre lengths of tape available from 2000 [11]. Uses in 

power devices include transmission cables, transformers, motors and generators, etc. 

[12]–[14]. 

A comparison of the critical current density achieved, for an applied magnetic field, 

for some superconducting materials is shown in Figure 2.7.  



 

   14 

 

Figure 2.7 - Critical current density as a function of the local magnetic field for some typical superconducting materials. Reproduced with 

permission, The National High Magnetic Field Laboratory, P. Lee (see https://nationalmaglab.org/magnet-development/applied-superconductivity-

centre/plots for further details and a list of references for the data).  
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2.4.1 Use in fusion magnets 

Second generation HTS magnets have the potential for use in magnetic confinement 

fusion devices. A ReBCO HTS could be operated at 77 K, however significantly 

higher current densities (as required to reach the magnetic fields required for fusion 

applications) can be achieved by operating the HTS at lower temperature. Options for 

cooling the magnets to such temperatures include the use of subcooled nitrogen (~65 

K), a eutectic mixture of nitrogen and oxygen (~55 K) or high pressure helium gas 

(down to approximately 4 K) [15]. A further advantage of the HTS materials, is their 

possible use in remountable (can be mounted and demounted repeatedly) magnets 

with mechanical or electrical joints [16]. This is not possible with LTS due to the joule 

heating at the joint (leading to quenching) and the large power required for cooling the 

joints.  

Although significant information has been gained through the development of HTS 

for use in power transmission, there are a number of important differences:  

(1) the higher cryogenic efficiency of the superconductor arranged in coils, will 

allow operation of the HTS at lower temperatures, achieving significantly 

higher critical current densities than observed in power transmission cables,  

(2) the use of HTS in demountable coils results in the longest continuous section 

of HTS tape to be metres as opposed to kilometres [17], avoiding the 

limitations present in longer sections of tape as used in power transmission, 

and , 

(3) there is a need to operate the HTS in high magnetic fields which can affect the 

achievable critical current density. 

A HTS with the rare earth element yttrium (YBCO) has particular advantages over the 

use of conventional LTS materials, such as NbTi or Nb3Sn. YBCO materials have a 

larger tolerance in operating temperature and the ability to deal with higher resistive 

loads. The required cooling to reach the necessary critical current density is 

significantly reduced and high magnetic fields can be achieved (Figure 2.7). The 

commercial availability and reducing cost of YBCO tape makes the material even 

more attractive for near-term feasibility, though significant research will be required 

before engineering a full scale toroidal field system. 



 

   16 

2.4.2 YBCO tapes 

The performance of the HTS tape is a strong function of the thickness; the thinner the 

tape, the higher the current density [18]. Commercial YBCO tape is currently 

available in widths of between 4 mm and 12 mm and at a thickness of less than 100 

𝜇 m [19]. A typical tape consists of a nickel-based hastelloy structural layer, a 

buffer/insulator, a superconducting layer and a silver layer (see Figure 2.8) [11]. The 

structural and buffer layers of the tape act as electrical insulators necessitating an 

electrical connection on the silver side of the tape in order to transfer current into the 

YBCO layer. A copper stabilising layer maybe used for protection against flux-

jumping (a thermomagnetic instability to changes in temperature and electromagnetic 

fields that can result in quenching). Stabilising layers are only required for operation 

at temperatures below 20 K as above this HTS materials do not suffer flux-jumping 

due to the very high thermal capacity. 

 

Figure 2.8 - Illustration of a typical ReBCO tape. (Not to scale) 

2.4.3 Conventional tokamaks 

A measure of the fusion tokamak performance is the beta value (β); a ratio of plasma 

pressure to the magnetic field. A higher β requires less magnets and therefore has the 

potential to be less expensive. A limiting factor in improving β is the size of the 

magnets. The physical dimensions of the rings mean that the hole in the torus can only 

be reduced so far before the windings of the coil are touching. This limits the 

reduction in the aspect ratio of tokamaks to about 2.5. 

Copper stabiliser 

(~20 µm) 
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(~2 µm) 

Superconducting 

ReBCO 

(~1 µm) 

Buffer  

(~1 µm) 

Hastelloy tape structure 

(~50 µm) 
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Conceptual studies of DEMO reactors have been carried out throughout Europe and 

internationally. The studies tend to focus on designs based on tokamaks with an aspect 

ratio around 2.5 - 4, similar to that of ITER. The DEMO concepts differ mainly in the 

design of the divertor and blanket. The European power plant conceptual studies [20], 

[21] produced a number of conceptual designs for commercial power plants. It focuses 

on five plant models A, B, AB, C and D all based on the tokamak concept with 

approximately the same net electric power output of 1500 MW(e). These designs 

illustrate a wider range of possibilities and span from relatively near-term concepts, A 

& B, based on limited technology and plasma physics extrapolations, to the more 

complex and advanced designs of C & D.  

2.4.4 Spherical tokamaks 

Spherical tokamak designs place the toroidal field coils closer to the plasma and often 

make use of a single centre column conductor [22] allowing for a lower aspect ratio 

(as low as approximately 1.2). The single solid centre column or centre post is often 

referred to as the Peng–Hicks as a result of their novel concept [23]. Spherical 

tokamaks hold the fusion plasma in a tighter magnetic field than a conventional large 

aspect ratio tokamak, resulting in a more compact device. Coupled with the use of 

HTS magnets, spherical tokamaks have the potential to be a more economical and 

efficient method for fusion power and are particularly attractive for component test 

facilities and fusion neutron sources. 

 

Figure 2.9 - An illustrative diagram of a magnetic coil configuration for a low aspect 

ratio spherical tokamak. 

 

Poloidal field coils 
Toroidal field coils 

Single centre 

column conductor 

Ohmic heating central 

solenoid (not featured in 

all designs, in some 

concepts it is removed 

after start-up.) 
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2.5 Blanket technology 

2.5.1 Tritium fuel breeding 

The fuels required for the D-T fusion reaction are deuterium and tritium; the former is 

abundant as it is relatively easily extracted from heavy water [24]. Tritium, however, 

is a volatile and radioactive substance. With a half-life of 12.3 years there are no 

substantial quantities of naturally occurring tritium on earth. A D-T fusion power 

plant operating at 1 GW fusion power will consume approximately 56 kg of tritium 

per year [25].  

This tritium could be bred in the reactors first wall (the blanket) via neutron 

interactions (𝑛, 𝑡) with a suitable material. If each neutron were to produce one tritium 

atom then the reaction would be sustainable, however there will be losses. A material 

to produce more neutrons, such as lead or beryllium (Equation 7 and Figure 2.10), is 

also required to ensure sufficient (𝑛, 𝑡) reactions can take place.  

 𝑃𝑏208 + 𝑛 → 𝑃𝑏207 + 2𝑛 

𝐵𝑒9 + 𝑛 → 𝐵𝑒8 + 2𝑛 
( 7 ) 

 

Figure 2.10 - Cross-section (ENDF/B.VII.1) data for some neutron multiplying 

materials. (Plot produced using www-nds.iaea.org - Project: "Multi-platform EXFOR-

CINDA-ENDF", V.Zerkin, IAEA-NDS, 1999-2016) 
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A lithium compound is the ideal material for tritium breeding as both 6Li and 7Li 

isotopes produce tritium (Equation 8 and Figure 2.11). The 7Li reaction requires fast 

neutrons and is harder to initiate than the 6Li reaction making an enrichment of the 6Li 

isotope favourable in some cases. Although lithium is the dominant tritium producer 

there are other pathways, such as via beryllium [25]. 

 
𝐿𝑖6 + 𝑛(𝑠𝑙𝑜𝑤) → 𝐻𝑒4 + 𝐻3 + 4.8 𝑀𝑒𝑉 

𝐿𝑖7 + 𝑛(𝑓𝑎𝑠𝑡) → 𝐻𝑒4 + 𝐻3 + 𝑛 − 2.5 𝑀𝑒𝑉 

( 8 ) 

 

Figure 2.11 - Tritium production cross-sections (ENDF B VII.I) for lithium-6 and 

lithium-7 isotopes. (Plot courtesy of M.Fleming) 

 

2.5.2 Tritium self- sufficiency and the breeding ratio 

The self-sufficiency of a tritium supply can be determined by the tritium breeding 

ratio (TBR); the rate of tritium production per tritium burnt in the fusion plasma 

(Equation 9).  

 𝑇𝐵𝑅 = 𝑁+ 𝑁−⁄  ( 9 ) 

where 𝑁+ is the rate of tritium production in the system and 𝑁− is the rate of tritium 

burning in the plasma.  
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The required TBR needs to exceed unity by a margin to ensure a self-sufficient tritium 

supply compensating for losses. The margin required is a function of many reactor 

parameters, as described by Abdou [26], and can vary depending on design. A margin 

has been given [27] as 0.1, requiring a TBR of: 

 𝑇𝐵𝑅 ≥ 1.1 ( 10 ) 

The supply of tritium needs to be self-sufficient for the whole reactor blanket’s 

lifetime. Not all of the produced tritium will be extracted into the tritium processing 

system. To reduce the inventory of tritium that remains in the reactor structure, 

materials with low tritium retention properties are required [28]. If the lithium 

material is in a liquid form it is conceptually planned that the lithium could be 

replenished and reprocessed continuously ensuring that the tritium supply will be 

sustained. However, if a solid form is used the TBR will reduce as the lithium is burnt. 

The self-sufficiency time of the lithium blanket (the time in which the TBR is greater 

than or equal to 1.1) needs to exceed the engineered design lifetime of the blanket 

which will be determined by the structural integrity of the materials used  [25].  

Neutronics analysis can be used to analyse the tritium breeding capabilities of blanket 

designs and materials using various different computational approaches. The data can 

also be evaluated via experimental procedures, these are either direct tritium 

production measurements or via the decay products.  

2.5.3 Test blanket modules for ITER 

ITER will be a test facility and will not have one continuous breeding blanket. Instead 

test blanket modules (TBM) will be placed into ports (numbers 2, 18 and 16) within 

the tokamak wall. This will allow a number of different blanket designs to be tested. It 

is presently planned, according to the 2012 overview of the ITER TBM program [29], 

that 6 breeder blankets and auxiliary systems will be assessed within the facility (see 

Table 2.1).  

The TBMs will be required to conform to a set of boundaries: they must be recessed 

by 50 mm from the nominal surface of the ITER shielding blanket first wall in order 

to reduce plasma-wall interaction effects, have a maximum disruption energy load of 

0.55 MJ/m2 and have a 2 mm beryllium protection layer on the first wall [30]. Inside 

each of the test ports the TBMs will be contained in a water-cooled steel frame, of 

thickness 20 cm, to provide a standardised interface with the ITER structure and 
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ensure thermal insulation of the machine. This leaves a maximum space of 1.35 m 

wide and 1.80 m high available for testing.  

 

Figure 2.12 - A computer illustration of an example of ITER test blanket setup. 

(Reproduced with permission, © ITER Organisation [5].) 

 

Table 2.1 - A summary of the 6 independent tritium breeder blanket systems for ITER 

testing [29]. 

TBM type 
Structural 

material 
Breeder material Multiplier Coolant 

Helium-cooled lithium 

lead (HCLL) EU 

Members 

EUROFER LiPb (90% 6Li) Helium 

Helium-cooled pebble 

bed (HCPB) EU 

Members 

EUROFER 
Li4SiO4 or Li2TiO3 

(30% 6Li) 
Beryllium Helium 

Water-cooled ceramic 

breeder (WCCB) Japan 
F82H Li2TiO3 (30% 6Li) Beryllium Water 

Duel-cooled lithium lead 

(DCLL) US & Korea 
F82H LiPb (90% 6Li) LiPb & Helium 

Helium-cooled ceramic 

breeder (HCCB) China 
RAFM Li4SiO4 (80% 6Li) Beryllium Helium 

Lithium lead ceramic 

breeder (LLCB) India & 

Russian Federation 

RAFM 
Li2TiO3 (30-60% 6Li) &/or  

LiPb (90% 6Li) 

Helium &/or 

LiPb 
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2.5.4 The EU fusion road map and a demonstration plant 

The European fusion development agreement (EFDA) set out an ambitious roadmap 

to the realisation of a supply of fusion electricity to the grid by 2050 through a goal-

oriented approach [31]. The critical aspects surrounding fusion power have been 

transformed into eight key missions over three time periods; the Horizon 2020 

research and innovation programme (covering 2014 - 2020), the years 2021 - 2030, 

and 2031 - 2050. A summary of the main objectives, as provided in the 2012 EFDA 

roadmap, are given in Table 2.2. 

 

Table 2.2 - A summary of the three phases of the EFDA roadmap to fusion power [31]. 

Phase Main objectives 

2014 - 2020 

Five overarching objectives: 

1 Construct ITER within scope, schedule and cost; 

2 Secure the success of future ITER operation; 

3 Prepare the ITER generation of scientists, engineers and operators; 

4 Lay the foundation of the fusion power plant; 

5 Promote innovation and EU industry competitiveness. 

2021 - 2030 

Focused on maximising ITER explorations and the preparation of 

DEMO power plant construction. The majority of the eight key 

missions need to be accomplished in order to progress onto the third 

DEMO focused phase. 

2031 - 2050 
Construct and operate a DEMO facility proving the ability to produce 

net electricity from fusion power. 

 

The European power plant conceptual studies, as previously mentioned, explored the 

conceptual designs for commercial fusion power plants and a DEMO reactor. It 

focused on four main models, named A to D. The models range from relatively near 

term concepts, based on limited technology and plasma physics extrapolations to more 

advanced concepts. The designs differ from one another in size (see Figure 2.13), 

fusion power and material compositions leading to differences in economic 

performance and environmental impacts [20]. The near term models A and B have a 

plasma physics scenario which represents parameters around 30 % better than the 

design basis of ITER [32]. The DEMO concepts C and D are based on improvements 

in plasma shaping and stability, limiting density and minimising divertor loads 

without constraining the core plasma conditions. The models are described in more 

detail in the following text.  
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Figure 2.13 - Illustration of the size (major radius, R, height, z) and shape of the models 

arising from the power plant conceptual studies [18]. 

 

Model A is based on the WCLL DEMO blanket concept, which has been in 

development for some time, and the water-cooled ITER divertor. This concept uses a 

liquid LiPb blanket with lithium to generate tritium and lead as a neutron moderator. 

The structural material is the reduced-activation ferritic-martensitic steel EUROFER. 

Both the in-vessel shield and vacuum vessel are made of water-cooled steel. The 

average pressure and temperature of the cooling water in the blanket modules is 

similar to those used in fission pressurised water reactors at 15 MPa and 300 °C 

respectively. With a net electrical power of 1500 MW(e) the power conversion system 

is based heavily on the qualified technology of fission pressurised water reactors. This 

reactor model requires the smallest extrapolation from present-day knowledge in 

terms of both the physical and technological aspects.  

Model B is based on the long developed European reference concept, the helium 

cooled pebble bed (HCPB) reactor. Studies [21], [33] have shown that with only 

moderate extrapolation of progress in terms of plasma physics and technology this 

concept can be realised. The conceptual design was originally to produce a net 

electrical output of 1500 MW(e), as with model A, but changes in the electrical power 

needed for heating and current drive have resulted in the calculated power being short 

by 170 MW(e).  The blanket uses a ceramic breeder with beryllium pebbles for 
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neutron multiplication. The use of beryllium creates an issue with regards to water and 

therefore a helium coolant is used. 

The model C design is based on a dual coolant blanket concept using a self-cooled 

LiPb breeding zone and a helium cooled structure and divertor. The structure is made 

of EUROFER steel with flow channel inserts in the LiPb channels made of silicon 

carbide composites. This concept requires greater assumptions in the extrapolation of 

technological and physical issues allowing higher plant efficiency. The liquid-metal 

breeder also serves as a coolant with a maximised outlet temperature to increase 

efficiencies. The coolant enters the modules at 460 °C and leaves them at 700 °C. This 

is above the maximum permissible temperature for steel and so the LiPb channels 

have to be thermally insulated. 

The most advanced design, Model D, is based on a self-cooled LiPb blanket concept. 

This concept is the most attractive in terms of efficiency but comes with a much 

higher development risk. This model requires the most developments to be made in 

technological and physical terms but is included in the conceptual analysis to show 

how fusion power could be used in the future.  The blanket is formed by only two 

materials; silicon carbide composite structures and LiPb breeder, moderator and 

coolant. This design is based on the principle of coaxial flow which allows the LiPb to 

have a maximum temperature of 1100 °C without exceeding the limit of 1000 °C for 

the silicon carbide composites [34]. 

Hybrid Models 

Following revisions of the conceptual study, a fifth model was conceived; a hybrid of 

model A and B, referred to as model ‘AB’. Similar to A and B this is a near term 

model based on a helium cooled lithium lead concept and has similar performance 

levels.  

Since the power plant conceptual studies, more focus has been on assessing 

technology readiness [35], [36] and identifying requirements for technology research 

and development.  

2.5.5 The Power Plant Physics and Technology programme  

The European Power Plant Physics and Technology programme, organised within the 

EUROfusion Consortium, aims at developing a conceptual design of a DEMO reactor 



 

   25 

within the time period of the Horizon 2020 roadmap. To ensure some design 

flexibility in the early stages of EU DEMO design, the systems code PROCESS [37] 

is being used to develop self-consistent design points, enabling some flexibility whilst 

identifying key design drivers and constraints with regards to the four main variants; 

referred to as HCPB, HCLL, WCLL, DCLL. The most recent performance issues 

based on the 2014 blanket designs is given in [38]. The design of the blankets under 

the European Power Plant Physics and Technology programme is conducted by 

different teams:  

• HCPB  - Germany’s Karlsruhe Institute of Technology (KIT),  

• HCLL - the French Alternative Energies & Atomic Energy Commission 

(CEA),  

• WCLL - the Italian National Agency for New Technologies, Energy and 

Sustainable Economic Development (ENEA) and, 

• DCLL - Spain’s Centre for Energy, Environment and Technology Research 

(CIEMAT). 

The consistency of the analyses is ensured by a common methodological approach 

specified in the neutronic guidelines [39] for DEMO nuclear analyses. An essential 

feature of this approach is the mandatory use of a generic DEMO model which is 

consistent with the DEMO design configuration and individually adapted to the 

different blanket concepts. The generic EU DEMO 2015 model [40] is used in the 

radioactive waste assessment of this thesis (Section 5). 

2.5.6 Summary of materials for a fusion breeder blanket 

Numerous materials are mentioned throughout the literature with varying advantages 

and disadvantages. For the tritium breeding it is clear that a lithium compound of 

some kind must be used but several other options are available for the neutron 

multiplier, moderation and heat extraction; a summary of some materials and key 

references are given in Table 2.3. These breeding materials are assessed further within 

the research documented in this thesis, see Section 4.  
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Table 2.3 - Summary of a selection of proposed tritium breeding materials within literature.  

Breeding material Key references Main material considerations 

Molten lithium 

Li [41] 
• Very chemically active, needs to be made stable. 

• High melting point, though can be reduced through the addiction of BeF2. 

Molten lithium mixtures 

LiPb [41]–[48] 

• Activation issues: Bi, Po, Tl and Hg will need to be removed via a purification process. 

• Could be used as coolant, however, high performance tritium permeation barriers, such as  

SiC/SiC flow channel inserts , between LiPb and structural material for electrical and thermal 

insulation to reduce magnetohydrodynamics (MHD) effects. 

LiSn [49]–[52] 

• Could be used as coolant. 

• Better thermal conductivity than LiPb. 

• Due to its low vapour pressure, higher operating temperatures can be used. 

Molten lithium salts 

LiBeF, LiFNaK, LiBeFNa [41], [49], [53]–[55] 
• Stable salts of lithium. 

• Resistivity up to four orders of magnitude greater than that of LiPb. 

Ceramic lithium 

Li2O (lithium oxide) [27], [41], [56] 
• Require a neutron multiplier; beryllium. 

• Difficulty in using water as a coolant as it is highly reactive with beryllium. 

• Fabrication and manufacturing methods defined. 

• No long-term radioactive concerns for Li2O, Li4SiO4, Li2TiO3 and  LiAlO2. 

Li4SiO4 (lithium orthosilicate) [25], [27], [41], [56]–[58] 

Li2TiO3 (lithium metatitanate) [25], [27], [41], [56]–[58] 

Li2ZrO3 (lithium zirconate) [41] 

LiAlO2 (lithium aluminate) [41] 

Li8PbO6 [59], [60] 
• Neutron multiplication in lead could minimise or avoid the use of beryllium. 

• Li8PbO6 has been shown to have high tritium diffusivity. 
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2.5.6.1 Structural materials 

The development of structural materials for use in nuclear fusion (in reactors, test 

facilities and individual components) has been driven by several objectives with 

regards to economic success and social acceptance. For economic success the 

requirement is to have a material that can reach as high as possible temperature with a 

large operating window for increased thermal efficiency. However, for social 

acceptance the material needs to exhibit low activation and be either recycled or 

disposed of as only low level waste [61].  

Different parts of the reactor will be subject to different radiation intensities, 

originating from the D-T reaction, with the in-vessel components and first wall having 

the most exposure. The materials need to be radiation and corrosion resistant to reduce 

the degradation, satisfying both the maintenance and safety requirements [33]. 

The reactor will also undergo various temperature changes with which the materials 

will need to withstand. The blanket will see temperatures of approximately 250 °C to 

650 °C and the divertor 600 °C to 1200 °C [62]. The thermo-physical properties of the 

materials used needs to be well established. The neutrons produced by the plasma 

reactions will have approximately 14.1 MeV of energy and will cause damage to 

materials via displacement cascades and transmutation products [61]. The point 

defects and transmutations will change the microstructure of the material and so in 

turn alter the properties.  

In DEMO designs the materials should meet the following requirements:  

• good physical properties (e.g. thermal conductivity),  

• good mechanical properties (such as tensile strength, creep strength and 

fracture toughness), high radiation resistance (of approximately 80-150 dpa2),  

• be a low activation material (with a good compatibility with other materials 

such as the coolant media) and,  

• have as wide a temperature window as high as possible to increase the thermal 

efficiency [61], [62]. 

 

2 A common quantity for assessing damage to materials is the displacement per atom (dpa). 
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2.5.6.2 Reduced activation steels 

The most developed and characterised materials, requiring the lowest amount of 

extrapolation for use in DEMO, are the reduced activation ferritic/martensitic 

(RAFM) steels [61] such as F82H. These steels, however, are limited to an upper 

temperature of approximately 540 °C in breeder blanket applications and they require 

further validation in a fusion environment. Another commonly used material, such as 

in the HCPB and WCLL [63] concept, is the RAFM steel EUROFER. Compatibility 

with Li4SiO4, Li2TiO3 and Be is good until approximately 550 °C due to the creep 

strength [64]. The lower limit is 300 °C due to the brittle ductile transition temperature 

under irradiation [64]. These limits determine the temperature limits for the coolant 

inlet and outlet and therefore the thermal efficiency. The use of steels such as 

EUROFER can also cause some problems when it forms a barrier between the 

breeding material LiPb and helium coolant in the HCLL design. Coatings can be used 

to protect the EUROFER from direct LiPb exposure and mitigate corrosion problems 

whilst optimising the tritium recovery process [27].   

Another cause for concern with the use of steel materials is the high temperature 

helium embrittlement. During the life time of the reactor, ~30 years, a large amount of 

helium will be produced by the (n,α) reactions in the first wall which will accumulate 

in the steel. As the solubility of helium in a metallic structure is zero [65] the helium 

will stay in the material causing a concern for embrittlement and limiting the life of 

the material under the thermal fatigue experienced on the first wall.  

2.5.6.3 Oxide dispersion strengthened steels 

Further developments with steel have led to the oxide dispersion strengthened (ODS) 

steel group. These steels have the ability to increase the operating temperature 

window and the RAFM variants, also known as nano-composite ferritic steels, can 

increase this temperature further (up to a possible 640 °C [61]). The nano-structure of 

the ODS steel is capable of distributing the accumulated helium into small bubbles by 

nucleating them on the surfaces of Ti-Y-O complexes [65]. These complexes are 

introduced into the steel in large numbers through the attrition of powdered steel with 

nano yttrium and hot extrusion or HIPing of the milled mixture. In the ODS RAFM 

steels the yttrium particles are refined to sizes less than 3 nm in diameter.  
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2.5.6.4 Silicon carbide composites 

In more advanced concepts, such as the self-cooled LiPb breeder, potential materials 

are SiC-f/SiC composites. These composites have the potential to increase the thermal 

efficiency allowing operating temperatures of 600 °C to 1100 °C. They also have low 

activation characteristics and good thermal shock resistances. The SiC-f/SiC 

composites also have a lower neutron absorption cross-section [64] than EUROFER 

allowing for more neutrons to take part in tritium production. There are, however, 

some drawbacks: an increased helium production due to nuclear transmutation, 

radiation induced degradation of the thermal conductivity and reduced strength to 

radiation exposure. Though studied in many research centres and forming part of 

numerous reactor concepts, a lot more work is required in improving fibre processing 

methods and the surround technologies.  

2.5.6.5 Refractory alloys 

For high heat flux components, such as the divertor and first wall, refractory alloy 

materials are considered as these have a much higher operating temperature and 

neutron wall loading capability than ferritic steels and SiC-f/SiC [49]. The proposed 

refractory alloys are niobium, tantalum, chromium, molybdenum, and tungsten with 

the most favourable being tungsten for its very high melting point, high creep 

resistance, high thermal conductivity, low vapour pressure and high erosion resistance. 

The use of tungsten has been linked with the EU helium cooled divertor concepts but 

with numerous drawbacks (brittle at low temperatures, low fracture toughness, DBTT 

well above room temperature, low oxidation resistances above 400 °C and ductility 

decrease through re-crystallisation) the application of the material has been limited. 

2.6 Radioactive waste considerations of a fusion power plant 

A fusion reactor device will become radioactive during operation as a result of 

irradiation from the neutrons generated in the D-T reaction and through tritium 

activation from the fuel and tritium breeding in blankets. A fusion power plant will 

typically receive 1 x 1021 neutrons per second during full power pulses. Consequently 

radioactive waste will be produced, however, only a limited amount of long-lived 

radioactive waste is generated and no waste requiring significant active cooling. This 

is in contrast to high heat generating waste products arising from fission plants where 

the thermal output can be 2 - 20 kW/m3 [66]–[68].  



 

   30 

The radioactivity is expected to be ~104 times lower than levels arising in fission after 

only a few decades. Consequently after a relatively short interim decay period of     

50-100 years it is possible that the majority of material could be either recycled or 

cleared from regulatory control. The disposal of waste produced as a result of a fusion 

power plant, will be dependent on the location and available repositories, and a 

method needs to be selected that will ensure safe isolation from biological systems. 

There is also a need to reduce the amount of permanent radioactive waste; an 

important issue with regards to public acceptance of fusion power. The classification 

of radioactive waste and issues related to storage and/or disposal are described in 

further detail in Section 4.6.3. 
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3 NEUTRONICS ANALYSIS 

3.1 Introduction  

Particle transport codes can be used to assess neutron flux distributions and related 

tritium production rates in a fusion reactor, whilst activation codes can be used to 

investigate time dependence, lithium burn-up rates and nuclide inventory. Particle 

transport codes use either a deterministic or stochastic approach for ‘solving’ the 

Boltzmann transport equation for a specific problem. Deterministic methods allow for 

a result to be determined at any location (all mesh points of the geometry) and give a 

specific solution, compared with a probabilistic indication of the result calculated 

using stochastic means. In deterministic methods the problem is approximated, i.e. the 

energy, time, space and angle are discretised whereas stochastic methods use an ‘exact’ 

geometrical and transport representation. The stochastic approach in the Monte Carlo 

(random walk) method, utilised in the Monte Carlo Neutron Particle transport code 

(MCNP) code, uses probabilities given by the nuclear cross-section data. MCNP is the 

standard transport code used in ITER, DEMO and EUROfusion analysis with a long 

history of development and benchmarking.  

3.2 Computational codes 

3.2.1 MCNP 

The Monte Carlo approach [69]–[71] is used in the Monte Carlo Neutron Particle 

transport code (MCNP) [72], [73] and indirectly ‘solves’ the Boltzmann transport 
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equation. An example of this equation is given in Equation 11, representing the 

integral emergent particle density equation. 

 
𝛹(𝑟, 𝑣) = ∫ [∫ 𝛹(𝑟′, 𝑣′)𝐶 (𝑣′ → 𝑣, 𝑟′) 𝑑𝑣′ + 𝑄(𝑟′, 𝑣)] 𝑇 (𝑟′ → 𝑟, 𝑣) 𝑑𝑟′ ( 11 ) 

 

where Ψ(𝑟, 𝑣) is the particle collision, 𝑄(𝑟′, 𝑣) is the density of particles generated by 

a source, 𝐶 (𝑣′ →  𝑣, 𝑟′)  is the collision kernel, and 𝑇 (𝑟′ → 𝑟, 𝑣)  is the transport 

kernel [74]. Position and velocity are denoted by 𝑟 and 𝑣 respectively.  

Solving this equation requires integration over many variables. This same process is 

estimated in MCNP using a theorem that assumes the model is static, time-

independent, Markovian (the next event depends only on the current one, not the 

previous events) and the material properties are not affected by particle reactions. 

(This is detailed further in [72], [74].) The solution to the problem is found by 

simulating many particle ‘histories’ and inferring the result from the average of each 

individual history. Many particle histories are required in order to adequately sample a 

problem; within ITER port plug analysis for example typically a minimum of 1 billion 

particle histories are simulated. 

In MCNP, a particle history begins when a particle is emitted from the source. It is 

then tracked from its life to its eventual death, through absorption for example. Before 

its death, the particle may split into several tracks, for instance due to splitting or 

(𝑛, 2𝑛) reactions, and each track is followed and terminated individually. Probability 

distributions are randomly sampled using nuclear data to determine the outcome at 

each interaction. The history ends when all tracks have been terminated. 

Due to its dependence on random sampling, the Monte Carlo method suffers from 

stochastic uncertainty, usually expressed in terms of the variance. Further discussion 

regarding the uncertainties is provided in Appendix 7. 

3.2.2 FISPACT 

Activation codes, such as FISPACT [75], solve the rate equations for nuclide 

production and decay to determine nuclide inventory, decay heat, contact dose etc. 

FISPACT is an enhanced multiphysics platform that was originally developed for 

neutron, deuteron and proton induced activation calculations for materials in fusion 

devices. The recent FISPACT-II release [76], [77] has a range of uses within the 



 

   33 

nuclear science and technology sector, and has extended physical models and 

improved numerical algorithms. It includes features such as self-shielding factors, 

broad temperature dependence, thin/thick target yields and robust pathway analysis.  

FISPACT undertakes four main tasks:  

(1) library data preparation - the nuclear and radiological data is extracted, 

reduced and stored, 

(2) inventory calculation - the prepared library data provides the cross-sections 

and decay constants required to construct the coefficients for the rate equations 

describing the transmutation of the initial inventory, this is followed by 

(3) irradiation steps - as described in the user input file, and computation of the 

summary output data, and finally 

(4) subsidiary calculations - such as a list of the dominant nuclides or pathway 

analysis. 

For neutron irradiation, FISPACT-II follows the evolution of the inventory of nuclides 

in a target material that is irradiated by a time-dependent neutron flux. The material is 

homogeneous, infinite and infinitely dilute, and the description of the evolution of the 

nuclide numbers is reduced to the stiff ordinary differential set of rate equations [78].  

3.2.3 MCR2S for shutdown dose rate calculations  

The MCR2S, Monte Carlo Rigorous-2-Step, code [79] was developed to implement 

the Rigorous-2-Step (R2S) method [80] for shutdown dose rate calculations. This 

implementation of the R2S method couples MCNP 3-D neutron mesh tally data with 

the inventory code FISPACT-II.  

A prominent issue surrounding ITER neutronics is the calculation of dose rates after 

reactor shutdown. ITER Project Requirements [81] call for a design that ensures the 

shutdown dose rate, in areas where in-situ maintenance activities are foreseen, be as 

low as reasonably achievable (ALARA) and shall not exceed 100 μSv/h at 106 s after 

shutdown without formal project approval [PR1782-R]. This has proved to be 

particularly difficult and calculations have been performed using MCR2S and other 

implementations of the R2S or Direct One-Step (D1S) method [82]–[84]. Rigorous 

benchmarking has also been performed with MCR2S, including recent studies 

comparing results of MCR2S against other shutdown dose rate calculation methods 

and experimental results from the JET 2012-2013 campaign [85]. 
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In order to compute the shutdown dose rate, three main stages are required: 

calculation of the neutron flux, activation of material and finally transport of the 

delayed gammas. There are two main options available; a R2S method or a Direct 

One-Step (D1S). The R2S method requires two separate MCNP transport calculations, 

one for neutrons and one for delayed gammas; the method can be simplified as: 

• calculate neutron spectrum in multiple locations (either within geometry cells 

or mesh elements), 

• for each location perform an activation calculation, 

• from these results derive a shutdown photon source for the decay time of 

interest, 

• collate the individual photon sources into a 3-D MCNP decay photon source 

definition for each decay time, 

• finally, use the derived shutdown source in a subsequent photon transport 

calculation to determine the shutdown dose rate. 

The R2S method enables a full activation calculation to be performed, including 

multi-step reactions. The method does result, however, in a distortion of the spatial 

distribution of the activation due to the averaging of the flux over each cell or voxel; 

this effect is reduced by a finer resolution mesh.  

The D1S method uses a coupled neutron-photon calculation (hence the one, single 

step) where the photons are created exactly where the neutrons collide. This method 

requires modification to MCNP and the data libraries in order to handle more than just 

prompt gammas. The D1S method also makes use of pseudo-time bins to separate the 

contributions from different radioactive nuclides. The D1S method avoids the 

discretisation error, however it requires the activation to be directly proportional to the 

neutron flux, so multi-step reactions or depletion effects cannot be taken into account. 

3.3 Neutronics modelling 

Historically models used for neutronics calculations using the Monte Carlo particle 

transport code MCNP were built by hand. The computer aided design (CAD) model or 

design drawings were simplified by the analyst and written in the MCNP geometry 
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definition as constructive solid geometry (CSG). This process is time consuming and 

as such meant that complex models had to be simplified considerably. 

3.3.1 Solid geometry conversion 

Tools, such as the FDS MCAM software [86], have since been developed to convert 

CAD models into geometry suitable for use with MCNP, making solid geometry 

conversion much faster. There are limitations with these tools, however, and there is 

often a large amount of time required to prepare the models for conversion, check the 

model for conversion errors and to create the ‘void’ region required for MCNP. The 

CAD models have become more complex and so typically require some simplification, 

defeaturing and often splitting to enable successful conversion. The simplification and 

conversion is usually a time consuming iterative process using some CAD tool such as 

CUBIT [87] or the SpaceClaim module of the ANSYS® package [88], [89].  

3.3.2 Direct Accelerated Geometry Monte Carlo tool 

A tool currently in development by the University of Wisconsin-Madison looks to 

automate some of the pre-processing required for conversion and in some cases the 

analysis also. The Direct Accelerated Geometry Monte Carlo (DAG-MC) tool [90]–

[92] uses a CAD geometry of the model and runs a modified version of MCNP, 

transporting particles through a geometry defined by the automatically produced facet 

file.  An implicit void is assumed, removing the requirement to manually define. 

There is still however some pre-processing required, including the creation of a 

‘graveyard’ and the defining of boundary conditions. The graveyard is a shell 

surrounding the geometry, into which all particles will be killed on entering. The work 

flow of DAG-MC relies on the CUBIT [93] toolkit developed and distributed through 

Sandia National Laboratories [94].    

3.3.3 Unstructured mesh geometry 

The most recent release of MCNP, version 6 [95], [96], allows for a new method of 

describing the geometry using an unstructured mesh3  [97], [98]. Using a suitable 

 

3 The term ‘unstructured mesh’ is used to differentiate from the ‘structured’ rectangular or cylindrical 

mesh types used in MCNP for superimposed tallying or variance reduction.  
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meshing tool a CAD model can be described using a tetrahedral, pentahedral or 

hexahedral mesh elements and embedded into the CSG definition within the MCNP 

input file. 

Models created for neutronics assessment through solid geometry conversion are often 

specific to the analysis being performed. The use of unstructured mesh geometry has 

the potential to reduce the build time of models, reduce inaccuracies introduced 

through flux averaging over components and material mixing, and produce models 

that can be used in other analysis, such as thermal stress. The potential advantages of 

an unstructured mesh approach to calculations and some of the current limitations and 

development needs are discussed in further detail in Section 5.11. 

3.4 Nuclear data 

Nuclear data is of fundamental importance in the study of fusion technology and must 

cover a wide range of general and specific purposes. Simulation codes such as MCNP 

require a large amount of nuclear data. As such there are a number of projects 

underway regarding the development of fusion relevant nuclear data libraries. Some 

examples include the US evaluated nuclear data file (ENDF-VII) [99], the Japanese 

Evaluated Nuclear Data Library (JENDL-4.0) [100], the Joint Evaluated Fission and 

Fusion File (JEFF-3.2) [101] and the TALYS-based Evaluated Nuclear Data Library 

(TENDL) [102]. An international effort was initiated by the International Atomic 

Energy Agency (IAEA), launching the Fusion Evaluated Nuclear Data Library project, 

producing the FENDL data library and subsequent versions 2 [103] and 3 [104]. 

FENDL-2 is currently considered the standard nuclear data library for fusion 

application, such as ITER analysis. 

A number of photon cross-section data libraries are available for use with MCNP for 

photon transport/heating calculations. MCNP also has a number of physics options 

available, including the ability to perform Doppler broadening to incorporate the 

effect of bound electrons on photon scattering [105], [106]. Appendix 4 provides a 

summary of investigations into the observed differences by an end user from the use 

of the various libraries. The photon flux through a simple spherical model was 

modelled and compared, along with the effect of the known Doppler broadening bug 

[107]. Comparisons are also made between the implementation of different libraries 

on a fusion relevant model. The overall conclusion was that the photon library PLIB 
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04/84 is the most reliable photon data library for use with MCNP6, and that in the 

case of MCNP5 the PLIB 84 must be used [108].  

The FISPACT [75] activation code has been designed to use the European Activation 

File (EAF -2010) [109]. The FISPACT-II [77] release can also handle other data 

libraries, such as TENDL, ENDF or JEFF. EAF-2010 was developed as part of an on-

going European and world-wide collaboration project and is the standard used in 

EUROfusion [6] and ITER fusion neutronics and activation calculations with 

FISPACT. 

The nuclear data and codes used in research presented in this thesis are shown in 

Table 3.1. 

 

Table 3.1 - Summary of the nuclear data and codes used in this work. 

Calculation Chapter/work Code and libraries 

Particle transport, TBR, flux 

and heating 
Chapter 4, Section 4.1 

MCNPv5 with ENDF-VI and 

PLIB044 

Particle transport, TBR, flux 

and heating 

All work other than (Chapter 4, 

Section 4.1) 

MCNPv6 with ENDF-VII and 

PLIB84 

Material activation All activation calculations FISPACT-II with EAF-2010 

 

3.5 Variance reduction 

The simplest Monte Carlo model for particle transport problems is the analog model 

that uses the natural probabilities that events, such as capture, collision etc., occur. 

The particles are followed from event to event with the next event always sampled, 

using the random number generator, from a number of next event possibilities 

according to the natural event probabilities. This method is directly analogous to the 

naturally occurring transport. This transport model, however, only works well when a 

significant number of the particle histories contribute to the final tally, to give a 

reasonable statistical uncertainty.  

 

4 There is a known bug in the use of PLIB04 with MCNP5, further detail is given in Appendix 4, where 

this effect has been investigated. A comparison has also been performed between the two versions of 

MCNP, MCNP5 and MCNP6, to validate the use of the different versions through the work comprising 

this PhD thesis.  
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In order to increase the contribution to a tally, to reduce the statistical uncertainty, 

non-analog transport is required. Transport models that make use of non-analog 

transport are known as variance reduction techniques. These techniques make use of 

particle weighting in order to prevent biasing the result, whilst implementing methods 

to ‘encourage’ more particle histories to be tallied in the region of interest. 

The four classes of variance reduction techniques are: 

(1) Truncation methods - through the use of modified geometry, i.e. removing 

geometry that will not significantly impact on the final tally, and/or through 

MCNP options such as the energy cutoff and time cutoff. 

(2) Population control - through the use of particle splitting and Russian roulette to 

control the number of samples taken in different regions of the model. This is 

implemented through importance mapping and setting particle weight bounds. 

(3) Modified sampling - through the use of methods such as exponential 

transforms, implicit capture, forced collision and source biasing. 

(4) Partially deterministic methods - in MCNP these include point detectors, 

DXTRAN spheres and correlated sampling. These methods should be used 

with increased caution and require a deep understanding of the problem to 

ensure unwanted and unintentional biasing to the result is not introduced.  

Variance reduction may be considered as either ‘local’ or ‘global’ depending on the 

problem and tally of interest. Variance reduction to increase sampling at a particular 

point would be considered local, whereas variance reduction techniques that aim to 

increase statistical uncertainty throughout the phase-space are considered global 

(GVR). 

The use of weight windows for population control is often considered to be the most 

powerful technique. The weights can be generated automatically through MCNP over 

a superimposed mesh, however an initial ‘guess’ is required, and the overall 

effectiveness of the resulting weight window will be based upon the initial parameters. 

Iterative approaches to calculating weight windows have been developed, including 

the WWiter code that sets the weight range based on previous flux values, as per the 

work of the Cooper and Larsen method [110]. 

Recently released variance reduction software from Oakridge National Laboratory, 

uses a deterministic approach to generating a weight window. The Automated 
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Variance Reduction Parameter Generator (ADVANTG) [111], [112] software 

automates the process of generating variance reduction parameters for use with 

MCNP, generating space and energy dependent mesh-based weight window bounds 

and biased source distributions using 3-D discrete ordinates (SN) solutions of the 

adjoint transport equation that are calculated by the Denovo package. The lower 

weight windows are provided in a format that can be used with MCNP as the weight 

window input file. As ADVANTG employs a deterministic transport solver the user 

effort and computational time are reduced, though for challenging problems, multiple 

iterations may be required for refinement to obtain high-quality variance reduction 

parameters. 

Within this work, a number of variance reduction techniques were used, including 

truncation through the energy and time cutoff values on the CUT card, population 

control through cell importance mapping and weight windows. Automated processes 

were used to generate the weight window, including the WWiter code and 

ADVANTG. A summary of the variance reduction used in the neutronics analysis is 

given in Table 3.2. 

Table 3.2 - Summary of main variance reduction techniques used within this research. 

Calculation Chapter/work Main VR technique 

Particle transport, TBR, 

flux and heating 

Chapter 4, 

Section 4.1 & 4.2 
Energy and time cutoff 

Particle transport,  flux 

and heating 

Chapter 4, 

Section 4.4 & 4.5 

Cell importance mapping for LVR in the centre 

column 

Particle transport, TBR, 

flux and heating 

Chapter 4, 

Section 4.6 
GVR with weight window generated using WWiter 

Particle transport, flux  Chapter 5  

The VR used for each method within chapter 5 is 

detailed further in Section 5.8. For all methods, apart 

from the use of unstructured mesh, GVR through 

weight window and source biasing generated with 

ADVANTG were used. 

3.6 Definition of parameters 

In assessing the blanket performance and material activation/waste considerations, the 

following parameters have been used: 

On-load performance 

• Tritium breeding potential - estimated through the tritium breeding ratio 

(TBR). This is the ratio of tritium breed per source neutron (i.e. the ratio of 
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tritium produced to that which is burnt). The TBR has been estimated using the 

F4 neutron cell averaged flux tally with the MT 205 reaction number. 

• Energy production - defined as the ratio of nuclear heating in the blanket per 

input energy (~14.1 MeV per source neutron), referred to as the energy 

multiplication and determined through the F6 cell averaged energy deposition 

tally. 

• Shielding - measured as the percentage of incident fast flux reaching the back 

of the blanket (see Figure 3.1) and through the peak heating of the inboard 

magnets. The fast flux was calculated with MCNP using an F2 surface tally 

and considering only neutron flux with 𝐸𝑛 > 0.1 MeV. The peak heating was 

determined using the F6 energy deposition tally. 

 

Figure 3.1 - Schematic representation of shielding performance quantity. 

 

• Neutron wall loading - the neutron wall loading in this work was calculated as 

the uncollided neutron flux incident on the first wall. This was tallied in 

MCNP using the F1 surface current tally with materials void and importance 

zero to avoid tallying as a result of collisions within first wall material.  

• Neutron flux map- the neutron flux was calculated using MCNP on a 3-D 

superimposed mesh tally. The neutron flux was tallied in 175 energy group 

structure for use in activation calculations.  

• Heating map - heating throughout the reactor geometry has been estimated 

using 3-D superimposed mesh tally with the corresponding tally multiplier 

(FM card) relating to the neutron or photon heating. 

Breeder blanket or 

dedicated shield 

Incident neutron flux 

(𝐸𝑛 > 0.1 MeV) 
Neutron flux on rear 

wall (𝐸𝑛 > 0.1 MeV) 

Percentage reduction in fast flux =  
Neutron flux on rear wall (𝐸𝑛 > 0.1 MeV)

Incident neutron flux (𝐸𝑛 > 0.1 MeV)
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Activation and waste 

• Activation - the total activity per volume irradiated was taken from the 

FISPACT-II output file, along with the specific activity of some radionuclides.  

• Contact dose rate - the FISPACT-II calculated contact dose rate, measured in 

Sieverts per hour (Sv/hr), was used in determining the quantity of radioactive 

waste material that could be considered for recycling routes. 

• Dominant nuclides - the nuclides that dominate the total activation in some 

specified locations within the model were extracted from the output files of 

FISPACT-II. 

• Pathway analysis - using the pathways keyword within FISPACT-II, the 

pathways have been analysed in some locations of the neutronics model used. 

The MCNP tallies and normalised units are summarised in Table 3.3. 

Table 3.3 - On-load neutronics performance parameters and tallies used. 

 MCNP tally Normalised units 

Neutron flux map FMESH card 
Neutrons/cm2/source 

particle 

Nuclear heating map 
FMESH card with reaction numbers for neutron and 

photon heating 
kW 

Tritium breeding ratio 
F4 cell tally with reaction number for tritium 

production 
Ratio  

Peak heating 
F6 cell energy deposition tally, renormalised to 

fusion power for heating in kW 
kW or kW/m3 

Peak fast flux F2 surface flux tally Neutrons/s/m2 

Neutron wall loading 

F1 surface current tally with materials void and 

centre column importance zero- to tally the 

uncollided neutron power 

MW/m2 

 

3.7 State of the art in neutronics analysis with regards to blanket 

technology performance and radioactive waste assessment 

3.7.1 Tritium breeding in the ITER test blanket modules 

Comprehensive studies have been performed in support of the ITER test blanket 

module programme. These include extensive neutronics calculations, both with 1-D 

and 3-D codes, assessing the capabilities for tritium breeding. An example of the work 
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is given in [113], using detailed 3-D neutronics calculations with the US DCLL test 

blanket module. The calculations were performed directly in the CAD model using the 

DAG-MC code; allowing preservation of the geometric detail. Detailed high-

resolution, high-fidelity profiles of the nuclear parameters were generated using fine 

mesh tallies. These included tritium production, nuclear heating, and radiation damage. 

The test blanket module heterogeneity, exact source profile, and inclusion of the 

surrounding frame and other in-vessel components result in lower test blanket module 

nuclear parameters compared to previous 1-D predictions. The work demonstrates the 

importance of preserving geometrical details in nuclear analyses of geometrically 

complex components in fusion systems. 

More recent 3-D neutronics calculations have been performed, using MCNP, on the 

supercritical-water cooled solid breeder test blanket module developed by India. This 

test blanket module uses supercritical water as the coolant, Li4SiO4 ceramic pebbles as 

a breeder, and beryllium pebbles as a neutron multiplier. The results of neutronics, 

thermo-hydraulic and thermo-mechanical analysis are presented in [114]. The 

neutronics calculations show that the proposed test blanket module has a suitable TBR 

of 1.17.  

3.7.2 Blanket performance of DEMO 

ITER, as already discussed, will be a testing facility. Conversely DEMO is expected 

to be a fusion device nearer to commercial power plants. There is currently not one 

specific DEMO design selected and detailed operation conditions are still in 

development. However it is expected that unlike ITER, DEMO will operate either in 

long-pulsed or steady-state mode. DEMO will also need to show that tritium self-

sufficiency is achievable, and consequently will have a full set of breeder blankets. 

This is in contrast to the test blanket modules designed for ITER. As described in 

Section 2.5.5, there are four main blanket concepts being pursued as part of the EU 

fusion research programme.  

Recent research presented in [115] uses neutronic analysis to assess the variations in 

TBR for the different DEMO blanket concepts; HCPB, HCLL, WCLL and DCLL. 

This work included recent modifications of the blanket configuration. A dedicated 

automated procedure was developed to fill the breeding modules in the common 

generic model in correspondence to the different concepts. The TBR calculations were 
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carried out using MCNP5. It was determined that one of the most critical issues 

regarding the blanket material for tritium breeding is the content of steel. The 

considered variations of the steel content showed a very strong effect on the TBR 

performance for all DEMO blanket concepts, though the HCPB was shown to be the 

most sensitivity. 

The use of beryllium as a multiplier is a feature of many blanket concepts and is used 

in the solid breeder HCPB EU DEMO design. Beryllium is however a valuable 

resource and estimates of beryllium requirements and available resource suggest that 

this could represent a major supply difficulty for solid-type blanket concepts. 

Reducing the quantity of beryllium required by breeder blankets would help to 

alleviate the problem to some extent. It is important though that any reduction in the 

beryllium quantity within a blanket does not diminish the blanket's performance. 

Research presented in [116] proposes the use of a mixed pebble bed design with 

varying fraction of multiplier. This aims to make the most optimum use of the 

beryllium (𝑛, 2𝑛) reaction by careful positioning. A neutronics study using MCNP 

(version 6) with the 2013 EU DEMO model investigates linear variations of the 

multiplier fraction in relation to blanket depth. It was concluded that blankets with a 

uniform multiplier fraction showed little scope for reduction in beryllium mass. 

Blankets with varying multiplier fractions were able to use 10% less beryllium whilst 

increasing the energy multiplication by 1%, and maintaining a sufficient TBR.  

3.7.3 Spherical tokamaks and high temperature superconductors  

There are detailed design concepts for variously named neutron sources, fusion 

neutron science facilities, component test facilities etc. based on small or medium-size 

spherical tokamaks. The recent industrial maturity of HTS magnets offers a new 

opportunity for a more efficient, compact and modular device. One of the critical 

issues with regards to a spherical tokamak is the proximity of the central magnets to 

the fusion plasma with little room for shielding. Research conducted on a spherical 

tokamak power plant using ‘conventional’ superconducting magnets considers a 10 

cm thick water-cooled steel shield [117]. The paper concludes that the shield serves to 

reduce the nuclear heating and damage to the conducting magnets within the centre 

rod to “acceptable levels”.  
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MCNP has recently been used to assess, amongst other things, the heating within the 

centre column magnets for spherical tokamak concepts based on the use of HTS 

magnets [118]. For a given fusion power, the heat deposition in the centre column 

HTS magnets has been considered as a function of plasma major radius, centre 

column radius, and tungsten carbide shield thickness. The study included 

computations over the ranges 0.6 m ≤ major radius ≤ 1.6 m, 0.15 m ≤ centre column ≤ 

0.25 m, and 0.15 m ≤ shield thickness ≤ 0.4 m. The aspect ratio was fixed at 1.8. A 

possible pilot plant with 174 MW fusion power, a major radius of 1 m, centre column 

size of 0.23 m and shielding thickness of 0.32 m is shown to lead to a peak nuclear 

heat deposition into the centre column HTS magnets of ~14 kW. The aspect of 

neutron damage to the HTS magnets was not considered, nor the TBR capabilities. 

3.7.4 Radioactive waste assessment of fusion power plants 

In terms of radioactive waste assessments through neutronics analysis, the study [119] 

computes the radiation transport and activation response throughout the ITER 

machine and updates the previous ITER radioactive waste assessment using modern 

3-D models. MCNP5 (with FENDL2.1 nuclear data) was used for particle transport 

and FISPACT-2007 (with EAF-2007 nuclear data) for activation and nuclide 

inventory estimations. A cell-based method was used (this is described in more detail 

with relation to DEMO radioactive waste assessments in Section 0) and the latest 

information on component design, maintenance, replacement schedules and materials 

was adopted. All plasma-facing materials except tungsten were found to be classified 

as type-B (of the French classification, see Section 5.4.1). Elemental concentration 

limits for type-A classification of first wall and divertor materials were obtained and it 

was concluded that for steels only a reduction in operation life can reduce the waste 

class. Comparison of total waste amounts with earlier assessments is limited by the 

fact that analyses of some components are still preliminary. Importantly the trend, 

however, indicates a potential reduction in the total amount of waste if component 

segregation is demonstrated. 

A DEMO-relevant radioactive waste assessment was carried out by Someya [120] 

using the THIDA-2 code. THIDA-2 is an advanced version of the 1978 developed 

THIDA system. This code coupled the transport calculation (either 1-D/ 2-D discrete 

ordinate radiation transport codes, or 3-D Monte Carlo ‘MORSE-GG’ code) with an 
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induced activation code ‘ACT4’. The THIDA code was developed to not only 

calculated transmutation and activity but also decay heat and delayed gamma source. 

This paper explored the waste management considerations for a DEMO model based 

on the Japanese ‘SlimCS’ concept. Some of the main conclusions relevant for this 

research include: 

• The induced radioactivity for tungsten coating was dominated by 187W and 

188Re originating from 186W in the tungsten coating at short cooling times. For 

cooling times between 1 day and 1 year the 185W activity was prominent.  

• In the case of long-lived radionuclides, the dominant nuclides determining the 

activity were 186mRe (2.0 × 105 years) and 192mIr (241 years).  

• The dominant nuclides with regards to activity in the first wall were 

determined to be 56Mn, 54Mn and 55Fe which originate from 54Fe and 56Fe in 

the F82H steel of the first wall. The 55Fe activity is prominent 100 years after 

shutdown. After this the dominant nuclides were shown to be 63Ni and 14C 

originating from 62Ni and 14N, respectively.   

3.7.5 Neutronics modelling techniques 

In 2008 a study [121] was conducted into the effects of 1-D, 2-D and 3-D geometric 

representations of a fusion reactor for neutronics analysis. The neutron wall loading 

distribution, tritium-breeding ratio and power density distribution were calculated to 

evaluate the nuclear performance using MCNP (version 4C). Comparison of the 

results suggested that a 1-D approach overestimates the TBR. The total TBR was 

calculated to be 1.39, 1.33 and 1.29 based on 1-D, 2-D and 3-D models respectively. It 

was concluded that for obtaining global scalar quantities for general use, simplified 

models of the fusion reactor are usually sufficient.  

In 2015 a comparative assessment of different approaches for the use of CAD 

geometry in 3-D Monte Carlo transport calculations was published [122]. Three 

different approaches for the use of CAD geometries with MCNP calculations were 

investigated and assessed with regard to calculation performance and ease of use. The 

first method was the conversion of CAD geometry into an MCNP using the 

conversion software McCad developed by KIT [123]. The second approach utilised 

the new MCNP6 unstructured mesh geometry feature for the particle tracking and 
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relies on the conversion of CAD into an unstructured mesh. The third method 

employed DAG-MC, developed by the University of Wisconsin-Madison. The 

obtained results show that each method has its advantages depending on the 

complexity and size of the model, the calculation problem considered, and the 

expertise of the user.  

A comparison of the model run with no materials (void) showed good agreement 

between all three approaches, with the MCNP6 unstructured mesh results deviating 

slightly more than DAG-MC from the McCad results. It was concluded that the model 

preparation was the most difficult and time consuming for a McCad approach.  

The MCNP6 unstructured mesh capability has also been considered for shutdown 

dose rate analysis. Codes, such as MCR2S, have been written in order to carry out 

shutdown dose rate calculations for fusion devices. MCR2S (explained in more detail 

in Section 3.2.3) uses a CSG model and a superimposed structured mesh to calculate 

3-D shutdown dose rate maps. A recent paper [124] explores a new approach to 

MCR2S calculations, implementing the use of a single unstructured mesh to replace 

both the CSG model and the superimposed structured mesh. 

This new MCR2S approach was demonstrated on three models of increasing 

complexity: a sphere, the ITER shutdown dose rate benchmark and the DEMO 

shutdown dose rate benchmark. In each case the results were compared to MCR2S 

calculations performed using MCR2S with a superimposed structured mesh. It was 

concluded [124] that the results from the unstructured mesh implementation of 

MCR2S compared well to the structured mesh calculations. It was also concluded that 

the resolution of the unstructured mesh can significantly affect the results of the 

calculations, and the importance to finely mesh components with streaming paths or 

areas that significantly contribute to the dose rate was highlighted.  

The paper [124] also concluded that MCR2S has been successfully modified to enable 

shutdown dose rate calculations on tetrahedral, pentrahedral and hexahedral 

unstructured mesh geometries. A number of advantages regarding the use of an 

unstructured mesh approach to shutdown dose rate calculations are discussed in the 

paper, including motivations for continued investigations. 
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3.8 Motivations for the thesis 

Neutronics assessment regarding the blanket performance of a variety of breeder 

materials is presented in the literature, with a particular focus on the ITER test blanket 

modules. Within the EU fusion research programme the four main EU DEMO blanket 

concepts are also being developed. These concepts focus on the use of two breeder 

materials; the solid Li4SiO4 and the LiPb liquid breeder. A comparison of the solid 

and liquid breeding materials, including some of those proposed for more advanced 

blanket concepts and the less conventional, is presented in this thesis. The neutronics 

analysis method using MCNP is explored and the modelling effects investigated. The 

performance potential of the liquid breeders is particularly important towards the 

progress of more advanced fusion concepts making use of dual functional breeder and 

coolant materials.   

Shielding requirements for the centre column of spherical tokamak concepts has 

recently become a growing area of research, mostly due to the developments of HTS 

magnets and the potential they possess for producing a compact reactor design. The 

reduction of heating to the centre column magnets has been considered in some 

spherical tokamak concepts through the use of a steel or tungsten carbide (and water) 

inboard shield. Further consideration, however, is required regarding the neutron fast 

flux, especially if spherical tokamak concepts are to be considered for fusion power 

plants. A parameterised spherical tokamak neutronics model is used in this thesis to 

perform a scoping study over a wider range of geometrical configurations than 

previously published. Importantly, these studies also include fast neutron flux 

estimations and TBR considerations.  

The radioactive waste assessment of ITER and DEMO concepts through material 

activation calculations is typically conducted using a cell-based approach. The 

MCR2S code has been used extensively, and benchmarked with other codes and 

experiments, in fusion neutronics for shutdown dose rate assessment. A development 

of the MCR2S code has recently been used to perform a structured mesh based 

preliminary radioactive waste assessment on the UK JET facility. The potential of this 

method is explored further in this thesis with reference to a DEMO concept using 

IAEA safety guidelines on radioactive waste. The MCR2S structured mesh approach 

is compared to a typical cell-base method. 
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This radioactive waste assessment method comparison is further enhanced with the 

development of the new MCNP6 unstructured mesh geometry feature. The use of 

unstructured mesh has been demonstrated for use in shutdown dose rate analysis with 

MCR2S. The research presented in this thesis explores the use for a more accurate 

approach to radioactive waste assessments. 
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4 BLANKET PERFORMANCE; 

TRITIUM BREEDING, 

ENERGY MULTIPLICATION 

AND SHIELDING 

4.1 Introduction  

The blanket of a fusion reactor, the layer of material surrounding the plasma, will have 

three main functions: (1) breed tritium fuel to provide a self-sufficient supply, (2) 

produce energy, and (3) shield surrounding magnets. These three functions have been 

explored in more detail. In the case of spherical tokamak designs, there is no room for 

an inboard blanket, therefore consideration needs to be made as to whether the 

outboard breeder alone can provide sufficient tritium and the requirements for a 

dedicated inboard shield.  

This work has been broken down in to four main areas: 

i. assessing the effect of material composition on the blanket performance and 

the use of homogeneous material mixing for neutronics calculations,  

ii. a comparison of the blanket capabilities of some solid and liquid breeding 

materials,  

iii. the shielding requirements for a dedicated inboard shield in spherical tokamaks, 

and  



 

   50 

iv. the neutronics performance, regarding the blanket capabilities, shielding and 

activation considerations, of a high temperature superconducting spherical 

tokamak based on the Princeton Plasma Physics Laboratory spherical tokamak 

fusion nuclear science facility concept.  

4.2 Blanket material composition 

Tritium is bred mainly through the neutron interactions with 7Li and 6Li isotopes. Both 

isotopes are found in naturally occurring lithium; ~92.5% 7Li and ~7.5 % 6Li. To 

utilise the larger cross-section with 6Li at thermal neutron energies (Figure 2.11), 

neutron multiplying materials are considered (Figure 2.10). Neutron multiplying 

materials, such as beryllium, create 2 or more neutrons per neutron interaction, with 

the resulting neutrons having lower energy. The addition of multiplying material can 

have a significant effect on both the TBR and the energy multiplication.  

Tritium breeding blankets will not only consist of a lithium-based material and 

multiplier, but will also require some cooling medium and structures. Structural 

material will be required for example to contain the blanket, for cooling pipes, 

isolation etc. In order to perform neutronics calculations on simple models to assess a 

range of material options, a homogeneous material mixture was proposed.  Studies on 

the effect of modelling the blanket for a pebble-bed blanket design as a homogeneous 

mix, as opposed to a more intricate pebble model, has shown overestimation of the 

TBR by ~2% [125]. 

Investigations regarding the optimising of material mixtures and the effect of 

modelling as a homogeneous mix, as opposed to heterogeneous layers, in a simple 

spherical model are presented in this section.  

4.2.1 Blanket materials 

In this research, the blanket materials were assumed to be pure lithium (with natural 

6Li concentration) for the breeder, beryllium multiplier, helium cooling and 

EUROFER steel structures. The assumed mass density of each material is given in 

Table 4.1 and the isotropic material composition, as used in the MCNP definition is 

given in Table 7.1of Appendix 1. 

The percentage volume of each material was varied from 10 - 40 %, assuming a 

reference mixture of 20 % breeder, 10 % structure, 20 % coolant and 50 % multiplier. 
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Although this method can create material mixtures without a significant engineering 

basis, the main aim was to assess purely the TBR, energy multiplication and shielding 

capabilities from changing material composition. The limit of 10 and 70 % of each 

material provides a reasonable range without creating extremely unrealistic material 

compositions.  

Table 4.1 - Assumed mass density of materials used. 

Material Mass Density (g/cm3) 

Lithium breeder 0.5400 

EUROFER5 steel structure 7.7980 

Helium coolant 0.0002 

Beryllium multiplier 1.8500 

4.2.2 Neutronics model and calculations 

A simple spherical model (Figure 4.1) was used, and in the case of the heterogeneous 

simulations, this was divided into 50 layers of equal volume. A script was written in 

order to produce the cell definitions for the heterogeneous model MCNP input files; 

defining the material for each layer. The layers were defined in a sequence: breeder, 

structure, coolant and then multiplier, which is then repeated. The script first 

determines how many times this sequence can be repeated for the given material 

volume mix. Then, depending on the mixture, layers are assigned one of the four 

materials.  

For example in the case of changing the breeding volume to 40 %: the coolant volume 

is calculated to be 15 %, multiplier 37.5 %, and the structure 7.5 %. The sequence of 

breeder, structure, coolant, multiplier, is repeated 4 times. For each sequence, the 

breeder will be assigned 20 layers, the coolant 8 layers, multiplier 19 layers and the 

structure assigned 4. The resulting model from this example is shown in Figure 4.2.  

 

5 EUROFER steel (such as EUROFER-97 variant [185]) is a Reduced Activation Ferritic/Martensitic 

(RAFM) steel considered for structural applications in fusion devices [186]. The reduced activation 

composition adopted for fusion structural materials has involved the substitution of some alloying 

elements such as Mo, Nb and Ni present in the commercial martensitic steels with other elements which 

exhibit faster decay of induced radioactivity, such as Ta, W and V [187]. 
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For the homogeneous mix simulations, the model remained constant (Figure 4.1) with 

the material definition and density varied. For each change in percentage volume a 

new material definition is created along with the effective mass density. The effective 

volume of each material in the homogeneous material mix should be similar to the 

volume of the model occupied with that material in the heterogeneous model. The 

effective mass density of the homogeneous mixtures should be similar to the sum of 

the material mass within the heterogeneous model, divided by the total volume. A 

comparison of these values is given in Table 4.2. 

The D-T fusion plasma has been modelled as a 14.1 MeV neutron point source in the 

centre of the spherical model. 

 

Table 4.2 - Comparison of effective mass density as calculated from the two blanket 

model types; heterogeneous and homogeneous. 

Volume of 

breeder 

(%) 

Mass density of heterogeneous model 
Mass density of 

homogeneous material mix 

Volume of 

model (cm3) 

Sum of 

mass (g) 

Effective mass 

density (g/cm3) 
Effective mass density (g/cm3) 

10 1.13E+07 2.19E+07 1.95 1.97 

20 1.13E+07 2.04E+07 1.81 1.81 

30 1.13E+07 1.77E+07 1.57 1.65 

40 1.13E+07 1.69E+07 1.50 1.49 

50 1.13E+07 1.47E+07 1.31 1.34 

60 1.13E+07 1.20E+07 1.06 1.18 

70 1.13E+07 1.16E+07 1.03 1.02 

 

 

Figure 4.1 - MCNP spherical model created using two concentric spheres. This model 

was used with homogeneous blanket material mixtures. 

 

‘Plasma’ 

Blanket- homogenous material 

mixture 
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Figure 4.2 - MCNP spherical model created using many concentric spheres as 

determined by the automated MCNP input generating script (purple = breeder, blue = 

structure, yellow = coolant and green = multiplier). This model was used with the 

heterogeneous material simulations; the example shown here is with 40% breeder 

volume.  

 

4.2.3 Results and discussion 

The effect of varying the volume of each material comprising the blanket (the breeder, 

multiplier, structure and coolant), is presented in the following results, using both a 

heterogeneous material approach and a homogeneous material mixture.   

4.2.3.1 Heterogeneous Blanket 

The variation of TBR with changing material composition is shown in Figure 4.3. 

Increasing the volume of breeder material, increases the TBR as there is more lithium 

available for the (𝑛, 𝑡)  reactions. As the percentage of the breeder is increased, 

however, the percentage of beryllium multiplier decreases, the effect of which can be 

seen by the steady TBR above approximately 50 % breeder volume. This is due to the 

reduction of the (𝑛, 2𝑛) reaction from the beryllium and the moderated neutrons as 

required for the high cross-section thermal (𝑛, 𝑡)  reaction in the 6Li isotope. The 

optimum percentage of beryllium multiplier (for TBR) is approximately 30-40 %.  

The presence of structural material has a negative effect on the TBR. When the 

structural content is increased above 20-30 % of the total blanket material the TBR 

falls to below unity, i.e. less than one tritium atoms is being produced per neutron. 

‘Plasma’ 
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Some structural material will obviously be required to ensure the integrity of the 

blanket. 

 

Figure 4.3 - Total TBR for varying percentage volume of material 6. 

 

The effect of material position within the blanket can be seen in Figure 4.4. The 

presence of the first beryllium neutron multiplying layer (green) increases the TBR at 

the front of the second breeding layer due to the increased neutrons. The effect of 

neutron reflection from the structural material can be seen at the back of each breeding 

layer. The TBR in each layer decreases with distance from the plasma due to neutron 

absorption through the layers.  

The effect of material composition on the energy multiplication is shown in Figure 4.5 

and a similar pattern to that shown in the TBR is evident. The 6Li (𝑛, 𝑡) reaction is 

exothermic and so similar to the TBR, the presence of the beryllium multiplier which 

increases the 6Li reaction due to the increase in thermal neutrons, also serves to 

increase the energy multiplication.  

 

6  There are two values missing for the variation in the structural material series, these were not 

recalculated as the general trend and main conclusions can be drawn from the data collected. 
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Figure 4.4 - TBR variation with radial distance from the centre of the plasma region. 

The position of the material layers are shown beneath the graph (purple = breeder, blue 

= structure, yellow = coolant and green = multiplier). This data is for the 40 % breeder 

composition. 

 

 

Figure 4.5 - Total energy multiplication (a ratio of the nuclear energy deposited within 

the material to the energy of D-T neutrons, assumed to be 14.1 MeV) for varying 

percentage volume of material. 
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The shielding capabilities were assessed in terms of the flux attenuation through the 

blanket. The percentage of the incident fast neutron flux that reached the rear of the 

blanket is shown in Figure 4.6. Increasing the percentage of beryllium present 

decreases the neutron flux at the rear of the blanket. With only 10 % beryllium, 

approximately 0.7 % of the incident flux reaches the back of the blanket. This is due 

to a reduction in the moderation provided by the beryllium.  

The concentration of coolant material has the greatest effect. As expected increasing 

the presence of helium and therefore reducing the quantity of other material causes 

more flux to pass through the blanket, thus significantly reducing the shielding 

capabilities.  The flux reduction through the blanket layers is show in Figure 4.7 for a 

40 % breeder case. The change in the spectrum with the increase in thermal neutrons 

is evident. 

 

 

Figure 4.6 - Shielding capabilities, as a measure of the fast flux reaching the back of the 

blanket, for varying material composition. 
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Figure 4.7 - Flux spectrum in each layer (given by radial distance from plasma centre) for a 40 % breeder composition. 
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4.2.3.2 Homogeneous Blanket 

Instead of modelling layers of material, a homogeneous material mix has been used to 

investigate the effects of approximating the blanket as a uniformly mixed material.  

A similar pattern in the effect of material composition in the TBR (Figure 4.8), energy 

multiplication (Figure 4.10) and shielding (Figure 4.11) is observed in the 

homogeneous results, when compare to the heterogeneous model results. Increasing 

the structure or coolant material content reduces the TBR.  

Increasing the percentage of multiplier has a larger effect on the TBR than in the case 

of the heterogeneous model. This is because by approximating the blanket material as 

a homogeneous mix the beryllium and lithium are assumed to be uniformly ‘mixed’, 

resulting in efficient use of the (𝑛, 2𝑛) reactions for interaction with the lithium. In the 

case of the heterogeneous blanket, neutrons produced in the beryllium multiplying 

layer need to leave the beryllium and reach the lithium breeding layer for tritium 

production.   

 

 

Figure 4.8 - Total TBR for varying percentage volume of material. 
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The TBR reduces through the blanket (see Figure 4.9 using a 40 % breeder volume 

mix), reducing to 2 % after ~75 cm compared with 23 % in the heterogeneous model. 

This is due to tritium breeding throughout the entire blanket thickness in the case of 

the homogenisation model. The variation of energy multiplication with material 

composition (Figure 4.10) follows a similar trend to the TBR, as in the case of the 

heterogeneous model also. 

The variation in shielding capabilities with the changing material composition shows a 

similar pattern to that in the heterogeneous model, despite the different modelling 

methods. Although the flux spectrum is different through the blanket (comparing 

Figure 4.12 with Figure 4.7), the overall effect on fast flux reduction is similar.  

 

 

Figure 4.9 - TBR variation with radial distance from the centre of the plasma region. 

For the case of a 40 % breeder composition. 
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Figure 4.10 - Total energy multiplication (a ratio of the nuclear energy deposited within 

the material to the energy of D-T neutrons, assumed to be 14.1 MeV) for varying 

percentage volume of material. 

 

 

Figure 4.11 - Shielding capabilities, as a measure of the fast flux reaching the back of the 

blanket, for varying material composition. 
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Figure 4.12 - Flux spectrum in each layer (given by radial distance from plasma centre) for a homogeneous 40% breeder composition.  
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4.2.4 Conclusions 

The main conclusions of this material composition investigation: 

• Increasing the amount of breeder within the blanket above approximately 40 % 

has little positive effect on TBR and energy multiplication due to the 

consequential reduction in beryllium multiplier in the model. 

• Increasing the concentration of beryllium within the blanket model increases 

the number of neutrons and the 6Li (𝑛, 𝑡) reactions due to the moderation of 

neutron energies. 

• The presence of structural material within the blanket has a negative effect on 

the TBR and energy multiplication capabilities. 

• From this volumetric material composition comparison, a blanket comprising 

of 30 % beryllium multiplier, 40 % lithium breeder, 20 % structure and 10 % 

coolant, assuming all materials need to be present, provides the optimum TBR, 

energy multiplication and shielding capabilities. This is a reasonably realistic 

mixture as it is expected that ~20-30 % of the blanket will need to be structural 

material for cooling channels, supports, containment etc. (see Appendix 1 for 

materials data for the models used, including the DEMO relevant breeder 

blanket mixture). 

• The approximation of breeder blanket material composition with a 

homogeneous mix is shown to increase the TBR due to the more efficient use 

of the (𝑛, 2𝑛) reactions. Breeder blanket concepts with a mixed pebble bed are 

therefore an attractive option. 

• Neutron flux varies through the blanket and is affected by the material within 

the layers. This is important when considering flux or material averaging in 

neutronics analysis. 

4.3 Solid and liquid breeder materials 

In the breeder material optimisation study presented in Section 4.2, the elemental (or 

pure) form of lithium, with natural isotopic abundance, was used as the breeding 

material. Due to the high reactivity of lithium it is expected that either compounds of 

lithium or liquid mixtures will be used as the breeding material. Here a number of 
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materials are compared for their TBR, energy multiplication and shielding capabilities 

along with further optimisation through 6Li enrichment. The research draws on and 

develops the peer-review paper published in the journal of Applied Radiation and 

Isotopes [126]. 

4.3.1 Tritium breeding materials 

Twelve breeding materials were compared in this study, based on candidate materials 

proposed for an EU DEMO and some other less conventional options (see Table 2.3 

for key material references). The materials can be categorised into two main groups, 

the solid breeder blanket materials (i.e. the lithium ceramics), and the liquid breeding 

materials (i.e. the liquid lithium metals and molten salts). A summary of the lithium 

breeding material, blanket composition and mass density is given in Table 4.3. The 6Li 

enrichment was varied from 10 - 90 %. Natural lithium contains approximately 7.5 % 

6Li, therefore although natural lithium has not been modelled explicitly, the results 

from the 10 % 6Li are comparable.  

 

Table 4.3 - Summary of materials used in breeder blanket comparison study. Structural 

material was not included in the homogenous mix and instead modelled as solid layers 

within the geometry. 

Breeding 

material 
Blanket composition (by volume) 

Packing 

fraction 

Mass density 

(g/cm3) 

Molten lithium 

Li 40% breeder, 40% beryllium, 20% helium coolant - 0.952 

Liquid lithium metals 

LiPb 80% breeder, 20% lead - 8.980 

LiSn 80% breeder, 20% tin - 6.200 

Molten lithium salts 

LiBeF 100% breeder - 2.000 

LiFNaK 100% breeder - 2.020 

LiBeFNa 100% breeder - 2.000 

Ceramic lithium 

Li2O  40% breeder, 40% beryllium, 20% helium coolant 0.7 1.079 

Li4SiO4  40% breeder, 40% beryllium, 20% helium coolant 0.7 1.187 

Li2TiO3  40% breeder, 40% beryllium, 20% helium coolant 0.7 1.476 

Li2ZrO3  40% breeder, 40% beryllium, 20% helium coolant 0.7 1.100 

LiAlO2  40% breeder, 40% beryllium, 20% helium coolant 0.7 1.563 

Li8PbO6 80% breeder, 20% helium coolant 0.7 3.424 
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4.3.2 Model and neutronics analysis 

For the comparison of solid and liquid breeding materials, a rectangular cross-section 

model has been used; a modified version of a model provided by CCFE [127]. The 

model focuses on the breeder blankets only, with the divertor represented by a block 

of structural material. As discussed in Section 4.2, the position of materials, and 

homogeneous assumptions, can affect the breeder blanket performance calculations. 

As the solid and liquid breeder blanket designs are likely to be considerably different, 

for example, the solid breeders may be in blankets using mixed pebble bed concepts, 

or separate pebble bed layers, and the liquids will need some form of 

channel/containment to run through, it was decided to model layers of solid structural 

material to represent some form of containment. A plan and elevation view of the 

model can be seen in Figure 4.13. 

The D-T plasma source region has been modelled as a volumetric 14.1 MeV neutron 

source filling the ‘plasma’ cell shown in Figure 4.13. 

 

 

 

Figure 4.13 - Neutronics MCNP model (based on [127]) used for comparison of solid and 

liquid breeder materials; a plan and elevation cross-section is shown. 
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4.3.3 Results and discussion 

4.3.3.1 Lithium-6 enrichment 

The TBR results for varying 6Li enrichment are shown in Figure 4.14 - Figure 4.15, 

with the base material (pure lithium) included in both plots of solid and liquid 

breeders for comparison. The materials containing beryllium vary less in TBR with 

varying 6Li enrichment. A TBR ≥ 1.17 can be achieved in the majority of the solid 

blankets with natural lithium content. The breeder materials Li2O and Li4SiO4 produce 

a peak TBR at 30 - 40 % lithium enrichment; above this the effect of reduced 

moderation from the 7Li dominates the effect. This is not seen in materials such as 

LiPb and LiSn due to the presence of the moderation from Pb and Sn of which the 

material is mostly comprised. The liquid materials require higher 6Li enrichment, up 

to 80 - 90 % for LiPb and LiSn. The potassium-containing materials do not achieve a 

the required TBR ( ≥ 1.1), however this could be further optimised through 

multiplying materials.  

A comparison of the peak TBR, enrichment of 6Li required to achieve peak TBR 

performance, and the minimum enrichment required is given in Table 4.4.  

 

Figure 4.14 - Altering the 6Li enrichment in solid breeder materials, compared with the 

base material (pure lithium). 

 

 

7 This ratio (1.1) includes the extra 0.1 to account for losses within the tritium system, as described in 

Section 2.5.2. 
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Figure 4.15 - Altering the 6Li enrichment in liquid breeder materials compared with the 

base material (pure lithium). 

 

Table 4.4 - Comparison of the optimum 6Li enrichment and the minimum required to 

achieve TBR ≥ 1.1. 

Solid breeders Liquid breeders 

 Peak 

TBR 

Peak 

enrichment 

(%) 

Minimum 

enrichment 

(%) 

 Peak 

TBR 

Peak 

enrichment 

(%) 

Minimum 

enrichment 

(%) 

Li2O 1.40 30 10 Li 1.54 20 10 

Li4SiO4 1.28 40 10 LiPb 1.33 90 40 

Li2TiO3 1.27 70 10 LiFNaK 0.92 50  -  

Li2ZrO3 1.18 90 20 LiBeF 1.13 30 10 

LiAlO2 1.25 70 10 LiBeFNa 1.01 50  -  

Li8PbO6 1.18 10 10 LiSn 1.08 90 80 

 

4.3.3.2 Comparing blanket performance 

The TBR, energy multiplication and neutron fast flux have been compared for the 

different breeding materials using the optimum 6Li enrichment for peak TBR 

performance. The TBR is compared in Figure 4.16 and the distribution of TBR 

through the layers in the outboard blanket can be seen in Figure 4.17 and Figure 4.18 

for solid and liquid breeders respectively. A comparison of the percentage 

contribution to total TBR from the inboard and outboard blankets is given in Table 4.5. 
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Figure 4.16 - A comparison of TBR for solid and liquid breeding material at ‘optimum’ 

enrichment (as determined in Section 4.3.3.1). 

 

 

Figure 4.17 - TBR as a function of depth through the outboard blanket (shown as the 

radius/ distance from the centre of the tokamak).  The base material (pure lithium) is 

also included for comparison. 
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Figure 4.18 - TBR as a function of depth through the inboard blanket (shown as the 

radius/ distance from the centre of the tokamak).  The base material (pure lithium) is 

also included for comparison. 

 

Table 4.5 - Percentage of tritium breeding in the outboard and inboard blankets. 

Solid breeders Liquid breeders 

 Outboard Inboard  Outboard Inboard 

Li2O 77% 23% Li 77% 23% 

Li4SiO4 78% 22% LiPb 80% 20% 

Li2TiO3 78% 22% LiFNaK 78% 22% 

Li2ZrO3 79% 21% LiBeF 77% 23% 

LiAlO2 77% 23% LiBeFNa 78% 22% 

Li8PbO6 77% 23% LiSn 79% 21% 

 

A comparison of the energy multiplication for each of the breeders is given in     

Figure 4.19 with the variation of energy deposition through the outboard blanket given 

in Figure 4.20 and Figure 4.21 for the solid and liquid breeding materials, respectively. 

A comparison of the percentage contribution to total energy multiplication from the 

inboard and outboard blankets is given in Table 4.6. 
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Figure 4.19 - A comparison of energy multiplication for solid and liquid breeding 

material at ‘optimum’ enrichment (as determined in Section 4.3.3.1). 

 

 

 

Table 4.6 - Percentage of energy multiplication in outboard and inboard blankets. 

Solid breeders Liquid breeders 

 Outboard Inboard  Outboard Inboard 

Li2O 79% 21% Li 79% 21% 

Li4SiO4 79% 21% LiPb 80% 20% 

Li2TiO3 79% 21% LiFNaK 79% 21% 

Li2ZrO3 77% 23% LiBeF 80% 20% 

LiAlO2 79% 21% LiBeFNa 79% 21% 

Li8PbO6 81% 19% LiSn 80% 20% 
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Figure 4.20 - Nuclear heating (MeV/g/neutron source particle) as a function of depth 

through the outboard blanket (shown as the radius/ distance from the centre of the 

tokamak).  The base material (pure lithium) is also included for comparison. 

 

 

Figure 4.21 - Nuclear heating (MeV/g/neutron source particle) as a function of depth 

through the inboard blanket (shown as the radius/ distance from the centre of the 

tokamak).  The base material (pure lithium) is also included for comparison. 
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A measure of the shielding performance, through the percentage of fast flux reaching 

the back of the blanket, is presented in Table 4.7. The neutron flux spectrum on the 

inner wall of the inboard and outboard blanket is compared to the spectra on the back 

of the respective blankets in Figure 4.22 for the lithium base material composition. 

The flux reaching the back of the outboard blanket is compared for each breeding 

material in Figure 4.23 and Figure 4.24, for the solid and liquid breeders respectively.  

 

Table 4.7 - Shielding capabilities, as a measure of the fast flux reaching the back of the 

outboard and inboard blankets. 

Solid breeders Liquid breeders 

 Outboard Inboard  Outboard Inboard 

Li2O 0.15% 2.42% Li 0.16% 2.48% 

Li4SiO4 0.15% 2.52% LiPb 0.33% 3.86% 

Li2TiO3 0.12% 2.11% LiFNaK 0.09% 3.03% 

Li2ZrO3 0.54% 5.49% LiBeF 0.07% 1.14% 

LiAlO2 0.08% 1.56% LiBeFNa 0.09% 1.52% 

Li8PbO6 0.06% 0.70% LiSn 0.26% 3.65% 

 

 

Figure 4.22 - Flux spectrum on the inner and outer surfaces/walls of the inboard and 

outboard lithium breeder blankets. 
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Figure 4.23 - Comparing the flux spectrum on the outer wall of the outboard blanket for 

each solid breeder.  The base material (pure lithium) is also included for comparison. 

 

 

Figure 4.24 - Comparing the flux spectrum on the outer wall of the outboard blanket for 

each liquid breeder.  The base material (pure lithium) is also included for comparison. 
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4.3.4 Conclusions 

The main conclusions from the comparison of some solid and liquid breeding 

materials: 

• Pure molten lithium, enriched with 6Li to 30 - 4 0%, with beryllium multiplier 

provides a TBR ≥ 1.1, however lithium is highly reactive and unlikely to be 

used in its pure form. 

• One method for stabilising lithium is the formation of salts; these could also be 

considered for use as the coolant medium. The LiFBe salt performs well with 

regards to the TBR, energy multiplication and fast flux shielding, however 

LiFBeNa and LiFNaK only achieve a TBR of 1, and 0.9 respectively. These 

materials are particularly attractive for use in blankets due to the low melting 

temperatures and low vapour pressures; the TBR could be improved through 

further optimisation of multiplying material.  

• The molten lithium mixtures of LiPb and LiSn perform well with regard to the 

TBR, energy multiplication and fast flux shielding, though require 6Li 

enrichments of 80 - 90 %. These molten lithium mixtures could also be 

considered as dual coolants and have the added advantage of not requiring the 

use of beryllium for neutron multiplying.  

• The solid breeder blankets require, on average, a lower 6Li enrichment to 

achieve TBR ≥ 1.1, however all require the use of beryllium to some degree.  

Further comparisons regarding the activation considerations of some of the solid and 

liquid breeding blanket concepts are performed and presented in Section 4.4.5. 

4.4 Spherical tokamak shielding requirements 

As discussed in Section 2.4.4, the tight aspect ratio of a spherical tokamak results in 

no space for a breeder blanket on the inboard. This has two main implications, (1) the 

tritium breeding is limited to just the outboard and (2) a dedicated shield is required 

on the inboard to limit heating of the magnets within the centre column and the fast 

neutron flux.  

The maximum neutron fluence the HTS magnets can sustain before significant 

degradation is a particularly important criterion. There is some, but yet limited, data 

regarding these limits on fast neutron exposure. The literature agrees that a maximum 
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limit will be in the range of 1022 and 1023 neutron/m2 [128]. Initial figures based on 

Nb3Sn superconducting magnets suggest ~ 1 x 1022 neutrons/m2 [129]. With 

production techniques advancing in recent years this figure has been increased to      

~3 x 1022 neutrons/m2 [130], [131]. And, if 20 - 30 % degradations in critical 

temperature and current density could be tolerated then operation to 1 x 1023 could be 

possible [132]. For the use of the HTS material REBCO a fast neutron fluence 

tolerance limit of 3 x 1022 neutrons/m2 has been used in this work. 

In order to reduce the nuclear heat load to the centre column, mitigating thermal stress 

problems, an allowable peak nuclear heating of 2-5 kW/m3 [131], [133] is assumed. 

The lower limit of 2 kw/m3 [131] is used in the parameterised spherical tokamak 

shielding studies. To assess the shielding requirements for a range of spherical 

tokamak sizes a simple parameterised model was created. 

4.4.1 Parameterised model and neutronics calculations 

A number of approaches for parameterisation were considered and the following 

option chosen for the ability to scan a wide range of centre column sizes, aspect ratios 

and shielding thicknesses. If the model and plasma dimensions were kept constant as 

the shielding thickness was increased, the range in shielding would be limited by the 

available space between the shield and plasma. Increasing the shielding beyond this 

would ‘eat’ into the plasma volume. 

The selected approach specifies that the gap between the first wall and the plasma, is a 

constant. In order to keep this so-called ‘scrape-off layer’8 constant with a simple 

geometric construction of a spherical tokamak device consisting of a centre column 

surrounded by a shield which faces the plasma, Equation 12 must be satisfied 

 

 𝑅 − 𝑎 =  𝐶𝐶𝑟  +  𝑆𝑡  +  𝑆𝑂𝐿 ( 12 ) 

where 𝑅 is the major radius, 𝑎 is the minor radius, 𝐶𝐶𝑟 the radius of the centre column, 

𝑆𝑡 the inboard shielding thickness and 𝑆𝑂𝐿 the scrape-off layer (as previously defined).  

 

8 It should be noted that the term ‘scrape-off layer’ is used in plasma physics with a different and more 

detailed meaning than the use in this thesis. 
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As the shielding is increased, the major radius, and therefore the minor radius, must 

increase also, thus preventing a reduction of the plasma volume. The values for the 

major and minor radii were calculated using Equation (2) and (3) respectively; where 

𝐴𝑅 is the aspect ratio and the 𝑆𝑂𝐿 fixed at 15 cm.  

The effect of changing the shielding thickness can be seen in Figure 4.25; as the 

shielding increases, the plasma volume is moved out and the overall size of the reactor 

increased. 

 
𝑅 =  (

𝐴𝑅  (𝐶𝐶𝑟 + 𝑆𝑡 + 15)

𝐴𝑅 − 1
) 

 

( 13 ) 

 
𝑎 =  

𝑅

𝐴𝑅
 

 

( 14 ) 

 

 

Figure 4.25- Illustrating the change in major radius and overall size of reactor due to 

changing shielding thickness.  
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4.4.2 Neutronics model and materials 

A 90° sector neutronics model has been used and a CAD image is given in Figure 4.26. 

Reflecting boundary planes were used to simulate a full 360° tokamak reactor. The 

centre column is modelled as a homogeneous mixture of copper, steel and helium to 

represent the centre column magnets. A tungsten carbide inboard shield is used with 

13 % water cooling. (Validation of this material selection is given in Appendix 4.) A 

mix of Li4SiO4 with beryllium multiplier, steel and helium coolant is used in the 

blanket to represent a blanket based on the EU HCPB concept. The materials are 

summarised in Table 4.8. 

The D-T plasma source was modelled with a user defined parametric plasma source 

subroutine with MCNP. This source was developed by KIT [123] and implemented in 

MCNP6 by CCFE [134]. 

 

 

Figure 4.26 - The parameterised spherical model, consisting of spherical and cylindrical 

surfaces. An elevation view is given on the left, with plan view section on the right with 

the basic radial build information.  
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Table 4.8 - A summary of the materials used in the spherical tokamak model. (The 

isotopic composition of the constituent parts is given in Table 7.2 to Table 7.4 of 

Appendix 4.) 

Component Material 

Centre column (pink) Copper 57%, steel 38% and helium 5% 

Inboard shield (blue/purple) Tungsten carbide 87% and water cooling 13% 

First wall (yellow) Steel 90%, chromium zirconium copper 5% and helium 5% 

Breeder (green) 
Li4SiO4 (lithium othosilicate) 15%, beryllium multiplier 55%, 

helium 20% and steel 10% 

 

4.4.3 Neutronic calculations  

Calculations were performed with the Monte Carlo N-Particle radiation transport code, 

MCNP (version 6.1) using the FENDL2.1 and ENDFB7.1 nuclear library data.  

Nuclear heating 

• The nuclear heating in the centre column is assessed using an F6 tally in 

MCNP, estimating the heating due to energy deposition from neutron and 

photon interactions. The heating has been assessed for a number of centre 

column radii with varying thicknesses of shielding. The peak nuclear heating is 

taken in a volume of the centre column +-5 cm from the mid-plane. 

Fast flux on the centre column 

• The neutron flux spectrum has been estimated through the material using an F2 

surface tally and the fast flux defined as the neutrons with energy above       

0.1 MeV. The peak fast flux is determined +-5cm from the mid-plane on the 

outer surface of the centre column. 

Tritium breeding 

• This was calculated using the same method as in the previous sections, using 

the 205 MT number with a volume average flux F4 tally.  
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4.4.4 Results and discussion 

As described in Section 4.4.1, the approach selected for varying the shielding 

thickness facilitated a wide range in centre column sizes, aspect ratios and shielding.  

4.4.4.1 Varying shielding thickness 

Considering, for example, the model with a 0.2 m centre column and aspect ratio 1.4, 

the major radius is increased from approximately 2 to 3 m as the shielding varies from 

0.05 to 0.6 m (see Figure 4.31). The peak nuclear heating within the centre column 

(Figure 4.27) is approximately 2000 kW/m3 with 0.2 m of shielding. This is 3 orders 

of magnitude greater than the anticipated limit on HTS of 2 kW/m3.To achieve such a 

limit, more than 0.5 m of tungsten carbide shielding is required. 

 

 

Figure 4.27 - Nuclear heating in the centre column (peak) with varying shielding 

thickness; for a case with a 0.2 m centre column and 1.4 aspect ratio. 

 

 

As the overall size of the tokamak is increased with increasing shielding, this also 

increases the volume of the blanket (as the radial thickness is kept the same, in a 

sphere, the volume will increase). As a result, the TBR is not significantly affected by 

this change. When considering the TBR to 1 decimal place it remains constant at 1.3. 

It should however be noted that in using a spherical tokamak concept to create a 

compact design, any reduction in the outboard breeder blanket volume will reduce the 

TBR (see Figure 4.29). 
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Figure 4.28 - Variation in TBR for changing shielding thickness; for a case with a 0.2 m 

centre column and 1.4 aspect ratio. 

 

 

 

Figure 4.29 - An illustration of a vertical plan through a spherical tokamak. The right 

image highlights some considerations for potential TBR reduction. 
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The shielding capability was also assessed through the fast neutron flux on the centre 

column, i.e. that which has passed through the inboard shield. It can be seen in Figure 

4.30 that a 0.05 m shield has little effect on the fast neutron flux. A shield of 0.3 m 

reduces the fast flux on the shield to approximately 2 orders of magnitude less at the 

back of the shield, where the centre column magnets are housed. 

 

Figure 4.30 - Variation in neutron fast flux (peak) with shielding thickness; for a case 

with a 0.2 m centre column and 1.4 aspect ratio. 

 

4.4.4.2 Varying centre column and aspect ratio 

By considering a range of different geometries, the effect of shielding thickness 

requirements on the overall size of the reactor was assessed. The centre column was 

varied from 0.1 - 0.5 metres and aspect ratios of 1.2, 1.4, 1.6, 1.8, 2, 2.5 and 3 were 

considered. The variation of the major radius for changing shielding thickness in the 

case of a 0.2 m centre column is shown in Figure 4.31. Peak centre column heating, 

TBR and fast flux results are presented for a 0.2 m centre column model in         

Figure 4.32 - Figure 4.33. Data for the other cases is given in Appendix 5.  

The geometry arrangements and shielding requirements that fulfil the peak heating 

limit of 2 kW/m3 are highlighted in Figure 4.35 where it is shown that at least 0.4 m of 

dedicated neutron shielding is required on the inboard of a spherical tokamak where 

no inboard breeder is present. 
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Figure 4.31 - Variation in major radius with increasing shielding thickness for a 0.2 m 

centre column. 

 

 

Figure 4.32 - Nuclear heating in the centre column (peak) with varying shielding 

thickness and aspect ratio; for a 0.2 m centre column. 
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Figure 4.33 - Fast neutron flux in the centre column (peak) with varying shielding 

thickness and aspect ratio; for a 0.2 m centre column. 

 

 

Figure 4.34 - TBR in outboard blanket with varying shielding thickness and aspect ratio; 

for a 0.2 m centre column. 
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Figure 4.35 - Scan of peak centre column heating, across centre column size, aspect ratio and inboard shielding thickness. Models that give a peak 

centre column nuclear heating  ≤  ~2 kW/m3 are highlighted in green. 
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4.4.5 Conclusions 

In this section the aspect ratio, centre column size and shielding thickness has been 

varied without constraint on the major radius and overall size (outer radius) of the 

tokamak. This approach was selected because if the major radius is fixed then the 

range in shielding thicknesses is reduced. 

In conclusion: 

• At least 0.4 m of dedicated inboard shielding is required to limit the heating 

with the centre column magnets to a feasibly operating level of 2 kW/m3 

without damage to the magnets and/or associated reduction in efficiency.  

• Assuming a maximum fast neutron fluence of 3 x 1022 neutrons/m2 to the HTS 

magnets (to prevent damage) the shielding needs to reduce the fast flux to a 

maximum of 1 x 1015 neutrons/m2/s in order to achieve a component lifetime 

of 1 full power year (fpy). At least 0.3 - 0.4 m of shielding is required to 

reduce the fast flux to these levels.  

• A spherical tokamak with 0.4 m of tungsten carbide shielding requires 

geometries with a major radius of  > 3 m, when the boundary conditions are 

set as shown in Section 4.4.1. 

 

4.5 Neutronics assessment of a spherical tokamak and activity 

considerations for breeder blanket selection  

4.5.1 Introduction 

High temperature superconducting spherical tokamaks (HTS-ST) could potentially be 

a more cost-effective approach to fusion power, mainly due to the compact design. A 

HTS-ST is also considered as a leading candidate for a fusion nuclear science facility 

or component test facility. These potential test devices are another option on the 

pathway towards the successful use of fusion for commercial power plants. They 

would provide facilities for developing fusion materials and components without 

requiring the production of net electricity and self-sustaining tritium fuel. Neutronics 

analysis has been performed on a HTS-ST model and the activation of breeder 

materials considered. 
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4.5.2 The HTS-ST model 

A neutronics model was created of a HTS-ST using the preliminary CAD [135], radial 

build and plasma parameters of the Princeton Plasma Physics Laboratory spherical 

tokamak concept for a fusion nuclear science facility design [133], [136]. The main 

plasma parameters, dimensions and components are given in Figure 4.36; an image of 

the generated HTS-ST CAD model. The model was produced using the SpaceClaim 

module of the ANSYS® package. The original Princeton Plasma Physics Laboratory 

spherical tokamak CAD model required simplification and rebuild to comprise of only 

analytical surfaces so that conversion to a CSG definition was possible using the 

MCAM software [86]. Further details regarding the requirements of a neutronics 

model for use with MCNP is given in Section 3.3.   

 

 

Figure 4.36 - Generated 36o CAD model of the HTS-ST, based on the CAD and radial 

build information for the Princeton Plasma Physics Laboratory spherical tokamak 

concept for a fusion nuclear science facility [135], [136]. 
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The centre column of the HTS-ST is modelled as shown in Figure 4.37, comprising of 

the central solenoid, the toroidal field magnet and the toroidal field casing. The centre 

column is separated from the plasma by the inboard shield and vacuum vessel 

structure. The thickness of the inboard shield is 0.5 metres, in-line with the outcomes 

of the previous shielding analysis detailed in Section 4.4 which contributed to the 

Princeton Plasma Physics Laboratory spherical tokamak research and fusion nuclear 

science facility design. 

 

 

Figure 4.37 - Plan view of the centre column at the mid-plane (i.e. Z = 0 cm). 

 

4.5.3 Materials 

In order to create a simple neutronics model for preliminary neutronics assessment 

and on-going parameter studies, some homogenisation of materials was performed.  

In particular: 

• Blankets- a homogeneous mix of Li4SiO4 breeder and beryllium neutron 

multiplier pebbles with a packing fraction of 0.7, reduced activation ferritic 

martensitic (RAFM) steel, and helium coolant represent the blanket material.  

• Shield- consisting of a homogeneous mix of tungsten carbide, RAFM steel and 

water coolant. 

• HTS magnets- comprised of a homogeneous mix of 57% REBCO, 38% 

hastelloy steel and 5% helium. 
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The material selection was made using information gained from previous parameter 

studies on a simple spherical model and from materials used in the CCFE 2008 

component test facility model [137], [138]. The materials used in the model for 

neutron transport are summarised in Table 4.9. (The isotopic compositions are given 

in Table 7.5, Table 7.6 and Table 7.9 of Appendix 4.) 

 

Table 4.9 - Summary of materials used in HTS-ST model.  

Component Material 

Blankets 
Li4SiO4 breeder, beryllium neutron multiplier, steel (RAFM - 

F82H) & helium coolant 

HTS magnets REBCO, hastelloy steel & helium coolant 

Inboard shield Tungsten carbide, steel (RAFM - F82H) & water coolant 

First wall tiles Steel (RAFM - F82H) & helium coolant 

First wall outer structure Steel (RAFM - F82H) 

Divertor tiles Boronated steel (SS304B7 & boron) & water coolant 

Divertor structure/backing Steel (RAFM - F82H) 

Vacuum vessel Steel (RAFM - F82H) + tungsten + borated water  

Toroidal field magnet 

structure 
Steel (RAFM - F82H) 

 

In activation calculations, the candidate breeding materials for an EU DEMO were 

considered along with Li8PbO6, LiFBe and LiSn. In reality the selection of the breeder 

material will change the blanket design and the required structures, cooling channels 

etc. In this work a homogeneous mix of materials is used to represent the different 

breeder blanket concepts. It should be noted that the EU DEMO blanket concepts are 

optimised for a conventional tokamak, as proposed in the EU power plant conceptual 

study. In the cases of Li8PbO6, LiFBe and LiSn, a homogeneous mixture of breeder, 

multiplier, coolant and structure was devised based on the analysis conducted in 

Sections 4.2 and 4.3.  

A summary of the materials is given in Table 4.10, the isotopic composition is given 

in Table 7.7, Table 7.8 and Table 7.9 of Appendix 4. No impurities were considered 

for the LiFBe, Li8PbO6 and LiSn breeding materials. 
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Table 4.10- The breeder blanket materials used in activation analysis. 

Ref 
Tritium 

breeder 
Material composition 

Mass density  

(g/cm3) 

B1 
Li4SiO4 

(40% 6Li) 

Based on the EU- HCPB  

(12% EUROFER, 38% beryllium, 13% Li4SiO4, 37% 

helium coolant)      

2.4272 

B2 
LiPb  

(60% 6Li) 

Based on the EU- HCLL  

(13% EUROFER, 78% LiPb, 8% helium coolant)      
8.4242 

B3 
LiPb  

(60% 6Li) 

Based on the EU- DCLL  

(12% EUROFER, 73% LiPb, 15% helium coolant)      
7.8716 

B4 
LiPb  

(60% 6Li) 

Based on the EU- HCPB  

(18% EUROFER, 80% LiPb, 2% water coolant)           
9.0311 

B5 
LiFBe 

(30% 6Li) 
80% LiFBe, 20% EUROFER 3.1578 

B6 
Li8PbO6 

(10% 6Li) 
60% Li8PbO6, 20% EUROFER, 20% helium coolant 2.8881 

B7 
LiSn 

(90% 6Li) 
80% LiSn, 20% EUROFER 6.5178 

 

4.5.4 Calculations and simulation codes 

Neutron transport calculations have been performed using the radiation transport code 

MCNP [2] with the FENDL-2.1 nuclear data library. The neutron flux was recorded in 

two superimposed structured mesh tallies with a voxel resolution of 10 cm. The 

neutron flux was tallied into 175 energy bins for subsequent use with MCR2S for 

activation calculations. Two mesh tally files are required to limit the amount of mesh 

voxels which are outside the mesh geometry, as these still take up valuable space in 

memory though do not hold any useful data (see Figure 4.38).  

In addition to the neutron flux, the tritium breeding, peak nuclear heating to the 

magnets, peak inboard fast flux, and the neutron wall loading were also assessed. The 

position of the ‘peak’ values can be seen in Figure 4.39. 

Activation calculations have been performed using FISPACT-II with the EAF-2010 

[109] activation data. In order to assess the activation of various blanket designs 

without having to perform repeat neutron transport calculations for each material, the 

same neutron flux has been used in the activation of different blanket materials. The 

change in material will have some effect on the neutron flux within the breeding 
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blanket. However, for an initial investigation into the activation of various breeding 

materials and the dominant nuclides this will be sufficient as neutron transport 

calculations with MCNP are computationally expensive. 

 

Figure 4.38 - Location of the two superimposed mesh tallies, in a vertical elevation (left) 

and plan view through the mid-plane, z = 0 cm, (right). (Scale in cm) 

 

 

Figure 4.39 - Position of 'peak' values of heating, fast flux and neutron wall loading in 

the HTS-ST model.  

 

‘Peak’ values taken +- 5 cm 

from the mid-plane 
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surfaces of shield, inboard toroidal field 

coil and central solenoid 
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4.5.5 Results  

The neutron flux results, recorded in a neutron mesh tally are shown in the ‘flux maps’ 

of Figure 4.40. The results have been renormalized to a 550 MW fusion power device, 

i.e. a source strength of 1.95 x 1020 neutrons/second.  

The nuclear heating over the reactor sector model, recorded in a mesh using heating 

reaction multipliers, is shown in the nuclear heating maps (Figure 4.41). To 

investigate the heating as a function of depth through the centre column, values in 

each voxel of the mesh were extracted in a line along the mid-plane (Z = 0 cm). These 

are given in Figure 4.42 alongside a CAD image of the centre column. The change in 

energy deposition (i.e. nuclear heating) can be observed in the different materials that 

comprise the centre column. Peak heating, fast flux and neutron wall loading is given 

in the summary table of the neutronics performance (Table 4.11).  

 

 

Figure 4.40 - Neutron flux (neutrons/s/cm2) maps; plan view through mid-plane (left) 

and vertical elevation (right). (Scale in cm) 

 

Neutron flux 

(neutrons/s/cm2) 
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Figure 4.41 - Nuclear heating (kW/m3) maps; plan view through mid-plane (left) and 

vertical elevation (right). (Scale in cm) 

 

 

 

 

Figure 4.42 - Nuclear heating (kw/m3) as a function of depth through the centre column 

and inboard shield. (Brown - central solenoid, light blue -toroidal field coil casing, green 

- toroidal field coil, pink - vacuum vessel, purple/blue - inboard shield.) 
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Figure 4.43 - CAD image of the tritium breeding blankets with TBR values determined 

using the Li4SiO4 breeder blanket. 

 

Table 4.11 - Summary of HTS-ST neutronics performance. Peak refers to the volume or 

area +- 5 cm from the mid-plane.  

Neutronics parameter Position Value (units) 

Peak neutron wall loading Inboard 1.45 MW/m2  

Peak neutron wall loading Outboard 1.77 MW/m2 

Neutron wall loading Machine average ~1.29 MW/m2 

Peak fast flux Inboard toroidal field 3.8 x 1014 neutrons/s/m2  

Peak fast flux Central solenoid 3.6 x 1013 neutrons/s/m2 

Peak nuclear heating Inboard toroidal field 5.6 kW/m3 

Peak nuclear heating Central solenoid 0.4 kW/m3 

Total TBR Outboard & divertor blankets 1.12 

 

Using the neutron flux determined over the two meshes, different breeding materials 

have been irradiated to compare activation levels and decay products (Table 4.13). 

Activation concentrations of dominant nuclides, as determined at 50-100 years 

cooling time, have been investigated. The activity concentration variation with time is 

given for blanket mix ‘B1’ (with a Li4SiO4 breeder material) in Figure 4.44. Graphs 

Upper divertor blanket 

(TBR = 0.01) 

Lower divertor blanket 

(TBR = 0.01) 

 

Blanket 1 

(TBR = 1.08) 

 

Blanket 2 

(TBR = 0.02) 
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for the other six blanket mixtures activated are given in Figure 7.15 to Figure 7.20 of 

Appendix 5.2. The total activity of each blanket mix is compared in Figure 4.45 and 

Table 4.12. For clarity of presentation the discussions are provided in Section 4.5.5. 

 

Figure 4.44 - Activity concentration of dominant nuclides for blanket mix B1 using a 

Li4SiO4 breeder material. 

 

 

Figure 4.45 - Comparing total activity concentration (excluding tritium) of each blanket 

mixture (B1-B7). 
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Table 4.12 - Comparison of total activity concentration (GBq/tonne) (excluding tritium) 

for each blanket (1-7) at eight cooling times. 

 B1 B2 B3 B4 B5 B6 B7 

6 months 8.21E+07 1.37E+07 1.35E+07 1.76E+07 8.56E+06 6.66E+06 7.26E+07 

1 year 6.89E+07 1.15E+07 1.14E+07 1.48E+07 7.18E+06 5.60E+06 4.65E+07 

10 years 6.39E+06 1.09E+06 1.08E+06 1.39E+06 6.65E+05 5.36E+05 3.20E+06 

50 years 1.54E+03 2.90E+02 2.88E+02 3.69E+02 5.13E+02 2.31E+02 9.54E+05 

100 years 4.31E+02 9.49E+01 9.42E+01 1.14E+02 4.05E+02 1.33E+02 4.33E+05 

500 years 2.28E+02 6.04E+01 6.00E+01 7.03E+01 3.67E+02 1.12E+02 1.12E+03 

1000 years 2.06E+02 5.68E+01 5.64E+01 6.55E+01 3.44E+02 1.06E+02 4.97E+00 

5000 years 1.32E+02 4.48E+01 4.46E+01 5.00E+01 2.17E+02 7.10E+01 2.14E+00 

 

 

Table 4.13 - Primary pathways for main dominant nuclides identified. 

Nuclide Half-life Primary pathways 

3H  12.32 y 6Li(𝑛, 𝛼)3H 

14C  5730 y 14N(𝑛, 𝑝)14C 
19F(𝑛, 𝑛𝛼)15N(𝑛, 𝑝)14C 
19F(𝑛, 𝑛𝛼)15N(𝑛, 𝑑)14C   
19F(𝑛, 𝑡) 17O(𝑛, 𝛼)14C 

205Pb 1.73x 107 y 206Pb(𝑛, 2𝑛)205Pb 

63Ni  9.90 y 63Cu(𝑛, 𝑝)63Ni 
62Ni(𝑛, 𝛾)63Ni 

121Sn 27.03 h 120Sn(𝑛, 𝛾)121Sn 

121mSn 43.9 y 122Sn(𝑛, 2𝑛)121mSn 
120Sn(𝑛, 𝛾)121mSn 

94Nb h 19986 y 93Nb(𝑛, 𝛾)94mNb(𝐼𝑇)94Nb   
93Nb(𝑛, 𝛾)94Nb 

93mNb  16.2 y 93Nb(𝑛, 𝑛)93mNb 

53Mn  3.74 x 106 y 54Fe(𝑛, 𝑛𝑝)53Mn 

60Co 5.27 y 59Co(𝑛, 𝛾)60mCo(𝐼𝑇)60Co 
59Co(𝑛, 𝛾)60Co 

113mCd 14.1 y 116Sn(𝑛, 𝛼)113mCd 

108mAg 438 y 112Sn(𝑛, 𝛼)109Cd(𝛽+)109mAg(𝐼𝑇)109Ag(𝑛, 2𝑛)108mAg     
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4.5.6 Discussion and conclusions 

4.5.6.1 Shielding performance  

The HTS-ST shows promising results in terms of the nuclear heating in HTS magnets 

within the centre column, with a peak nuclear heating 0.4 kW/m3 in the central 

solenoid and 5.6 kW/m3 in the inboard toroidal field coil. A shield of tungsten carbide 

with 13% water, 58 cm thick was used as the dedicated inboard neutron shield. The 

HTS-ST geometry provides effective shielding in terms of the centre column heating 

whilst providing a reasonable neutron wall loading, 1.45 MW/m2 peak inboard, as 

required for fusion environment testing. If the HTS magnets are limited to a neutron 

fast fluence (𝐸𝑛 > 0.1 MeV) of 3 x 1022 neutrons/m2 then the toroidal field magnets 

(based on centre column-toroidal field values) have a lifetime of approximately       

2.5 FPY (full power year).  

4.5.6.2 Blanket performance 

Due to the geometry of spherical tokamaks the breeder blanket is limited to the 

outboard. In this model the outboard breeder blankets are shown in Figure 4.43 as the 

light blue and salmon pink regions. In the Princeton Plasma Physics Laboratory 

spherical tokamak fusion nuclear science facility design, divertor blankets have also 

been considered (dark pink region). A TBR of 1.12 is achieved using the solid ceramic 

breeder Li4SiO4, enriched with 40% 6Li, based on the EU-HCPB blanket concept. As 

already mentioned, depending on the purpose and operation of the spherical tokamak 

fusion device, tritium self-sufficiency may not be a requirement. For any commercial 

fusion power plant or DEMO, however, tritium self-sufficiency is required (TBR 

>1.1). Although a TBR of 1.12 is achieved in the blankets of this HTS-ST, no gaps or 

holes for ports, access, removal, etc., are considered which could reduce the TBR 

significantly. 

The majority (~97 %) of the TBR contribution is from blanket 1, with blanket 2 

contributing ~1.5 % and ~1 % from each of the divertor blankets. Of the total TBR, 

~96 % is from the 6Li reaction. Further optimisation of the enrichment and quantity of 

neutron multiplying material (in this case beryllium) could be used to increase the 

TBR as the blanket material composition used in this study is optimised for an EU 

DEMO HCPB concept.  
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4.5.6.3 Activation considerations 

Activation calculations have been performed on a number of blanket materials, 

assuming the neutron flux to be the same for each (as calculated in the neutron 

transport calculation with the EU HCPB blanket material). The operational scenario is 

not a particularly close representation of that which may be derived for a fusion 

neutron science facility and simply assumes a 10 year life at 30% fusion power 

(equivalent to approximately 3 FPY, as proposed for the Princeton Plasma Physics 

Laboratory fusion neutron science facility using HTS magnets). An example of the 

dominant nuclides and time dependency is given in Figure 4.44 for a blanket material 

based on the EU HCPB concept. Similar plots are available in Appendix 5.2 for the 

other 6 blanket mixtures.  

Comparison of the total activation concentration (Figure 4.45 and Table 4.12) from 

four different breeder materials (seven blanket mixtures compared in total) shows that 

the dominant nuclides at 50-100 years are similar in all cases apart from LiSn. The 

activation of the structural material component is shown to contribute significantly to 

the total activation. 

Of the three EU DEMO concept materials that make use of the molten lithium mixture, 

LiPb, similar activation products and time variation is shown. The fourth EU DEMO 

blanket concept makes use of the ceramic solid breeder Li4SiO4 which shows slightly 

higher activity concentration levels.  

With regards to the lithium mix, salt or compound materials, the following 

radionuclides are shown to dominate after a cooling period of 50-100 years (see   

Table 4.13 for the primary pathways for the main dominant nuclides): 

• All LiPb blankets - the very long-lived 205Pb radionuclide 

• LiFBe - the long-lived 14C radionuclide resulting from interaction with the 

fluorine   

• LiSn - the radionuclides of 121mSn, 121Sn, 113mCd and 108mAg  

The activation of the solid ceramic breeder Li4SiO4 blanket is dominated by the steel 

contribution. 

In terms of the radiotoxicity of the nuclides presented in Table 4.13, the majority are 

considered have low to moderate radiotoxicity levels. In the case of 14C, for example, 
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the radiotoxicity is only related to radioactive emissions of the pure low-energy (156 

keV) β. This toxicity is mainly the result of internalisation through ingestion. Nuclides 

such as 60Co and 94Nb have a higher radiotoxicity level, mostly due to the very high-

energy gamma emission. 

4.6 Discussion and conclusion of breeder blanket performance 

and shielding analysis 

4.6.1 Blanket materials 

Using a neutron multiplying and moderating material, such as beryllium or lead, is 

required to ensure a TBR ≥ 1.1 is achievable. If an ideal situation of one tritium is 

produced for every neutron, if losses surrounding the entire tritium system are 

considered, this wouldn’t be enough to provide a self-sufficient supply. Neutron 

multipliers increase the number of neutrons and therefore the (𝑛, 𝑡) reactions within 

the lithium. Increasing the volume percentage of beryllium to 40 % gives a TBR of 

~1.8 and energy multiplication of ~1.2 in a simple homogeneous spherical model with 

a pure lithium breeder. 

Approximating the blanket material as a homogeneous mix means that the beryllium 

and lithium are assumed to be uniformly ‘mixed’, this increases the TBR and energy 

multiplication as the neutron multiplication effects of beryllium are put to best use i.e. 

in the case of a heterogeneous model, the neutrons produced through (𝑛, 2𝑛) reactions 

within the beryllium layer are likely to interact again with the beryllium as opposed to 

the lithium as they need to get out of the beryllium layer first. If the beryllium layer is 

increased too much, it no longer has a positive effect on the TBR. Breeder blanket 

concepts with a mixed pebble bed are therefore more attractive in this context than 

separate channels or layers of each material.  

The homogeneous mix also assumes that the neutron flux is not affected by the 

different materials although it is shown in comparing Figure 4.7 and Figure 4.12, that 

the flux is different. This is important when considering the use of neutronics models 

for activation analysis where the neutron flux is assumed to be the same over the 

entire cell.  
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4.6.2 Breeder blanket material selection; solid or liquid? 

A number of solid and liquid breeding materials have been considered for their 

capabilities as a tritium breeding material within the breeding blankets of a fusion 

magnetic confinement tokamak. The capabilities have been assessed through the 

tritium breeding potential, energy multiplication and shielding of fast neutron flux. 

These three aspects cover the main requirements of a fusion blanket.  

The breeding materials are compared against the base material of pure lithium. As 

lithium is highly reactive it is unlikely to be used in its pure form, though there are 

blanket designs using molten lithium such as the Korean concept. These designs will 

require considerably greater safety assessment, however, due to the high reactivity of 

molten lithium with water and air. Lithium is shown to provide a TBR ≥ 1.1 

regardless of 6Li enrichment, when modelled as a homogeneous mix with 30 – 40 % 

beryllium multiplier. Without the beryllium the number of neutrons is significantly 

reduced affecting the tritium breeding potential. Some form of neutron multiplying 

material is required to ensure TBR ≥ 1.1, as producing one tritium atom for every 

neutron would not be enough when losses are considered. Beryllium is considered as 

the prime candidate for a neutron multiplying material in the majority of fusion 

blanket designs, though this has compatibility issues with water leading many designs 

to move to a helium coolant. The other multiplier considered in this work is lead 

which features in a number of liquid breeder designs as LiPb and has been considered 

as a ceramic breeder Li8PbO6.   

4.6.2.1 Liquid breeding materials 

One of the methods to stabilise lithium for use in breeder blankets is via conversation 

to a salt, LiF. The melting point of LiF is high and can be reduced through the 

addition of BeF2, which also acts as a multiplier. The molten salts considered in this 

work were LiFBe (commonly referred to in literature as Flibe), LiFBeNa and LiFNaK. 

The molten salts have a lower TBR than pure lithium (with beryllium neutron 

multiplier) due to the reduced concentration of lithium resulting from the inclusion of 

additives, and do not produce an energy multiplication factor of > 1. The LiBeF 

molten salt is the only one to achieve a TBR greater than the required 1.1, achieving a 

peak TBR of 1.13 at a 30% enrichment, but an energy multiplication factor of 0.9. The 

LiFBeNa and LiFNaK achieve some tritium production, 1.0 and 0.9 respectively, with 
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values of 0.9 and 0.8 for energy multiplication. The breeding potential and energy 

multiplication could be increased through optimisation of multiplying material and the 

addition of beryllium to the LiFNaK. The LiFBeNa and LiFNaK are attractive options 

for coolant in fusion blanket designs due to the low melting temperatures and low 

vapour pressures. However the breeding potential has been shown to be lower than 

that of the LiBeF molten salt and the addition of sodium introduces further activation 

issues. Although the molten salts have lower tritium breeding potential the high 

electrical resistivity of the molten salts reduces problems regarding the 

magnetohydrodynamics (MHD) effect making them still an attractive option for use as 

the coolant and/or as part of a dual-coolant or dual-functional design, whilst also 

creating tritium.  

Other liquid materials considered, the LiPb and LiSn liquid metals, have higher TBR 

and energy multiplication potential than the molten salts, a peak TBR of 1.3 and 1.1 

respectively, but introduce MHD drag effects when considered as a coolant, due to the 

lower electrical resistance and may necessitate ceramic coatings for electrical 

insulation on steel structures to reduce the drag. Using these liquid metal mixtures in a 

slow circulating flow would allow for the continuous control of tritium and 

purification; however the addition of Pb or Sn requires enrichments of 40 – 90 % for a 

TBR ≥ 1.1. The TBR potential of LiSn can be increased through the addition of 

beryllium, though this removes the advantage of having a blanket design that does not 

use beryllium. The liquid metal mixtures do not reduce the fast neutron flux as 

effectively as the molten salts, though all the liquid breeders reduce the fast neutron 

flux at the back of the blanket to less than 0.4 % of the first wall fast flux. The molten 

salts provide similar fast flux shielding to the solid breeder materials. 

Additional cooling is likely required, whether or not the liquid metal mixtures are used 

as coolants or not; the use of an alternative primary coolant also reduces the problems 

regarding MHD effects. The main primary coolants considered in both liquid and 

solid blanket designs are water and helium. Tritium recovery from water is more 

costly than from helium and coatings, such as Al2O3, are likely to be required when 

using water with a LiPb blanket design to act as a tritium permeation barrier. Water is 

also best avoided when using beryllium in the blanket due to the safety implications of 

water and beryllium incompatibility, however beryllium features in many designs due 

to its excellent neutron multiplying capabilities. Designs are moving to use helium as 
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the primary coolant; however the use of helium in fusion environments is less well 

researched. 

4.6.2.2 Solid breeders 

The ceramic or so-called ‘solid’ breeders all achieve a TBR ≥ 1.1 and on average 

require a lower enrichment of 6Li to achieve this than the liquid breeders. All but the 

Li8PbO6 achieve an energy multiplication > 1 and reduce the neutron fast flux at the 

back of the blanket to less than 0.6% of the first wall fast flux. The solid breeders 

show less of a variation in TBR with increasing 6Li enrichment and a similar trend to 

the pure lithium. These breeding materials tend to have a peak enrichment of 30 – 

40 %. Li4SiO4 provides a TBR ≥ 1.1 and energy multiplication > 1.1, and is used as 

the breeder in the most near-term EU DEMO solid breeder blanket concept, the HCPB 

blanket. This breeder, along with Li2TiO3, are the most advanced of the ceramic 

breeders in terms of the manufacturing and production processes. Li2TiO3 produces a 

similar TBR to the Li4SiO4 but has further advantages regarding the lower thermal 

expansion that reduces the build-up of stresses caused by heating.  

4.6.3 How small can a magnetic confinement fusion tokamak be? 

In a conventional tokamak the physical dimensions of the coil rings mean that the 

‘hole’ in the torus can only be reduced so far before the windings of the coil are 

touching. This limits the aspect ratio of tokamaks to about 2.5. In a spherical tokamak 

design, the toroidal field coils often either placed closer to the plasma and/or a single 

central conduct is used. The reduction in overall size of the central column means that 

the fusion plasma can be held in a tighter magnetic field with a reduced aspect ratio, 

as low as 1.2. Recent developments in HTS have made the small aspect ratio spherical 

tokamak a more attractive option as they have the potential to be a more economical 

and efficient method for fusion power. They are particularly attractive for component 

test facility or fusion nuclear science facility due to the possible modular design and 

use of HTS in remountable magnets. 

Neutronics analysis on a simple spherical tokamak model, varying the centre column 

size, aspect ratio and shielding thickness has shown that to reduce the peak heating in 

the centre column to an appropriate level for HTS, a shield of at least 0.4 m is required. 

It is expected that HTSs could withstand heating of 2-5 kW/m3, though the lower limit 

of 2 kW/m3 was used in these parameterised spherical tokamak studies. This required 
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shielding thickness has an impact on the overall size of the reactor. Using the 

geometry constraints set in this study, a tokamak with a major radius of at least 3 m is 

required to provide a the space requirements for such a thick shield to reduce peak 

centre column heating to ≤ 2 kW/m3. 

4.6.4 Neutronics performance of HTS-ST 

Neutronics performance analysis of the HTS-ST (based on the Princeton Plasma 

Physics Laboratory spherical tokamak fusion nuclear science facility concept) has 

shown promising results. The model provides a reasonable neutron wall loading of 

~1.29 MW/m2 machine average, with 1.45MW/m2 peak inboard and 1.77MW/m2 peak 

outboard, whilst ensuring reasonable shielding to reduce heating in the HTS magnets. 

The 0.5 m tungsten carbide (and 13% water) inboard shield reduces the peak nuclear 

heating in the centre column to 0.4 kW/m3 in the central solenoid and 5.6 kW/m3 in 

the inboard toroidal field coil. These values compare well with similar studies using 

the DAG-MC approach [133], reporting a peak nuclear heating of 4.8 kw/m3 in a 

similar region.  

If the superconducting magnets are limited to a neutron fast fluence (𝐸𝑛  > 0.1MeV) 

of 3 x 1022 neutrons/m2 then the toroidal field magnets (based on the inboard toroidal 

field coil values) have a lifetime of approximately 2.5 FPY. In the case of the fusion 

nuclear science facility proposed by Princeton Plasma Physics Laboratory, the 

intended blanket lifetime is 3.1 FPY. Using a fast neutron fluence limit of                 

4.3 x 1022 neutrons/m2 as proposed in  [133], the magnet lifetime can meet this 

requirement. 

The tritium breeding material for the Princeton Plasma Physics Laboratory spherical 

tokamak fusion nuclear science facility design is the liquid breeder LiPb [133]. In the 

research presented in this thesis the solid ceramic breeder Li4SiO4 has been used. The 

tritium breeding of the Li4SiO4 blankets within the HTS-ST model provides a        

TBR > 1.1. The geometry of a spherical tokamak does not allow for an inboard 

breeder blanket, and as such the tritium fuel production is limited to the outboard. This 

model includes the divertor blankets, as proposed in the Princeton Plasma Physics 

Laboratory spherical tokamak fusion nuclear science facility design. These divertor 

blankets contribute ~3% of the total TBR. However in the model used, there was no 
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provision made for gaps or port holes, therefore the contribution from the divertor 

blankets may prove to be more significant. 

The HTS-ST neutronics model was also used to determine a reasonable fusion blanket 

neutron flux spectrum for activation analysis of potential tritium breeding materials. 

The flux, determined in a neutron transport calculation with the Li4SiO4  breeder 

blanket, based on the EU HCPB composition, was used to irradiate blankets of seven 

different material compositions; the four main EU blankets plus the less common 

Li8PbO6, LiSn and LiFBe. As no detailed irradiation scenario is known for HTS-ST as 

a component test facility, fusion nuclear science facility or fusion power plant, an 

operational life of 10 years at 30 % fusion power was assumed [133]. The activation 

in a voxel within the mesh covering the breeder blanket was compared. The three 

LiPb EU blanket concepts all have similar activity concentrations. The activation of 

Sn dominates the activity in the LiSn breeder blanket and does not begin to 

significantly decrease until after ~200 years cooling time.  
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5 RADIOACTIVE WASTE 

ASSESSMENT OF DEMO 

5.1 Introduction 

A fusion reactor device will become radioactive during operation as a result of 

irradiation by neutrons generated in the D-T reaction. A fusion power plant will 

typically receive approximately 1 x 1021 neutrons per second during full power pulses. 

Consequently radioactive waste will be produced, however, only a limited amount of 

long-lived radioactive waste is generated. Fusion power reactors will not produce any 

radioactive waste requiring significant active cooling, such as that arising from fission 

plants where the thermal output can be 2 - 20 kW/m3 [66]–[68].  

Radioactive waste needs to be disposed of using methods that ensure safe isolation 

from biological systems. There is also a need to reduce the amounts of permanent 

radioactive waste; an important issue with regards to public acceptance of fusion 

power. Several paths are available depending on how the waste is classified, national 

regulations, and existing facilities, such as direct disposal into deep geological 

disposal facilities, near surface disposal, recycling and clearance of materials that are 

not active waste.  

5.2 Radioactive waste  

Radioactive waste in a fusion power facility will be produced during operation of the 

plant (through maintenance on supporting systems, the replacement of components, 
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etc.) and in decommissioning. Rosanvallon [139] provides a first estimate, based on 1-

D activation calculations, for a total ITER radioactive waste mass of 34 kilotonnes (kt), 

with 11 % from the operation of the facility and 89 % arising during the 

decommissioning. Radioactive waste is produced as a result of neutron induced 

activation of materials. In addition, further radioactive waste will be produced through 

tritiation. Components may be contaminated with tritium through absorption and 

permeation.   

The research presented in this thesis focused on the radioactive wastes produced 

through neutron induced activation, though the problem of tritium contamination is 

discussed. The radioactive waste management issues applicable to a fusion power 

plant and lessons that can already be learnt from ITER are discussed. A waste 

classification, based on IAEA and EURATOM safety of radioactive waste guidance, 

was applied to an EU helium-cooled pebble bed DEMO reactor model. Neutronics 

methods for performing the radioactive waste calculations are compared.  

5.3 Waste management 

Within European countries the legal requirement and regulations regarding radioactive 

waste management are well established but nationally specific. It is the responsibility 

of the national authorities or regulatory bodies to establish the appropriate criteria for 

storage and or disposal. Within the scope of this work, the French criteria regarding 

the ITER facility, along with the UK radioactive waste criteria (as used for radioactive 

waste assessments of the JET facility), and the IAEA based EU DEMO criteria will be 

discussed. Detailed conditions, regulations and technological standards for clearance 

and disposal acceptance criteria established in a number of other European countries 

are discussed in detail in the Marginer report [140]. In all cases the waste management 

within the EU is based upon the EURATOM treaty and EURATOM Basic Safety 

Standards Directive [141] (BSSD-1996).  

The end-point for radioactive waste management is disposal providing passive and 

robust safety features. The waste acceptance criteria are facility/site specific and may 

also differ on a package type basis. Due to the limited availability of waste burial 

facilities in the EU and the associated social perceptions regarding radioactive waste, 

an optimum waste management plan for fusion power plants needs to be developed 

[68]. Although this is not the main purpose of this thesis, the waste produced by an 
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EU DEMO model has been explored with an aim to provide recommendations 

regarding the neutronics analysis methods used and considerations for the waste 

classification. 

5.4 Radioactive waste classification and clearance  

Waste characterisation is an important aspect of waste management, providing 

information required for conditioning needs and disposal decisions. Radioactive waste 

can be classified into a number of groups, based on the activity, contact dose rate 

and/or residual heat. The classes of waste vary depending on the regulations of the 

country and allowable levels associated with the disposal facility.  

 

Table 5.1 - Comparison of UK [142] and IAEA [143], [144] waste classes and disposal.  

JET- UK Demo- IAEA 

Out of Scope 

Cleared from regulatory 

control 

 

Clearance level < 1 

Non-Active 

(NAW) 

Cleared from regulatory 

control 

 

Clearance level < 1 

NEAR SURFACE 

Low Level 

(LLW) 

Disposal in near-surface 

facilities 

 

Classed by activity: 

4GBq/t  > alpha >  4 MBq/t 

12GBq/t  > beta > 12MBq/t 

Low Level 

(LLW) 

Disposal in near-surface 

facilities 

 

Classed by activity: 

< 12GBq/t 

Fraction of LLW 

possibly available 

for recycling (LLW-

RM) 

Potential for recycling 

 

Classed by contact dose: 

< 2mSv/hr 

Intermediate 

Level (ILW) 

Disposal in near-surface 

facilities for short lived 

nuclides and/or interim 

storage 

 

 

Classed by activity: 

alpha >  4 GBq/t   OR 

beta + gamma > 12 GBq/t 

Intermediate Level 

(ILW) 

Disposal in near-surface 

facilities for short lived 

nuclides 

and/or interim storage 

 

Classed by activity: 

> 12GBq/t 

Fraction of ILW 

possibly available 

for recycling 

(ILW-RM) 

Potential for recycling 

 

Classed by contact dose: 

< 2mSv/hr (contact dose) 

High Level 

(HLW) 

Deep geological disposal  

 

(significant residual heat 

output requiring active 

cooling) 

High Level 

(HLW) 

Deep geological disposal  

 

(significant residual heat 

output requiring active 

cooling) 

 

NEAR SURFACE 
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A summary of the classes, and associated disposal implications, used in this EU 

DEMO study is presented in Table 5.1 along with a comparison of criteria used for a 

recent radioactive waste assessment of JET [145]. A summary of classes and waste 

management proposed for ITER is given in Table 5.2.  

High level waste (HLW) is not relevant for a fusion device as HLW is a category 

specifically associated with radioactive materials that generate thermal heat.  

 

Table 5.2 - Waste classes and disposal/management using French Regulatory system 

[146], [147]. 

 Half-life 

 Very short lived 

(<100days) 
Short lived (<30 years) Long lived 

Very Low Level 

(VLLW) 

Management 

based on interim 

storage and 

radioactive decay 

Disposal at dedicated Morvilliers interim storage 

facility or recycling  

(based on IRAS index acceptance criteria) 

Low Level 

(LLW) 
Disposal at dedicated Centre 

de stockage de l'Aube (CSA), 

expect for tritiated waste  

(based on nuclide by nuclide 

acceptance criteria) 

Sub-surface 

disposal 

(ongoing studies) 

Intermediate Level 

(ILW) 

Pathways under 

investigation 

High Level 

(HLW) 
 

 

5.4.1 ITER radioactive waste 

Radioactive waste management for ITER follows the French framework, a 

Programme Act on the Sustainable Management of Radioactive Materials and Waste, 

established in June 2006 [147]. In France, the national agency for radioactive waste 

management (ANDRA) [148] is in charge of overall radioactive waste management 

including the inventory, collection, and management of disposal sites and the R&D 

programme if necessary when no appropriate disposal site is identified.  

The classification of radioactive waste is based on nuclide life and activity, as defined 

by a French decree April 2008 [146] (see Table 5.2). Within the French regulations, 

there is no exemption or clearance of radioactive material, all the waste arising from a 
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zone producing radioactive waste will be managed as radioactive waste. The indice 

radiologique d’acceptabilite de stockage (IRAS) index is used to determine if the 

material can be classed as very low level waste (VLLW) [119], [149]. For short-lived 

low level and intermediate level waste a nuclide by nuclide Centre de Stockage de 

l’Aube (CSA) acceptance criteria is applied [149]. 

The VLLW arising from ITER will be disposed of via surface disposal at ‘CSTFA’, 

the dedicated Morvilliers interim storage facility, unless recycling is feasible. Short-

lived low level and intermediate level waste will undergo interim storage until tritium 

activity and out-gassing is sufficiently reduced for acceptance at the ‘CSFM’ Aube 

facility. Any components comprising of long-lived wastes and/or purely tritiated 

wastes will be kept in interim storage for up to 50 years before being sent on to a final 

disposal repository.  

In terms of radioactive waste disposal or storage, the main objective is to prevent the 

unacceptable contamination of the environment and protect the health of the public 

and workers. A secondary objective is to reduce disposal costs.  

A preliminary safety report submitted to the French regulator in 2011, using results 

from 1-D calculations, showed that of an expected 32 kt of waste produced through 

operation and decommissioning, 58 % was VLLW, 32 % low level waste (LLW) and 

intermediate level waste (ILW) with a short half-life, and 10 % long-lived ILW [150] 

at the end of ITER operational lifetime. Further calculations using 3-D analysis 

considered the waste from different components within the ITER facility (see Table 

5.3).  

 

Table 5.3 - Waste classification of main ITER components [151]. 

ITER component Mass (kt) Waste Class 

Blanket modules  1530 ILW long-lived 

Divertor modules  650 ILW long-lived 

Vacuum vessel  5100 LLW and ILW short-lived 

Toroidal field coils 6010 VLLW (50 years after shutdown) 

Poloidal field coils 1870 VLLW (50 years after shutdown) 

Central solenoid  950 VLLW 

Cryostat   3500 VLLW (50 years after shutdown) 
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5.4.2 A ‘non-active waste’ class based on clearance levels  

The UK [152] and IAEA guidance [143], [144] includes classes of ‘out of scope’ or 

‘non-active waste’ (NAW). These are included in Table 5.1 for completeness, 

however once the material has been classed as out of scope or NAW it is no longer 

radioactive waste. The material is no longer under nuclear regulatory control for 

radiation protection purposes irrespective of where the material is disposed.  

Material can be considered cleared of regulatory control if it meets certain criteria 

regarding clearance levels (Figure 5.1). The EURATOM Basic Safety Standards 

Directive [141] (BSSD-1996) established uniform safety standards to protect the 

health of workers and the general public against danger arising from ionizing radiation. 

The standards are contained within the Council Directive 96/29/EURATOM.  

Guidance for practical use of the clearance levels was published in the Radiation 

Protection publication 122 (RP-122) in 2000 [153] which assigned numerical values 

to the concept of clearance levels in the form of radionuclide specific levels of activity 

concentration. Where the material contains a mix of radioactive nuclides, the sum of 

the nuclide-specific activity divided by the corresponding clearance level should be 

less than 1. 

 

 
∑

𝐶𝑖

𝐶𝐿𝑖
≤ 1.0

𝑛

𝑖=1

 ( 15 ) 

 

The expression for the clearance index [29] is given in Equation 15 where, 𝐶𝑖 is the 

activity per unit mass (Bq/g) of the radioactive nuclide 𝑖, 𝐶𝐿𝑖 is the clearance level of 

the nuclide 𝑖, and 𝑛  is the number of nuclides in the mixture.  

Since the publication of RP-122, the IAEA has also published guidance regarding the 

use of clearance levels in Safety guide RS-G-1.7 in 2004 [154]. As part of on-going 

revisions of the EURATOM BSSD, the Commission proposed to align the guidance 

with that from the IAEA to achieve greater international harmonisation and 

simplification of regulatory control.  
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Figure 5.1 - Schematic presentation of the scope of the UK legislation regarding cleared materials. Reproduced with permission (Figure 2.1 [142]) 

licensed under the Open Government Licence v3.0. Note: Naturally Occurring Radioactive Materials (NORM). 

NORM industrial activity > 

than values in Table 2.3 of 

[142] 

NORM used for radioactive, 
fissile or fertile properties > 

than values in Table 2.3 of [142] 

Artificial radionuclides > 

than values in Table 2.3 of 

[142] 
Substance not in any 

of these categories 

Non- active waste 

(NAW) 

Inclusion 
criteria 

Substance falls within one or more 

of the above categories 

Short-lived 
radionuclides 

Artificial background  

Contamination arising 
from lawful disposal 

 

  

Substance not in any 

of these categories 

Radioactive 
waste 

Exclusion 

criteria 

 

Substance falls within one or more 

of the above categories 

Non-active waste i.e. 
out of scope of 

regulation 
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In 2007 a study was launched to assess and evaluate differences in the clearance and 

exempt values9, and the underlying scenarios, in RP-122 and RS-G-1.7 along with the 

consequence of using one set of values for exemption and clearance. This work was 

awarded under contract to BRENK Systemplanung and the assessment published in 

(RP-157) [155]. Following from the 2007 study, an updated BSSD was published 

(2013/59/EURATOM) [156]. 

5.4.3 Tritium contamination 

Most waste within the fusion reactor will be tritiated to some degree, requiring a 

specific management strategy. For ITER, the strategy includes an interim storage 

phase allowing for tritium, with a half-life of ~12.5 years, to decay. Alternative and 

complementary options for reducing tritium content within the waste are also being 

considered for ITER and beyond to DEMO and fusion power plants.  

If the tritium content can be reduced then the waste could potentially be downgraded 

to a lower waste class with wider options for disposal. Reducing tritium content will 

also decrease the interim storage period required for the decay of tritium and 

potentially deplete the amount of tritium out-gassing from waste. Detritiation 

processes, however, produce secondary tritiated waste (most commonly tritiated 

water) that will also require management. Detritiation methods need to be adapted to 

the type and size of the waste.  

Several detritiation process have been studied under the European fusion development 

agreement, for example [157], [158], with a focus on thermal treatment and melting 

for metallic parts and thermal treatment and full combustion for ‘soft’ housekeeping 

wastes (such as gloves, paper, clothes etc.). Methods only offering superficial 

detritiation, such as leaching, abrasion, electrochemical polishing and laser treatment, 

are shown to be unsuitable as the majority of tritiated waste will be ‘bulk material’ 

and the these methods can potentially create large amounts of tritiated water.  

 

9 Exemption applies to sources and practices at the stage when they are being considered for regulatory 

control, whereas clearance is applied to materials that are already under regulatory control but, because 

of decay or processing, they now present a negligible risk and can be released from regulatory control. 
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5.5 Considerations for DEMO 

ITER is expected to have 14 MeV neutron fluence on the first wall of about             

0.3 MWyr/m2 over a 12 year operation [149]. In comparison, DEMO reactors are 

expected to accumulate 1 to 2 orders of magnitude more fluence in only a few years 

before in-vessel components will require removal.  

Studies in 2007 on the DEMO power plant concept model ‘AB’10 show that after    

100 years the total fraction of cleared material is ~13 % of the 124 kt of radioactive 

waste. The 2007 study used the IAEA clearance levels as published in RS-G-1.7 [143] 

which showed a decrease in the amount of cleared material in comparison to earlier 

work using the BSSD-1996 levels [141]. Studies [159] on a dual-coolant lithium-lead 

DEMO model (based on the power plant conceptual study model C) with regards to 

Spanish regulations, using MCNPx and the ACAB code, showed that radioactive 

waste from all components, after a 40 year operational life, could be classed as LLW 

and ILW before 100 years after shutdown. Consideration is given to the storage and 

disposal options in the context of Spain.  

It is shown in 2011 studies [68] on a EU helium-cooled lithium-lead (HCLL) DEMO 

concept that even after a significant cooling period there is no cleared materials from 

the inner components of the fusion reactor (i.e. the blanket/divertor), based on German 

regulations which are similar to IAEA guidance. According to a radioactive waste 

assessment [160] on the Russian DEMO-S model, assuming a 10 MWyr/m2 first wall 

neutron fluence, after 30 years cooling time, approximately 60 % of the total mass of 

reactor materials could be hands-on recycled, 25 % could be hands-on recycled after 

100 years, and the remaining 15 % of reactor materials require disposal.  

The radioactive waste issues discussed, and the experience gained from ITER, will 

play an important role for DEMO and future fusion power plants. In order to meet 

ambitious goals set within the European fusion framework for a DEMO fusion power 

plant, further research and development is required into the use of low/reduced 

activation materials, the design of fusion power plants and the operational actions, 

with an aim to reduce tritiated wastes and longer lived radioactive nuclides so that the 

 

10 The power plant conceptual study models are developed by the EU under the European fusion 

development agreement. As part of the study 5 models are considered: A, B, AB, C, and D. [32], [188] 
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majority of radioactive waste resulting from the operation of a fusion power reactor 

will be either recyclable or comprise of low and very low level wastes 100 years after 

shutdown. 

The discussed studies also show that considering the waste inventory for components 

separately and assessing the material effects on resulting activation is an important 

factor in the development of a fusion DEMO that meets European goals.  

5.6 Radioactive waste assessment of EU DEMO  

The IAEA safety standards [143] were used to formulate a set of ‘general classes’ for 

fusion, as the allowable limits of a specific disposal facility are not defined here. 

Radionuclide specific activation concentration levels in becquerels per gram (Bq/g) 

presented in the UK Government guidance on the scope of and exemptions from the 

radioactive substances legislation [142], which originate from RP-122, were used in 

this work.  

Within the IAEA guidelines, any material that does not meet the clearance level 

requirements is classed as either LLW or ILW. LLW is radioactive material that is 

above the clearance levels but with limited amounts of long-lived radionuclides. For 

this EU DEMO studies this waste class is defined by the total activity concentration 

which must be less than 12 GBq/tonne. All other radioactive material is classed as 

ILW i.e. all material with activity levels above 12 GBq/tonne. Although this type of 

waste requires a greater degree of containment and isolation than that provided by the 

near surface disposal routes available to LLW, it requires no or little provision for 

long-term heat removal.  

Material recycling after the reactor is dismantled and reuse of components is preferred 

due to a more economic use of materials and reduced quantities of radioactive waste 

for disposal. The criteria for recycling vary by country [161] and in some studies 

arbitrary recycling limits are used; realistic criteria for recycling need to be established 

based on viable processes. In this study recyclable materials (RM) were identified 

separately to the activated waste class. Both materials classed as LLW and ILW were 

assessed for possible recycling based on a contact dose rate limit of 2 mSv/hr as 

adopted in similar studies for ‘simple recycling’ materials [161], [162], as opposed to 

‘complex recycling’ materials which works to a 20 mSv/hr contact dose rate limit. 

These were identified as either LLW-RM or ILW-RM.   
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In this work, 3-D neutron transport was performed on the EU 2015 Generic DEMO 

model [40], [163] and used in inventory calculations to determine the radioactive 

waste quantities resulting from the neutron irradiation and variations with time. 

Methods for calculating the activation inventory were compared with a focus on the 

possible advantages of considering the radioactive waste of a reactor not only by 

component but also through further dismantling. 

5.7 DEMO model and materials 

The EU generic DEMO 2015 model was used to compare the neutronic response and 

radioactive waste inventory calculated using an unstructured mesh method against the 

conventional CSG definition with cell based and superimposed mesh methods. This 

DEMO model has been supplied as the CAD model [40] and as an MCNP input deck 

[163].  

 

 

 

Figure 5.2 - A 3-D CAD image of the 10° sector EU Generic DEMO model [40]. 

 

Upper port 
Manifold 

Vacuum vessel  

Lower port  

Equatorial port  

Breeder blanket 

Vacuum vessel 

upper port shield 

Divertor 
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The DEMO 2015 CAD model is a 10° sector, shown in Figure 5.2, consisting 

primarily of a breeding blanket, vacuum vessel, ports, toroidal and poloidal field coils, 

and divertor (see Table 5.4 for material composition).  The main components are 

labelled in Figure 5.2, a 3-D image of the CAD model. The magnets, and related 

casing and shielding, are labelled in Figure 5.3, a 2-D slice through the model along 

the toroidal field coil. The DEMO model can be used to simulate a full 360º tokamak 

in MCNP with reflecting boundary planes in the input deck which assumes symmetry 

around the full tokamak. 

 

Figure 5.3 - A vertical elevation view through the toroidal field coils. 

 

The breeder blanket in the DEMO 2015 was provided empty and therefore filled with 

a homogenised helium cooled pebble bed blanket concept comprising steel structure, 

beryllium multiplier and Li4SiO4 breeder. See Section 4 for further information on 

breeder blanket materials. The steel structures of the ports are modelled as ITER grade 

stainless steel (SS316L(N)-IG), with a mix of steel and water used in the upper port 

shield and manifold.  

The vacuum vessel is also modelled as a mix of steel and water in a steel casing. The 

divertor, shown in closer detail in Figure 5.4, consists of a tungsten first wall followed 

by a layer of homogenised steel & water and a second layer of tungsten. The largest 

volume of the divertor (shown in green) is modelled as EUROFER steel. The toroidal 

field coils, poloidal field coils and centre column magnets are modelled as a 

Toroidal field coils  

Toroidal field coil casing 

Poloidal field coils 

Toroidal field shield  

Centre column 

magnets 
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homogeneous mix of niobium-tin (Nb3Sn) conductor with steel. A steel casing 

surrounds the toroidal field coils. 

 

Table 5.4 - Summary of materials used with the EU DEMO 2015 model (see Table 7.9 - 

Table 7.11 of Appendix 4 for isotopic composition). 

Part/component Main material composition 

Blanket 
23% steel (EUROFER) + 21.02% beryllium + 10.2% 

Li4SiO4 (Li4SiO4) + 45.78% void 

Ports 100% steel (SS316L(N)-IG) 

Upper port shield 77% steel (SS316L(N)-IG) + 23% water 

Manifold 77% steel (SS316L(N)-IG) + 23% water 

Vacuum vessel  

     Layer 1 100% steel (SS316L(N)-IG) 

     Layer 2 77% steel (SS316L(N)-IG) + 23% water 

     Layer 3 100% steel (SS316L(N)-IG) 

Divertor  

     Layer 1 100% tungsten 

     Layer 2 77% steel (SS316L(N)-IG) + 23% water  + void 

     Layer 3 100% tungsten 

     Layer 4 100% EUROFER 

Magnets (centre column, toroidal and 

poloidal field coils) 
% niobium-tin (Nb3Sn) + % steel (SS316L(N)-IG) 

Toroidal field coil casing 100% steel (SS316L(N)-IG) 

Toroidal field coil shield 100% steel (SS316L(N)-IG) 

 

 

Figure 5.4 - The divertor model and close-up of the material layers. 
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The use of MCNP for particle transport calculations has historically required the CAD 

model to be converted into CSG form, a timely and often troublesome process. The 

MCNP input deck was provided which had been created via the conversion of the 

CAD for the generic DEMO model to MCNP with McCad [164].  

The latest version of MCNP (version 6 [96]) now includes a capability for which the 

geometry of a model can be represented using an unstructured mesh in Abaqus® [165] 

form. As well as removing the CSG conversion process, the unstructured mesh 

representation has other potential benefits. As the mesh is not confined to a structured 

shape, either rectangular or cylindrical, the mesh conforms to the geometry shape i.e. 

the mesh voxels contain only one material, removing the effects of material mixing of 

different components and void mixing. This allows for streaming gaps to be modelled 

more effectively, and this is particularly important for shutdown dose rate analysis 

[166].  

To create the Abaqus® mesh file for the volumetric unstructured mesh input the 

ANSYS® [167] workbench package was used. The CAD model was prepared for 

meshing in the SpaceClaim module [168] of ANSYS® and then imported into the 

mechanical modeller of ANSYS® for meshing. Curvature and size refinement was 

used when creating the mesh (see Table 5.5), creating a mesh with 112305 elements. 

Dummy materials were assigned to each component so that not only could the correct 

materials be assigned to the associated pseudo cells but also for identification of 

components for tallying.  

Table 5.5 - Refinement parameters used for unstructured mesh.  

Refinement Value 

Curvature 5 degrees 

Max face size 15 cm 

Max size 15 cm 

 

The unstructured mesh is shown in Figure 5.5 with a closer view of the divertor. This 

shows the use of the curvature refinement for efficient mesh element production. In 

regions where refinement is not needed, larger elements can be seen. This helps to 

reduce the overall size of the mesh whilst ensuring adequate resolution in areas of 

particular significance or curvature or small detail. 
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Figure 5.5 - A 3-D image of the unstructured mesh with a closer view on the divertor 

region as an example of the curvature refinement. (Image produced in the mechanical 

modeller of ANSYS®.) 

 

5.8 Neutronics analysis  

In order to compute the radioactive waste inventory, neutron flux is determined 

through a transport calculation with MCNP6 and subsequently used for irradiation in 

an activation calculation with FISPACT. (See Section 3.2 for a more detailed 

explanation of MCNP and FISPACT.) A number of methods for computing the waste 

inventory were considered; methods 1, 2 and 3. These methods differ mainly in the 

geometry and MCNP tallying, and are described in further detail later in this section.  

5.8.1 Simulation codes, nuclear data and irradiation/decay scenario   

Neutron transport calculations were carried out using MCNP6v1 with FENDL2.1 

[103] neutron cross-section data and where this was unavailable, ENDF-B-VII [169]. 

This neutron flux, tallied in the 175 VITAMIN-J energy group structure, was then 

used to irradiate the materials comprising the various components of the EU DEMO 
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2015 model using FISPACT-II (release 2.20 and release 3.00) [76] with the EAF-2010 

activation data [109]. The simulation codes, nuclear data and irradiation/decay 

scenario were common in all methods. 

A number of variance reduction techniques are available to use with MCNP in an 

attempt to achieve neutron flux results with sufficiently low variance within an 

acceptable time frame. In this work, global variance reduction (GVR) was 

implemented through use of the recently released Automated Variance Reduction 

Generator (ADVANTG) code developed by Oak Ridge National Laboratory [111]. 

Using ADVANTG a neutron weight window was generated along with additional 

source biasing [112]. Further detail regarding the variance reduction and uncertainties 

is given in Appendix 7. 

An irradiation scenario based on the operational scheme previously specified for 

DEMO [39] was used. This scheme includes operation for 20 calendar years at an 

average availability of 30 %. This results in a total DEMO plant lifetime of 6 FPY. 

Two operation phases (see Table 5.6) are assumed; the first phase covers 5.2 calendar 

years reaching 1.57 FPY and the second phase will last 14.8 calendar years (4.43 

FPY). A 1-year shutdown time is included between the phases. It is assumed that the 

first phase will include a so-called starter blanket with a maximum displacement 

damage accumulation of 20 dpa in the steel of the first wall, replaced with another 

blanket for phase 2 which can withstand at least 50 dpa. The divertor is also assumed 

to be replaced 3 times, with 1 divertor for the first phase and 3 in the second. The 

replacement in the second phase is assumed to be at every 4.92 calendar years with 8 

month down time for each replacement. 

 

Table 5.6 - Summary of the irradiation scenario used with FISPACT. 

Irradiation phase Summary of operation 

Phase 1 

Continuous operation over 5.2 calendar years minus 10 days, at 30 % of 

the nominal fusion power. Followed by 10 days pulsed operation with 48 

full power 4 hour pulses with 1 hour dwell time between each. 

Phase 2 

Operation over 4.92 calendar years minus 10 days, at 30 % of the nominal 

fusion power, followed by 10 days pulsed operation with 48 full power 4 

hour pulses with 1 hour dwell time between each. Repeated 3 times. 
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To include the waste from all components, including the removed blanket and 

divertors, different irradiation scenarios were used for each of those components i.e. a 

different irradiation file for blanket 1 (B1), blanket 2 (B2), divertor 1 (D1), divertor 2 

(D2), divertor 3 (D3) and divertor 4 (D4). The irradiation scenarios for each of the 

replaced components B 1-2, and D 1-4, include the remaining operation but with flux 

set to zero when the component is removed from the reactor. This ensures that all 

components can be totalled at time ‘t’ after shutdown, whilst still taking into account 

any decay of the components once removed from the reactor.  

To investigate the variation of waste inventory with time, 26 cooling times/decay 

intervals were used, with the inventory determined at each time step shown in Table 

5.7, ranging from a few hours to 1000 years. 

 

Table 5.7 - The cooling times (decay intervals) used with FISPACT to record 

inventory/activation/contact dose etc.  

Decay intervals in FISPACT input Cumulative time 

TIME 1 SECS ATOMS 1 second 

TIME 299 SECS ATOMS 5 mins 

TIME 1500 SECS ATOMS 30 mins 

TIME 1800 SECS ATOMS 1 hour 

TIME 7200 SECS ATOMS 3 hours 

TIME 7200 SECS ATOMS 5 hours 

TIME 18000 SECS ATOMS 10 hours 

TIME 50400 SECS ATOMS 1 day 

TIME 172800 SECS ATOMS 3 days 

TIME 345600 SECS ATOMS 1 weeks 

TIME 604800 SECS ATOMS 2 weeks 

TIME 1209600 SECS ATOMS 4 weeks 

TIME 2419200 SECS ATOMS 8 weeks 

TIME 10940054 SECS ATOMS 6 months 

TIME 15778454 SECS ATOMS 1 year 

TIME 284012179 SECS ATOMS 10 years 

TIME 2840121792 SECS ATOMS 100 years 

TIME 28401217920 SECS ATOMS 1000 years 
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5.8.2 Method 1- Cell based 

Using the CSG model of DEMO, the neutron flux was tallied in each cell using the F4 

volume average tally. As can be seen in Figure 5.2 many of the components in the 

CSG model are made up of more than 1 cell. This geometry splitting was already 

present in the model and no further splitting has been implemented. Splitting the 

geometry can be used to reduce flux averaging over large volumes.  

 

Table 5.8 - Waste classes used with automated cell-based script [170] and FISPACT-II. 

DEMO- IAEA [143], [170] 

NAW Clearance level  < 1  

LLW 
beta + gamma  < 12GBq/t      

alpha < 4GBq/t  

Fraction of LLW possibly available 

for recycling (LLW-RM) 
< 2mSv/hr  (contact dose) 

ILW 
beta + gamma  > 12GBq/t       

alpha > 4GBq/t 

Fraction of ILW possibly available 

for recycling(ILW-RM) 
< 2mSv/hr (contact dose) 

 

A script [170] was used to perform an activation calculation using FISPACT-II for 

each of the 150+ cells and determine the radioactive waste levels based on the criteria 

shown in Table 5.8. Only material with a clearance level greater than one is 

considered for radioactive waste classification. The clearance index is provided in the 

output file from FISPACT-II. 

5.8.3 Method 2- Structured rectangular mesh  

The neutron flux was recorded/tallied in each voxel of a 3-D structured rectangular 

mesh, superimposed over the CSG model. The nature of the structured rectangular 

mesh results in many mesh voxels that do not cover the sector model. For each voxel 

the flux in 175 energy groups was tallied, requiring approximately 80 bytes of 

memory per voxel. Voxels that do not cover the geometry are an inefficient use of 

memory. Due to memory limitations, and to reduce the inefficiencies of the mesh 

coverage, 3 separate mesh tallies were used (see Figure 5.6) in order to achieve a 9 cm 

resolution. A second calculation with a 15 cm resolution mesh tally was also 

performed (Figure 5.7). 
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To compute the mass of material designated as radioactive waste and the 

corresponding waste class for each voxel, a development of the CCFE MCR2S code 

[79] was used. MCR2S was originally designed for shutdown dose rate calculations, 

implementing the rigorous-2-step method [80]. The code takes the neutron spectra for 

each voxel of a 3-D mesh and performs an activation calculation for each using 

FISPACT-II with the EAF-2010 nuclear data. In the case of a structured mesh, a 

materials mixing step takes place within MCR2S, when the mesh voxel covers more 

than one material and or a void region. The information regarding the materials within 

each voxel is provided to MCR2S through a POSMAT file, this lists each voxel and 

the fraction of each material in the voxel. In order to irradiate components separately, 

as is required for the blankets and divertors due to the difference irradiation schedules, 

the materials file provided is altered setting any materials that are not part of the 

component to void.  

Within MCR2S, a FISPACT calculation is performed for each voxel for each of the 

meshes, using each of the component specific materials files and irradiation scenarios. 

With large meshes this can require many calculations. In the case of the 15cm mesh 

which was contained in a single mesh file, the process of inventory calculations was 

much quicker. 

 

Figure 5.6 - Three 9 cm resolution superimposed structured meshes; vertical elevation at 

Y = 5 cm (left) and plan view at Z = 0 cm (right). (Scale in cm) 
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Figure 5.7 - A 15 cm resolution superimposed structured mesh; vertical elevation at Y = 

5 cm (left) and plan view at Z = 0 cm (right). (Scale in cm) 

 

5.8.3.1 Using the MCR2S Nuclear Radioactive Waste module 

A module within the MCR2S code was developed for calculating the mass of 

radioactive waste materials specific to the JET facility in the UK. The classes as 

defined in the Office of Nuclear Regulations (ONR) guide ‘Disposal of Radioactive 

Waste’ [145] have been used (see Table 5.9). This has been implemented by 

considering the classes from ILW to out of scope, i.e. the activity levels of each voxel 

of material within the mesh has been compared against the ILW level first, then if the 

activity is not greater than the lower bound of the ILW, it is compared against the 

LLW level. If the activity is within the LLW criteria then the concentrations of 

radioactive nuclides are compared against the clearance limits to determine whether 

the LLW can actually be cleared from regulatory control. Where the activation of the 

material within the voxel is less than the lower bound of the LLW, the radionuclides 

are compared against the clearance limits; if these are not met the material is classified 

as LLW.   

This method should be reversed, with the radionuclide concentrations assessed first to 

determine whether the material can be cleared from regulatory control. If the material 
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is not cleared, i.e. the radionuclide specific limits are not met, the material is classed 

as radioactive waste. The activity of the radioactive waste material is compared 

against the LLW criteria, and if this is not met, it is classed as ILW. There is no 

explicit recyclable material assessment made in the current MCR2S waste assessment 

calculations; the fractions of ILW and LLW which are deemed recyclable material are 

not considered.  

5.8.3.2 Modification to MCR2S  

In order to implement an alternative IAEA waste classification (see Table 5.9) for 

DEMO studies, a modification to MCR2S was required. A copy of the nuclear waste 

module was made, called ‘Nuclear_Waste_IAEA.mod’, which can be called using ‘-a’ 

in the command arguments. This new module was restructured to consider the 

clearance level first. Once the material is determined to be classed as radioactive 

waste, the activation is then compared to the limits for LLW and ILW. The mass of 

material categorised as LLW and ILW is further considered for its recyclable potential, 

comparing the total contact dose, as calculated in FISPACT, against a 2 mSv/hr limit. 

The modification to MCR2S was tested using simple cases and the vacuum vessel of 

the DEMO 2013 model [171], [172]. 

 

Table 5.9 - Comparison of UK and IAEA waste classes as implemented in MCR2S. 

JET- UK DEMO- IAEA 

Out of scope Clearance level <1 NAW Clearance level <1  

LLW 
4GBq/t > alpha > 4 MBq/t 

12GBq/t > beta > 12MBq/t 

LLW < 12GBq/t 

Fraction of LLW 

possibly available for 

recycling (LLW-RM) 

< 2mSv/hr       

(contact dose) 

ILW 
alpha > 4 GBq/t   OR 

beta + gamma > 12 GBq/t 

ILW > 12GBq/t 

Fraction of ILW 

possibly available for 

recycling (ILW-RM) 

< 2mSv/hr        

(contact dose) 
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5.8.4 Method 3- Unstructured mesh 

The use of an unstructured mesh geometry with MCNP has not only advantages 

associated with model creation (as discussed in Section 5.7) but also enables the 

neutron flux to be tallied directly on to the same mesh. The neutron flux is recorded in 

all elements comprising the mesh used to describe the geometry, therefore conforming 

to the geometry exactly as used in the simulation.  

The modified MCR2S module was used with the neutron flux tallied on the 

unstructured mesh, which MCNP outputs in an ‘eeout’ file. As the neutron flux was 

contained within 1 file, as opposed to the 3 mesh files required for the 9 cm structured 

mesh, fewer MCR2S calculations were required. As with method 2, used for the 

structured mesh, different material files provided to MCR2S allow for calculations to 

be performed for each component. This enables only specific components to be 

irradiated and provides the resulting activation and inventory information for the 

individual component, which in turn is used to determine the component-specific 

waste class.  

Unlike the cell based method, the results for waste inventory can also be considered 

on an element-by-element basis. For example a component-specific analysis will lead 

to the whole component being classed as the same waste type; in some larger 

components it may be possibly that some of the component is in fact recyclable. 

Unlike in the structured mesh where the waste is considered in structured voxels, 

requiring materials mixing where there are 2 or more materials, and or where the 

voxel covers more than 1 component, unstructured mesh elements conform to the 

geometry of the components and so only ever contain 1 material and form part of 1 

component.  

Difficulties in using a weight window with the unstructured mesh model meant that 

GVR was not used for the neutron transport calculation. The lack of GVR resulted in a 

higher number of particle histories necessary to adequately sample the problem and to 

obtain reasonable statistical uncertainty. Some variance reduction through the use of 

the biased source, as produced using the ADVANTG code, was used.  

5.8.5 Points for comparison 

To aid comparison, some points have been identified and can be seen in Figure 5.8, 

with point coordinates in Table 5.10. These points have been used for neutron flux 
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comparisons and as locations for investigating dominant nuclides within the activation 

and inventory calculations with MCR2S. As MCR2S computes the inventory for 

every irradiation and decay step for every voxel in the mesh(s), for each irradiation 

schedule and component combination, there are a large number of output files; these 

were continually deleted automatically as MCR2S completed each voxel. The use of a 

keyword ‘points_file’ specified in the MCR2S input saves the input and output files 

for the voxel covering the points provided in the list.  

 

 

Figure 5.8 - Location of some reference points used for comparison of neutron flux and 

extracting full activation data from FISPACT including input/output files. Point 

coordinates given in Table 5.10. 

 

Table 5.10 - Coordinates (cm) of points shown in Figure 5.8. 

Point Point 
 x y z  x y z 

A 550 55 0 H 1440 220 -550 

B 1280 55 -30 I 535 40 880 

C 755 55 -715 J 1030 125 1130 

D 470 40 0 K 818 30 940 

E 1400 180 0 L 1600 110 0 

F 1060 40 -670 M 1300 75 -1200 

G 535 55 600 N 285 21 -815 
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5.9 Neutron flux results and observations 

The neutron flux results are presented in neutron flux maps plotted at Y = 5 cm, for 

method 2 using the superimposed rectangular structured meshes, 9 cm resolution 

(Figure 5.9) and 15 cm resolution (Figure 5.10) and for method 3 using the 

unstructured mesh, (Figure 5.11). A comparison of the neutron flux at a number of 

specified points is presented in Table 5.11 along with a comparison of the relative 

statistical uncertainties in Table 5.12. 

It can be seen in Figure 5.9 and Figure 5.10 that the statistical uncertainty for the 

results produced using method 2 is below 5% in the majority of the mesh voxels. In 

deep shield areas, such as along the manifold in the upper port and the outer vacuum 

vessel, the uncertainty increases slightly. In some of the poloidal field coils and centre 

column magnets uncertainties increase to 25 - 50 %, though these areas are less likely 

to have a significant impact on the radioactive waste inventory calculations due to 

shielding provided by the blanket. 

The shielding effect of the blanket can be seen in the left-hand image of Figure 5.9 

and Figure 5.10, with the flux decreasing by approximately an order of magnitude 

through the inboard blanket and by over 2 orders of magnitude in the outboard blanket. 

The lack of shielding in the equatorial port leads to higher fluxes in the vacuum vessel 

round this region. There is also significant neutron flux in the lower port behind the 

divertor.  

For method 3, as already mentioned, a weight window was not use; this is evident in 

the lack of neutron flux in areas behind the blanket, in particular the poloidal field 

coils, centre column magnets, manifold and some areas of the vacuum vessel. Due to 

memory limitations the statistical uncertainty information for the unstructured mesh 

neutron transport calculation was not stored. In order to give some visualisation of the 

statistical uncertainty, a superimposed structured mesh of 15 cm resolution was also 

used (presented alongside the unstructured neutron flux results in Figure 5.11).  It 

should be noted that the uncertainties shown have been determined on 15 x 15 x15 cm 

voxels, averaging over the voxel and materials. This is not the uncertainty as 

determined in each element of the unstructured mesh. 
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Figure 5.9 - Neutron flux map (neutron flux neutrons/s/cm2) using method 2 with a 9 cm 

resolution (left) and relative statistical uncertainty map (right). (Scale in cm) 

 

 

 

Figure 5.10 - Neutron flux map (neutron flux neutrons/s/cm2) using method 2 with a 15 

cm resolution (left) and relative statistical uncertainty map (right). (Scale in cm) 
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Figure 5.11 - Neutron flux map (neutron flux neutrons/s/cm2) using method 3 the 

unstructured mesh (left). A relative statistical uncertainty map on a superimposed 15 cm 

structured mesh is shown on the right. (Scale in cm) 

 

Table 5.11 - Comparison of the neutron flux at points A-N (as shown in Figure 5.8). 

Point location Neutron flux (n/cm2/s) 
 

x y z 

Flux in cell Flux in voxel 

 Method 1 
Method 2 

9 cm 

Method 2 

15 cm 
Method 3 

A 550 55 0 1.10E+14 8.24E+13 9.12E+13 8.45E+13 

B 1280 55 -30 7.18E+13 2.45E+13 2.42E+13 2.33E+13 

C 755 55 -715 1.04E+14 1.42E+14 1.55E+14 1.37E+14 

D 470 40 0 8.14E+11 3.43E+10 1.43E+11 2.15E+10 

E 1400 180 0 2.46E+10 9.93E+07 7.36E+07 1.21E+08 

F 1060 40 -670 1.08E+10 5.30E+07 7.41E+07 7.46E+07 

G 535 55 600 1.81E+08 1.06E+08 1.30E+08 1.35E+08 

H 1440 220 -550 6.44E+09 7.47E+07 7.27E+07 6.39E+07 

I 535 40 880 1.97E+07 3.31E+05 2.20E+05 2.47E+07 

J 1030 125 1130 3.48E+07 4.01E+07 6.93E+07 2.90E+07 

K 818 30 940 1.02E+08 7.74E+05 6.39E+05  

L 1600 110 0 3.48E+10 3.47E+10 5.15E+10 3.47E+10 

M 1300 75 -1200 8.13E+10 7.62E+10 6.43E+10 7.24E+10 

N 285 21 -815 2.10E+08 5.36E+06 1.79E+07  
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Table 5.12 - Comparison of statistical uncertainty at points A-N (as shown in Figure 5.8). 

Point location Relative Statistical Uncertainty 

 

x y z 

In cell In voxel 

 Method 1 
Method 2 

9 cm 

Method 2 

15 cm 
Method 3 

A 550 55 0 0.010% 0.139% 0.086% 0.028% 

B 1280 55 -30 0.010% 0.097% 0.060% 0.055% 

C 755 55 -715 0.020% 0.037% 0.030% 0.024% 

D 470 40 0 0.060% 3.167% 1.005% 0.647% 

E 1400 180 0 0.160% 8.860% 9.308% 26.455% 

F 1060 40 -670 0.200% 5.162% 4.185% 30.275% 

G 535 55 600 0.420% 4.213% 2.257% 35.527% 

H 1440 220 -550 0.060% 1.051% 0.722% 39.026% 

I 535 40 880 0.610% 3.991% 2.257% 100.000% 

J 1030 125 1130 0.680% 0.259% 0.616% 40.193% 

K 818 30 940 4.450% 1.517% 1.582%  

L 1600 110 0 0.160% 0.127% 0.252% 1.445% 

M 1300 75 -1200 0.040% 0.043% 0.032% 1.325% 

N 285 21 -815 0.090% 1.028% 0.536%   

 

5.10 Radioactive waste results and observations 

The radioactive waste inventory was calculated using each of the three methods 

mentioned previously. The results have been presented for some separate components 

and an estimation of the total waste. As shown in the neutron flux results for method 4, 

Figure 5.11 with the unstructured mesh, there are some areas of zero neutron flux. 

Elements with zero neutron flux are not irradiated in the activation calculation and this 

is observed in the total waste results as an apparent overall loss of mass (Table 5.13). 

The difficulty in adequate sampling of the full phase-space of the model with an 

unstructured mesh approach is evident in the mass difference.  

Table 5.13 - Mass of each component (kilotonne, kt). 

 
Actual 

mass 

Mass irradiated 

Cell 
Structured  

9 cm 

Structured 15 

cm 
Unstructured 

Blankets 8.8 8.8 8.8 8.8 8.8 

Vacuum Vessel 13.3 13.3 13.3 13.3 13.0 

Divertor 3.9 3.9 3.9 3.9 3.9 

Toroidal field 2.4 2.4 2.3 2.4 2.3 

Remainder 23.2 23.2 23.2 23.2 18.8 

Total 51.5 51.5 51.4 51.5 46.8 

 

 



 

   130 

It can be seen from the neutron flux map (Figure 5.11) that there is little or no 

sampling in the centre column magnets and upper port manifold using method 3. 

These voxels are not included in the activation analysis and are therefore not included 

in the ‘mass irradiated’ quantity. 

5.10.1 Whole model radioactive waste estimation 

An estimate of the total waste inventory is presented in Figure 5.12 using method 2                

(a structured mesh with a 15 cm voxel resolution). The variation in the material 

classification, not active waste (NAW), low level waste (LLW) and intermediate level 

waste (ILW) is shown with different cooling times. The dashed lines show the mass of 

material that could be considered for recycling (i.e. contact dose < 2 mSv/hr). 

Of the total mass of the DEMO model (~51 kt), the largest component is the vacuum 

vessel, accounting for 25 % of the total mass. As such, the variation observed in the 

total waste is dominated by the vacuum vessel waste classification. Approximately 

60 % of the total mass of the DEMO reactor is classed as ILW 6 months after 

shutdown, reducing to 10 % after 500 years. The majority of the ILW is recyclable 

after approximately 60 years of decay time. For the LLW, between 80 and 100 % is 

recyclable 1 year after shutdown. 

 

Figure 5.12 - Waste class of total material mass (kilotonne), using method 2 (15 cm 

resolution structured mesh). 
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The anticipated minimum interim cooling period for a DEMO reactor is 40 - 50 years, 

therefore the variations in waste classification for short decay periods (< 1 year) are 

not shown in the remainder of the figures presented in Section 5.10. The full data is, 

however, available in Appendix 5.3. 

The variation in waste classification for the 3 methods used (cell-based, structured 

mesh and an unstructured mesh) is shown in Figure 5.13 to Figure 5.17. It should be 

reminded that these figures show the quantity of mass (kt) and that the total irradiated 

mass for the 3 methods differs. Due to the difference in irradiated mass it is useful to 

also consider the percentage of mass (%) that falls in each waste category; this is 

provided in Table 5.14 to Table 7.14.  

 

 

Figure 5.13 - Mass (kilotonne) of total material classed as NAW. 

 

Using a cell-base method, after 1 year cooling time, none of the material can be 

cleared from regulatory control (i.e. NAW). By cooling times of 40 - 50 years, the 

level of NAW material has increased to ~1 % (Figure 5.13). Using a mesh approach to 

the calculations, both structured and unstructured, the amount of material classed as 

NAW increases to 6 - 8 %. This equates to around 4 kt of material. 
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At cooling times below 100 years, the cell-based method shows approximately 8 % 

lower quantities of LLW than mesh analysis (Figure 5.14). Above 100 years the cell-

based method has approximately 10 % higher levels of LLW than the other methods. 

This cross over is due to the increasing NAW material within the mesh-based results.  

As shown in Figure 5.12 the majority of material comprising the reactor is ILW. This 

decreases over time and more rapidly after approximately 100 years. The results for 

the mesh-based analysis, i.e. both the 9 cm and 15 cm structured mesh and the 

unstructured mesh, are very similar (varying by a few percent only). The steep 

reduction of ILW at around 100 years is seen more significantly in the mesh-based 

approaches then the cell-based method (Figure 5.15).  

The majority of LLW (Figure 5.16) could be considered for recycling and the results 

do not significantly differ between the calculation methods. Some ILW (Figure 5.17) 

could be considered for recycling after 10 years. Again the results for recycling are 

very similar between the different methods. It is encouraging to see that after 100 

years the majority of radioactive waste produced by a fusion power plant could 

potentially be recycled.  

 

 

Figure 5.14 - Mass (kilotonne) of total material classed as LLW. 
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Figure 5.15 - Mass (kilotonne) of total material classed as ILW. 

 

 

 

 

 

Figure 5.16 - Percentage of total LLW with recycling potential (LLW-RM). 
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Figure 5.17 - Percentage of total ILW with recycling potential (ILW-RM). 

 

Some of the components comprising the reactor have been investigated individually to 

assess the contributions from each and the effects of different calculation approaches. 

The components considered are the blankets, divertors, vacuum vessel and toroidal 

field coils. A summary of component contribution is given in Table 5.14 - Table 7.14 

for the cell-based and structured mesh methods used, and are considered in further 

detail in the following subsections. 

 

Table 5.14 - Material classification for each component after 100 years cooling (using 

method 1 - cell based). 

 Mass (kt) 

(Percentage of component) 
Potential recycling (%) 

 NAW LLW ILW LLW-RM ILW-RM 

Divertor 
0.0 3.7 0.2 

100% 84% 
( 0% ) ( 95% ) ( 5% ) 

Blanket 
0.0 0.0 8.8  100% 

( 0% ) ( 0% ) ( 100% ) 

Vacuum vessel 
0.0 1.7 11.6 

100% 100% 
( 0% ) ( 13% ) ( 87% ) 

Toroidal field coils 
0.5 1.9 0.0 

100%  
( 21% ) ( 79% ) ( 0% ) 

Remaining materials 
11.2 9.8 2.2 

100% 100% 
( 48% ) ( 42% ) ( 9% ) 

Total 
11.7 17.1 22.7 

100% 100% 
( 23% ) ( 33% ) ( 44% ) 
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Table 5.15 - Material classification for each component after 100 years cooling (using 

method 2 – structured mesh 15 cm resolution). 

 Mass (kt) 

(Percentage of component) 
Potential recycling (%) 

 NAW LLW ILW LLW-RM ILW-RM 

Divertor 
0.0 2.8 1.1 

100% 100% 
( 0% ) ( 71% ) ( 29% ) 

Blanket 
0.0 0.0 8.8  100% 

( 0% ) ( 0% ) ( 100% ) 

Vacuum vessel 
2.5 5.7 5.1 

100% 100% 
( 19% ) ( 43% ) ( 38% ) 

TF coils 
0.0 2.3 0.1 

100% 88% 
( 1% ) ( 96% ) ( 3% ) 

Remaining materials 
13.0 8.5 1.7 

100% 100% 
( 57% ) ( 36% ) ( 7% ) 

Total 
15.5 19.2 16.8 

100% 100% 
( 30% ) ( 37% ) ( 33% ) 

 

5.10.2 The breeder blankets 

The breeder blanket is replaced once during the operational scenario assumed in this 

research; after the first phase of irradiation. The results for both the first and second 

blanket are added together to give the total mass of waste as shown in Figure 5.18, 

using a structured mesh approach (method 2) with a 15 cm voxel resolution. The full 

data for all methods is presented in Appendix 5.3, for clarity of presentation a 

summary of results at 5 cooling times are compared in Table 5.16 and Table 5.17.  

 

Figure 5.18 - Blanket material waste classes, using method 2 (15 cm resolution 

structured mesh). 
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Whilst the blankets remain ILW beyond 100 years, the results show that some 

material may be suitable for recycling after 10 - 40 years. As the blanket is the closest 

component to the plasma it receives high neutron irradiation, as does the divertor, 

leading to highly activated components. Even 1000 years after shutdown there is no 

fraction that can be considered as NAW based on activation concentration limits.  

 

Table 5.16 - Mass of blanket materials classed as LLW (kt) with the percentage for 

potential recycling given in parenthesis (RM = recyclable material). 

Cooling 

time 

(years) 

LLW (kt) 

Cell 
Structured mesh 

(9 cm) 

Structured mesh 

(15 cm) 
Unstructured mesh 

10 0.0 0.0 0.0 0.0 

40 0.0 0.0 0.0 0.0 

100 0.0 0.0 0.0 0.0 

500 5.3 6.8 6.8 6.7 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

1000 7.8 6.9 6.9 6.9 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

 

Table 5.17 - Mass of blanket materials classed as ILW (kt) with the percentage for 

potential recycling given in parenthesis. 

Cooling 

time 

(years) 

ILW (kt) 

Cell 
Structured mesh 

(9 cm) 

Structured mesh 

(15 cm) 
Unstructured mesh 

10 8.8 8.8 8.8 8.8 

 (RM- 0%) (RM- 1%) (RM- 1%) (RM- 0%) 

40 8.8 8.8 8.8 8.8 

 (RM- 0%) (RM- 32%) (RM- 32%) (RM- 32%) 

100 8.8 8.8 8.8 8.8 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

500 3.4 2.0 2.0 2.1 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

1000 1.0 1.8 1.8 1.8 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

 

During operation the blanket is intended, amongst other things, to create tritium as 

fuel for a self-sustaining fusion reactor. In the main results presented it has been 

assumed that the tritium remains in the blanket, in reality the tritium should be 

extracted for use as fuel in the plasma. Also, as the tritium is gaseous it cannot be 

assumed to be fixed to a location and will disperse. Considering the blankets with the 
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assumption that all the tritium is removed continuously results in the ILW reducing 

after approximately 6 years (Figure 5.19). It should be noted that although the 

intention is to remove all tritium from the blanket, some will be retained within the 

structure of the blanket.   

 

 

Figure 5.19 - Blanket material waste classes, using method 2 (15 cm resolution 

structured mesh), with and without tritium. 

 

5.10.3 The reactor vacuum vessel 

The waste classes for the mass comprising the vacuum vessel are given in Figure 5.20 

to Figure 5.22. The time response of the recyclable material fraction is similar to that 

shown in previous plots and is therefore not reproduced here (see Appendix 5.3 for the 

complete data).  

A comparison of the mass of material within each waste category is given in Table 

5.18 to Table 5.20 for 5 cooling times; 10, 40, 100, 500 and 1000 years. The 

corresponding percentage of material that has recycling potential is shown in 

parenthesis. 
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Figure 5.20 - Mass (kilotonne) of vacuum vessel material classed as NAW. 

 

 

Figure 5.21 - Mass (kilotonne) of vacuum vessel material classed as LLW. 
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Figure 5.22 - Mass (kilotonne) of vacuum vessel material classed as ILW. 

 

The mass of the vacuum vessel is predominantly ILW until approximately 10 years 

after shutdown. By 100 years there is approximately 40 % ILW, 40 % LLW and 20 % 

NAW. Through considering the waste class of the vacuum vessel by voxel or element, 

some of the material can be classed as LLW just after shutdown. Flux averaging over 

large cells, method 1, causes the whole component to be classed as ILW for 

approximately 100 years. For mesh-based methods the ILW decreases steadily to 

approximately 17 % ILW by 1000 years after shutdown.  

The mass of LLW within the vacuum vessel peaks at approximately 60 years, when 

the activation decreases due to the decay of 55Fe (see Section 5.10.6). After 60 years 

the quantity LLW declines as it becomes classed as NAW. After 100 years, the 

majority of the ILW and LLW is considered to be potentially recyclable. The 

percentage of ILW that could be recycled increases most significantly after 10 years.  
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Table 5.18 - Mass of blanket materials classed as NAW (kt) with the percentage for 

potential recycling given in parenthesis (RM = recyclable material). 

Cooling 

time  

(years) 

NAW (kt) 

Cell 
Structured mesh 

(9 cm) 

Structured mesh 

(15 cm) 
Unstructured mesh 

10 0.0 0.0 0.0 0.1 

40 0.0 0.2 0.2 0.3 

100 0.0 2.7 2.5 2.2 

500 0.1 5.4 5.3 5.1 

1000 0.1 5.5 5.4 5.2 

 

Table 5.19 - Mass of blanket materials classed as LLW (kt) with the percentage for 

potential recycling given in parenthesis (RM = recyclable material). 

Cooling 

time 

(years) 

LLW (kt) 

Cell 
Structured mesh 

(9 cm) 

Structured mesh 

(15 cm) 
Unstructured mesh 

10 0.6 6.4 6.3 6.0 

 (RM- 26%) (RM- 88%) (RM- 88%) (RM- 87%) 

40 0.9 7.6 7.5 7.2 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

100 1.7 5.6 5.7 5.6 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

500 10.2 5.7 5.8 5.6 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

1000 11.7 6.6 6.7 6.6 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

 

Table 5.20 - Mass of blanket materials classed as ILW (kt) with the percentage for 

potential recycling given in parenthesis (RM = recyclable material). 

Cooling 

time  

(years) 

ILW (kt) 

Cell 
Structured mesh 

(9 cm) 

Structured mesh 

(15 cm) 
Unstructured mesh 

10 12.6 6.9 6.9 6.9 

 (RM- 0%) (RM- 0%) (RM- 0%) (RM- 0%) 

40 12.4 5.4 5.6 5.6 

 (RM- 66%) (RM- 36%) (RM- 36%) (RM- 35%) 

100 11.6 5.0 5.1 5.2 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

500 3.1 2.2 2.2 2.3 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

1000 1.5 1.2 1.2 1.2 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

 

The vacuum vessel comprises of three layers, a layer of 77 % steel and 23 % water 

cooling, with an inner and outer layer of 100 % steel. After shutdown the cooling 

water will be removed and not form part of the solid radioactive waste assessment. 
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With this in mind a further calculation has been performed, using method 2 

considering the waste in the vacuum vessel without water in the inventory i.e. the 

water was removed after the neutron transport calculation.  

 

Figure 5.23 - Vacuum vessel material waste classes, using method 2 (15 cm resolution 

structured mesh), with and without water. 

 

 

Table 5.21 - Comparison of waste classes with and without water in vacuum vessel. 

Cooling time 

(years) 

Water No Water 

NAW LLW ILW NAW LLW ILW 

1  0% 31% 69% 0% 30% 70% 

5 0% 39% 61% 0% 39% 61% 

10 0% 48% 52% 0% 47% 53% 

100  19% 43% 38% 18% 43% 39% 

500 40% 44% 16% 39% 44% 17% 

1000 41% 50% 9% 40% 51% 9% 

 

Removing the water reduced the overall mass of the vacuum vessel and reduced the 

waste in all classes (Figure 5.23). At approximately 1 day after shutdown the amount 

of ILW is reduced from 11 kt to 10 kt. As a percentage of the total vacuum vessel 

mass (Table 5.21) there is minimal difference observed in the waste classes, 

approximately 1 % decrease in the radioactivity level of waste is observed after 10 

years.  
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5.10.4 The divertors 

There are four divertors used throughout the operational scenario of the DEMO 

reactor simulated in this work. One divertor is replaced after the first phase and this is 

replaced twice more during the second phase. The results presented are a summation 

of all four divertors. 

 

Figure 5.24 - Divertor material waste classes, using method 2 (a 15 cm resolution 

structured mesh). 

 

Figure 5.24 shows the variation in waste material with time when using method 2, the 

structured mesh with a 15 cm voxel resolution. Whilst full data for all methods is 

given in Appendix 5.3., a comparison for 5 cooling times is presented in Table 5.22 

and Table 5.23. 

As with the blanket, the divertors are plasma facing components and as a result 

receive high neutron flux. Consequently even after 1000 years there is no NAW. The 

divertor is mainly ILW until approximately 10 years where it decreases from 

approximately 4 kt to 1 kt by 100 years. This then slowly decreases further to 

approximately 0.5 kt ILW by 1000 years. As the ILW decreases, the mass becomes 

classed as LLW. Of the LLW, the majority is classed as recyclable after around        

60 years.  
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Table 5.22 - Mass of divertor materials classed as LLW (kt) with the percentage for 

potential recycling given in parenthesis (RM = recyclable material). 

Cooling 

time 

(years) 

LLW (kt) 

Cell 
Structured mesh 

(9 cm) 

Structured mesh 

(15 cm) 
Unstructured mesh 

10 0.0 0.0 0.0 0.0 

40 0.4 0.7 1.2 0.8 

 (RM- 38%) (RM- 33%) (RM- 46%) (RM- 34%) 

100 3.7 2.9 2.8 3.2 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

500 3.8 3.3 3.1 3.5 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

1000 3.8 3.3 3.3 3.5 

 (RM- 100%) (RM- 100%) (RM- 100%) (RM- 100%) 

 

Table 5.23 - Mass of divertor materials classed as ILW (kt) with the percentage for 

potential recycling given in parenthesis (RM = recyclable material). 

Cooling 

time 

(years) 

ILW (kt) 

Cell 
Structured mesh 

(9 cm) 

Structured mesh 

(15 cm) 
Unstructured mesh 

10 3.9 3.9 3.9 3.9 

 (RM- 0%) (RM- 0%) (RM- 0%) (RM- 50%) 

40 3.5 3.2 2.7 3.2 

 (RM- 0%) (RM- 1%) (RM- 33%) (RM- 46%) 

100 0.2 1.0 1.1 0.8 

 (RM- 84%) (RM- 100%) (RM- 100%) (RM- 100%) 

500 0.1 0.7 0.8 0.5 

 (RM- 70%) (RM- 100%) (RM- 100%) (RM- 100%) 

1000 0.1 0.6 0.6 0.4 

 (RM- 91%) (RM- 100%) (RM- 100%) (RM- 100%) 

 

5.10.5 The toroidal field coils 

The waste inventory for the toroidal field coils is presented in Figure 5.25. The mass 

of the toroidal field coils only accounts for a small fraction of the total mass of the 

DEMO reactor model used here. As the ILW decreases, the LLW increases steadily 

with only a small fraction of the toroidal field coils classed as NAW; approximately 

3 % of the waste is classed as NAW 500 years after shutdown.  

The variation in the different methods is provided in Appendix 5.3 along with data 

corresponding to the recyclable material. The majority of LLW could be recycled, 

with 40 - 90 % of the ILW recyclable after 50 years. The significant differences 



 

   144 

observed in the absolute mass of waste values using method 4 are due to the zero 

neutron flux values in some voxels of the toroidal field coils from poor sampling. 

 

Figure 5.25 - Toroidal field coil material waste classes, using method 2 (15 cm resolution 

structured mesh). 

 

5.10.6 Dominant nuclides  

The FISPACT i/o files were saved for 4 points within the model. This enabled the 

nuclide inventory and activation to be investigated in further detail. Re-running the 

activation calculation for these points using the ‘UNCERT’ keyword with FISPACT 

enabled the pathway information to be obtained. The nuclides that dominate the 

activation at 100 years are presented in the following figures: 

Figure 5.26 - point B within the outboard breeder blanket. 

Figure 5.28 - point C in the middle of the divertor. 

Figure 5.27 - point D in the vacuum vessel (inboard side). 

Figure 5.29 - point G in the upper inboard side of the toroidal field coil. 

The activation in the breeder blanket (Figure 5.26) is dominated by the tritium, 

however as already discussed; this should not be assumed to stay in its birth location. 
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dominant, with half-lives of approximately 5 and 16 years respectively. Beyond 70 

years, the long-lived 14C nuclide dominates; with a half-life of greater than 5700 

years. 

 

 

Figure 5.26 - Activity concentration of dominant nuclides at point B in the outer blanket. 

 

 

The nuclides of 55Fe, 60Co and 14C dominate the activity within the vacuum vessel 

(Figure 5.27). Iron-55 originates from the 56Fe and 54Fe isotopes, through the (𝑛, 2𝑛) 

and (𝑛, 𝑎)  reactions respectively. The vacuum vessel is a structural component 

comprising of mainly steel, therefore iron is a fundamental element within the 

material. The presence of 60Co, however, can be reduced through impurity reduction 

in steels (where technology allows). The EUROFER specification provides a target of 

‘as low as possible’ and less than 0.005 w% for Co. Carbon-14 is formed through the 

(𝑛, 𝑝) reactions with 14N. Steels in some ITER components will use a reduced Ni 

variation. In DEMO a Ni content of between 0.015 - 0.045 w% is anticipated. 
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Figure 5.27 - Activity concentration of dominant nuclides at point D in the inboard 

vacuum vessel. 

 

 

 

Figure 5.28 - Activity concentration of dominant nuclides at point C in the divertor. 
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The divertor structure is a particularly difficult component for materials due to the 

high flux loads. In this research, steels of EUROFER and ITER grade stainless steels 

were used in the divertor. Significant research within published literature has been 

performed on these materials, however, the conditions within DEMO will require 

other types of structural material due to the higher operating temperatures and to avoid 

excessive volume changes under neutron irradiation. The structural materials for 

DEMO are based on assumed technological advances; some materials are discussed in 

Section 2.5.6.  

In this research the activation in the divertor (Figure 5.28) is comprised of similar 

dominant nuclides to the vacuum vessel. The nuclides of 55Fe, 60Co and 93mNb 

dominate activation up to approximately 100 years. Above this the long-lived 14C 

nuclide dominates.  

The toroidal field coil is significantly less activated than the blankets, vacuum vessel 

and divertor as they are shielded by the in-vessel components (Figure 5.29). At 

cooling times between 1 and ~ 10 years the 60Co nuclide dominates the activation. 

Above this, the 63Ni nuclide dominates up to ~ 500 years. The activation is then 

dominated by the long lived 94Nb nuclide with a half-life of 19986 y.  

 

Figure 5.29 - Activity concentration of dominant nuclides at point G in the inboard 

toroidal field coil. 
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5.11 Discussion 

5.11.1 The radioactive waste inventory 

Fusion power plants have a significant environmental and social acceptability 

advantage over fission due to the differences in the radioactive waste produced. 

Fusion plants will not produce radioactive products as a result of the fusion reaction, 

unlike fission by-products. The high level wastes from the fission spent fuel and waste 

arising from reprocessing require active cooling due to the thermal power. Within the 

UK approximately 0.1 % (1000 m3) of the total radioactive waste is classed as high-

level waste; although the volume is relatively small, it contains about 95 % of the total 

inventory of radioactivity [173]. According to a report by the World Nuclear 

Association [174], a typical 1000 MW(e) light water reactor will generate (directly 

and indirectly) 200 - 350 m3 ILW and LLW per year. It will also produce around      

20 m3 (27 tonnes) of used fuel per year, which corresponds to a 75 m3 disposal 

volume following encapsulation procedures.  

Although a fusion power plant will not produce HLW, the tokamak is likely to create 

a higher percentage of ILW and LLW than fission. Whilst this waste is more socially 

acceptable than high level wastes it still is not well received. There are also still 

significant costs associated with dealing with such wastes with limited disposal 

repositories available and difficulties in constructing new facilities. In terms of cost it 

is anticipated to be roughly tens of thousands of pounds per cubic metre of ILW and 

hundreds of thousands per tonne of uranium for high level waste [174]. (This is 

assuming such facilities are available). Fusion research has focused on creating a 

‘clean’ energy supply and this has driven the requirement for the materials of a fusion 

power plant to be recycled or cleared after 100 years. Using lower activation materials 

and dismantling components can help to reduced quantities of material that will need 

to be considered for storage and/or disposal. 

By considering the waste in each voxel or element of a mesh, the effect of 

dismantling/segregation can be considered for a HCPB DEMO. (This mesh-based 

approach also reduces neutron flux averaging assumptions, as discussed later in this 

section.) If the components could be assumed to be dismantled into 15 cm cubes, then 

results show that ~ 7 % of the waste could be cleared from regulatory control after    

40 years and 30 % after 100 years. For example, the vacuum vessel is classed as ILW 
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after 100 years cooling time. By dismantling into 15 cm cubes, approximately 10 % of 

the material could be cleared, and 43 % classed as LLW, providing more options for 

disposal and lowering difficulties faced with storage and eventual disposal of ILW.  

Splitting a reactor into 9 or 15 cm cubes is obviously not a practical option. However 

the results demonstrate some of the advantages from the dismantling of components if 

suitable dismantling and separation techniques are developed. Dismantling in itself 

can produce more radioactive waste depending on the methods employed. The process 

of dismantling requires cutting and severing tools with the likely potential of causing 

dust, fumes and secondary liquid waste. Where suitable it would be advantageous to 

make use of demountable components with a process which could be undertaken 

remotely.  

The effect of flux averaging is evident when comparing the cell-based results to those 

using a mesh-based approach. As discussed in Section 5.7, some of the components 

have been split into smaller cells, mainly for the CAD to MCNP conversion process, 

though there are still a number of ‘large cells’ with deep shielding effects. Table 5.11 

shows the flux approximation for a number of points in the model. In areas where the 

cells are respectively small, and for components close to the plasma, the effect of flux 

averaging is low, whereas outside the shielding of the blanket, the effect becomes 

more significant.  

The flux averaging in turn effects the radioactive waste assessment, as the entire cell 

is assumed to have the same neutron flux irradiation.  By making this assumption,      

less than 1 % of the waste can be cleared after 40 years, and ~22 % after 100 years, 

with ~27 kt  and 23 kt of ILW at 40 and 100 years respectively. 

Recycling is the preferred method for dealing with waste arising from a power plant 

that cannot be cleared from regulatory control; either due to activation products or for 

example in the case of France, where no clearance procedures are in place. In this 

research the contact dose rate has been used to assess the potential for recycling 

material. This research shows that after an interim cooling period of 60 years the 

majority of the ILW is recyclable. The majority of the LLW is shown to be recyclable 

shortly after shutdown and well within a 40 - 50 year interim cooling period. The limit 

of 2 mSv/hr has been used, as adopted in similar studies on the recycling of 

radioactive waste materials (see Section 5.5). Recycling could also be considered for 

materials with a contact dose rate < 10 mSv/hr (and even up to 20 mSv/hr is possible), 
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but this would require specific remote handling equipment often at a high economic 

expense. 

Due to the different waste classes and approaches considered throughout the literature, 

it is difficult to draw comparisons with the data generated in this research for a DEMO 

model. Similar trends in the results are observed however. Analysis conducted on the 

Russian Federation DEMO-S model [160] shows that the steel within the vacuum 

vessel contributes significantly to the activity and as such does not reduce to a lower 

level waste class until 100 years after shutdown. It also shows that some recycling of 

material (mostly the coils) is achievable after approximately 30 years. 

A DEMO HCLL radioactive waste study using an approach similar to that of a cell-

based method is presented in [68]. The study uses reasonably similar waste 

classification to that in this thesis, it is shown that the ILW reduced more rapidly with 

the majority gone 50 - 100 years after shutdown. This however does not include the 

LiPb breeder material used in the blanket. Comparing the quantity of cleared material 

for the different materials/components and the variation with time shows some 

agreement, particularly for the toroidal field coils and plasma facing components 

(blanket first wall and divertor first wall).  

Comparing the cleared material after 100 years cooling time with [175] also shows 

similar agreement with the results using the BSSD-1996 clearance index (as used in 

this work). It reports that after 100 years, 21 % of the materials could be cleared 

(~13 % using the IAEA clearance levels). Results from the cell-based method in this 

thesis show that ~23 % of the material comprising the DEMO model can be cleared. 

Further discussion and comment on the use of clearance index values is given in 

Section 5.11.3. 

5.11.2 Use of unstructured mesh 

Radioactive waste assessments for fusion power plants using neutron flux data from 

MCNP have in the past been carried out using a cell-based approach. In this work, 

recent developments regarding the coupled use of MCNP and FISPACT with mesh-

based neutron spectra results, has been considered, along with the state-of the art 

unstructured mesh capabilities within the latest release of MCNP.  

In theory the unstructured mesh approach is the most appropriate; there are no 

introduced errors through material mixing of different components and materials, and 
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reduced flux averaging by effective use of mesh elements. The method of using 

unstructured mesh in calculations is also advantageous as the mesh only covers the 

solid bodies of the model, increasing the efficiency of the mesh and removing 

unnecessary elements that take up valuable computing resource but are not need, as in 

the case of a structured rectangular mesh over say a 10° fusion tokamak sector model. 

Coupled 3-D neutronics and activation analysis is ‘expensive’ both in terms of 

computational requirements and human time. The majority of human time is spent in 

creating neutronics compatible models.  

The use of unstructured mesh within neutronics could facilitate the use of ‘shared’ 

models between departments, and shared time in creating the suitable models. 

Currently the geometry requirements for a model to be converted into CSG, result in 

neutronics specific, and even analysis specific, models being created. This is a large 

amount of human time which could be reduced with the development of unstructured 

mesh methods.  

Although the model could be shared the resulting unstructured mesh may not be so 

compatible between analysis departments due to refinement requirements. Using a 

‘fine’ mesh for unstructured mesh based neutronics analysis would be computationally 

expensive, and quite possibly, impractical or infeasible due to the memory 

requirements. For use in activation analysis, where neutron flux in the transport 

calculation is recorded in 175 energy groups for each element, a mesh resolution of 15 

cm required approximately 2 Gb of memory. Using a more refined mesh, such as 5 cm, 

this increases to 36 Gb - impractical for this type of analysis. In the case of full 

tokamak models, i.e. the full 360º, a mesh resolution of 30 cm would require 10 - 15 

Gb (based on the reasonably uncomplicated EU DEMO model used in the work 

presented here). More complex geometry could increase the mesh size (i.e. the 

number of elements) significantly. The increased opportunities regarding the 

efficiency and refinement of the unstructured mesh, however, are still advantageous 

compared to the superimposed structured rectangular mesh. Additional consideration 

and thought should be given to the size of the unstructured mesh being created.  

In this work it was found that although the unstructured mesh has many potential 

benefits, as of yet it is still widely untested with many of the analysis techniques and 

methods used within neutronics. This needs further development to ensure a robust 

methodology for using an unstructured mesh approach in fusion neutronics.  
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5.11.3 Using clearance levels 

Clearance levels are used to determine the clearance index of a material and in turn 

whether it can be cleared from regulatory control. Within French regulations, as used 

for ITER, no waste can be classed as cleared; all waste produced on a nuclear licensed 

site must be classes as radioactive waste and disposed of with an appropriate method. 

As discussed in Section 5.4.2, there are a number of clearance levels available for 

different material types and scenarios. The levels used in this work are directly 

derived from the BSSD-1996, as reproduced in the UK radioactive safety guidance 

[142]. After inspection and comparison of the activation concentration levels between 

those used in this work, those presented in Table 3.2 of RP-122 [153] and those in 

Table 2.3 of RS-G-1.7 [154], it was shown that there are some difference. Studies into 

the effect of using the clearance levels in RS-G-1.7, which are now included as the 

standard clearance levels in the BSSD-2007, replacing those from BSSD-1996,  on the 

ITER waste inventory showed that the clearance potential of material and the time 

scales were effected [175]. In general, the IAEA levels (RS-G-1.7), presented as 

activity concentrations, are the same as, or lower than, the BSSD-1996 levels, and 

result in less ITER material achieving clearance within the same time scale and with 

longer interim decay periods.  

A test case on the radioactive waste inventory of a component of the EU HCPB 

DEMO model showed that on the time scales investigated, there was little impact on 

the amount of cleared waste.  

During comparison tests it also became apparent that were some discrepancies in the 

list of activity concentrations used for clearance in this work; this is likely due to 

human error (prior to this research) in transferring the data from [142] into the 

tabulated form used in the calculations. This was shown in a test case not to have any 

significant effect on the radioactive waste inventory calculations performed on this 

DEMO model.  

5.11.4 Tritiated waste 

The main focus of a large portion of the research presented in Section 4 is on the 

production of tritium. Tritium production in the blanket is a requirement of the 

currently pursued magnetically confined fusion power plants. In the blankets where 

tritium production is designed to take place, a tritium recovery system will be used. In 



 

   153 

the case of solid blankets this is likely to be a purge gas, for liquid breeders it is 

proposed that the tritium recovery could take place continuously from the flowing 

breeder. Tritium management should be addressed through the plant’s full lifetime, 

conception to decommissioning. The fusion fuel cycle has a poor tritium burning 

efficiency, for DEMO this anticipated to be around 10 %. The majority of the tritium 

is recovered for recycling, via purification steps. Some of the tritium is effectively 

‘lost’ in the surrounding in-vessel components and will be difficult to recover. Further 

tritium contamination arises as a result of activation products from the materials 

comprising the tokamak.   

Tritium activity has not been considered explicitly within the radioactive waste 

assessment carried out as part of this research however some of the considerations are 

explored. As discussed in Section 5.4.3, it is expected that a large amount of waste 

will be contaminated with tritium. Regardless of the IAEA waste level (as calculated 

in this work), the disposal options for the waste is likely to be further restricted by the 

tritium activity [151]. Many repositories impose limits on the activity due to tritium 

contamination. Tritium is a low energy beta emitter with a range of up to 0.6 cm in air 

(6 µm in tissue). Material contaminated with tritium does not, therefore, pose a 

particular external threat to human life. However tritium can permeate materials and 

once airborne can be more easily inhaled.  

The most radiotoxic issue arises from tritiated water vapour as the tritium readily 

exchanges with water vapour in the air. Once inhaled or absorbed the tritium disperses 

rapidly through the body giving rise to a whole body dose. Tritiated water vapour is 

up to 25000 times more radiotoxic than tritium as a gas. Reducing the tritium retention 

in materials is therefore particularly important [176]. Techniques for detritiation are 

also being pursued [149]; some are discussed in Section 5.4.3.  

In radioactive waste assessments like that carried out in this research, it is difficult to 

quantify the tritium content and associated activity as it should not be assumed that all 

the tritium created in the blanket will stay there. Primarily this should be assumed to 

be removed through the tritium recovery system, however some will remain. Due to 

the gaseous nature of the tritium it will permeate out of the blanket and into other 

surrounding structures/ components and specifying the exact location would be 

challenging. Comments regarding recommendations for further work in this area are 

included in final remarks and suggestions for further work in Section 6. 



 

   154 

5.12 Conclusions 

A neutronics model of the EU generic DEMO 2015 model (using HCPB blanket 

material) was used to conduct a radioactive waste assessment with a focus on the 

effect of using cell-based, structured or unstructured mesh based approaches. The 

model includes in-vessel components, toroidal field coil, centre column magnets and 

some of the poloidal field coils closest to the plasma. These components will 

contribute the most to the higher levels of radioactive waste. Beyond this the neutron 

fluxes will be significantly reduced due to the shielding effect the components provide.  

The research regarding radioactive waste assessments for fusion using neutronics 

analysis techniques can be summarised in the following conclusions: 

• Dismantling components and or the design of demountable sections should be 

considered in an effort to reduce the levels of radioactive waste requiring long 

storage and or disposal.  

• Of the total mass of the DEMO reactor as modelled, approximately 25 % 

comprises the vacuum vessel. If the vessel is considered as one component, or 

in large sections, then the calculations show that this would be considered as 

ILW for at least 100 years. Dismantling sections of the outboard vacuum 

vessel could reduce the ILW waste at 100 years cooling time from ~12 kt to 5 

kt.  

• An unstructured mesh approach to performing radioactive waste assessments 

is in theory the most appropriate, potentially providing a quicker route to 

MCNP model creation, removing uncertainties introduced through material 

mixing within voxels of a structured mesh, and providing options for using a 

more efficient mesh that can also be shared with other analysis uses. 

• Further testing and development of the unstructured mesh method is required 

to make it more robust and compatible with current global variance reduction 

techniques. 

• The ADVANTG variance reduction technique has been shown to produce a 

more efficient weight window. The production of the weight window also 

required less computing time than the iterative approach implemented in the 

WWiter code. 
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6 FINAL REMARKS  

The main purpose of the research presented in this thesis was to use neutronics 

analysis to assess blanket performance, shielding requirements and radioactive waste 

inventory. The use of a novel approach to radioactive waste inventory through the 

unstructured mesh geometry capability with MCNP was also investigated for the 

potential of a more accurate analysis method. 

6.1 Breeder blanket performance 

A selection of solid and liquid tritium breeding materials have been compared with 

regards to blanket performance, i.e. TBR, energy multiplication and shielding, using 

neutronics analysis through MCNP particle transport. The overall conclusions drawn 

from this research are: 

• The solid breeder type materials require less 6Li enrichment, than the majority 

of the liquid breeder types, to achieve a similar tritium production and energy 

multiplication ratio. 

• Although some of the solid breeder concepts are more developed, the liquid 

breeder blankets have some compelling advantages, such as the potential for 

continual purification and improved tritium control. Also, the majority of the 

liquid breeder materials do not require the use of beryllium for reasonable 

tritium production levels. (Whilst beryllium does feature in many blanket 

concepts there is also on-going research in an effort to reduce usage. Beryllium 
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is not particularly abundant and causes a number of safety issues, not least due 

to the high reactivity with water.) 

• The molten salt materials are perhaps more suited to use in a component test 

facility (or similar fusion testing device) where tritium self-sufficiency is not a 

set requirement. The advantages surrounding the use of molten salts can be 

utilised with a small loss of performance regarding TBR and energy 

multiplication.  

• The thick breeder blanket in conventional tokamaks provides adequate 

shielding of the magnets, both on the outboard and inboard. 

Some recommendations for further blanket performance studies, developing on work 

presented in this thesis: 

• The liquid metal breeders of LiPb and LiSn, and the molten salt LiBeF, have 

the most potential for use in liquid blanket concepts for fusion power plants. 

Further optimisation of these should be considered and the performance in a 

more mature DEMO neutronics model assessed. Considering the effects of 

liquid breeder flow rate on the tritium control and activation would also be 

advantageous.  

• In terms of the shutdown activation, the dominant long-lived nuclides (in 

particular the 14C and 205Pb and Sn radionuclides) could potentially impact on 

the radioactive waste disposal options. This should be studied in further detail 

and with respect to a DEMO model using a more detailed irradiation scenario 

than that used with the HTS spherical tokamak.  

6.2 Shielding requirements of HTS spherical tokamaks 

Scoping studies have been performed to investigate the effect on shielding 

requirements due to varying geometric parameters, and how this limits the reduction 

in overall size of spherical tokamaks. The neutronics performance of a more detailed 

high temperature spherical tokamaks model (HTS-ST) was also assessed. The 

research can be summarised in the following: 

• At least 0.4 m of tungsten carbide shielding is required to reduce the centre 

column heating and neutron fast flux to acceptable levels. This thickness of 
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shielding required a tokamak major radius of 3 m based on the geometry 

conditions set in the parameterisation.  

• In scoping studies, the TBR was relatively unaffected by the changing 

shielding thickness. No ports, divertor regions or blanket gaps were 

considered. 

• The TBR performance of a solid breeder (Li4SiO4) in the HTS-ST model 

compared well against the liquid breeder proposed by Princeton Plasma 

Physics Laboratory. Further optimisation of the TBR could be performed 

through 6Li enrichment and multiplier ratios. The use of different optimisation 

in each blanket could also be considered to increase TBR and make more 

efficient use of the lithium and multiplying materials.  

• The fast neutron flux will limit the lifetime of the magnets. In the HTS-ST 

model the centre column magnets were shown to have an estimated lifetime of 

~2.5 FPY. If the magnets can be assumed to withstand higher neutron fluence 

(as is anticipated due to advances in manufacturing techniques) then the       

3.1 FPY operational life for the Princeton Plasma Physics Laboratory proposed 

fusion nuclear science facility can reasonably be achieved.  

• It is increasingly accepted within the fusion community that another fusion 

device, whether called a fusion nuclear science facility, fusion neutron source, 

component test facility, materials testing device, etc., will be required before a 

DEMO power plant. A HTS spherical tokamak looks to be a favourable 

option, with reduced size and associated lower costs. The neutronics 

assessment provides encouraging results.  

6.3 Radioactive waste assessment for DEMO 

The radioactive waste assessment using the EU generic 2015 DEMO model 

demonstrates some of the important aspects for a fusion relevant waste management 

plan. The conclusions are summarised as: 

• Fusion plants will not produce radioactive products as a result of the fusion 

reaction, such as those associated with nuclear fission.  

• Although a fusion power plant will not produce high level wastes, the tokamak 

could create substantial quantities of ILW and LLW. Even after 1000 years 
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there will still be some radioactive waste, ~ 4 kt ILW and 27 kt of LLW. 

However the results also suggest that after 100 years nearly all of the material 

could be considered for recycling, satisfying the intended waste strategy of a 

fusion power plant. 

• The use of dismantling techniques will be imperative in reducing the amount 

of ILW and LLW by segregating wastes. In this research dismantling sections 

of the outboard vacuum vessel has shown to reduce the ILW waste from the 

vacuum vessel at 100 years cooling time from ~12 kt to 5 kt.  

The radioactive waste assessment was also used to compare neutronics methods and 

the effect of neutronic modelling approximations, such as neutron flux averaging. The 

following recommendations are made regarding the neutronics methods: 

• The conventional cell-based approach relies of flux averaging over cells 

comprising the geometry. This can be reduced through cell-splitting, however 

this is time consuming and an inefficient method.  

• A mesh-based approach allows the dismantling and separation of waste to be 

investigated. A significant increase in the potential output data can be 

acquired, when using a mesh-based method, from what is essential the same 

calculation. There is an increase in computational time as a FISPACT 

irradiation calculation is performed on every voxel instead of every cell, 

however these calculations are relatively quick compared to the neutron 

transport - which must be performed for either approach.  

• In the case of a structured mesh, a material mixing step is introduced which is 

not ideal.  

• The use of unstructured mesh geometry alleviates the materials mixing 

problem. The neutron flux is tallied directly on the mesh elements comprising 

the geometry with a FISPACT calculation performed on each of the elements.  

• The unstructured mesh approach has the potential to be a more accurate 

method for calculating radioactive waste whilst also reducing neutronics 

model building efforts.  
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Important areas for further development and future studies include: 

• The effect of different waste classes could be considered in further work, 

particularly around the use of the French system that does not allow for 

clearing of waste material created on a nuclear site.  

• A comparison should be made on the neutronics assessment of an unstructured 

mesh created using the original CAD (with only minimum simplifications) and 

a CSG model created using a suitably simplified CAD model. This would 

investigate the effects of the simplification and be useful in cost benefit 

analysis with respect to model production time.  

• Further testing of the unstructured mesh geometry with GVR techniques is a 

particularly important development requirement for producing a robust 

neutronic relevant analysis method.  

• On-going investigations into uncertainty propagation for shutdown dose rate 

analysis should be investigated further with relation to radioactive waste 

inventory, and comparison made to uncertainty assumptions similar to those 

made in this research.  

• The effect on radioactive waste inventory due to the retention of tritium should 

be investigated. An initial approach could be to add a quantity of tritium into 

the materials file during the irradiation step of the neutronics method.  

6.4 Closing comment 

Although there are a number of significant challenges surrounding fusion power, these 

are not insurmountable. The advantages regarding waste arising is of particular 

importance when considering options for future energy sources. With the recent 

advances in HTS magnets there is further optimism with regards to a reduced cost, 

near-term, compact device using a spherical tokamak concept.  
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APPENDIX 1: MATERIALS DATA 

The following tables contain detailed material compositions for the materials (or for 

material homogenisation) used in the neutronics models of this thesis. 

Table 7.1 - Materials used in blanket material composition study (Section 4.2). 

Material Lithium breeder  Material EUROFER steel structure 

Mass Density 0.5400  Mass Density 7.7980 

Element ZAID Fraction  Element ZAID Fraction 

Li 3006 7.5000E-02  C 6012 4.6029E-03  
3007 9.2500E-01  N 7014 1.1798E-03    

 
 

7015 4.3339E-06 

Material Helium coolant  O 8016 3.4542E-04 

Mass Density 0.0002  V 23000 2.1706E-03 

Element ZAID Fraction  Cr 24050 4.1579E-03 

He 2004 1.0000E+00  
 

24052 8.0181E-02    
 

 
24053 9.0919E-03 

Material Beryllium multiplier  
 

24054 2.2632E-03 

Mass Density 1.8500  Mn 25055 4.0258E-03 

Element ZAID Fraction  Fe 26054 5.2586E-02 

Be 4009 1.0000E+00  
 

26056 8.1748E-01    
 

 
26057 1.8717E-02    

 
 

26058 2.4956E-03    
 Ta 73181 3.6664E-04    
 W 74182 8.7000E-05    
 

 
74183 4.7304E-05    

 
 

74184 1.0156E-04    
 

 
74186 9.4608E-05 

 

Table 7.2 - Composition of spherical tokamak materials (Section 4.4). 

Component Homogenised material mix Detailed composition 

Centre column 

magnet 

95% HTSC coils + 5% helium 

(by volume) 

HTSC- 42.55% Cu + 53.19% hastelloy steel + 2.13% 

Ag + 2.13% REBCO (by volume) 

Hastelloy steel- 55% Ni + 16% Mo + 15.5% Cr + 9.5% 

Fe + 4% W  

REBCO- YBa2Cu3O7 (by mass) 

Inboard shield 
87% tungsten carbide + 13% 

water (by volume) 
 

Outboard first wall 
90% EUROFER + 5% CuCrZr 

+ 5% helium 

EUROFER- 89.04% Fe + 9% Cr + 0.1% C + 0.4% Mn 

+ 0.2% V + 0.03% N + 0.01% O + 0.12% Ta + 1.1% 

W CuCrZr- 98.9% Cu + 1% Cr + 0.1% Zr 

Outboard breeder 

blanket 

55% beryllium + 20% helium + 

15% lithium breeder + 10% 

EUROFER 

Lithium breeder- Li4SiO4 (natural 6Li) 

EUROFER- 89.04% Fe + 9% Cr + 0.1% C + 0.4% Mn 

+ 0.2% V + 0.03% N + 0.01% O + 0.12% Ta + 1.1%W 

Outer structure 70% EUROFER + 30% water 

EUROFER- 89.04% Fe + 9% Cr + 0.1% C + 0.4% Mn 

+ 0.2% V + 0.03% N + 0.01% O + 0.12% Ta + 1.1%W 

Water- H2O 
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Table 7.3 - Materials spherical tokamak (Section 4.4) continued. 

Material 

95% HTSC magnets 

+ 5% helium (by 

volume) 

Material 

87% tungsten carbide 

+ 13% water (by 

volume) 

Material 

90% EUROFER + 

5% CuCrZr + 5% 

helium 

Mass density 

(g/cm3) 

8.327 Mass density 

(g/cm3) 

13.73 Mass density 

(g/cm3) 

7.466 

Element ZAID Fraction Element ZAID Fraction Element ZAID Fraction 

Cu 29063 3.00e-01 C 6012 4.33e-01 Fe 26056 7.71e-01 

Ni 28058 2.17e-01 W 74184 1.33e-01 Cr 24052 7.70e-02 

Cu 29065 1.34e-01 W 74186 1.24e-01 Fe 26054 4.96e-02 

Cr 24052 8.48e-02 W 74182 1.14e-01 Cu 29063 3.62e-02 

Ni 28060 8.34e-02 H 1001 8.94e-02 Fe 26057 1.77e-02 

Fe 26056 5.29e-02 W 74183 6.19e-02 Cu 29065 1.61e-02 

Mo 42098 1.37e-02 O 8016 4.50e-02 Cr 24053 8.73e-03 

Ni 28062 1.16e-02 H 1002 1.34e-05 C 6012 4.39e-03 

Cr 24053 9.61e-03 
   

Cr 24050 3.99e-03 

Mo 42096 9.44e-03 
   

Mn 25055 3.84e-03 

Mo 42095 9.01e-03 
   

Fe 26058 2.35e-03 

Mo 42092 8.40e-03 
   

Cr 24054 2.17e-03 

Ag 47107 7.70e-03 
   

V 23000 2.07e-03 

O 8016 7.37e-03 
   

N 7014 1.12e-03 

Ag 47109 7.15e-03 
   

W 74184 9.68e-04 

Mo 42100 5.45e-03 
   

W 74186 9.02e-04 

Mo 42097 5.40e-03 
   

W 74182 8.30e-04 

Mo 42094 5.23e-03 
   

W 74183 4.51e-04 

Cr 24050 4.39e-03 
   

Ta 73181 3.50e-04 

Ni 28061 3.63e-03 
   

O 8016 3.29e-04 

Fe 26054 3.41e-03 
   

Zr 40000 3.68e-05 

Ni 28064 2.94e-03 
   

He 2004 1.59e-05 

Cr 24054 2.39e-03 
   

N 7015 4.13e-06 

W 74184 2.27e-03 
      

W 74186 2.11e-03 
      

W 74182 1.94e-03 
      

Ba 56138 1.51e-03 
      

Fe 26057 1.21e-03 
      

W 74183 1.06e-03 
      

Y 39089 1.05e-03 
      

Ba 56137 2.37e-04 
      

Ba 56136 1.66e-04 
      

Fe 26058 1.62e-04 
      

Ba 56135 1.39e-04 
      

Ba 56134 5.10e-05 
      

He 2004 1.61e-05 
      

Ba 56130 2.23e-06 
      

Ba 56132 2.13e-06 
      

Table 7.4 - Materials spherical tokamak (Section 4.4) continued. 

Material 

55%Be + 20% helium + 

15% lithium breeder + 

10% EUROFER 

Material 
70% EUROFER + 30% 

water 

Mass density (g/cm3) 7.466 Mass density (g/cm3) 5.758 

Element ZAID Fraction Element ZAID Fraction 

He 2004 5.46e-05 H 1001 2.24e-01 

Li 3006 6.22e-03 
 

1002 3.36e-05  
3007 7.67e-02 C 6012 3.08e-03 
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Be 4009 7.29e-01 N 7014 7.88e-04 

C 6012 4.19e-04 
 

7015 2.90e-06 

N 7014 1.08e-04 O 8016 1.13e-01  
7015 3.95e-07 V 23000 1.45e-03 

O 8016 7.76e-02 Cr 24050 2.78e-03 

Si 14028 1.79e-02 
 

24052 5.36e-02  
14029 9.08e-04 

 
24053 6.07e-03  

14030 6.02e-04 
 

24054 1.51e-03 

V 23000 1.98e-04 Mn 25055 2.69e-03 

Cr 24050 3.79e-04 Fe 26054 3.47e-02  
24052 7.31e-03 

 
26056 5.40e-01  

24053 8.29e-04 
 

26057 1.24e-02  
24054 2.06e-04 

 
26058 1.65e-03 

Mn 25055 3.67e-04 Ta 73181 2.45e-04 

Fe 26054 4.74e-03 W 74182 5.81e-04  
26056 7.37e-02 

 
74183 3.16e-04  

26057 1.69e-03 
 

74184 6.78e-04  
26058 2.25e-04 

 
74186 6.32e-04 

Ta 73181 3.34e-05 
   

W 74182 7.93e-05 
   

 
74183 4.31e-05 

   

 
74184 9.26e-05 

   

 
74186 8.62e-05 

   

Table 7.5 - Materials used within material homogenisation for HTS-ST (Section 4.4.5). 

Material F82H Material Water SS304B7 + boron 

Mass density (g/cm3) 7.8000 Mass density (g/cm3) 4.3275 

Atomic density 

atoms/bn-cm 

(atoms/10-24 cm3) 

0.0809 Atomic density 

atoms/bn-cm 

(atoms/10-24 cm3) 

0.0934 

Element ZAID Fraction Element ZAID Fraction 

Cr 24050 3.4759e-03 H 1001 3.3860e-01  
24052 6.7030e-02 

 
1002 5.0798e-05 

V 24053 7.6006e-03 O 8016 1.6936e-01  
24054 1.8920e-03 C 6012 1.6568e-03 

Si 14028 9.2221e-04 Mn 25055 9.0474e-03  
14029 4.6849e-05 P 15031 3.6106e-04  
14030 3.0919e-05 S 16032 2.2088e-04 

Ni 28058 3.4038e-04 
 

16033 1.7439e-06  
28060 1.3111e-04 

 
16034 9.8823e-06  

28061 5.6994e-06 
 

16036 2.3252e-08  
28062 1.8172e-05 Si 14028 6.1202e-03  
28064 4.6279e-06 

 
14029 3.1125e-04 

Ti 22046 4.1249e-06 
 

14030 2.0507e-04  
22047 3.7199e-06 Cr 24050 3.9459e-03  
22048 3.6859e-05 

 
24052 7.6092e-02  

22049 2.7049e-06 
 

24053 8.6283e-03  
22050 2.5899e-06 

 
24054 2.1478e-03 

Mn 25055 9.9998e-04 Ni 28058 3.8914e-02 

W 74180 2.4000e-05 
 

28060 1.4990e-02  
74182 5.2999e-03 

 
28061 6.5160e-04  

74183 2.8619e-03 
 

28062 2.0776e-03  
74184 6.1279e-03 

 
28064 5.2910e-04  

74186 5.6859e-03 N 7014 1.7679e-03 

Mo 42092 2.9539e-06 
 

7015 6.5297e-06 
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42094 1.8460e-06 B 5010 9.1492e-03  
42095 3.1799e-06 

 
5011 3.6827e-02  

42096 3.3359e-06 Co 27059 2.1085e-04  
42097 1.9120e-06 Nb 41093 2.6750e-05  
42098 4.8379e-06 Ta 73181 1.3735e-05  
42100 1.9340e-06 Ti 22046 6.4231e-05 

C 6012 9.8928e-04 
 

22047 5.7925e-05  
6013 1.0700e-05 

 
22048 5.7395e-04 

O 8016 4.9878e-05 
 

22049 4.2120e-05  
8017 1.9000e-08 

 
22050 4.0329e-05  

8018 1.0250e-07 Cu 29063 2.7052e-04 

Al 13027 9.9998e-05 
 

29065 1.2057e-04 

Ta 73180 4.7999e-08 Al 13027 4.6054e-04  
73181 3.9994e-04 K 19039 2.9637e-06 

V 23050 4.9999e-06 
 

19040 3.7181e-10  
23051 1.9950e-03 

 
19041 2.1388e-07 

Fe 26054 5.2247e-02 Bi 83209 9.5138e-07  
26056 8.2017e-01 V 23050 4.8784e-08  
26057 1.8941e-02 

 
23051 1.9465e-05  

26058 2.5207e-03 Zr 40090 2.8030e-06     
40091 6.1128e-07     
40092 9.3435e-07     
40094 9.4688e-07     
40096 1.5255e-07    

Sn 50112 4.0615e-08     
50114 2.7635e-08     
50115 1.4236e-08     
50116 6.0880e-07     
50117 3.2157e-07     
50118 1.0141e-06     
50119 3.5967e-07     
50120 1.3642e-06     
50122 1.9386e-07     
50124 2.4243e-07    

W 74182 3.5863e-07     
74183 1.9373e-07     
74184 4.1471e-07     
74186 3.8472e-07    

Pb 82206 2.3447e-07     
82207 2.1501e-07     
82208 5.0979e-07    

Fe 26054 1.6156e-02     
26056 2.5362e-01     
26057 5.8571e-03     
26058 7.7948e-04 

Table 7.6 - Materials used within material homogenisation for HTS-ST (Section 4.4.5) 

continued. 

Material HTSC+5% helium Material Tungsten 

Mass density (g/cm3) 8.4194 Mass density (g/cm3) 19.2500 

Atomic density 

atoms/bn-cm 

(atoms/10-24 cm3) 

0.0797 Atomic density 

atoms/bn-cm 

(atoms/10-24 cm3) 

0.0632 

Element ZAID Fraction Element ZAID Fraction 

Ni 28058 1.3576e-01 Al 13027 1.0205e-04  
28060 5.2296e-02 C 6012 4.5359e-04 
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28061 2.2733e-03 Ca 20040 4.4402e-05  
28062 7.2482e-03 

 
20042 2.9635e-07  

28064 1.8459e-03 
 

20043 6.1834e-08 

Mo 42092 8.5687e-03 
 

20044 9.5545e-07  
42094 5.3547e-03 

 
20046 1.8321e-09  

42095 9.2242e-03 
 

20048 8.5652e-08  
42096 9.6768e-03 Co 27059 3.1147e-05  
42097 5.5462e-03 Cr 24050 1.5339e-06  
42098 1.4034e-02 

 
24052 2.9580e-05  

42100 5.6100e-03 
 

24053 3.3541e-06 

Cr 24050 2.4419e-03 
 

24054 8.3491e-07  
24052 4.7090e-02 Cu 29063 1.9981e-05  
24053 5.3397e-03 

 
29065 8.9057e-06  

24054 1.3292e-03 Fe 26054 5.7637e-06 

Fe 26054 2.0134e-03 
 

26056 9.0478e-05  
26056 3.1606e-02 

 
26057 2.0895e-06  

26057 7.2991e-04 
 

26058 2.7808e-07  
26058 9.7138e-05 H 1001 9.1047e-04 

C 6012 3.5871e-05 
 

1002 1.0472e-07  
6013 3.8797e-07 K 19039 4.3779e-05 

Si 14028 3.3439e-04 
 

19040 5.4925e-09  
14029 1.6987e-05 

 
19041 3.1594e-06  

14030 1.1211e-05 Mg 12024 2.9828e-05 

Y 39089 1.0734e-03 
 

12025 3.7762e-06 

Ba 56130 2.2758e-06 
 

12026 4.1576e-06  
56132 2.1684e-06 Mn 25055 1.6706e-05  
56134 5.1892e-05 Mo 42092 2.8396e-05  
56135 1.4153e-04 

 
42094 1.7700e-05  

56136 1.6862e-04 
 

42095 3.0462e-05  
56137 2.4115e-04 

 
42096 3.1917e-05  

56138 1.5393e-03 
 

42097 1.8274e-05 

Cu 29063 1.9500e-01 
 

42098 4.6172e-05  
29065 8.6996e-02 

 
42100 1.8427e-05 

O 8016 7.4962e-03 N 7014 1.3057e-04  
8017 2.8555e-06 

 
7015 4.8719e-07  

8018 1.5405e-05 Na 11023 7.9845e-05 

Ag 47107 7.2342e-03 Nb 41093 1.9758e-05  
47109 6.7209e-03 Ni 28058 4.2581e-05 

Be 4009 3.4483e-01 
 

28060 1.6402e-05     
28061 7.1300e-07     
28062 2.2734e-06     
28064 5.7895e-07    

O 8016 3.4335e-04    
P 15031 2.9631e-04    
Pb 82206 2.1349e-06     

82207 1.9577e-06     
82208 4.6418e-06    

S 16032 2.7190e-05     
16033 2.1468e-07     
16034 1.2165e-06     
16036 2.8624e-09    

Si 14028 1.2056e-04     
14029 6.1216e-06     
14030 4.0354e-06    

Ta 73181 1.0144e-05    
Ti 22046 3.1637e-06 
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22047 2.8531e-06     
22048 2.8259e-05     
22049 2.0747e-06     
22050 1.9864e-06    

Zr 40090 1.0352e-05     
40091 2.2575e-06     
40092 3.4506e-06     
40094 3.4969e-06     
40096 5.6336e-07    

W 74182 2.6447e-01     
74183 1.4282e-01     
74184 3.0580e-01     
74186 2.8374e-01 

Table 7.7 - Materials used with HTS-ST model for activation considerations (Section 

4.5.6.3). 

Material HCLL  Material DCLL  Material WCLL  

Mass density 

(g/cm3) 

8.4242 Mass density 

(g/cm3) 

7.8716 Mass density 

(g/cm3) 

9.0311 

Element ZAID Fraction Element ZAID Fraction Element ZAID Fraction 

Fe 26054 1.5949e-02 Fe 26054 1.5766e-02 Fe 26054 1.8681e-02  
26056 2.4142e-01 

 
26056 2.3865e-01 

 
26056 2.8277e-01  

26057 5.4777e-03 
 

26057 5.4148e-03 
 

26057 6.4159e-03  
26058 7.1642e-04 

 
26058 7.0819e-04 

 
26058 8.3912e-04 

C 6012 1.6751e-03 C 6012 1.6559e-03 C 6012 1.9620e-03 

Mn 25055 1.8274e-03 Mn 25055 1.8064e-03 Mn 25055 2.1404e-03 

P 15031 2.7018e-05 P 15031 2.6708e-05 P 15031 3.1645e-05 

S 16000 2.6125e-05 S 16000 2.5825e-05 S 16000 3.0599e-05 

Si 14028 2.7588e-04 Si 14028 2.7271e-04 Si 14028 3.2314e-04  
14029 1.3526e-05 

 
14029 1.3370e-05 

 
14029 1.5842e-05  

14030 8.6190e-06 
 

14030 8.5200e-06 
 

14030 1.0095e-05 

Ni 28058 1.9661e-05 Ni 28058 1.9436e-05 Ni 28058 2.3029e-05  
28060 7.3211e-06 

 
28060 7.2370e-06 

 
28060 8.5750e-06  

28061 3.1303e-07 
 

28061 3.0943e-07 
 

28061 3.6664e-07  
28062 9.8196e-07 

 
28062 9.7068e-07 

 
28062 1.1502e-06  

28064 2.4226e-07 
 

28064 2.3948e-07 
 

28064 2.8376e-07 

Cr 24050 1.3829e-03 Cr 24050 1.3670e-03 Cr 24050 1.6197e-03  
24052 2.5642e-02 

 
24052 2.5347e-02 

 
24052 3.0034e-02  

24053 2.8527e-03 
 

24053 2.8200e-03 
 

24053 3.3413e-03  
24054 6.9695e-04 

 
24054 6.8895e-04 

 
24054 8.1633e-04 

Mo 42092 1.3510e-06 Mo 42092 1.3355e-06 Mo 42092 1.5824e-06  
42094 8.2419e-07 

 
42094 8.1472e-07 

 
42094 9.6535e-07  

42095 1.4036e-06 
 

42095 1.3874e-06 
 

42095 1.6440e-06  
42096 1.4553e-06 

 
42096 1.4385e-06 

 
42096 1.7045e-06  

42097 8.2460e-07 
 

42097 8.1513e-07 
 

42097 9.6584e-07  
42098 2.0623e-06 

 
42098 2.0386e-06 

 
42098 2.4155e-06  

42100 8.0657e-07 
 

42100 7.9730e-07 
 

42100 9.4471e-07 

V 23000 8.2207e-04 V 23000 8.1262e-04 V 23000 9.6287e-04 

Ta 73181 1.2957e-04 Ta 73181 1.2808e-04 Ta 73181 1.5176e-04 

W 74182 2.9268e-04 W 74182 2.8932e-04 W 74182 3.4281e-04  
74183 1.5719e-04 

 
74183 1.5538e-04 

 
74183 1.8411e-04  

74184 3.3473e-04 
 

74184 3.3089e-04 
 

74184 3.9206e-04  
74186 3.0725e-04 

 
74186 3.0372e-04 

 
74186 3.5987e-04 

Ti 22046 6.0086e-06 Ti 22046 5.9395e-06 Ti 22046 7.0377e-06  
22047 5.3033e-06 

 
22047 5.2424e-06 

 
22047 6.2117e-06  

22048 5.1454e-05 
 

22048 5.0863e-05 
 

22048 6.0267e-05 
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22049 3.6989e-06 

 
22049 3.6564e-06 

 
22049 4.3324e-06  

22050 3.4708e-06 
 

22050 3.4310e-06 
 

22050 4.0653e-06 

Cu 29063 1.8392e-05 Cu 29063 1.8180e-05 Cu 29063 2.1542e-05  
29065 7.9452e-06 

 
29065 7.8539e-06 

 
29065 9.3060e-06 

Nb 41093 9.0060e-06 Nb 41093 8.9025e-06 Nb 41093 1.0548e-05 

Al 13027 6.2041e-05 Al 13027 6.1328e-05 Al 13027 7.2667e-05 

N 7014 5.3645e-04 N 7014 5.3028e-04 N 7014 6.2833e-04  
7015 1.8493e-06 

 
7015 1.8281e-06 

 
7015 2.1661e-06 

B 5010 6.6669e-06 B 5010 6.5904e-06 B 5010 7.8088e-06  
5011 2.4396e-05 

 
5011 2.4115e-05 

 
5011 2.8574e-05 

Co 27059 2.8392e-05 Co 27059 2.8066e-05 Co 27059 3.3255e-05 

As 33075 2.2335e-05 As 33075 2.2078e-05 As 33075 2.6160e-05 

Sn 50000 1.4111e-05 Sn 50000 1.3949e-05 Sn 50000 1.6528e-05 

Sb 51121 7.9201e-06 Sb 51121 7.8291e-06 Sb 51121 9.2766e-06  
51123 5.8275e-06 

 
51123 5.7605e-06 

 
51123 6.8256e-06 

Zr 40000 1.8363e-05 Zr 40000 1.8152e-05 Zr 40000 2.1508e-05 

O 8016 1.0469e-04 O 8016 1.0349e-04 O 8016 1.4052e-02 

Li 3006 9.9128e-02 He 2004 3.7756e-03 H 1001 2.7924e-02  
3007 1.1014e-02 Li 3006 9.9351e-02 

 
1002 3.2116e-06 

Pb 82204 8.2175e-03 
 

3007 1.1039e-02 Li 3006 8.6112e-02  
82206 1.4146e-01 Pb 82204 8.2359e-03 

 
3007 9.5680e-03  

82207 1.2972e-01 
 

82206 1.4178e-01 Pb 82204 7.1385e-03  
82208 3.0757e-01 

 
82207 1.3001e-01 

 
82206 1.2288e-01 

He 2004 1.8803e-03 
 

82208 3.0826e-01 
 

82207 1.1269e-01        
82208 2.6718e-01 

Table 7.8 - Materials used with HTS-ST model for activation considerations (Section 

4.5.6.3) continued. 

Material LiFBe + EUROFER Material Li8PbO6 + EUROFER Material LiSn + EUROFER 

Mass density (g/cm3) 3.1578 Mass density  

(g/cm3) 

2.8881 Mass density 

(g/cm3) 

6.5178 

Element ZAID Fraction Element ZAID Fraction Element ZAID Fraction 

Li 3006 6.8571e-02 Li 3006 3.2000e-02 Li 3006 1.4400e-01  
3007 1.6000e-01 

 
3007 2.8800e-01 

 
3007 1.6000e-02 

F 9019 4.5714e-01 Pb 82206 9.6400e-03 Sn 50112 6.2080e-03 

Be 4009 1.1429e-01 
 

82207 8.8400e-03 
 

50114 4.2240e-03 

Fe 26054 8.9422e-04 
 

82208 2.0960e-02 
 

50115 2.1760e-03  
26056 1.3536e-02 

 
82204 5.6000e-04 

 
50116 9.3056e-02  

26057 3.0712e-04 O 8016 2.3986e-01 
 

50117 4.9152e-02  
26058 4.0168e-05 

 
8017 9.1200e-05 

 
50118 1.5501e-01 

C 6012 9.3919e-05 He 2004 2.0000e-01 
 

50119 5.4976e-02 

Mn 25055 1.0246e-04 Fe 26054 8.9422e-04 
 

50120 2.0851e-01 

P 15031 1.5148e-06 
 

26056 1.3536e-02 
 

50122 2.9632e-02 

S 16000 1.4647e-06 
 

26057 3.0712e-04 
 

50124 3.7056e-02 

Si 14028 1.5468e-05 
 

26058 4.0168e-05 Fe 26054 8.9422e-04  
14029 7.5835e-07 C 6012 9.3919e-05 

 
26056 1.3536e-02  

14030 4.8325e-07 Mn 25055 1.0246e-04 
 

26057 3.0712e-04 

Ni 28058 1.1024e-06 P 15031 1.5148e-06 
 

26058 4.0168e-05  
28060 4.1048e-07 S 16000 1.4647e-06 C 6012 9.3919e-05  
28061 1.7551e-08 Si 14028 1.5468e-05 Mn 25055 1.0246e-04  
28062 5.5056e-08 

 
14029 7.5835e-07 P 15031 1.5148e-06  

28064 1.3583e-08 
 

14030 4.8325e-07 S 16000 1.4647e-06 

Cr 24050 7.7535e-05 Ni 28058 1.1024e-06 Si 14028 1.5468e-05  
24052 1.4377e-03 

 
28060 4.1048e-07 

 
14029 7.5835e-07  

24053 1.5995e-04 
 

28061 1.7551e-08 
 

14030 4.8325e-07  
24054 3.9076e-05 

 
28062 5.5056e-08 Ni 28058 1.1024e-06 
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Mo 42092 7.5748e-08 
 

28064 1.3583e-08 
 

28060 4.1048e-07  
42094 4.6210e-08 Cr 24050 7.7535e-05 

 
28061 1.7551e-08  

42095 7.8694e-08 
 

24052 1.4377e-03 
 

28062 5.5056e-08  
42096 8.1592e-08 

 
24053 1.5995e-04 

 
28064 1.3583e-08  

42097 4.6233e-08 
 

24054 3.9076e-05 Cr 24050 7.7535e-05  
42098 1.1563e-07 Mo 42092 7.5748e-08 

 
24052 1.4377e-03  

42100 4.5222e-08 
 

42094 4.6210e-08 
 

24053 1.5995e-04 

V 23000 4.6091e-05 
 

42095 7.8694e-08 
 

24054 3.9076e-05 

Ta 73181 7.2645e-06 
 

42096 8.1592e-08 Mo 42092 7.5748e-08 

W 74182 1.6410e-05 
 

42097 4.6233e-08 
 

42094 4.6210e-08  
74183 8.8130e-06 

 
42098 1.1563e-07 

 
42095 7.8694e-08  

74184 1.8768e-05 
 

42100 4.5222e-08 
 

42096 8.1592e-08  
74186 1.7227e-05 V 23000 4.6091e-05 

 
42097 4.6233e-08 

Ti 22046 3.3688e-07 Ta 73181 7.2645e-06 
 

42098 1.1563e-07  
22047 2.9734e-07 W 74182 1.6410e-05 

 
42100 4.5222e-08  

22048 2.8849e-06 
 

74183 8.8130e-06 V 23000 4.6091e-05  
22049 2.0739e-07 

 
74184 1.8768e-05 Ta 73181 7.2645e-06  

22050 1.9460e-07 
 

74186 1.7227e-05 W 74182 1.6410e-05 

Cu 29063 1.0312e-06 Ti 22046 3.3688e-07 
 

74183 8.8130e-06  
29065 4.4547e-07 

 
22047 2.9734e-07 

 
74184 1.8768e-05 

Nb 41093 5.0494e-07 
 

22048 2.8849e-06 
 

74186 1.7227e-05 

Al 13027 3.4785e-06 
 

22049 2.0739e-07 Ti 22046 3.3688e-07 

N 7014 3.0077e-05 
 

22050 1.9460e-07 
 

22047 2.9734e-07  
7015 1.0369e-07 Cu 29063 1.0312e-06 

 
22048 2.8849e-06 

B 5010 3.7380e-07 
 

29065 4.4547e-07 
 

22049 2.0739e-07  
5011 1.3678e-06 Nb 41093 5.0494e-07 

 
22050 1.9460e-07 

Co 27059 1.5919e-06 Al 13027 3.4785e-06 Cu 29063 1.0312e-06 

As 33075 1.2523e-06 N 7014 3.0077e-05 Cu 29065 4.4547e-07 

Sn 50000 7.9116E-07 
 

7015 1.0369E-07 NB 41093 5.0494E-07 

Sb 51121 4.4406e-07 B 5010 3.7380e-07 Al 13027 3.4785e-06  
51123 3.2673e-07 

 
5011 1.3678e-06 N 7014 3.0077e-05 

Zr 40000 1.0295e-06 Co 27059 1.5919e-06 
 

7015 1.0369e-07 

O 8016 5.8699e-06 As 33075 1.2523e-06 B 5010 3.7380e-07    
Sn 50000 7.9116E-07 

 
5011 1.3678E-06    

Sb 51121 4.4406E-07 Co 27059 1.5919E-06     
51123 3.2673E-07 As 33075 1.2523E-06    

Zr 40000 1.0295E-06 Sn 50000 7.9116E-07    
O 8016 5.8699E-06 Sb 51121 4.4406E-07        

51123 3.2673E-07       
Zr 40000 1.0295E-06       
O 8016 5.8699E-06 

Table 7.9 – Blanket material used in the HTS-ST and EU DEMO 2015 model for 

neutron transport and activation analysis (sections 4.4.5 and 5). 

Material HCPB blanket 

Mass density 

(g/cm3) 

1.93279 
      

Element ZAID Fraction Element ZAID Fraction Element ZAID Fraction 

Fe 26054 0.00739 Mo 42092 6.26e-07 Nb 41093 4.17e-06  
26056 0.11186 

 
42094 3.82e-07 Al 13027 2.87e-05  

26057 0.002538 
 

42095 6.5e-07 N 7014 0.000249  
26058 0.000332 

 
42096 6.74e-07 

 
7015 8.57e-07 

C 6012 0.000776 
 

42097 3.82e-07 B 5010 3.09e-06 

Mn 25055 0.000847 
 

42098 9.55e-07 
 

5011 1.13e-05 

P 15031 1.25e-05 
 

42100 3.74e-07 Co 27059 1.32e-05 

S 16000 1.21e-05 V 23000 0.000381 As 33075 1.03e-05 
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Si 14028 0.021143 Ta 73181 6e-05 Sn 50000 6.54e-06  
14029 0.00107 W 74182 0.000136 Sb 51121 3.67e-06  
14030 0.00071 

 
74183 7.28e-05 

 
51123 2.7e-06 

Ni 28058 9.11e-06 
 

74184 0.000155 Zr 40000 8.51e-06  
28060 3.39e-06 

 
74186 0.000142 O 8016 0.089307  

28061 1.45e-07 Ti 22046 2.78e-06 Be 4009 0.65767  
28062 4.55e-07 

 
22047 2.46e-06 Li 3006 0.03495  

28064 1.12e-07 
 

22048 2.38e-05 
 

3007 0.05241 

Cr 24050 0.000641 
 

22049 1.71e-06 He 2004 0.003456  
24052 0.01188 

 
22050 1.61e-06 

   

 
24053 0.001322 Cu 29063 8.52e-06 

   

 
24054 0.000323 

 
29065 3.68e-06 

   

Table 7.10 - Materials used with EU DEMO 2015 model for neutron transport and 

activation/radioactive waste assessments (Section 5). 

Material Tungsten Material 
SS316 LN-IG- 77%, 

water - 23% 
Material EUROFER 

Mass density 

(g/cm3) 

19.1864 Mass density 

(g/cm3) 

6.5366 Mass density 

(g/cm3) 

7.7888 

Atomic density 

atoms/bn-cm 

(atoms/10-24 cm3) 

0.0630 Atomic density 

atoms/bn-cm 

(atoms/10-24 cm3) 

0.0887 Atomic density 

atoms/bn-cm 

(atoms/10-24 cm3) 

0.0844 

Element ZAID Fraction Element ZAID Fraction Element ZAID Fraction 

Al 13027 4.4038E-06 Fe 26054 2.6335E-03 Fe 26054 4.4711E-03 

C 6012 1.9574E-05 
 

26056 3.9863E-02 
 

26056 6.7680E-02 

Ca 20000 1.9766E-06 
 

26057 9.0446E-04 
 

26057 1.5356E-03 

Co 27059 1.3442E-06 
 

26058 1.1829E-04 
 

26058 2.0084E-04 

Cr 24050 6.6195E-08 C 6012 9.5509E-05 C 6012 4.6960E-04  
24052 1.2765E-06 Mn 25055 1.3892E-03 Mn 25055 5.1229E-04  
24053 1.4475E-07 Si 14028 6.2920E-04 P 15031 7.5741E-06  
24054 3.6030E-08 

 
14029 3.0847E-05 S 16000 7.3237E-06 

Cu 29063 8.6226E-07 
 

14030 1.9657E-05 Si 14028 7.7341E-05  
29065 3.8432E-07 P 15031 3.0809E-05 

 
14029 3.7917E-06 

Fe 26054 2.4873E-07 S 16000 1.1916E-05 
 

14030 2.4162E-06  
26056 3.9045E-06 Cr 24050 5.9758E-04 Ni 28058 5.5118E-06  
26057 9.0173E-08 

 
24052 1.1081E-02 

 
28060 2.0524E-06  

26058 1.2000E-08 
 

24053 1.2327E-03 
 

28061 8.7753E-08 

H 1001 3.9291E-05 
 

24054 3.0117E-04 
 

28062 2.7528E-07  
1002 4.5190E-09 Ni 28058 5.6051E-03 

 
28064 6.7915E-08 

K 19000 2.0259E-06 
 

28060 2.0871E-03 Cr 24050 3.8768E-04 

Mg 12000 1.6296E-06 
 

28061 8.9238E-05 
 

24052 7.1884E-03 

Mn 25055 7.2095E-07 
 

28062 2.7994E-04 
 

24053 7.9973E-04 

Mo 42092 1.2254E-06 
 

28064 6.9065E-05 
 

24054 1.9538E-04  
42094 7.6382E-07 Mo 42092 1.6639E-04 Mo 42092 3.7874E-07  
42095 1.3146E-06 

 
42094 1.0150E-04 

 
42094 2.3105E-07  

42096 1.3773E-06 
 

42095 1.7286E-04 
 

42095 3.9347E-07  
42097 7.8859E-07 

 
42096 1.7922E-04 

 
42096 4.0796E-07  

42098 1.9925E-06 
 

42097 1.0156E-04 
 

42097 2.3117E-07  
42100 7.9519E-07 

 
42098 2.5398E-04 

 
42098 5.7813E-07 

N 7014 5.6347E-06 
 

42100 9.9333E-05 
 

42100 2.2611E-07  
7015 2.1024E-08 N 7014 2.1750E-04 V 23000 2.3046E-04 

Na 11023 3.4457E-06 
 

7015 7.4981E-07 Ta 73181 3.6322E-05 

Nb 41093 8.5263E-07 B 5010 7.6025E-07 W 74182 8.2050E-05 

Ni 28058 1.8376E-06 
 

5011 2.7819E-06 
 

74183 4.4065E-05  
28060 7.0783E-07 Cu 29063 1.2584E-04 

 
74184 9.3837E-05  

28061 3.0769E-08 
 

29065 5.4361E-05 
 

74186 8.6133E-05 
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28062 9.8105E-08 Co 27059 3.2376E-05 Ti 22046 1.6844E-06  
28064 2.4984E-08 Nb 41093 4.1079E-06 

 
22047 1.4867E-06 

O 8016 1.4817E-05 Ti 22046 6.8517E-06 
 

22048 1.4424E-05 

P 15031 1.2787E-05 
 

22047 6.0475E-06 
 

22049 1.0369E-06 

Pb 82206 9.2132E-08 
 

22048 5.8674E-05 
 

22050 9.7300E-07  
82207 8.4483E-08 

 
22049 4.2180E-06 Cu 29063 5.1559E-06  

82208 2.0032E-07 
 

22050 3.9579E-06 
 

29065 2.2273E-06 

S 16000 1.2353E-06 Ta 73181 2.1107E-06 Nb 41093 2.5247E-06 

Si 14028 5.2026E-06 H 1001 1.3382E-02 Al 13027 1.7392E-05  
14029 2.6417E-07 O 8016 6.6911E-03 N 7014 1.5039E-04  
14030 1.7414E-07 

    
7015 5.1843E-07 

Ta 73181 4.3778E-07 
   

B 5010 1.8690E-06 

Ti 22046 1.3653E-07 
    

5011 6.8390E-06  
22047 1.2313E-07 

   
Co 27059 7.9593E-06  

22048 1.2195E-06 
   

As 33075 6.2613E-06  
22049 8.9530E-08 

   
Sn 50000 3.9558E-06  

22050 8.5724E-08 
   

Sb 51121 2.2203E-06 

Zr 40000 8.6826E-07 
    

51123 1.6337E-06 

W 74182 1.1413E-02 
   

Zr 40000 5.1477E-06  
74183 6.1633E-03 

   
O 8016 2.9350E-05  

74184 1.3197E-02 
      

 
74186 1.2245E-02 

      

Table 7.11 - Materials used with EU DEMO 2015 model for neutron transport and 

activation/radioactive waste assessments (Section 5) continued. 

Material 

EUROFER - 23%, Be - 

21.02%, Li4SiO4 - 

10.2%, void - 45.78% 

Material SS-316L(N)-IG Material 

Magnet-conductor in 

Nb3Sn with cryogenic 

SS 316 LN 

Mass density 

(g/cm3) 

3.8456 Mass density 

(g/cm3) 

7.9205 Mass density 

(g/cm3) 

5.5050 

Atomic density 

atoms/bn-cm 

(atoms/10-24 cm3) 

0.0899 Atomic density 

atoms/bn-cm 

(atoms/10-24 cm3) 

0.0858 Atomic density 

atoms/bn-cm 

(atoms/10-24 cm3) 

0.0719 

Element ZAID Fraction Element ZAID Fraction Element ZAID Fraction 

Fe 26054 1.0284E-03 Fe 26054 3.2918E-03 H 1001 3.8934E-03  
26056 1.5566E-02 

 
26056 4.9829E-02 C 6012 3.4056E-03  

26057 3.5319E-04 
 

26057 1.1306E-03 N 7014 3.7080E-04  
26058 4.6193E-05 

 
26058 1.4787E-04 O 8016 4.8708E-03 

C 6012 1.0801E-04 C 6012 1.1939E-04 Mg 12000 2.1420E-04 

Mn 25055 1.1783E-04 Mn 25055 1.7365E-03 Al 13027 7.0740E-04 

P 15031 1.7421E-06 Si 14028 7.8650E-04 Si 14028 1.3280E-03 

S 16000 1.6845E-06 
 

14029 3.8559E-05 
 

14029 6.7200E-05 

Si 14028 1.7788E-05 
 

14030 2.4571E-05 
 

14030 4.4600E-03  
14029 8.7210E-07 P 15031 3.8512E-05 S 16000 9.1800E-05  
14030 5.5573E-07 S 16000 1.4895E-05 Cu 29063 6.8359E-03 

Ni 28058 1.2677E-06 Cr 24050 7.4698E-04 
 

29065 3.0568E-03  
28060 4.7205E-07 

 
24052 1.3851E-02 Nb 41093 1.1844E-03  

28061 2.0183E-08 
 

24053 1.5409E-03 Sn 50000 3.9480E-04  
28062 6.3315E-08 

 
24054 3.7646E-04 He 2004 3.0889E-03  

28064 1.5621E-08 Ni 28058 7.0064E-03 B 5010 4.0629E-07 

Cr 24050 8.9165E-05 
 

28060 2.6089E-03 
 

5011 1.4874E-06  
24052 1.6533E-03 

 
28061 1.1155E-04 C 6012 1.7020E-04  

24053 1.8394E-04 
 

28062 3.4993E-04 N 7014 2.7738E-04  
24054 4.4938E-05 

 
28064 8.6331E-05 O 8016 2.5562E-06 

Mo 42092 8.7110E-08 Mo 42092 2.0798E-04 Al 13027 2.2730E-04  
42094 5.3142E-08 

 
42094 1.2688E-04 Si 14028 7.2789E-05 
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42095 9.0499E-08 

 
42095 2.1607E-04 P 15031 1.6500E-05  

42096 9.3831E-08 
 

42096 2.2403E-04 S 16000 8.9259E-07  
42097 5.3168E-08 

 
42097 1.2694E-04 K 19000 2.6143E-07  

42098 1.3297E-07 
 

42098 3.1748E-04 Ti 22046 1.4090E-06  
42100 5.2005E-08 

 
42100 1.2417E-04 

 
22047 1.2707E-06 

V 23000 5.3005E-05 N 7014 2.7188E-04 
 

22048 1.259086-05 

Ta 73181 8.3541E-06 
 

7015 9.3726E-07 
 

22049 9.2399E-07 

W 74182 1.8872E-05 B 5010 9.5031E-07 
 

22050 8.8471E-07  
74183 1.0135E-05 

 
5011 3.4774E-06 V 23000 1.6052E-06  

74184 2.1583E-05 Cu 29063 1.5729E-04 Cr 24050 3.0343E-04  
74186 1.9811E-05 

 
29065 6.7951E-05 

 
24052 5.6705E-03 

Ti 22046 3.8742E-07 Co 27059 4.0470E-05 
 

24053 6.3429E-04  
22047 3.4195E-07 Nb 41093 5.1349E-06 

 
24054 1.5515E-04  

22048 3.3176E-06 Ti 22046 8.5647E-06 Mn 25055 5.5817E-04  
22049 2.3850E-07 

 
22047 7.5594E-06 Fe 26054 1.4658E-03  

22050 2.2379E-07 
 

22048 7.3343E-05 
 

26056 2.2190E-02 

Cu 29063 1.1859E-06 
 

22049 5.2725E-06 
 

26057 5.1600E-04  
29065 5.1229E-07 

 
22050 4.9474E-06 

 
26058 7.2442E-05 

Nb 41093 5.8068E-07 Ta 73181 2.6384E-06 Co 27059 1.7344E-05 

Al 13027 4.0003E-06 
   

Ni 28058 2.8935E-03 

N 7014 3.4589E-05 
    

28060 1.0798E-03  
7015 1.1924E-07 

    
28061 5.0746E-05 

B 5010 4.2987E-07 
    

28062 1.4619E-04  
5011 1.5730E-06 

    
28064 4.4885E-05 

Co 27059 1.8306E-06 
   

Cu 29063 2.2448E-05 

As 33075 1.4401E-06 
    

29065 9.7292E-06 

Sn 50000 9.0984E-07 
   

Zr 40000 4.4803E-07 

Sb 51121 5.1067E-07 
   

Nb 41093 1.2102E-05  
51123 3.7574E-07 

   
Mo 42092 6.3249E-05 

Zr 40000 1.1840E-06 
    

42094 3.9424E-05 

O 8016 6.7504E-06 
    

42095 6.7852E-05 

Be 4009 2.6020E-02 
    

42096 7.1091E-05 

Li 3006 3.2091E-03 
    

42097 4.2407E-05  
3007 1.8338E-03 

    
42098 1.0284E-04 

Si 14028 1.1562E-03 
    

42100 4.1044E-05  
14029 5.6682E-05 

   
Sn 50000 3.4442E-07  

14030 3.6120E-05 
   

Ta 73181 5.6489E-08 

O 8016 5.0142E-03 
   

W 74182 2.9662E-08        
74183 1.6091E-08        
74184 3.4007E-08        
74186 3.1222E-08       

Pb 82206 1.7873E-08        
82207 1.7858E-08        
82208 4.1945E-08       

Bi 83209 7.8259E-08       
Cu 29063 3.3891E-03        

29065 1.5155E-03       
Sn 50000 2.6254E-04 

Table 7.12 - Mass composition of main bulk materials used in activation analysis. 

F82H EUROFER SS304B7 Tungsten SS-316L(N)-IG 

Fe 89.388% Fe 87.963% Fe 62.111% W 99.957% Fe 64.753% 

Cr 8.000% Cr 9.500% Cr 19.000% Mo 0.010% Cr 17.500% 

W 2.000% W 1.200% Ni 13.500% P 0.005% Ni 12.250% 

V 0.200% Mn 0.600% Mn 2.000% C 0.003% Mo 2.500% 

Si 0.100% V 0.250% B 2.000% Fe 0.003% Mn 1.800% 
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Mn 0.100% Ta 0.140% Si 0.750% O 0.003% Si 0.500% 

C 0.100% C 0.120% Ti 0.150% Ni 0.002% Cu 0.300% 

Ni 0.050% Si 0.050% N 0.100% Si 0.002% Ti 0.100% 

Ta 0.040% N 0.045% Cu 0.100% Al 0.002% Nb 0.100% 

Al 0.010% Ti 0.020% C 0.080% Ca 0.001% N 0.070% 

Ti 0.005% Ni 0.010% Co 0.050% Co 0.001% Co 0.050% 

O 0.005% Cu 0.010% Al 0.050% Cr 0.001% C 0.030% 

Mo 0.002% Al 0.010% P 0.045% Cu 0.001% P 0.025%   
Co 0.010% S 0.030% K 0.001% S 0.010%   
As 0.010% Nb 0.010% N 0.001% Ta 0.010%   
Sn 0.010% Ta 0.010% Na 0.001% B 0.002%   
Sb 0.010% V 0.004% Nb 0.001% 

  

  
Zr 0.010% O 0.002% Pb 0.001% 

  

  
O 0.010% Zr 0.002% Ta 0.001% 

  

  
P 0.005% Sn 0.002% Ti 0.001% 

  

  
S 0.005% W 0.001% Zr 0.001% 

  

  
Mo 0.005% Bi 0.001% H 0.001% 

  

  
Nb 0.005% Pb 0.001% Mg 0.001% 

  

  
B 0.002% K 0.001% Mn 0.001% 

  

      
S 0.001% 
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APPENDIX 2: MCNP INPUT FILE 

The MCNP input file contains 3 main blocks containing the cell definitions, surfaces 

and data/physics/tally options (see Figure 7.1). The geometry of the problem must be 

provided to MCNP within this input file, described using the surfaces within the tally 

block. The geometry definition requirement is known as constructive solid geometry 

(CSG). The cell block uses the surfaces to define all regions of the phase space, 

including void regions. Void regions are volumes that do not contain any material and 

may or may not have any significance in the problem, they must however still be fully 

defined.  

 

Figure 7.1 - Basic three block structure of MCNP input file and title card. 

 

An example of what is meant by fully defining the phase space is given in Figure 7.2. 

The inner lithium sphere is defined as being inside the spherical surface ‘1’. It is also 

defined to consist of the material ‘10’ (that is defined later in the input file) and with a 

mass density of 0.54 g/cm3. The use of the negative sign denotes a mass value as 

opposed to atom density or atom fraction. A further sphere is described in cell 2, this 

is defined as the volume within the 100 cm spherical surface, but outside the 20 cm 

lithium sphere. Cell 2 is a void cell and so does not have an associated material 

number.  

The final cell defined is often called the ‘outer universe’ or ‘graveyard’. As already 

mentioned, all of the phase space must be defined and therefore cell 3 defines all 

geometry outside of the 100 cm sphere, to an effective infinity. When importances are 

set, this outer universe will be set to zero. All particles leaving the important geometry 

(i.e. escaping cell 2) will be killed and the history no longer followed. 

One line title card 

 

Cell cards [Block 1] 

 

blank line delimiter 

 

Surface cards [Block 2] 

 

blank line delimiter 

 

Data cards [Block 3] 
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An example of an input file generated using the parameterised script for spherical 

tokamak scoping studies (Section 4.4) is given in Figure 7.3. For a detailed description 

of the code and further examples of use, refer to the MCNP user guide [95]. 

 

Figure 7.2 - Example of CSG definition for MCNP. 

 

C Parameterised generation of simplified ST model  

C B Colling 2015                                   

C 147.0 Major Radius (cm)                             

C 2 Aspect ratio                                 

C 2 Elongation                                   

C 0.5 Triangularity                                

C 2 Inboard FW thickness (cm)                 

C 70 Blanket thickness (cm)                     

C 30 Centre column radius (cm)                    

C 40 Centre column n-shield thickness (cm)      

C 1.6 Plasma peaking factor                       

C 1.5 Inboard Scrape off layer (cm)            

C  

1      1 -8.5       -1 101 -7 200 -201          

2      1 -8.5       -1 -101 100 200 -201        

3      1 -8.5       -1 -100 -7 200 -201         

4      2 -13.7281   -2 1  101 -7 200 -201       

5      2 -13.7281   -2 1 -101 100 200 -201      

6      2 -13.7281   -2 1 -100 -7 200 -201       

Void sphere radius 

100 cm 

Lithium sphere 

radius 20 cm 

C          Cell Card 

1      10     - 0.54     -1 

2       0                    -2    1    

3       0                     2 

 

C        Surface Card 

1    so 20  

2    so 100 
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7      3 -7.528     -3 2  101 -7 200 -201       

8      3 -7.528     -3 2 -101 100 200 -201      

9      3 -7.528     -3 2 -100 -7 200 -201       

10     3 -7.528     -5 4 3 101 200 -201         

11     3 -7.528     -5 4  -101 100 200 -201     

12     3 -7.528     -5 4 3 -100 200 -201        

13     4 -2.157     -6 5 3 101 200 -201         

14     4 -2.157     -6 5 -101 100 200 -201      

15     4 -2.157     -6 5 3 -100 200 -201        

16     5 -5.758     -7 6 3 101 200 -201         

17     5 -5.758     -7 6 -101 100 200 -201      

18     5 -5.758     -7 6 3 -100 200 -201        

19     0            -4 3 200 -201               

99     0            7:-200:201        

 

1     CZ     30.0   

2     CZ      70.0   

3     CZ      72.0   

4     SO      235.5   

5     SO      237.5   

6     SO      307.5   

7     SO      337.5   

100   PZ      -5.0   

101   PZ      5.0   

*200   PX      0.0   

*201   PY    0.0   

 

mode n p   

C *********************************** 

C *  38%Eurofer+57%Cu+5%He 

C *  density = 8.5 g/cm3 

C *********************************** 

M1 26054.21c 1.94E-02 

      26056.21c 3.06E-01 

      26057.21c 7.01E-03 

      26058.21c 1.00E-03 

      24050.21c 1.66E-03 

      24052.21c 3.23E-02 

      24053.21c 3.67E-03 

      24054.21c 9.26E-04 

      6012. 2.11E-03 

      25055.21c 2.31E-03 

      23000.21c 2.59E-06 

      23000.21c 1.03E-03 

      7014.21c 6.76E-04 

      7015.21c 2.48E-06 

      8016.21c 1.32E-04 

      8017. 5.03E-08 

      73181.21c 1.05E-04 

      74182.21c 3.63E-04 

      74183.21c 1.97E-04 

      74184.21c 4.24E-04 

      74186.21c 3.95E-04 

      29063.21c 3.94E-01 

      29065.21c 1.76E-01 

      2003.21c 6.70E-08 

      2004.21c 5.00E-02 

C *********************************** 

C *  13%H2O+87%WC 

C *  density = 13.7281 g/cm3 

C *********************************** 
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M2 1001.21c    0.0899 

       1002.21c    0.00001 

       8016.21c    0.0450 

       74182.21c   0.1142 

       74183.21c   0.0623 

       74184.21c   0.1324 

       74186.21c   0.1229 

       6012.21c    0.4327 

C *********************************** 

C CuCrZr@5.00e-02/Eurofer@9.00e-01/Helium@5.00e-02/Void@0.00e+00/Void@0.00e+00/Void@0.00e+00: 

C *  density = 7.528 g/cm3 

c *********************************** 

M3     26054.21c   4.82666e-02 

         26056.21c   7.63944e-01 

         26057.21c   1.74758e-02 

         26058.21c   2.49655e-03 

         24050.21c   4.16488e-03 

         24052.21c   8.11668e-02 

         24053.21c   9.20149e-03 

         24054.21c   2.32459e-03 

          6012.   5.26520E-03 

         25055.21c   5.75567e-03 

         23000.21c   6.46586e-06 

         23000.21c   2.57988e-03 

          7014.21c   1.68695e-03 

          7015.21c   6.19691e-06 

          8016.21c   3.29352e-04 

          8017.   1.25455e-07 

         73181.21c   2.62124e-04 

         74182.21c   9.04794e-04 

         74183.21c   4.92522e-04 

         74184.21c   1.05737e-03 

         74186.21c   9.85044e-04 

         29063.21c   3.56780e-02 

         29065.21c   1.58798e-02 

         40090.   2.80384e-05 

         40091.   6.09768e-06 

         40092.   9.30985e-06 

         40094.   9.47318e-06 

         40096.   1.52442e-06 

          2003.21c   2.10019e-11 

          2004.21c   1.50014e-05 

C *********************************** 

C Beryllium@5.50e-01/Eurofer@1.00e-01/Helium@2.00e-01/Lithium-Silicate@1.50e-01 

C *  density = 2.157 g/cm3 

c *********************************** 

M4      2004.21c 5.4569E-05 

        3006.21c 6.2150E-03 

        3007.21c 7.6652E-02 

        4009.21c 7.2948E-01 

        6012.21c 4.1948E-04 

        7014.21c 1.0752E-04 

        7015.21c 3.9497E-07 

        8016.21c 7.7649E-02 

        14028.21c 1.7924E-02 

        14029.21c 9.0759E-04 

        14030.21c 6.0247E-04 

        23000.21c 1.9781E-04 

        24050.21c 3.7893E-04 

        24052.21c 7.3072E-03 

        24053.21c 8.2858E-04 
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        24054.21c 2.0625E-04 

        25055.21c 3.6689E-04 

        26054.21c 4.7397E-03 

        26056.21c 7.3682E-02 

        26057.21c 1.6870E-03 

        26058.21c 2.2493E-04 

        73181.21c 3.3414E-05 

        74182.21c 7.9287E-05 

        74183.21c 4.3111E-05 

        74184.21c 9.2552E-05 

        74186.21c 8.6221E-05 

C *********************************** 

C 70%EUROFER 30%Water 

C EUROFER(7.798)- 89.04%Fe 9%Cr 0.1%C 0.4%Mn 0.2%V 0.03%N 0.01%O 0.12%Ta 1.1%W Water(0.995)-

H2O 

C *  density = 5.758 g/cm3 

c *********************************** 

M5      1001.21c 2.2373E-01 

        1002.21c 3.3565E-05 

        6012.21c 3.0751E-03 

        7014.21c 7.8819E-04 

        7015.21c 2.8954E-06 

        8016.21c 1.1290E-01 

        23000.21c 1.4501E-03 

        24050.21c 2.7778E-03 

        24052.21c 5.3567E-02 

        24053.21c 6.0741E-03 

        24054.21c 1.5120E-03 

        25055.21c 2.6896E-03 

        26054.21c 3.4745E-02 

        26056.21c 5.4014E-01 

        26057.21c 1.2367E-02 

        26058.21c 1.6489E-03 

        73181.21c 2.4494E-04 

        74182.21c 5.8123E-04 

        74183.21c 3.1603E-04 

        74184.21c 6.7847E-04 

        74186.21c 6.3206E-04 

C SOURCE SPECIFICATION -----------------------------  -------------  

C MUIR GAUSSIAN FUSION ENERGY SPECTRUM IN USER DEFINED SUBROUTINE    

C NINE PARAMETERS TO DESCRIBE THE PLASMA:                            

C RDUM(1) = Reaction selector 1=DD otherwise DT                      

C RDUM(2) = TEMPERATURE OF PLASMA IN KEV                             

C RDUM(3) = RM  = MAJOR RADIUS                                       

C RDUM(4) = AP  = MINOR RADIUS                                       

C RDUM(5) = E   = ELONGATION                                         

C RDUM(6) = CP  = TRIANGUARITY                                       

C RDUM(7) = ESH = PLASMA SHIFT                                       

C RDUM(8) = EPK = PLASMA PEAKING                                     

C RDUM(9) = DELTAZ = PLASMA VERTICAL SHIFT (+=UP)                    

C RDUM(10) = Start of angular extent                                 

C RDUM(11) = Range of angular extent                                 

C IDUM(1) = 1                                                        

C IDUM(2) = number of valid cell numbers to follow                   

C IDUM(3) to IDUM(IDUM(2)+1) = valid source cells                    

RDUM   2 20 147.0 73.5 2.0 0.5 0 1.6   0   0 360  0                                                             

IDUM     1 1 19                                                      

c -------------                                                      

cut:n   j 1e-11  0.2 0.1 j                                           

c    -----------------Importances----------------- 

IMP:n 1 18r 0 
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Figure 7.3 - Example of MCNP input file for spherical tokamak shielding research. 

 

IMP:p 1 18r 0 

c    ---------------Run Information--------------- 

NPS 1E8 

prdmp 1E8 5E7 j 2 5E7 

c    --------------------Tallies------------------ 

c 

FC16     Neutron Heating 

F16:n 1 2 3 4 5 6 7 8 9 

SD16  1 1 1 1 1 1 1 1 1 

FC26     Photon Heating 

F26:p 1 2 3 4 5 6 7 8 9 

SD26  1 1 1 1 1 1 1 1 1 

FC4      TBR 

F4:n 13 14 15 

FM4  (-1 4 205) 

SD4 1 1 1 

FC2   Segment Flux 

F2:n 1 2 3 4 5 6 7  

FS2 -100 -101 

SD2   1 1 1 1 1 1 1 

      1 1 1 1 1 1 1 

      1 1 1 1 1 1 1 

FC22   Segment Flux 

F22:n 1 2 3 4 5 6 7  

FS22 -100 -101 

SD22   1 1 1 1 1 1 1 

      1 1 1 1 1 1 1 

      1 1 1 1 1 1 1 

E22     1.0000E-07  4.1399E-07  5.3158E-07  6.8256E-07  8.7643E-07  1.1254E-06 

        1.4450E-06  1.8554E-06  2.3824E-06  3.0590E-06  3.9279E-06  5.0435E-06 

        6.4760E-06  8.3153E-06  1.0677E-05  1.3710E-05  1.7604E-05  2.2603E-05 

        2.9023E-05  3.7267E-05  4.7851E-05  6.1442E-05  7.8893E-05  1.0130E-04 

        1.3007E-04  1.6702E-04  2.1445E-04  2.7536E-04  3.5358E-04  4.5400E-04 

        5.8295E-04  7.4852E-04  9.6112E-04  1.2341E-03  1.5846E-03  2.0347E-03 

        2.2487E-03  2.4852E-03  2.6126E-03  2.7465E-03  3.0354E-03  3.3546E-03 

        3.7074E-03  4.3074E-03  5.5308E-03  7.1017E-03  9.1188E-03  1.0595E-02 

        1.1709E-02  1.5034E-02  1.9305E-02  2.1875E-02  2.3579E-02  2.4176E-02 

        2.4788E-02  2.6058E-02  2.7000E-02  2.8501E-02  3.1828E-02  3.4307E-02 

        4.0868E-02  4.6309E-02  5.2475E-02  5.6562E-02  6.7380E-02  7.2025E-02 

        7.9499E-02  8.2503E-02  8.6517E-02  9.8037E-02  1.1109E-01  1.1679E-01 

        1.2277E-01  1.2907E-01  1.3569E-01  1.4264E-01  1.4996E-01  1.5764E-01 

        1.6573E-01  1.7422E-01  1.8316E-01  1.9255E-01  2.0242E-01  2.1280E-01 

        2.2371E-01  2.3518E-01  2.4724E-01  2.7324E-01  2.8725E-01  2.9452E-01 

        2.9721E-01  2.9849E-01  3.0197E-01  3.3373E-01  3.6883E-01  3.8774E-01 

        4.0762E-01  4.5049E-01  4.9787E-01  5.2340E-01  5.5023E-01  5.7844E-01 

        6.0810E-01  6.3928E-01  6.7206E-01  7.0651E-01  7.4274E-01  7.8082E-01 

        8.2085E-01  8.6294E-01  9.0718E-01  9.6167E-01  1.0026E+00  1.1080E+00 

        1.1648E+00  1.2246E+00  1.2874E+00  1.3534E+00  1.4227E+00  1.4957E+00 

        1.5724E+00  1.6530E+00  1.7377E+00  1.8268E+00  1.9205E+00  2.0190E+00 

        2.1225E+00  2.2313E+00  2.3069E+00  2.3457E+00  2.3653E+00  2.3851E+00 

        2.4660E+00  2.5924E+00  2.7253E+00  2.8651E+00  3.0119E+00  3.1664E+00 

        3.3287E+00  3.6788E+00  4.0657E+00  4.4933E+00  4.7237E+00  4.9659E+00 

        5.2205E+00  5.4881E+00  5.7695E+00  6.0653E+00  6.3763E+00  6.5924E+00 

        6.7032E+00  7.0469E+00  7.4082E+00  7.7880E+00  8.1873E+00  8.6071E+00 

        9.0484E+00  9.5123E+00  1.0000E+01  1.0513E+01  1.1052E+01  1.1618E+01 

        1.2214E+01  1.2523E+01  1.2840E+01  1.3499E+01  1.3840E+01  1.4191E+01 

        1.4550E+01  1.4918E+01  1.5683E+01  1.6487E+01  1.6905E+01  1.7333E+01 

        1.9640E+01 
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APPENDIX 3: FISPACT INPUT EXAMPLE 

The FISPACT-II code has four main stages: (1) process library data (including 

collapsing of cross-section data and condensing of decay and fission data), (2) set 

initial conditions, (3) run irradiation phases and finally (4) run cooling phases. All 

four stages can be carried out within one input file, though intermediate output files 

are produced after each stage. 

An example FISPACT-II input is provided in Figure 7.4 with some explanatory 

annotations. 

CLOBBER                                                                          

 LIBVERSION    0 

GETXS 1  175 

<< COLLAPSING   >>                                                               

 GETDECAY 1                                                                      

<< Write to ARRAYX file   >>                                                     

FISPACT                                                                          

* fispact run                                                                    

DENSITY   2.425E+00 

FUEL    73 

Fe54        7.579E+23 

Fe56        1.147E+25 

… 

Li6         2.365E+24 

Li7         1.352E+24 

TOLERANCE 0        1.00E+04 1.0e-2  

MIND 1.E5  

UNCERT 2 

SORTDOMINANT 1000 50                                                                        

FLUX 0.7354E+13  

TIME 1791.9 DAYS 

ATOMS 

PULSE 48 

FLUX 0.0000E+00  

TIME 1 HOURS 

ATOMS 

FLUX 0.2451E+14  

TIME 4 HOURS 

ATOMS 

ENDPULSE 

FLUX 0.0000E+00  

TIME 243.5 DAYS 

ATOMS 

FLUX 0.7354E+13  

TIME 1791.9 DAYS 

ATOMS 

PULSE 48 

FLUX 0.0000E+00  

TIME 1 HOURS 

ATOMS 

FLUX 0.2451E+14  

TIME 4 HOURS 

ATOMS 

ENDPULSE 

Library version, ‘0’ for 

EAF nuclear data 

Collapse and condense 

cross-section data, using 

175 energy groups 
Run FISPACT irradiation 

and decay history. 

Material definition (for clarity of the example, 

not all 73 nuclides have been shown here) 

Set related tolerance 

parameters  

Using ‘2’ on the UNCERT keyword prints 

both estimates of uncertainty and the 

pathway information in output 

Specify how many nuclides should 

be considered in pathway analysis 

and those to be printed in the 

dominant nuclides table 

Irradiation schedule  
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Figure 7.4 - FISPACT-II example input file. 

FLUX 0.0000E+00  

TIME 243.5 DAYS 

ATOMS 

FLUX 0.7354E+13  

TIME 1791.9 DAYS 

ATOMS 

PULSE 48 

FLUX 0.0000E+00  

TIME 1 HOURS 

ATOMS 

FLUX 0.2451E+14  

TIME 4 HOURS 

ATOMS 

ENDPULSE 

FLUX 0.0000E+00  

FLUX 0.0E+00                                                                     

ZERO                                                                             

<< DECAY TIMES FOLLOW             >>                                             

TAB4 1                                                                           

TAB2 1                                                                           

TAB1 1                                                                           

TIME 1E-20 ATOMS 

TIME 1.0 ATOMS 

TIME 299 ATOMS 

TIME 25 MINS ATOMS 

TIME 30 MINS ATOMS 

TIME 2 HOURS ATOMS 

TIME 2 HOURS ATOMS 

TIME 5 HOURS ATOMS 

TIME 14 HOURS ATOMS 

TIME 2 DAYS ATOMS 

TIME 4 DAYS ATOMS 

TIME 7 DAYS ATOMS 

TIME 14 DAYS ATOMS 

TIME 28 DAYS ATOMS 

TIME 126 DAYS ATOMS 

TIME 183.25 DAYS ATOMS 

TIME 4 YEARS ATOMS 

TIME 5 YEARS ATOMS 

TIME 30 YEARS ATOMS 

TIME 30 YEARS ATOMS 

TIME 30 YEARS ATOMS 

TIME 100 YEARS ATOMS 

TIME 100 YEARS ATOMS 

TIME 100 YEARS ATOMS 

TIME 100 YEARS ATOMS 

TIME 100 YEARS ATOMS 

TIME 100 YEARS ATOMS 

TIME 100 YEARS ATOMS 

TIME 100 YEARS ATOMS 

TIME 100 YEARS ATOMS 

END                                                                              

* END OF RUN                                                                     

Decay times, inventory and activation data 

is output for each time 

Irradiation schedule continued 
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APPENDIX 4: MATERIALS FOR INBOARD SHIELD 

To mitigate heating and damage to the HTS magnets, radiation must be prevented 

from reaching the coils or attenuated to an acceptable level. In a conventional fusion 

tokamak, the shielding is provided by the neutron absorbing thick breeding blanket. 

Spherical tokamaks must have an explicit radiation shield on the inboard. Possible 

materials are assessed for their suitability through the reduction in fast neutron flux 

(𝐸𝑛 > 0.1 MeV) observed through a block of material. A number of identified shield 

materials are compared for their performance in terms of fast neutron flux and heating 

of the magnets. The effect of adding coolant to the shielding material is also 

considered. 

Model and calculations 

A simple block model ‘model A’ was used with F2 MCNP surface tallies estimating 

the neutron flux on the front and back of the block (Figure 7.5). For heating 

calculations, another block was placed behind the shielding block to represent the 

copper conductor ‘model B’, comprising 57 % copper, 38 % EUROFER and 5 % 

helium (Figure 7.6). Heating calculations used the F6 energy deposition tally for 

neutrons and photons.  

 

Figure 7.5 - Model A: a block model split into 6 layers for tallying fast flux through 

material. 
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Figure 7.6 - Model B: a block model with two materials, blue- element being tested, 

green- copper to represent conductor in magnets, the blocks are each split into 10 layers 

for tallying fast flux through material. 

Elemental test 

The capability for reducing the fast neutrons (𝐸𝑛 > 0.1 MeV) has been investigated, 

using model A, for all stable isotopes (where cross-section data exists and apart from 

gaseous elements) with a view to verify the use of tungsten and/or highlight other 

possible candidate materials. The results are presented as the percentage of incident 

fast neutron flux to reach the back of the block (Figure 7.7).  

 

Figure 7.7 - Reduction in fast neutron flux (< 0.1 MeV) through a block of material. 
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Figure 7.8 - Reduction in fast neutron flux for 10 of the elements. 

 

The reduction in fast neutron flux for the 10 elements is shown in Figure 7.8. Of the 

ten elements tungsten is the most suitable, if not the only suitable, material for use as a 

shielding material within a fusion device. Within the literature [177], [178], however, 

other materials are considered such as: WC, B4C, WB4C, ZrH2, Zr(BH4)4, TiH2 and 

EUROFER. Tungsten itself is rarely used in its elemental form and would be used as a 

carbide (WC).  

Shield material comparison 

A comparison of some identified shielding materials, in terms of the fast neutron flux 

and magnet heating is given in Figure 7.9 and Figure 7.10, respectively. These 

calculations were performed with model B. 
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Figure 7.9 - Neutron fast flux on the magnet for different shielding materials. The mass 

density (g/cm3) is given in parenthesis below the material name.  

 

 

Figure 7.10 - Nuclear heating on the magnet for different shielding materials. The mass 

density (g/cm3) is given in parenthesis below the material name. 
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Addition of coolant 

Some form of cooling to the shield will be required, thereby water (H2O) has been 

added with varying volume. The effect of adding coolant to the tungsten carbide is 

shown in the nuclear heating of the magnet (Figure 7.11). 

A ratio of ~10 - 14 % coolant is the optimum for nuclear heating performance.  

 

Figure 7.11 - Nuclear heating in magnet as a function of coolant volume using water 

(H2O) with tungsten carbide shielding.  

 

Conclusions 

The following main conclusions were drawn from this shielding assessment: 

• The comparison of fast flux reduction capabilities of a number of stable 

isotopes has reaffirmed the shielding selection of tungsten carbide. The few 

elements that could potentially perform better are not suitable either due to 

cost, availability or usability.  

• The addition of boron, boron doping, could reduce the amount of tungsten and 

improve the shielding capabilities. 

• A water volume fraction of 0.13 is the optimum for reducing nuclear heating in 

the copper conductors within the centre column magnet. 
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APPENDIX 5: RESULTS  
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APPENDIX 5.1: Results for spherical tokamak configurations 

 

a)                  0.1 m centre column b)                  0.15 m centre column 

  

c)                  0.2 m centre column  d)                  0.3 m centre column 

  

e)                  0.4 m centre column f)                  0.5 m centre column 

  

Figure 7.12 - Variation in peak nuclear heating with inboard shielding thickness for 

varying aspect ratio and centre column radius. 
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a)                  0.1 m centre column b)                  0.15 m centre column 

  

c)                  0.2 m centre column  d)                  0.3 m centre column 

  

e)                  0.4 m centre column f)                  0.5 m centre column 

  

Figure 7.13 - Variation in TBR with inboard shielding thickness for varying aspect ratio 

and centre column radius. 
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a)                  0.1 m centre column b)                  0.15 m centre column 

  

c)                  0.2 m centre column  d)                  0.3 m centre column 

  

e)                  0.4 m centre column f)                  0.5 m centre column 

  

Figure 7.14 - Variation in peak fast flux with inboard shielding thickness for varying 

aspect ratio and centre column radius. 
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APPENDIX 5.2: Activation of breeder blanket materials 

The following appendix (Figure 7.15 - Figure 7.20) provides the activity concentration 

results for the remaining six blanket mixtures activated. These results were used as 

part of the discussions in Section 4.5.6. The data is provided for a selection of 

dominant nuclides at 50 - 100 years cooling time.  

 

Figure 7.15- Dominant nuclides for blanket mix 2 using a LiPb breeder material. 

 

Figure 7.16 - Dominant nuclides for blanket mix 3 using a LiPb breeder material. 
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Figure 7.17 - Dominant nuclides for blanket mix 4 using a LiPb breeder material. 

 

 

Figure 7.18 - Dominant nuclides for blanket mix 5 using a LiFBe breeder material. 
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Figure 7.19 - Dominant nuclides for blanket 6 using a Li8PbO6 breeder material. 

 

 

Figure 7.20 - Dominant nuclides for blanket 7 using a LiSn breeder material. 
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APPENDIX 5.3: Radioactive waste results  

A summary of component contribution using a 9 cm structured mesh and an 

unstructured mesh approach is given in Table 7.13 - Table 7.14. The mass of material 

within each waste class, including the percentage for potential recycling, is given in 

Figure 7.21 to Figure 7.25, for the full model, blankets, vacuum vessel, divertors and 

toroidal field coils respectively. These figures show results using the 3 methods, cell 

based, structured mesh (both a 9 cm and 15 cm resolution) and an unstructured mesh. 

The mass data (in kilotonnes) is given in Table 7.15 to Table 7.19. 

 

Table 7.13 - Material classification for each component after 100 years cooling (using 

method 2 – structured mesh 9 cm resolution). 

 Mass (kt) 

(Percentage of component) 
Potential recycling (%) 

 NAW LLW ILW LLW-RM ILW-RM 

Divertor 
0.0 2.9 1.0 

100% 100% 
( 0% ) ( 74% ) ( 26% ) 

Blanket 
0.0 0.0 8.8  100% 
( 0% ) ( 0% ) ( 100% ) 

Vacuum vessel 
2.7 5.6 5.0 

100% 100% 
( 20% ) ( 42% ) ( 37% ) 

TF coils 
0.0 2.1 0.1 

100% 90% 
( 1% ) ( 94% ) ( 3% ) 

Remaining materials 
13.2 8.3 1.7 

100% 99% 
( 57% ) ( 36% ) ( 7% ) 

Total 
15.9 19.0 16.5 

100% 100% 
( 31% ) ( 37% ) ( 32% ) 

 

Table 7.14 - Material classification for each component after 100 years cooling (using 

method 3 – unstructured mesh). 

 Mass (kt) 

(Percentage of component) 
Potential recycling (%) 

 NAW LLW ILW LLW-RM ILW-RM 

Divertor 
0.0 3.2 0.8 

100% 94% 
( 0% ) (81% ) ( 19% ) 

Blanket 
0.0 0.0 8.8  100% 
( 0% ) ( 0% ) ( 100% ) 

Vacuum vessel 
2.2 5.6 5.2 

100% 100% 
( 17% ) ( 43% ) ( 40% ) 

TF coils 
0.1 2.1 0.1 

100% 94% 
( 5% ) ( 92% ) ( 3% ) 

Remaining materials 
9.1 7.8 1.9 

100% 99% 
( 49% ) ( 42% ) (10% ) 

Total 
11.5 18.7 16.6 

100% 100% 
( 25% ) ( 40% ) ( 35% ) 
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a) Mass of total NAW  

 

 

 

                  

b) Mass of total LLW c) Potential for recycling (LLW-RM) 

  

d) Mass of total ILW e) Potential for recycling (ILW-RM) 

  

Figure 7.21 - Mass (kilotonne) of material comprising the whole model (EU DEMO 

2015) within each waste class, including the percentage for potential recycling. 
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a) Mass of blanket NAW  

 

 

 

                  

b) Mass of blanket LLW c) Potential for recycling (LLW-RM) 

  

d) Mass of blanket ILW e) Potential for recycling (ILW-RM) 

  

Figure 7.22 - Mass (kilotonne) of material comprising the blanket (EU DEMO 2015) 

within each waste class, including the percentage for potential recycling. 
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a) Mass of vacuum vessel NAW  

 

 

 

                  

b) Mass of vacuum vessel LLW c) Potential for recycling (LLW-RM) 

  

d) Mass of vacuum vessel ILW e) Potential for recycling (ILW-RM) 

  

Figure 7.23 - Mass (kilotonne) of material comprising the vacuum vessel (EU DEMO 

2015) within each waste class, including the percentage for potential recycling. 
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a) Mass of divertor NAW  

 

 

 

                  

b) Mass of divertor LLW c) Potential for recycling (LLW-RM) 

  

d) Mass of divertor ILW e) Potential for recycling (ILW-RM) 

  

Figure 7.24 - Mass (kilotonne) of material comprising the divertor (EU DEMO 2015) 

within each waste class, including the percentage for potential recycling. 
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a) Mass of toroidal field coils NAW  

 

 

 

                  

b) Mass of toroidal field coils LLW c) Potential for recycling (LLW-RM) 

  

d) Mass of toroidal field coils ILW e) Potential for recycling (ILW-RM) 

  

Figure 7.25 - Mass (kilotonne) of material comprising the toroidal field coils (EU DEMO 

2015) within each waste class, including the percentage for potential recycling.
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Table 7.15 - Mass of total model (EU DEMO 2015) material, in kilotonnes, within each waste class, for all methods used.  

Time 

(years) 

Cell Structured mesh (9 cm) Structured mesh (15 cm) Unstructured mesh 

NAW LLW ILW 
LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 

1.1E-04 0.000 9.244 42.286 8.034 0.000 0.587 12.259 38.755 10.384 0.520 0.510 11.858 39.162 9.932 0.509 0.095 8.189 38.563 6.590 0.366 

3.4E-04 0.000 9.350 42.179 8.627 0.000 0.688 13.069 37.839 11.654 0.655 0.654 12.663 38.212 11.238 0.645 0.107 9.036 37.704 7.722 0.461 

5.7E-04 0.000 9.350 42.179 9.350 0.000 0.761 13.705 37.124 12.808 0.790 0.730 13.273 37.526 12.405 0.794 0.110 9.655 37.082 8.865 0.550 

1.1E-03 0.000 9.966 41.564 9.966 1.728 0.803 14.621 36.146 14.614 1.292 0.755 14.257 36.517 14.246 1.352 0.117 10.621 36.109 10.493 1.227 

2.7E-03 0.000 11.760 39.770 11.760 1.695 0.828 15.656 35.049 15.656 2.400 0.774 15.303 35.452 15.303 2.454 0.146 11.564 35.136 11.492 2.465 

8.2E-03 0.000 12.870 38.660 12.870 1.358 0.842 17.218 33.370 17.215 1.648 0.785 17.014 33.730 17.012 1.666 0.210 13.061 33.576 12.922 1.856 

1.9E-02 0.000 14.202 37.328 13.970 0.307 0.845 18.078 32.483 17.903 1.165 0.785 17.869 32.875 17.724 1.167 0.299 13.869 32.679 13.579 1.333 

3.8E-02 0.000 14.693 36.837 13.683 0.279 0.848 18.619 31.939 18.229 0.941 0.785 18.431 32.313 18.070 0.929 0.325 14.445 32.077 13.967 1.029 

7.7E-02 0.000 15.450 36.080 13.786 0.000 0.852 19.121 31.439 18.597 0.687 0.787 18.965 31.777 18.465 0.650 0.348 14.988 31.511 14.371 0.727 

1.5E-01 0.000 16.129 35.401 14.633 0.000 0.860 19.824 30.721 19.121 0.335 0.791 19.623 31.115 18.957 0.345 0.410 15.629 30.808 14.831 0.370 

5.0E-01 0.000 16.539 34.990 15.071 0.000 0.883 21.011 29.528 19.890 0.102 0.949 20.828 29.753 19.692 0.110 0.566 16.616 29.665 15.446 0.109 

1.0E+00 0.000 16.712 34.818 15.639 0.000 0.910 21.557 28.953 20.299 0.101 0.821 21.456 29.252 20.174 0.102 0.667 17.073 29.107 15.783 0.068 

5.0E+00 0.000 18.101 33.429 17.009 0.000 1.091 23.968 26.370 22.113 0.028 0.976 23.995 26.558 22.065 0.030 0.903 19.616 26.328 17.484 0.009 

1.0E+01 0.000 19.552 31.978 17.473 0.000 1.341 25.905 24.174 23.904 0.060 1.232 26.017 24.281 23.980 0.063 1.164 21.423 24.260 19.473 0.041 

4.0E+01 0.461 23.661 27.408 23.202 9.499 3.990 27.579 19.823 27.108 5.485 3.856 28.102 19.571 27.465 5.670 2.976 23.815 20.056 23.308 5.446 

7.0E+01 9.350 16.814 25.366 16.814 24.850 11.532 22.581 17.266 22.523 14.819 11.361 22.806 17.363 22.806 15.378 7.165 22.211 17.471 22.142 14.974 

1.0E+02 11.692 17.113 22.724 17.113 22.737 15.898 18.952 16.529 18.952 16.504 15.515 19.248 16.765 19.248 16.746 11.502 18.737 16.607 18.737 16.544 

2.0E+02 12.290 23.409 15.831 23.409 15.799 17.390 20.092 13.897 20.092 13.881 17.099 20.261 14.168 20.261 14.152 13.142 19.994 13.711 19.994 13.672 

3.0E+02 12.833 28.581 10.115 28.581 10.079 18.457 25.063 7.868 25.063 7.852 18.171 25.172 8.186 25.172 8.171 14.081 25.027 7.739 25.027 7.700 

4.0E+02 13.259 30.641 7.630 30.641 7.597 19.137 26.258 5.985 26.253 5.974 18.976 26.344 6.208 26.338 6.199 14.877 26.011 5.958 26.011 5.921 

5.0E+02 13.442 31.368 6.719 31.368 6.682 19.720 26.677 4.983 26.665 4.980 19.541 26.853 5.135 26.839 5.133 15.610 26.262 4.975 26.250 4.952 

6.0E+02 13.442 33.132 4.955 33.132 4.933 19.846 27.104 4.430 27.089 4.430 19.630 27.334 4.565 27.319 4.564 15.698 26.779 4.371 26.765 4.350 

7.0E+02 13.442 33.494 4.593 33.494 4.563 19.857 27.423 4.100 27.408 4.100 19.643 27.664 4.221 27.649 4.221 15.708 27.198 3.941 27.184 3.923 

8.0E+02 13.785 34.941 2.804 34.941 2.771 19.864 27.634 3.882 27.619 3.882 19.655 27.878 3.996 27.864 3.995 15.717 27.446 3.684 27.432 3.670 

9.0E+02 13.924 34.851 2.754 34.851 2.740 19.871 27.778 3.731 27.763 3.731 19.665 28.023 3.841 28.008 3.841 15.728 27.573 3.546 27.560 3.537 

1.0E+03 13.924 34.851 2.754 34.851 2.740 19.882 27.865 3.633 27.850 3.633 19.680 28.115 3.735 28.100 0.000 15.739 27.662 3.445 27.649 3.439 
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Table 7.16 - Mass of blanket (EU DEMO 2015) material, in kilotonnes, within each waste class, for all methods used. 

Time 

(years) 

Cell Structured mesh (9 cm) Structured mesh (15 cm) Unstructured mesh 

NAW LLW ILW 
LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 

1.1E-04 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

3.4E-04 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

5.7E-04 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

1.1E-03 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

2.7E-03 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

8.2E-03 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

1.9E-02 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

3.8E-02 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

7.7E-02 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

1.5E-01 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

5.0E-01 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.002 0.000 8.762 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

1.0E+00 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.764 0.000 0.000 0.000 0.000 8.763 0.000 0.000 

5.0E+00 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.004 0.000 0.000 8.764 0.000 0.002 0.000 0.000 8.763 0.000 0.000 

1.0E+01 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 0.057 0.000 0.000 8.764 0.000 0.054 0.000 0.000 8.763 0.000 0.041 

4.0E+01 0.000 0.000 8.763 0.000 0.000 0.000 0.000 8.764 0.000 2.848 0.000 0.000 8.764 0.000 2.846 0.000 0.000 8.763 0.000 2.768 

7.0E+01 0.000 0.000 8.763 0.000 8.760 0.000 0.000 8.764 0.000 7.459 0.000 0.000 8.764 0.000 7.419 0.000 0.000 8.763 0.000 7.396 

1.0E+02 0.000 0.000 8.763 0.000 8.760 0.000 0.000 8.764 0.000 8.764 0.000 0.000 8.764 0.000 8.764 0.000 0.000 8.763 0.000 8.763 

2.0E+02 0.000 0.000 8.763 0.000 8.760 0.000 1.154 7.610 1.154 7.610 0.000 1.143 7.621 1.143 7.621 0.000 1.191 7.572 1.191 7.572 

3.0E+02 0.000 4.381 4.381 4.381 4.380 0.003 5.948 2.813 5.948 2.813 0.000 5.972 2.792 5.972 2.792 0.023 5.915 2.825 5.915 2.825 

4.0E+02 0.000 5.320 3.443 5.320 3.440 0.000 6.717 2.047 6.717 2.047 0.000 6.714 2.050 6.714 2.050 0.000 6.630 2.133 6.630 2.133 

5.0E+02 0.000 5.320 3.443 5.320 3.440 0.000 6.790 1.974 6.790 1.974 0.000 6.786 1.978 6.786 1.978 0.000 6.701 2.062 6.701 2.062 

6.0E+02 0.000 6.867 1.896 6.867 1.900 0.000 6.835 1.929 6.835 1.929 0.000 6.833 1.931 6.833 1.931 0.000 6.798 1.965 6.798 1.965 

7.0E+02 0.000 6.867 1.896 6.867 1.900 0.000 6.867 1.897 6.867 1.897 0.000 6.862 1.902 6.862 1.902 0.000 6.810 1.953 6.810 1.953 

8.0E+02 0.000 7.762 1.001 7.762 1.000 0.000 6.894 1.870 6.894 1.870 0.000 6.891 1.873 6.891 1.873 0.000 6.861 1.902 6.861 1.902 

9.0E+02 0.000 7.762 1.001 7.762 1.000 0.000 6.914 1.850 6.914 1.850 0.000 6.911 1.853 6.911 1.853 0.000 6.901 1.862 6.901 1.862 

1.0E+03 0.000 7.762 1.001 7.762 1.000 0.000 6.934 1.830 6.934 1.830 0.000 6.932 1.832 6.932 1.832 0.000 6.933 1.830 6.933 1.830 
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Table 7.17 - Mass of vacuum vessel (EU DEMO 2015) material, in kilotonnes, within each waste class, for all methods used. 

Time 

(years) 

Cell Structured mesh (9 cm) Structured mesh (15 cm) Unstructured mesh 

NAW LLW ILW 
LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 

1.1E-04 0.000 0.000 13.274 0.000 0.000 0.000 1.753 11.522 1.276 0.000 0.000 1.562 11.710 1.101 0.000 0.017 1.368 11.615 0.896 0.000 

3.4E-04 0.000 0.000 13.274 0.000 0.000 0.000 2.022 11.252 1.594 0.000 0.000 1.825 11.447 1.421 0.000 0.017 1.615 11.368 1.185 0.000 

5.7E-04 0.000 0.000 13.274 0.000 0.000 0.000 2.233 11.041 1.948 0.000 0.000 2.057 11.215 1.757 0.000 0.017 1.794 11.189 1.551 0.000 

1.1E-03 0.000 0.000 13.274 0.000 0.000 0.001 2.522 10.751 2.521 0.185 0.000 2.365 10.907 2.365 0.196 0.017 2.089 10.894 2.081 0.201 

2.7E-03 0.000 0.000 13.274 0.000 0.028 0.001 2.744 10.529 2.744 0.743 0.000 2.564 10.708 2.564 0.772 0.021 2.283 10.696 2.279 0.775 

8.2E-03 0.000 0.000 13.274 0.000 0.028 0.001 2.851 10.422 2.851 0.699 0.000 2.689 10.583 2.689 0.705 0.024 2.387 10.590 2.381 0.734 

1.9E-02 0.000 0.030 13.243 0.000 0.028 0.001 2.964 10.309 2.961 0.619 0.000 2.805 10.467 2.802 0.616 0.032 2.507 10.461 2.499 0.640 

3.8E-02 0.000 0.059 13.215 0.028 0.000 0.001 3.092 10.182 3.082 0.529 0.000 2.940 10.332 2.931 0.528 0.036 2.651 10.314 2.631 0.536 

7.7E-02 0.000 0.059 13.215 0.028 0.000 0.001 3.263 10.010 3.244 0.408 0.000 3.131 10.141 3.113 0.394 0.037 2.846 10.117 2.816 0.404 

1.5E-01 0.000 0.059 13.215 0.059 0.000 0.001 3.534 9.738 3.490 0.234 0.000 3.389 9.883 3.351 0.233 0.042 3.096 9.862 3.047 0.221 

5.0E-01 0.000 0.059 13.215 0.059 0.000 0.003 4.007 9.264 3.872 0.061 0.003 3.873 9.396 3.735 0.045 0.051 3.478 9.471 3.364 0.073 

1.0E+00 0.000 0.155 13.119 0.059 0.000 0.004 4.211 9.059 4.048 0.049 0.000 4.077 9.195 3.906 0.028 0.068 3.632 9.301 3.489 0.044 

5.0E+00 0.000 0.170 13.104 0.074 0.000 0.006 5.245 8.023 4.773 0.001 0.001 5.174 8.097 4.642 0.000 0.083 4.808 8.109 4.192 0.003 

1.0E+01 0.000 0.641 12.633 0.170 0.000 0.009 6.407 6.859 5.614 0.000 0.001 6.326 6.945 5.538 0.000 0.100 5.975 6.926 5.186 0.000 

4.0E+01 0.000 0.872 12.402 0.872 8.190 0.240 7.611 5.423 7.611 1.976 0.170 7.541 5.561 7.541 2.000 0.263 7.173 5.564 7.173 1.957 

7.0E+01 0.000 0.872 12.402 0.872 12.200 1.924 6.174 5.176 6.174 4.565 1.797 6.181 5.293 6.181 4.698 1.378 6.265 5.356 6.265 4.679 

1.0E+02 0.000 1.718 11.555 1.718 11.600 2.711 5.604 4.960 5.604 4.951 2.528 5.658 5.086 5.658 5.083 2.244 5.602 5.153 5.602 5.148 

2.0E+02 0.000 7.125 6.148 7.125 6.150 3.414 5.523 4.337 5.523 4.337 3.250 5.594 4.428 5.594 4.428 3.011 5.599 4.389 5.599 4.389 

3.0E+02 0.000 8.269 5.005 8.269 5.000 4.168 5.446 3.660 5.446 3.660 4.026 5.421 3.824 5.421 3.824 3.656 5.555 3.790 5.555 3.790 

4.0E+02 0.059 9.326 3.889 9.326 3.890 4.830 5.549 2.895 5.549 2.895 4.765 5.560 2.947 5.560 2.947 4.404 5.543 3.053 5.543 3.053 

5.0E+02 0.059 10.152 3.063 10.152 3.060 5.387 5.729 2.158 5.729 2.158 5.312 5.804 2.157 5.804 2.157 5.107 5.597 2.297 5.597 2.297 

6.0E+02 0.059 10.369 2.846 10.369 2.850 5.505 6.023 1.746 6.023 1.746 5.394 6.133 1.745 6.133 1.745 5.186 5.969 1.845 5.969 1.845 

7.0E+02 0.059 10.730 2.485 10.730 2.480 5.512 6.260 1.501 6.260 1.501 5.400 6.364 1.509 6.364 1.509 5.191 6.333 1.476 6.333 1.476 

8.0E+02 0.059 11.622 1.593 11.622 1.590 5.515 6.414 1.345 6.414 1.345 5.404 6.514 1.355 6.514 1.355 5.199 6.502 1.300 6.502 1.300 

9.0E+02 0.059 11.672 1.543 11.672 1.540 5.518 6.522 1.233 6.522 1.233 5.407 6.603 1.262 6.603 1.262 5.204 6.585 1.211 6.585 1.211 

1.0E+03 0.059 11.672 1.543 11.672 1.540 5.523 6.582 1.168 6.582 1.168 5.411 6.650 1.210 6.650 1.210 5.210 6.636 1.153 6.636 1.153 
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Table 7.18 - Mass of divertor (EU DEMO 2015) material, in kilotonnes, within each waste class, for all methods used. 

Time 

(years) 

Cell Structured mesh (9 cm) Structured mesh (15 cm) Unstructured mesh 

NAW LLW ILW 
LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 

1.1E-04 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

3.4E-04 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

5.7E-04 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

1.1E-03 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

2.7E-03 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

8.2E-03 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

1.9E-02 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

3.8E-02 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

7.7E-02 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

1.5E-01 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

5.0E-01 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.102 0.000 3.826 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

1.0E+00 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.002 3.924 0.000 0.000 

5.0E+00 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.005 3.920 0.000 0.000 

1.0E+01 0.000 0.000 3.930 0.000 0.000 0.000 0.000 3.928 0.000 0.000 0.000 0.000 3.927 0.000 0.000 0.000 0.009 3.916 0.002 0.000 

4.0E+01 0.000 0.402 3.528 0.154 0.009 0.000 0.702 3.226 0.232 0.017 0.000 1.187 2.741 0.550 0.041 0.000 0.766 3.160 0.258 0.015 

7.0E+01 0.000 2.222 1.708 2.222 1.400 0.000 2.630 1.299 2.571 0.814 0.000 2.674 1.254 2.674 1.252 0.000 2.725 1.200 2.657 0.786 

1.0E+02 0.000 3.720 0.211 3.720 0.177 0.000 2.926 1.002 2.926 1.002 0.000 2.805 1.122 2.805 1.122 0.000 3.164 0.761 3.164 0.719 

2.0E+02 0.000 3.745 0.185 3.745 0.154 0.000 3.082 0.847 3.082 0.847 0.000 2.964 0.964 2.964 0.964 0.000 3.325 0.601 3.325 0.576 

3.0E+02 0.000 3.807 0.123 3.807 0.093 0.018 3.148 0.762 3.148 0.762 0.000 3.047 0.881 3.047 0.881 0.001 3.395 0.530 3.395 0.505 

4.0E+02 0.000 3.821 0.109 3.821 0.078 0.000 3.231 0.697 3.231 0.697 0.000 3.106 0.822 3.106 0.822 0.000 3.448 0.477 3.448 0.455 

5.0E+02 0.000 3.826 0.104 3.826 0.073 0.000 3.274 0.654 3.274 0.654 0.000 3.148 0.779 3.148 0.779 0.000 3.462 0.464 3.462 0.443 

6.0E+02 0.000 3.826 0.104 3.826 0.074 0.000 3.301 0.627 3.301 0.627 0.000 3.186 0.742 3.186 0.742 0.000 3.467 0.458 3.467 0.438 

7.0E+02 0.000 3.827 0.103 3.827 0.074 0.000 3.318 0.611 3.318 0.611 0.000 3.223 0.705 3.223 0.705 0.000 3.490 0.435 3.490 0.417 

8.0E+02 0.000 3.827 0.103 3.827 0.074 0.000 3.329 0.599 3.329 0.599 0.000 3.238 0.690 3.238 0.690 0.000 3.503 0.423 3.503 0.409 

9.0E+02 0.000 3.827 0.103 3.827 0.093 0.000 3.337 0.591 3.337 0.591 0.000 3.270 0.658 3.270 0.658 0.000 3.506 0.419 3.506 0.410 

1.0E+03 0.000 3.827 0.103 3.827 0.093 0.000 3.345 0.583 3.345 0.583 0.000 3.296 0.632 3.296 0.632 0.000 3.512 0.413 3.512 0.407 



 

   215 

Table 7.19- Mass of toroidal field coils (EU DEMO 2015) material, in kilotonnes, within each waste class, for all methods used. 

Time 

(years) 

Cell Structured mesh (9 cm) Structured mesh (15 cm) Unstructured mesh 

NAW LLW ILW 
LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 
NAW LLW ILW 

LLW-

RM 

ILW-

RM 

1.1E-04 0.000 0.000 2.374 0.000 0.000 0.000 0.330 2.123 0.330 0.199 0.000 0.240 2.134 0.240 0.200 0.003 0.330 1.981 0.327 0.161 

3.4E-04 0.000 0.000 2.374 0.000 0.000 0.000 0.361 2.086 0.361 0.259 0.000 0.275 2.099 0.275 0.265 0.003 0.361 1.950 0.359 0.203 

5.7E-04 0.000 0.000 2.374 0.000 0.000 0.000 0.391 2.051 0.391 0.316 0.000 0.310 2.064 0.310 0.321 0.003 0.391 1.920 0.391 0.250 

1.1E-03 0.000 0.000 2.374 0.000 0.498 0.000 0.447 1.976 0.447 0.430 0.000 0.385 1.990 0.385 0.427 0.004 0.447 1.863 0.446 0.348 

2.7E-03 0.000 0.498 1.876 0.498 0.367 0.000 0.616 1.769 0.616 0.551 0.000 0.597 1.777 0.597 0.556 0.005 0.616 1.692 0.616 0.464 

8.2E-03 0.000 0.866 1.508 0.866 0.000 0.000 1.151 1.131 1.151 0.330 0.000 1.254 1.121 1.254 0.301 0.010 1.151 1.153 1.147 0.333 

1.9E-02 0.000 0.866 1.508 0.866 0.000 0.000 1.345 0.914 1.345 0.179 0.000 1.453 0.921 1.453 0.169 0.014 1.345 0.955 1.336 0.206 

3.8E-02 0.000 1.226 1.147 0.866 0.000 0.000 1.409 0.849 1.407 0.125 0.000 1.520 0.854 1.517 0.113 0.017 1.409 0.888 1.396 0.156 

7.7E-02 0.000 1.501 0.873 0.866 0.000 0.000 1.486 0.779 1.479 0.070 0.000 1.591 0.783 1.581 0.059 0.020 1.486 0.808 1.465 0.094 

1.5E-01 0.000 1.592 0.781 1.226 0.000 0.000 1.571 0.685 1.540 0.017 0.000 1.674 0.701 1.642 0.011 0.026 1.571 0.716 1.527 0.037 

5.0E-01 0.000 1.592 0.781 1.226 0.000 0.000 1.704 0.570 1.611 0.001 0.013 1.796 0.565 1.672 0.000 0.033 1.704 0.577 1.588 0.008 

1.0E+00 0.000 1.592 0.781 1.501 0.000 0.000 1.759 0.514 1.643 0.000 0.000 1.863 0.512 1.726 0.000 0.035 1.759 0.521 1.628 0.004 

5.0E+00 0.000 1.592 0.781 1.592 0.000 0.000 1.956 0.325 1.841 0.000 0.000 2.052 0.322 1.919 0.000 0.040 1.956 0.318 1.828 0.000 

1.0E+01 0.000 1.592 0.781 1.592 0.000 0.000 2.050 0.223 1.971 0.000 0.000 2.148 0.226 2.064 0.000 0.046 2.050 0.219 1.961 0.000 

4.0E+01 0.000 2.374 0.000 2.374 0.000 0.019 2.126 0.097 2.126 0.061 0.020 2.257 0.097 2.257 0.060 0.089 2.126 0.099 2.126 0.062 

7.0E+01 0.000 2.374 0.000 2.374 0.000 0.027 2.126 0.079 2.126 0.072 0.025 2.268 0.082 2.268 0.074 0.108 2.126 0.080 2.126 0.075 

1.0E+02 0.498 1.876 0.000 1.876 0.000 0.027 2.137 0.068 2.137 0.061 0.025 2.287 0.063 2.287 0.055 0.109 2.137 0.069 2.137 0.065 

2.0E+02 0.498 1.876 0.000 1.876 0.000 0.027 2.169 0.035 2.169 0.029 0.025 2.318 0.032 2.318 0.024 0.109 2.169 0.036 2.169 0.032 

3.0E+02 0.498 1.876 0.000 1.876 0.000 0.041 2.185 0.015 2.184 0.009 0.026 2.332 0.017 2.332 0.010 0.113 2.185 0.016 2.185 0.012 

4.0E+02 0.866 1.508 0.000 1.508 0.000 0.027 2.200 0.005 2.198 0.001 0.026 2.344 0.005 2.341 0.001 0.109 2.200 0.005 2.200 0.001 

5.0E+02 0.866 1.508 0.000 1.508 0.000 0.028 2.204 0.001 2.199 0.000 0.026 2.348 0.001 2.341 0.000 0.109 2.204 0.001 2.201 0.000 

6.0E+02 0.866 1.508 0.000 1.508 0.000 0.028 2.204 0.001 2.199 0.000 0.026 2.348 0.001 2.341 0.000 0.110 2.204 0.000 2.200 0.000 

7.0E+02 0.866 1.508 0.000 1.508 0.000 0.028 2.204 0.000 2.199 0.000 0.026 2.348 0.000 2.341 0.000 0.110 2.204 0.000 2.200 0.000 

8.0E+02 0.866 1.508 0.000 1.508 0.000 0.028 2.204 0.000 2.199 0.000 0.026 2.348 0.000 2.341 0.000 0.110 2.204 0.000 2.201 0.000 

9.0E+02 0.866 1.508 0.000 1.508 0.000 0.028 2.204 0.000 2.199 0.000 0.026 2.348 0.000 2.341 0.000 0.110 2.204 0.000 2.201 0.000 

1.0E+03 0.866 1.508 0.000 1.508 0.000 0.028 2.204 0.000 2.199 0.000 0.026 2.348 0.000 2.341 0.000 0.110 2.204 0.000 2.201 0.000 
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APPENDIX 6: VALIDATION OF PHOTON DATA 

LIBRARY 

Introduction 

During the course of the PhD documented in this thesis a newer version of MCNP 

became available. Earlier work, including that presented in Section 4.1, made use of 

MCNP version 5. The production version of MCNP6 was released in 2013 and is used 

in all other particle transport work presented in this thesis. The beta release 

MCNP6v1.1 was used for testing of the unstructured mesh capability, however as it 

did not fix problems regarding the use of weight windows for variance reduction, it 

was not used in any of the results presented.  

MCNP uses nuclear cross-section data provided in data libraries. The neutron data 

libraries are specified on the material ZAID input using an extension which in turn 

matches an entry on the cross-section directory file ‘xsdir’. This xsdir file contains the 

path to the cross-section data library. If no extension is present on the material ZAID 

then the first matching entry in the xsdir is used. The photon data library can also be 

specified using the PLIB keyword. If this is not explicitly defined then the default 

library is used. In MCNP5 and the extended MCNP version, MCNPx, the default 

photon library is PLIB 04. In MCNP6 the default is PLIB 84. These libraries, PLIB 04 

and PLIB 84 contain exactly the same nuclear data but provided in different formats. 

The reason for this is discussed later in this appendix.  

The neutron cross-section data used in all work presented in this thesis, is from the 

FENDL 2.1 data library, or where not available, the ENDF VII data library. The 

FENDL data library is preferred as this ‘evaluated nuclear data’ has been complied for 

use in fusion. The default photon data libraries have been used in this thesis research; 

in the case of MCNP5 this is now known to be incorrect. 

A number of photon cross-section data libraries are available for use with MCNP for 

photon transport/heating calculations; 04, 05t, 84 and 12. MCNP also has a number of 

physics options available, including the ability to perform Doppler broadening to 

incorporate the effect of bound electrons on photon scattering. The PLIB 04 has been 

considered the standard and default library for photon calculations in MCNP. Since 

the release of MCNP5 it was found that there was a bug with Doppler broadening [95]. 
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The format for the data provided in PLIB 04 for sampling which atomic shell the 

electron is bound, provided as a probability density function (PDF), does not match 

the format in which MCNP5 samples. MCNP5 samples assuming a cumulative 

density function (CDF). The official report on this MCNP bug is given in [107]. To 

enable users of MCNP5 to have corrected data sampling, a temporary library, PLIB 84, 

was created with the correctly formatted data. However this requires the end-user to 

specify it explicitly using the PLIB keyword in the MCNP input file. The sampling 

bug is not evident with MCNP6 which can determine what format the library data is, 

and sample accordingly. 

A summary of investigations into the effect of using different photon libraries and the 

MCNP5 bug with Doppler broadening, along with a comparison of using MCNP5 and 

MCNP6 is documented in this appendix. This work was part funded by the RCUK 

Energy Programme [grant number EP/1501045] and the European Union’s Horizon 

2020 research and innovation programme. It was presented at the 2014 JEFF Meeting 

(the Joint Evaluated Fission and Fusion File project) at the Nuclear Energy Agency 

(NEA), Issy-les-Moulineaux, France.  

Available photon nuclear data libraries and compatibility 

As already mentioned, the standard photon data library for use with MCNP is       

PLIB 04/84, with PLIB 84 having a different format for use with MCNP5. MCNP6 

determines the format of the library and samples accordingly, so using PLIB 04 or 

PLIB 84 would present the same result. A test library, PLIB 05t, was developed in 

order to include form factor data from ENDF/B-VII(rev. 0) as the incoherent and 

coherent form factors in MCNP5 and MCNPx were described as obsolete, affecting 

photon transport with energies greater than 74 KeV [179]. The PLIB 05t data is 

identical to that in the standard PLIB 04 apart from the inclusion of the updated form 

factor data. A version of MCNPx [180] was developed to identify and use the       

PLIB 05t data as it is not compatible with MCNP5. PLIB 12, is in a newly developed 

format that includes photon transport data from PLIB 04 and complete relaxation and 

electron interaction data [181]. The three main developments in this data library are: 

(1) the extension of photon transport to lower energies; 1 eV, (2) enhancement of the 

treatment of atomic relaxation processes, and (3) changes in electron transport 

methods to allow transport at lower energies. 
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It is important to consider the compatibility of the libraries with different versions of 

MCNP, namely MCNP5, MCNP6 and MCNPx. The versions of MCNP used are 

given in Table 7.20. A summary of the compatibility is given in Table 7.21. The 

reference case (MCNP6 + PLIB 04) is highlighted in light green; the use of PLIB 84 

with MCNP6 should be identical to the reference case.  

 

Table 7.20 - MCNP versions and default photon cross-section data libraries. 

MCNP Version 
Default Library and 

Sampling of Bound Electrons for Doppler Broadening 

MCNP5 v1.6 
The default library is PLIB 04, however MCNP5 assumes that the data 

provided as part of the Doppler broadening function is a CDF. 

MCNP6 v1.1 

The default library is PLIB 84, the data of which is identical to PLIB 04. 

MCNP6 can correctly sample from either PLIB 04 or PLIB 84, as the code 

will convert, where necessary, PDF to CDF. 

MCNPx v2.7.0 

This particular version of MCNPx has been developed to identify and use 

PLIB 05t, though the version also incorrectly samples the Doppler 

broadening data as CDF. 

 

Table 7.21 - Summary of photon library and MCNP compatibility. 
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Photon physics in MCNP 

The MCNP6 default photon physics options have been applied throughout the testing 

calculations (Table 7.22). Calculations were also performed with and without the 

Doppler broadening feature; this was changed through the use of ‘0’ or ‘1’ on the 

NODOP entry of the PHYS:P photon physics card in the MCNP input file. It should 

be noted that no photonuclear interactions were included.  

 

Table 7.22 - Physics transport options in MCNP and default values. 

Input 

Parameter 
Description Default 

EMCPF 

Upper energy limit for detailed photon 

physics treatment, photons with energy 

above this will be tracked using the simple 

physics treatment. 

100 MeV 

IDES 

Controls generation of bremsstrahlung 

photons, when using MODE P only, with 

the thick-target bremsstrahlung model 

Generation of bremsstrahlung 

photons turned on 

NOCOH Coherent scattering on/off On 

ISPN Photonuclear particle production 
No photonuclear particle 

production 

NODOP Doppler energy broadening on/off On (note default is off in MCNPx) 

J Unused   

FISM Photofission method 
Sample from ACE libraries (no 

photofission prompt gammas) 

Neutronics models 

Simple physics test model 

A simple spherical test case (see Figure 7.26) was used to compare the effect on the 

photon flux from the use of different photon libraries. Using a script, the 200 cm 

radius sphere was filled with each of the 100 elements featured in the photon data 

libraries and a separate photon transport calculation performed for each. The mass 

density of the material within the sphere has been kept constant at 1 g/cm3. An 8 MeV 

photon point source was placed at the centre and the resulting photon flux tallied at 20 

spherical surfaces through the material and in 175 energy bins. Each transport 

calculation was performed without variance reduction with 1 x 108 photon histories. 
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Table 7.23 summarises the combinations of MCNP and photon library used with the 

simple model.   

 

 

Figure 7.26 - Simple spherical test model geometry; a 200 cm sphere with a point source 

in the centre. 

 

Table 7.23 - MCNP and photon library combinations used with simple test model. 

 

DEMO Baseline model 

Further photon library comparisons, and a comparison of the use of MCNP5 and 

MCNP6, were made using a fusion relevant model; the benchmark EU HCLL DEMO 

2012 model [182]. The materials used can be seen in Table 7.24. A D-T parametric 

plasma source was used (as previously referenced).  

A summary of the combinations of MCNP and photon library used in simulations with 

the DEMO model can be seen in Table 7.26. The photon and neutron flux and heating 

have been tallied on a superimposed mesh (see Table 7.25 for the extents of the mesh). 

Global variance reduction was utilised to establish a weight window map and the 

simulations performed to 2 x 109 histories.  

200 cm 
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Figure 7.27 - The EU HCLL DEMO 2012 model [182], an 11.25º sector. 

 

Table 7.24 - Summary of main materials used in the EU HCLL DEMO 2012 model 

[182]. 

Component Material 

First wall armour Tungsten 

First wall, side wall, back wall EUROFER + 1w% tungsten 

Breeding zone 

   Cooling & Stiffening plates 

   Breeder material 

 

EUROFER & helium 

Pb-15.8Li, 90% 6Li enrichment 

Manifold LiPb  5%, EUROFER 28% , helium  67% 

Vacuum vessel/shielding 
Tungsten carbide  30%, SS316-LN 37.46%, water 31.46%, 

boron 1.08% 

Toroidal field casing SS316-LN 

Toroidal field coil 
R-epoxy 18%, Nb3Sn 2.895%, bronze 7,35%, copper 

11.69%, helium 16.82%, SS-316 43.19%, void 0.055% 

Divertor EUROFER + 1w% tungsten 

 

Toroidal field 

coil casing 

Toroidal field coil 

(within casing) 

Breeder zones 

Manifold 

Vacuum vessel 

and shielding 

First wall 

armour 

Divertor 
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Table 7.25 - The X, Y & Z extents for mesh tallies used in EU HCLL DEMO 2012 model. 

X min 

(cm) 

X max 

(cm) 

Y min 

(cm) 

Y max 

(cm) 

Z min 

(cm) 

Z max 

(cm) 
Resolution (cm) 

200 1500 -4 286 -940 950 ~10x10x10 

 

Table 7.26 - MCNP and photon library combinations used with EU HCLL DEMO 2012 

model. 

 

Results 

Doppler broadening 

The use of Doppler broadening with MCNP5 and the standard PLIB 04 is compared 

with reference case results. The percentage difference in the total flux results for all 

100 elements tested, at 160 cm from the source is given in Figure 7.28 along with 

results from the use of MCNP5 with the format corrected library PLIB 84. The 

majority of results are still within 1 standard deviation of the reference case (with 

Doppler broadening) as shown by the red line. 

The differences observed with the use of Doppler broadening in Fe, with the standard 

library (PLIB 04) and the corrected format PLIB 84, can be seen in Figure 7.29. This 

shows the percentage difference in the total surface flux results at each surface 

through the sphere at radial distances from the centre source. 
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Figure 7.28 - Percentage difference of total surface flux for each element at 160 cm 

compared to the reference case. Using MCNP5 + PLIB 04 with and without the use of 

Doppler broadening and MCNP5 + PLIB 84 with Doppler broadening. The red lines 

show 1 standard deviation of the reference case with Doppler broadening.  

 

 

Figure 7.29 - Percentage difference of total surface flux for Fe at 160 cm compared to the 

reference case; using MCNP5 + PLIB 04/PLIB 84, with and without the use of Doppler 

broadening. The red lines show 1 standard deviation of the reference case with Doppler 

broadening. 
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Comparison of libraries 

The libraries have been compared using default MCNP6 physics which includes the 

use of Doppler broadening. The percentage difference observed in the total surface 

flux (at 160 cm from the centre source) for each element tested and each MCNP and 

photon library combination is given in Figure 7.30.  

The use of MCNP5 with PLIB 05t was not expected to be compatible. The plot is 

therefore given again in Figure 7.31 without the MCNP5 and PLIB 05t data. The 

difference in the total surface flux through Fe for the different MCNP and PLIB 

combinations is given in Figure 7.32. 

 

 

 

 

Figure 7.30 - Percentage difference in the total surface flux, when comparing the use of 

different PLIBs to the reference case (MCNP6 + PLIB 04). 
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Figure 7.31 - Percentage difference in the total surface flux at 160cm from the source; 

comparing the use of different PLIBs to the reference case (MCNP6 + PLIB 04). This is 

the same as Figure 7.30  with data for MCNP5 + PLIB05t removed. The red lines show 1 

standard deviation of the reference case with Doppler broadening. 

 

 

 

 

Figure 7.32 - Percentage difference in the total surface flux through Fe; comparing the 

use of different PLIBs to the reference case (MCNP6 + PLIB 04). 
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A comparison of the total surface flux at 160 cm from the centre source for different 

photon libraries is given in Figure 7.33, showing the percentage of results that fall 

within 1 standard deviation of the reference case. The combined error was calculated 

by adding the errors in quadrature. A summary of the data is given in Table 7.27 

which includes the percentage of compared results that fall within 1-2, 2-3 and greater 

than 3 standard deviations. Only non-zero results, and those that have an associated 

statistical uncertainty less than 5%, have been compared.  

 

Table 7.27 - A summary of the percentage of compared flux per energy bin results for all 

elements (at 160 cm from the source) that are within 1, 1 to 2, 2 to 3 and above 3 

standard deviations of the reference case. Only non-zero values with a relative statistical 

uncertainty <5% are compared. 

MCNP and PLIB MCNP 5 MCNP 6 MCNPx 

% of results within: 4 05t 84 05t 84 12 05t 

1 standard deviation of 

the reference case 
91.90 18.15 100.00 71.62 100.00 67.36 70.79 

1-2 standard deviations 

of the reference case 
7.63 11.02 0.00 24.50 0.00 27.01 24.82 

2-3 standard deviations 

of the reference case 
0.47 8.45 0.00 3.63 0.00 4.54 4.11 

> 3 standard deviations 

of the reference case 
0.00 62.39 0.00 0.25 0.00 1.08 0.29 

 

 

Figure 7.33 - Percentage of compared surface flux per energy bin results at 160 cm that 

fall with 1 standard deviation of the reference case. Only non-zero values with a relative 

statistical uncertainty <5% are compared. 
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Photon heating in DEMO  

The reference case (MCNP6 + PLIB 04) photon heating is shown in Figure 7.34, 

normalised to a 2385 MW power plant (i.e. 8.468 x 1020 neutrons / second). A 

comparison of the resulting inboard and outboard (see Figure 7.35) photon heating 

using different data libraries is shown in Figure 7.36 and Figure 7.37, respectively.  

 

Figure 7.34 - A vertical elevation plot of the photon heating map (left) and relative 

statistical uncertainty (right) using the reference case (MCNP6 PLIB 04). (Scale in cm) 

 

 

Figure 7.35 - A horizontal plot, at z = 0 cm, of the photon heating map using reference 

case (MCNP6 PLIB 04). The dotted line shows the location of the data for Figure 7.36 

and Figure 7.37. (Scale in cm) 
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Figure 7.36 - Inboard reference case photon heating (location shown in Figure 7.35), and 

the difference, as a ratio, when using other PLIBs. The red lines show 1 standard 

deviation of the reference case with Doppler broadening. 

 

 

Figure 7.37 - Outboard reference case photon heating (location shown in Figure 7.35), 

and the difference, as a ratio, when using other PLIBs. The red lines show 1 standard 

deviation of the reference case with Doppler broadening. 
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Comparing each voxel of the superimposed mesh 

The heating value in each voxel of the superimposed mesh has been compared to that 

of the reference case (MCNP6 + PLIB 04). Figure 7.39 shows vertical elevation plots 

through the centre of the EU HCLL DEMO 2012 benchmark model with each voxel 

of a mesh coloured depending on the comparison with the reference case; whether the 

value falls within 1, 1-3 or 2-3 standard deviations of the mean. Only non-zero values 

have been compared and those with an associated statistical uncertainty less than 25%. 

Figure 7.38 shows the difference in the use of the standard PLIB 04 and the corrected 

format PLIB 84 with MCNP5. Some differences are observed with PLIB 04, most of 

which are eliminated with the use of the corrected format PLIB 84, see Figure 7.38 

(right). As expected the use of MCNP6 with PLIB 84 (Figure 7.40) gives identical 

results to the reference case (MCNP6 + PLIB 04). 

A summary of the results comparing the heating results in each voxel against the 

reference case is given in Table 7.28. 

 

 

Figure 7.38 - Voxel values within 1, 1 to 2, and 2 to 3 standard deviations of the reference 

case; using MCNP5 + PLIB 04 (left) and MCNP5 + PLIB 84 (right). 
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Figure 7.39 - Voxel values within 1, 1 to 2, and 2 to 3 standard deviations of the reference 

case; using MCNP6 + PLIB 05t  (left) and MCNP6 + PLIB12 (right).  

 

 

 

 

Figure 7.40 - Voxel values within 1, 1 to 2, and 2 to 3 standard deviations of the reference 

case; using MCNP6 + PLIB 84. 
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Table 7.28 - A summary of the percentage of compared voxel heating results that are 

within 1, 1 to 2, 2 to 3 and above 3 standard deviations of the reference case, for the 

combinations of MCNP and PLIB library used. Only non-zero values with a relative 

statistical uncertainty <25% are compared. 

MCNP and PLIB MCNP5 MCNP6 

% of results within: 04p 84p 84p 05t 12p 

1 standard deviation of 

the reference case 
74.46 99.06 100.00 68.83 70.61 

1-2 standard deviations 

of the reference case 
22.63 0.92 0.00 26.72 25.40 

2-3 standard deviations 

of the reference case 
2.73 0.02 0.00 4.04 3.70 

> 3 standard deviations 

of the reference case 
0.18 0.00 0.00 0.41 0.29 

 

Discussion 

The photon libraries PLIB 04 and PLIB 84 are identical in cross-section data and 

differ only in the format of the data provided. Results from both the simple test case 

and the DEMO benchmark model show this to be true, MCNP6 using PLIB 04 gives 

identical results to MCNP6 using PLIB 84, regardless of whether Doppler broadening 

is in use or not.  

Differences are observed when comparing the use of MCNP5 with PLIB04 to the 

reference case, with Doppler broadening, as expected due to the known bug. For the 

majority of elements tested, ~92 %, the difference observed in the surface flux per 

energy bin of the simple test model is still within 1 standard deviation of the reference 

case. For the DEMO benchmark model, approximately 75 % of the total photon 

heating mesh tally values are within 1 standard deviation. Although values within       

1 standard deviation are not strictly identical, one might expect ~68 % agreement. 

The use of the corrected format library PLIB 84 with MCNP 5 gives results within     

1 standard deviation of the reference case for the simple test case. Some slight 

differences observed are related to the use of the different MCNP versions.  

The use of the testing library PLIB 05t was expected to be incompatible with MCNP5; 

results from the simple test case demonstrate this. Only approximately 18 % of the 

surface flux tally results were within 1 standard deviation of the reference case. The 

combination of PLIB 05t and MCNP5 gave the largest percentage difference to the 

reference case than all other combinations tested, including the use of MCNP5 with 
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the incorrectly formatted PLIB 04 when using Doppler broadening. The total surface 

flux results, at 160 cm from the source, using MCNP5 with PLIB 05t were up to 18 % 

lower than the reference case. Limited analysis was carried out on the resulting effect 

of using this combination of MCNP and photon library as it was already expected to 

be incompatible.  

It was not clear from the literature review whether MCNP6 would be compatible with 

PLIB 05t, though results using the simple test case show that this may be the case. 

Good agreement in the results was observed between the use of MCNP6 and MCNPx 

with PLIB 05t, when comparing to the reference case (MCNP6 + PLIB 04). In both 

cases, approximately 71 % of the flux values for each element are within 1 standard 

deviation of the reference case. 

The most recently developed photon library provided with MCNP6 is the PLIB 12 

data. In the simple test case, PLIB 12 is shown to give similar photon flux results to 

PLIB 05t with approximately 67 % of the surface flux per energy bin values at 160 cm 

for each element, within 1 standard deviation of the reference case. In the DEMO 

benchmark model approximately 71 % of the photon heating mesh results using 

MCNP6 with PLIB 12 are within 1 standard deviation of the reference case, and 69 % 

for MCNP6 with PIB 05t. It can be seen in Figure 7.36 and Figure 7.37 that, although 

a similar amount of voxel results fall within 1 standard deviation of the reference case, 

the position of these differences vary. 

Conclusions 

The observed difference in results for a number of photon libraries (04, 84, 05t and 

12) has been investigated. The key conclusions are: 

• The majority of the results from the photon library comparison were as 

expected (see compatibility summary in Table 7.21). 

• There is a difference observed in total surface flux due to incorrect sampling 

when using MCNP5 with PLIB 04, although this difference is < 0.4% in the 

simple model studies. 

• The sampling bug with MCNP5 is shown to be corrected with the use of    

PLIB 84. 
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• Use of PLIB 05t with MCNP5 is shown to provide significantly different 

results to the reference case; total surface flux values were up to 18 % lower 

than the reference case in simple model studies. This is not unexpected as 

although MCNP5 will run with the PLIB 05t specified, it is not compatible. It 

is unclear from the literature whether PLIB 05t is compatible with MCNP6, 

results presented here show that there is little difference observed in the 

surface flux when comparing PLIB 05t with MCNP6 and MCNPX.  

• The use of PLIB 05t (with MCNPx) gives up to 11 % difference in the DEMO 

model photon heating values when compared to the reference case, with 

approximately 69 % of the voxel values within 1 standard deviation of the 

reference case.  

• The use of PLIB 12 gives up to ~7 % difference in the DEMO model photon 

heating values when compared to the reference case, with approximately 71 % 

of the voxel values within 1 standard deviation of the reference case.   
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APPENDIX 7: UNCERTAINTY AND ASSUMPTIONS 

Dealing with uncertainties in the designing of a future fusion reactor is inherently 

difficult, DEMO will have many unknown challenges to address. The intrinsic 

complexity of the fusion tokamak due to numerous interdependent system parameters 

and the dependence of plasma physics on scaling results in significant technical 

uncertainties. The important uncertainties within the broader context of fusion reactor 

design development are discussed in [183].  

Uncertainties regarding the results presented in this thesis arise from many areas 

including, but not limited to: statistical methods, cross-section data, resolution of 

result tallying and error propagation in the R2S method. Further uncertainties arise 

from the model itself: material definitions, location and design of components etc. 

Uncertainties regarding the computational methods and the main assumptions made 

are described in further detail in this appendix. The uncertainties regarding the model 

are not quantified and would require some computationally expensive sensitivity study 

in order to define such quantities.  

Statistical uncertainty in Monte Carlo Calculations 

The results obtained using MCNP, a Monte Carlo code, represent an average of the 

contributions made from many sampled histories. The result has an associated 

statistical error or uncertainty. The behaviour of this statistical error versus the number 

of histories is very important and provides insight into the quality of the results and 

statistical behaviour. If the tally is not ‘well behaved’ the statistical error associated 

with the result generally will not reflect the true confidence interval of the result. 

There are several checks performed in MCNP to provide the user with quantities to 

assess the quality of the confidence interval and ensure a well-behaved and properly 

converged tally result.  

In a Monte Carlo calculation, precision is the uncertainty caused by the statistical 

fluctuations for the portion of physical phase space sampled by the Monte Carlo 

process [72]. Problem cutoffs (such as in time or energy), inappropriate use of 

variance reduction techniques or insufficient sampling of important low-probability 

events can result in important portions of the physical phase space not sampled. 

Accuracy is a measure of how close the expected value is to the true physical quantity 
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being estimated. The difference between this true value and the expected value is 

called the systematic error which is usually not known. The uncertainty estimates for 

the results of Monte Carlo calculations refer only to the precision of the result, not the 

accuracy. Care needs to be taken to ensure the problem is correctly modelled, as a 

highly precise result can be calculated that is far from the true result because the 

problem is incorrectly defined.  

Uncertainties in FISPACT activation calculations 

The uncertainty in the activation calculation is dominated by the associated cross-

section uncertainties. Other uncertainties arise, such as from the propagation of 

statistical error on the neutron flux and uncertainty in decay data. The propagation of 

statistical errors cannot currently be accounted for in FISPACT and it is expected that 

in the majority of cases, provided the statistical uncertainty on the neutron flux is low, 

these errors will be much smaller than those associated with cross-section 

uncertainties. The uncertainties in the decay data are also not included in this 

assessment, but can be accounted for in FISPACT-II provided that the uncertainty 

data is available. Including decay data in uncertainty calculations can significantly 

increase computational time and is usually orders of magnitude smaller than cross-

section uncertainties.   

Blanket performance (Section 4.2 and 4.3) 

For clarity in the results presented in Section 4.2 and 4.3, the uncertainty data was not 

included. Some examples are provided here. 

The blanket performance calculations were conducted using either a spherical model 

or the rectangular cross-section tokamak model [127]. In the case of the spherical 

model it is assumed that the reactor can be simplified to a sphere and is symmetrical, 

only varying in one dimension. This is a significant simplification of a ‘real’ fusion 

tokamak, however for broad scoping studies this is sufficient. The spherical 

simplifications enable shorter computational time with reduced statistical 

uncertainties. It also facilitates the use of simple scripting routines to alter many 

geometric and material parameters. 

The rectangular cross-section tokamak model introduces a more realistic geometry 

and includes a simple representation of the divertor region. This model assumes 
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symmetry around the tokamak and does not include any ports. Only the in-vessel 

components are modelled with the breeder blanket comprising of breeder and 

structural layers. The magnets and vacuum vessel are not included in the model. As 

this is used for a purely blanket analysis for comparison of breeder types these 

assumptions are appropriate.  

An example of the 10 statistical check results from MCNP for a TBR calculation is 

given in Table 7.29. An example of the statistical uncertainty on the TBR calculations 

in each layer of a spherical model, using a blanket material composition with 40 % 

lithium, is given in Figure 7.41.  

 

Figure 7.41 - The statistical uncertainty in the MCNP TBR calculation. An example for a 

material composition with 40% Li breeder, at natural lithium-6 enrichment using the 

neutronics model as detailed in Section 4.2.2. 

 

An increase in statistical uncertainty with distance from the plasma is observed. This 

is to be expected. If the increase in statistical uncertainty was significant it could be 

reduced through the use of a variance reduction technique. However the uncertainties 

in these results are well below a level for concern and variance reduction would be 

inappropriate.  
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An example of the typical statistical uncertainty values associated with the solid and 

liquid breeding material comparison using the rectangular cross-section model is 

given in Figure 7.42. Similar to the spherical model, the uncertainties increase with 

radial distance from the plasma but are still below 1%. 

 

Figure 7.42 - The statistical uncertainty in the MCNP TBR calculation. An example for a 

material composition with 40% Li4SiO4 breeder, at natural lithium-6 enrichment using 

the neutronics model as detailed in Section 4.3.2. 

 

Heating in superconducting magnet (Section 4.4) 

Calculations performed on the spherical tokamak model assumed the model to be 

simplified to a sphere with a cylindrical centre column. The model was also assumed 

to be symmetrical and reflecting boundary planes used to reduce the geometry size 

(thus reducing computational effort for the same statistical uncertainty). No divertor or 

ports were included in the spherical model. As these calculations were focused on the 

heating in the centre column magnets, the energy deposition from both neutrons and 

photons was tallied. For this, MCNP is run in mode ‘n p’.  
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Figure 7.43 - Nuclear heating (energy deposition) for a 0.3 m centre column, aspect ratio 

2 and varying shielding thickness. (Top) Statistical uncertainty (%) in the MCNP 

calculation. (Bottom) 

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 0.1 0.2 0.3 0.4 0.5 0.6

H
e
a
ti

n
g

 (
e
n

e
rg

y
 d

e
p

o
s
it

io
n

 M
e
V

/s
o

u
rc

e
 p

a
rt

ic
le

)

Inboard shield thickness (m)

Neutron Heating

Photon Heating

0.1%

1.0%

10.0%

100.0%

0 0.1 0.2 0.3 0.4 0.5 0.6

S
ta

ti
s
ti

c
a
l 

u
n

c
e
rt

a
in

ty
 (

%
)

Inboard shield thickness (m)

Neutron Error

Photon Error



 

   239 

 

Table 7.29 - Summary of the results from the statistical checks performed within the MCNP calculation; for a TBR calculation (F4 tally with FM 205 

tally multiplier) using a blanket composition with 40% breeder material (Figure 4.3, Section 4.2). 

tfc bin   --mean--  ---------relative error--------- ----variance of the variance---- --figure of merit-- -pdf- 

behavior  behavior  value   decrease decrease rate value  decrease  decrease rate  value behavior slope 

           

desired    random   <0.10      yes    1/sqrt(nps)  <0.10     yes       1/nps       constant random >3.00 

observed   random   0.00    yes        yes      0.00    yes        yes        constant random 10 

passed?      yes      yes      yes        yes        yes     yes        yes        yes yes yes 

 

 

Table 7.30 - Summary of the results from the statistical checks performed within the MCNP calculation; for a heating calculation (F6 tally for 

neutron and photon energy deposition) using a 30 cm centre column and 40 cm inboard shield (Section 4.4). 

tfc bin   --mean--  ---------relative error--------- ----variance of the variance---- --figure of merit-- -pdf- 

behavior  behavior  value   decrease decrease rate value  decrease  decrease rate  value behavior slope 

           

desired    random   <0.10      yes    1/sqrt(nps)  <0.10     yes       1/nps       constant random >3.00 

observed   random   0.03    yes        yes      0    yes        yes        constant random 10 

passed?      yes      yes      yes        yes        yes     yes        yes        yes yes yes 
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In a small number of cases where the models used a thick inboard shield ( > 0.5 m) the 

statistical uncertainties in the peak heating (i.e. +- 5cm from the mid-plane) were      

15 - 40 % (see Figure 7.43). In more detailed investigations assessing the profile of 

the heating and neutron flux through the shield, variance reduction through the use of 

user-defined importance’s with cell splitting was performed. This requires the shield 

to be composed of a number of concentric cylinders with the cell importance 

increasing through the shield, away from the plasma. This causes increased particle 

splitting in the areas of importance i.e. through into the thick shield. To check the 

efficiency of this method the particle population table in the MCNP output file was 

used.  

An example of the energy deposition results in the centre column magnets from 

neutron and photon interactions is given in Figure 7.43 with the associated statistical 

uncertainty included both as error bars, and below as a percentage. An example of the 

10 statistical checks performed by MCNP for the heating/energy deposition tally is 

given in Table 7.30. 

For the more complex model used in the neutronics analysis of the HTS-ST, global 

variance reduction was used. This was performed using the automated weight window 

generation tool WWiter (Weight Window iteration). The WWiter code uses an 

iterative approach to determining a suitable weight window and requires an initial 

analogue MCNP calculation to obtain an estimate of the neutron flux over the weight 

window mesh. WWiter uses a tool ‘mesh2ww’, also developed at CCFE, to apply 

Cooper’s method for optimizing the weight window map. This is repeated in an 

iterative loop automatically using WWiter until a user specified optimisation is 

reached. The weight window has two energy bins 0 - 0.1 MeV and 0.1 - 20 MeV and a 

spatial resolution of approximately 10 cm (Figure 7.44). 

The relative statistical uncertainty of the total flux in each voxel is shown in the error 

map of Figure 7.45. The majority of voxels have a total statistical uncertainty below    

5 % with some voxels at 10 % in the lower region of the model. The important areas 

for the calculation show good statistical uncertainties. The 10 statistical checks within 

the MCNP calculation are not performed on mesh-based tallies. The checks have been 

assessed and passed for the cell tallies used for peak centre column heating and TBR 

in the blanket.  
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Figure 7.44 - An elevation plot through HTS-ST model, showing lower bound voxel 

weight in the 2 energy groups: 0 - 0.1 MeV (Left) and 0.1 - 20 MeV (Right). 

 

 

Figure 7.45 - Relative statistical uncertainty in total neutron flux maps using HTS-ST 

neutronics model. An elevation view through the centre of the model, Y = 0 cm (Left) 

and a plan view through the middle of the model at Z = 0 cm (Right). 
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Activation and radioactive waste inventory using MCR2S 

It has already been mentioned that the propagation of errors through the neutron 

transport calculation and the activation with MCR2S is an area of continued research 

within the fusion community. The uncertainty is currently, therefore, assumed to be 

dominated by the statistical uncertainty in the neutron flux calculation and the cross-

section data in activation calculations. 

MCNP neutron flux calculation 

To produce neutron flux results with sufficient statistical uncertainty, and within an 

acceptable time frame, global variance reduction was used with the DEMO-2015 

neutronics model. During testing, the code WWiter was used to automatically 

generate neutron importance maps for global variance reduction. The produced weight 

window was shown to perform poorly and significantly increased computational time 

for the final neutron transport calculation. The recently released Automated Variance 

Reduction Parameter Generator (ADVANTG) software, a deterministic hybrid 

approach to variance reduction, was used instead and performed more efficiently. 

The variance reduction parameters consisted of space and energy-dependent weight 

window bounds and a biased source distribution. In the simulation, the weight 

windows are used to split or roulette particles that move toward relatively more or less 

important regions of phase space, respectively. The biased source ensures that 

particles are preferentially started where they are likely to contribute to the tally of 

interest. To accelerate the process the Forward-Weighted CADIS (FW-CADIS) 

method [184] was developed. In this method a forward (as opposed to adjoint) 

deterministic calculation is initially performed and the results are used to construct an 

adjoint source that is weighted by the inverse of the forward flux in the regions of 

space and energy where the tallies are defined. Once the source has been computed, a 

deterministic adjoint calculation is performed and variance reduction parameters are 

computed using the CADIS methodology. ADVANTG uses the Denovo 3-D discrete 

ordinates package for discretization and generation of variance reduction parameters 

for a structured mesh grid.  

An example of the forward and adjoint flux is shown in Figure 7.46 and Figure 7.47 

respectively.  
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Figure 7.46 - The total (energy integrated) forward flux calculated using Denovo with 

ADVANTG. 

 

 

 

Figure 7.47 - The total (energy integrated) adjoint scalar flux calculated using Denovo 

with ADVANTG. 
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The statistical uncertainty in the total neutron flux is below 5 % in the majority of 

mesh voxels for the  structured mesh methods used, with some higher errors in regions 

that present a ‘deep shielding problem’, such as along the manifold within the upper 

port. In MCNP, confidence in results with statistical uncertainties below 10 % is 

reasonable, provided that the 10 statistical checks are also passed. However, these 

checks are not performed by MCNP for mesh tallies. Reducing the statistical errors to 

5 - 10 % is therefore assumed in this work to be adequate in providing reasonable 

results. The 10 statistical checks are provided for the cell tallies used in the cell-based 

method, and the results from this provide confidence in both the cell and mesh based 

results. (Examples are given for the toroidal field coil and breeder blanket in         

Table 7.31 and Table 7.32.) 

Statistical uncertainties within the cell tallies, as used for the cell based methods, were 

in general significantly lower, as the result is a neutron flux averaged over a large 

volume, which will be based on more histories than the result in a relatively small 

mesh voxel volume. Global variance reduction using weight windows was not 

achievable with the unstructured mesh method, therefore long calculation time was 

required to increase the number of particle histories. The uncertainty information was 

not computed for each of the mesh elements comprising the unstructured mesh due to 

memory limitations and difficulties in interpreting and visualizing the data. A 

structure mesh computing total neutron flux and associated error was superimposed 

and included in the calculation. This showed that in-vessel components had 

reasonably good statistics, below 5 - 10 % in the majority of mesh elements apart from 

some within the vacuum vessel. Though there was poor uncertainty statistics in the 

majority of the surrounding components, and in the case of the centre coils there were 

no results at all. The relative statistical uncertainty maps can be seen in Section 5.9.  

Figure 7.48 shows the neutron flux spectrum at point B, a mesh voxel located in the 

outboard blanket, estimated using the different calculation methods, with the 

percentage error plotted in Figure 7.49. The majority of the energy bins (over 70 % of 

the non-zero bins) within the cell-based method have an associated statistical error of 

less than 5 %. At lower energies ( < 0.5 eV) the statistical uncertainties are higher and 

tend to be above 20 %. In the both the 15 cm and 9 cm resolution structured meshes, 

over 90 % of the energy bins have a statistical uncertainty less than 5 %. 
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Figure 7.48 - Neutron flux spectra calculated in the cell, 9cm mesh voxel and 15 cm mesh 

voxel (at point B within the outboard blanket of the EU DEMO model). 

 

 

Figure 7.49 - Statistical uncertainty (%) in each energy bin of the neutron flux spectra 

calculated in the cell, 9cm mesh voxel and 15 cm mesh voxel (at point B within the 

outboard blanket of the EU DEMO model). 
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Table 7.31 - Summary of the results from the statistical checks performed within the MCNP calculation; neutron flux in toroidal field coil. 

tfc bin   --mean--  ---------relative error--------- ----variance of the variance---- --figure of merit-- -pdf- 

behavior  behavior  value   decrease decrease rate value  decrease  decrease rate  value behavior slope 

           

desired    random   <0.10      yes    1/sqrt(nps)  <0.10     yes       1/nps       constant random >3.00 

observed   random   0.00    yes        yes      0.00    yes        yes        constant random 10.00 

passed?      yes      yes      yes        yes        yes     yes        yes        yes yes yes 

 

 

Table 7.32 - Summary of the results from the statistical checks performed within the MCNP calculation; TBR in breeder blanket. 

tfc bin   --mean--  ---------relative error--------- ----variance of the variance---- --figure of merit-- -pdf- 

behavior  behavior  value   decrease decrease rate value  decrease  decrease rate  value behavior slope 

           
desired    random   <0.10      yes    1/sqrt(nps)  <0.10     yes       1/nps       constant random >3.00 

observed   random   0.00    yes        yes      0    yes        yes        constant random 6.66 

passed?      yes      yes      yes        yes        yes     yes        yes        yes yes yes 
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Radioactive waste calculations 

For activation, inventory and contact dose calculations, used to determine the waste 

class with MCR2S, FISPACT-II release 2.20 and release 3.00 were used. There are 

some differences in the structure of the output file, but there should be no difference in 

the results. Using the 9 cm structured mesh neutron flux from point B as a test case, it 

was shown that there was no difference observed in results between the 2 releases. 

This same test case, with FISPACT-II release 3.00 was used to assess the cross-

section related uncertainties.  

As detailed in Section 5.8.1, EAF-2010 nuclear data was used for the FISPACT 

calculations. Some uncertainty information is provided with the EAF data, however 

the methods for determining this uncertainty value do not include covariance. The 

TENDL data library includes complete covariance uncertainty and recent detailed 

validation and evaluations are available11. It is therefore useful to also consider the 

uncertainty information using TENDL data, even though the nuclear data used in the 

activation and/or waste calculation may not be identical.  

The dominant nuclides within point B are shown in Table 7.33.  

 

Table 7.33 - Primary pathways for dominant nuclides in the activation of a voxel at point 

B (within the outboard blanket of the EU DEMO 2015 model). 

Nuclide Half-life Primary pathways Pathway contribution 

3H 12.32 y 6Li(𝑛, 𝛼)3H 99.25% 
14C 5730 y 14N(𝑛, 𝑝)14C 99.97% 
63Ni 9.90 y 62Ni(𝑛, 𝛾)63Ni 42.47% 
  63Cu(𝑛, 𝑝)63Ni 54.87% 
93mNb 16.2 y 93Nb(𝑛, 𝑛)93mNb 100.00% 
94Nb 19986 y 93Nb(𝑛, 𝛾)94Nb 68.84% 
  93Nb(𝑛, 𝛾)94Nb 31.09% 
121mSn 43.9 y 122Sn(𝑛, 2𝑛)121mSn 75.66% 
  120Sn(𝑛, 𝛾)121mSn 21.11% 
121Sn 27.03 h 120Sn(𝑛, 𝛾)121Sn 97.58% 
60Co 5.27 y 59Co(𝑛, 𝛾)60Co 55.51% 
  59Co(𝑛, 𝛾)60Co 44.40% 

 

 

11 See http://www.ccfe.ac.uk/fispact_validation.aspx for validation reports. 
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Activation variation with cooling time is given in Figure 7.50 with EAF error bars 

included. The percentage error is shown in Figure 7.51 and Figure 7.52 using TENDL 

data library. In order to use the TENDL data library the flux has been converted from 

175 energy groups into 709. 

 

 

Figure 7.50 - Activity concentration (Bq/kg) with estimated nuclear data uncertainty 

(using EAF-2010 data). Dominant nuclides at 50-100 years for point B in the outboard 

blanket of the EU DEMO 2015. 

 

 

Figure 7.51 - Estimated nuclear data uncertainty for dominant nuclides using EAF-2010 

uncertainty data. Dominant nuclides determined at 50-100 years for point B in the 

outboard blanket of the EU DEMO 2015. 
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Figure 7.52 - As Figure 7.51 but using TENDL uncertainty data.  

 

Activation calculations in HTS-ST 

Activation calculations were performed for a number of breeder blanket materials 

using a neutron flux map calculated over the blanket of a HTS-ST model, see     

Section 4.4.5. The neutron flux with error bars corresponding to the statistical 

uncertainty is shown in Figure 7.53.   

 

Figure 7.53 - Neutron flux spectrum within the outboard blanket of the HTS-ST model. 

Error bars correspond to MCNP neutron transport statistical uncertainty. 

 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

1 10 100 1000

E
s
ti

m
a
te

d
 u

n
c
e
rt

a
in

ty
 (

T
E

N
D

L
)

Cooling time (years)

C  14

Co 60

H   3

Nb 93m

Nb 94

Ni 63

Sn121

Sn121m

Total

14C

60Co

3H

93mNb

94Nb

63Ni

121Sn

121mSn

Total

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-07 1.E-05 1.E-03 1.E-01 1.E+01

N
e
u

tr
o

n
 f

lu
x
 (

n
e
u

tr
o

n
s
/c

m
2
/s

o
u

rc
e
 

p
a
rt

ic
le

/e
n

e
rg

y
 b

in
)

Energy bins (MeV)



 

   250 

The dominant nuclides at 100 years cooling time were compared at a location in the 

first outboard blanket (the primary pathways are shown in Table 7.34 - Table 7.36). 

The uncertainties arising from the nuclear data are shown in Figure 7.54 to Figure 

7.56 as activation with error bars, and the percentage uncertainty. The uncertainty 

estimations are from the TENDL data library, though the EAF-2010 data was used for 

the original activation calculations. The reason for using TENDL data to assess cross-

section data uncertainties is provided earlier in this appendix.  

 

Table 7.34 - Primary pathways for dominant nuclides in the activation of a LiPb 

blanket, based on the EU DEMO HCLL. 

Nuclide Half-life Primary pathways Pathway contribution 
3H 12.32 y 6Li(𝑛, 𝛼)3H 99.90% 
14C 5730 y 14N(𝑛, 𝑝)14C 99.93% 
205Pb 1.73 x 107 y 206Pb(𝑛, 2𝑛)205Pb 93.26% 
63Ni 9.90 y 63Cu(𝑛, 𝑝)63Ni 65.37% 
  62Ni(𝑛, 𝛾)63Ni 22.57% 
121mSn 43.9 y 122Sn(𝑛, 2𝑛)121mSn 56.94% 
  120Sn(𝑛, 𝛾)121mSn 32.19% 
94Nb 19986 y 93Nb(𝑛, 𝛾)94mNb(IT)94Nb 64.75% 
  93Nb(𝑛, 𝛾)94Nb 34.89% 
53Mn 3.74 x 106 y 54Fe(𝑛, 𝑛𝑝)53Mn 99.67% 
60Co 5.27 y 59Co(𝑛, 𝛾)60mCo(𝐼𝑇)60Co 55.77% 
  59Co(𝑛, 𝛾)60Co 34.07% 

 

Table 7.35 - Primary pathways for dominant nuclides in the activation of a LiFBe 

blanket. 

Nuclide Half-life Primary pathways Pathway contribution 
3H 12.32 y 6Li(𝑛, 𝛼)3H 97.52% 

14C 5730 y 
19F(𝑛, 𝑛𝛼)15N(𝑛, 𝑝)14C 
19F(𝑛, 𝑛𝛼)15N(𝑛, 𝑑)14C 

61.85% 

  19F(𝑛, 𝑡)17O(𝑛, 𝛼)14C 18.02% 
63Ni 9.90 y 63Cu(𝑛, 𝑝) 63Ni 65.39% 
  62Ni(𝑛, 𝛾)63Ni 22.58% 
121mSn 43.9 y 122Sn(𝑛, 2𝑛)121mSn 56.91% 
  120Sn(𝑛, 𝛾)121mSn 32.19% 
94Nb 19986 y 93Nb(𝑛, 𝛾)94mNb(𝐼𝑇)94Nb 64.75% 
  93Nb(𝑛, 𝛾)94Nb 34.89% 
93mNb 16.2 y 93Nb(𝑛, 𝑛)93mNb 98.52% 
121Sn 27.03 h 120Sn(𝑛, 𝛾)121Sn 74.09% 
60Co 5.27 y 59Co(𝑛, 𝛾)60mCo(𝐼𝑇)60Co 55.78% 

  59Co(𝑛, 𝛾)60Co 34.08% 
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Table 7.36 - Primary pathways for dominant nuclides in the activation of a LiSn blanket. 

Nuclide Half-life Primary pathways Pathway contribution 
3H 12.32 y 6Li(𝑛, 𝛼)3H 99.90% 
121mSn 43.9 y 122Sn(𝑛, 2𝑛)121mSn 63.60%   

120Sn(𝑛, 𝛾)121mSn 35.99% 
121Sn 27.03 h 120Sn(𝑛, 𝛾)121Sn 77.88% 
113mCd 14.1 y 116Sn(𝑛, 𝛼)113mCd 90.09% 
14C 5730 y 14N(𝑛, 𝑝)14C 99.93% 
63Ni 9.90 y 63Cu(𝑛, 𝑝)63Ni 65.37%   

62Ni(𝑛, 𝛾)63Ni 22.57% 
108mAg 438 y 112Sn(𝑛, 𝛼)109Cd(𝛽+)109mAg(𝐼𝑇) 

109Ag (𝑛, 2𝑛)108mAg 

98.61% 

60Co 5.27 y 59Co(𝑛, 𝛾)60mCo (𝐼𝑇)60Co 55.79% 
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Figure 7.54 - Activity (Left) and uncertainty (Right) using TENDL data for a LiPb blanket (based on the EU DEMO HCLL concept). 
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Figure 7.55 - Activity (Left) and uncertainty (Right) using TENDL data for LiFBe blanket. 
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Figure 7.56 - Activity (Left) and uncertainty (Right) using TENDL data for LiSn blanket. 
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