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2

20 ABSTRACT: The diffusive gradients in thin films (DGT) passive sampler has emerged as a 

21 powerful tool for measuring in situ concentrations of organic contaminants in waters with 

22 appropriate spatial and temporal resolution at low cost. This study addresses the property 

23 range of compounds which can be routinely sampled with the present design of DGT device. 

24 Sorption experiments and DGT deployment with 9 model chemicals [organophosphate esters 

25 with a wide range of log KOW (0.8–9.5), molecular weight (182–435 Da)] and different 

26 functional groups showed compounds with high hydrophobicity and aromatic rings are prone 

27 to retention on membrane filters, which slows the supply of chemical to the binding resin of 

28 the sampler. The current DGT sampler (PTFE membrane filter, agarose gel diffusion layer 

29 and HLB binding layer) is potentially reliable for measuring hydrophilic [log KOW (0.8–2.6)] 

30 and non-aromatic-ring chemicals. For compounds of higher values of KOW or with aromatic 

31 rings, knowledge of the lag phase is necessary to optimize sampling times to avoid biasing 

32 subsequent laboratory analyses. A standard procedure is used to measure lag times (from 

33 minutes to days), by exposing a series of DGT samplers in waters until linear mass 

34 accumulation in samplers is achieved. We discuss how monitoring of a wide array of organic 

35 contaminants across classes should be possible in future, with a range of validated new DGT 

36 devices, optimized for the choice of membrane filter, diffusive material and binding resin. 
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3

37 The organic chemical status of water bodies is crucial to water supply, human health, natural 

38 ecosystems and biodiversity. However, organic pollutants are ubiquitous and have often been 

39 poorly controlled.1 Many of them are continuously discharged into aquatic systems, as waste 

40 water treatment plants (WWTPs) are normally not designed to remove them from the 

41 dissolved phase. Regulation is still limited, especially in developing countries; for example, 

42 there are no specific organic compounds on the compulsory control list of the current 

43 discharge standard of pollutants for municipal WWTPs in China (GB 18918–2002). Water 

44 management authorities need surface water monitoring networks to properly monitor 

45 contaminants and report long-term trends. Surveillance, operational monitoring and 

46 investigative monitoring programmes need different monitoring designs, taking account of 

47 the spatial and temporal variability within a water body. Sufficient samples need to be taken 

48 to identify sources and to give a coherent, comprehensive overview of the chemical status of 

49 the water body. When monitoring trace level organic pollutants, the balance between costs 

50 and sufficient coverage of samples in time and space is challenging. Preservation, storage and 

51 transport of water samples and sufficient education and training for field personnel are all 

52 essential to the quality of sampling activities, but also increase the challenge. Spot sampling 

53 is used for most monitoring in water bodies. However, at places where contaminant 

54 concentrations are heavily influenced by flow conditions and temporal variation, flow-

55 proportional or time-proportional samples may be needed for more representative sampling.2 

56 State-of-the-art passive water sampling techniques, such as diffusive gradients in thin films 

57 (DGT), the polar organic chemical integrative sampler (POCIS) and Chemcatcher, give 

58 ecotoxicologically relevant, time-weighted average (TWA) concentrations and enable cost-

59 effective multiple site sampling.2 Hence they have attracted increasing attention over the past 

60 decades as water authorities seek to balance their financial resources against a tendency to 

61 monitor using traditional grab or spot sampling. Considerable research now supports: using 
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62 passive water sampling with accuracy and reliability; increasing the range of chemicals and 

63 sampling environments; and procedures to improve real-world applications, with varying 

64 water flow rates, biofouling and physicochemical conditions (Table S1). Yet our 

65 understanding of sampling mechanisms of organic chemicals should be further explored for a 

66 broader use of passive samplers. 

67 A significant advantage of the DGT technique over other passive sampling techniques is that 

68 contaminant uptake by DGT is independent of hydrodynamic conditions above a low flow 

69 threshold, so no extra calibration is needed for in situ monitoring.3 It was invented and first 

70 applied to inorganics over 20 years ago and is built on a solid scientific foundation.4 There 

71 are now over 800 peer reviewed papers on developments and applications of the DGT 

72 technique for metals and nutrients in waters, soils and sediments since the 1990s. In contrast, 

73 research and development of DGT for organic chemicals only started in 2012, but it has 

74 already attracted considerable interest and is developing rapidly.5 To date, sampler 

75 development and testing of 136 organic compounds has been reported in the literature (a few 

76 from personal communication), with more being conducted.5-38 Compound classes include 

77 pharmaceuticals and personal care products, illicit drugs, endocrine disrupting chemicals and 

78 pesticides etc. Table S1 summarizes these publications. Different sampler configurations 

79 have been optimized for different groups of chemicals. Seventeen types of binding layers 

80 with 15 different binding agents, 5 types of diffusion layers and 9 types of membrane filters 

81 have been described in the literature. Apart from those membranes recommended so far, a 

82 few others have also been tested. Some membrane filters give problems of retention of some 

83 compounds. This led a few studies to propose using DGT without a membrane filter,23-27, 33 

84 but this is inadvisable because a filter is not only protecting the inner system from clogging 
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85 by particles in water, the 0.45 μm pore size membranes are also stopping microorganisms 

86 entering the system.

87 As we seek to extend the use of DGT to organic chemicals, it is critical to understand any 

88 limitations of the standard sampler design and any constraints to the range of possible 

89 analytes. This can inform future developments and applications. The objectives of this study 

90 were therefore to: i). characterize sorption of target chemicals on the standard DGT device 

91 and investigate the effects of physicochemical properties of those compounds on sorption; ii). 

92 delineate limitations of the standard DGT configuration for measuring organic chemicals; and 

93 iii) recommend practical criteria for using DGT in monitoring organics in waters. 

94 EXPERIMENTAL SECTION

95 Choice of compounds for study

96 Five hydrophilic organophosphate esters (OPEs: TCEP, TCPP, TDCPP, TPrP and TBP) were 

97 tested for in situ monitoring in aquatic systems using the DGT technique in a previous 

98 study.20 In this study, a group of 9 OPEs was chosen to expand the range of functional group 

99 diversity and range of physicochemical properties (Figure 1). Details of the compounds are 

100 given in Supporting Information (SI, Table S2 and Figure S1). The 9 chemicals can be sub-

101 divided into three groups: four with alkyl moieties of different lengths (TEP, TPrP, TBP and 

102 TEHP); three with chlorinated alkyl moieties (TCEP, TCPP and TDCPP) and two with 

103 phenyl moieties (TPP and ToCP). Their log KOW (a parameter describing hydrophobicity) and 

104 molecular weight vary from 0.8 to 9.5 and from 182 to 435 Da. These ranges cover ≈75% of 

105 the organic chemicals for which the DGT technique has been developed (Table S1). Whilst 

106 log KOW is clearly not the only physicochemical property controlling compound behavior, it is 

107 a primary marker of compound behavior, routinely measured for chemicals of commerce and 
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6

108 environmental pollutants and an excellent surrogate to represent aqueous solubility and 

109 partitioning behaviour.39

110

111 Figure 1. Chemical structures of nine organophosphate esters (OPEs) selected for this study. 

112 Chemicals and Reagents. 

113 Stock solutions of all 9 chemicals and a mixture of 7 chemicals (all except for ToCP and 

114 TEHP) were prepared in acetonitrile at 100 mg/L. A surrogate internal standard (SIS) mixture 

115 was prepared in acetonitrile at 500 μg/L. Further details of these and other reagents are 

116 provided in the SI. 

117 Sampler details. 

118 The DGT configuration in this study comprised a 0.4 mm thickness of hydrophilic-lipophilic-

119 balanced (HLB) resin gel as the binding layer (7 mg HLB per disc, nominal), a 0.8 mm 

120 thickness of agarose gel (AG gel) as the diffusion layer and a polytetrafluoroethylene (PTFE) 
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121 membrane (0.45 μm pore size, 150 μm thickness) as the standard filter. More details about 

122 the DGT sampler and the technique were first described previously.40 

123 Instrumental analysis.

124 An ultra-high-performance liquid chromatography-tandem mass spectrometer (UHPLC-

125 MS/MS) was used to determine the target compounds. Separations were achieved by a 

126 Shimadzu Nexera UHPLC (Kyoto, Japan) equipped with two binary pumps, an autosampler, 

127 a degasser and a column oven connected to a Phenomenex Kinetex Biphenyl column (50×2.1 

128 mm, 2.6 μm). Detections were conducted by a triple quadrupole mass spectrometer 

129 (Shimadzu LCMS-8040, Kyoto, Japan), with an electrospray ionisation source operated in 

130 positive ion mode. Details about the instrument, the LC gradient method, MS source 

131 parameters, an illustrative chromatogram (Figure S2), MRM parameters (Table S3), 

132 calibration curves (Table S4), instrumental limits of detection (LOD), limits of quantitation 

133 (LOQ) and method detection limits (MDL) (Table S5) are given in the SI.

134 Sorption experiments.

135 Before laboratory experiments, all containers including tubes, vials, beakers, DGT holders, 

136 pipette tips used in the study were tested for possible contamination. Since OPEs are widely 

137 used compounds, e.g. they could be found in new vials from plastic packing procedures, all 

138 glassware used in this study was ultrasonically cleaned for 30 min in a 5% (w/v) non-ionic 

139 surfactant solution, then extensively rinsed with tap water followed by MQ water, and then 

140 followed by methanol. Plastic materials were replaced with metal or glassware as much as 

141 possible for the experiment to avoid chemical losses by adsorption. HLB resins from the 

142 cartridges were thoroughly washed with acetonitrile. All solvents are carefully checked to be 

143 OPE-free. 

144 For any DGT testing experiments using standard solutions, the concentrations of the targeted 

145 chemicals should be approximately constant. There should not be significant losses in mass 

Page 7 of 26

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

146 during experiments due to adsorption on the container walls. In order for the DGT technique 

147 to work optimally, all the materials for the sampler, except the binding gel, should have no 

148 significant affinity for adsorbing the targeted chemicals. 

149 Different standard solutions (2.5, 20, 200, 1000 μg/L) of OPEs prepared in 0.01 M NaCl were 

150 used in the following experiments. They were placed in appropriate containers (5 L glass 

151 beakers, 15 mL and 50 mL glass vials and the diffusion cells) and were shaken on a 

152 horizontal shaker for suitable times in an air-conditioned room (25 °C) at a speed of 150 rpm. 

153 Solution concentrations were measured frequently to check for any changes compared to the 

154 initial concentrations. Samples of 0.2 mL solution were collected and spiked with 0.1 mL 

155 acetonitrile and 0.1 mL SIS solution and then filtered through a 0.2 µm PTFE syringe filter 

156 into LC amber vials before analysis by LC-MS/MS.

157 DGT sampler materials such as moldings, diffusive gels and membrane filters were tested for 

158 possible sorption losses separately. They were immersed in a 25 mL solution containing ca. 

159 200 μg/L OPEs and 0.01 M NaCl for 6 hours. After spiking of 50 ng SIS, DGT moldings, 

160 diffusive gels and membrane filters were separately eluted with 3 × 2 mL aliquots of 

161 acetonitrile and sonicated for 5 minutes between each elution. The elution solution was 

162 evaporated to dryness by gentle nitrogen and reconstituted in 1 mL of acetonitrile and water 

163 (v:v = 50:50) and then filtered through a 0.2 µm PTFE syringe filter into LC amber vials. 

164 Samples were stored at 4 °C before analysis by LC-MS/MS. Solution concentrations were 

165 measured to calculate the mass losses from mass balance. The detailed sample treatment 

166 procedure is given in Extraction efficiency in SI.

167 The sorption and permeation properties of polymeric membranes are governed by their 

168 molecular characteristics and membrane structures (pore size, distribution and density, 

169 surface roughness, thickness, etc.).41 Although there is great potential for materials science 

170 and industry to improve membrane properties for passive samplers,42 one aim of this study is 
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9

171 to characterize the present available membrane filters to find the most suitable one for DGT 

172 devices for measuring organic contaminants and to investigate their influences on the DGT 

173 sampler. Three types of membrane filters were tested for possible sorption of model 

174 compounds. They were hydrophilic polyethersulfone (PES) membranes (thickness: 140 μm, 

175 diameter: 25 mm, pore size: 0.45 μm, PALL), which is a well-studied membrane filter;23, 42 

176 hydrophilic polytetrafluoroethylene (PTFE) membranes (thickness: 150 μm, diameter: 25 

177 mm, pore size: 0.45 μm, ANPEL); and hydrophilic polypropylene (GHP) membranes 

178 (thickness: 114 μm, diameter: 25 mm, pore size: 0.45 μm, PALL)—two of the most 

179 commonly used membrane filters for organic DGT samplers (Table S1). Sorption to PTFE 

180 membrane filters was also investigated in DGT deployment for 7 days. Solutions in DGT 

181 deployment were renewed every 12 hours to ensure stable concentrations. Further details are 

182 in the SI.

183 Diffusion coefficient measurements. 

184 One of the advantages of the DGT technique (compared to other passive sampling 

185 techniques) is that temperature specific diffusion coefficients (D) through the diffusion layer 

186 are well established in the laboratory, generating more reliable field measurements without 

187 the need for further field calibration. The D values of targeted compounds were measured 

188 with a cast glass two-compartments diffusion cell (source and receptor) connected by a 

189 circular window (1.6 cm diameter) with a 0.8 mm thick diffusive gel (AG gel without filter). 

190 Both compartments were filled with 50 mL of 0.01 M NaCl solution. A 0.5 mL volume of 

191 stock solution containing 7 OPEs (100 mg/L) was spiked into the source compartment and 

192 the same volume of acetonitrile without OPEs was spiked into the receptor compartment. The 

193 solutions in both compartments were well stirred with mini glass-coated stirrer bars during 

194 the experiment. Solutions of 0.2 mL from both compartments were collected for analysis, 

195 after 5 minutes and then at intervals of 15 minutes for 3 hours.
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10

196 The masses of analyte in the receptor compartment were plotted as a function of time to 

197 obtain a linear line with a slope that equals the first-order diffusion rate constant, k (mass, M, 

198 over time t). Equation (1) below was then used to calculate D (cm2/s), where Δg is the 

199 diffusive gel thickness, cs is the initial analyte concentration in the source compartment, and 

200 As is the area of the connecting window:

201                                                                                                                                (1) 𝐷 =
𝑘∆g
𝑐s𝐴s

202 It is assumed that the thickness of the diffusive boundary layer (DBL) (δ) in the diffusion cell 

203 is negligible under the vigorously mixed conditions used in the experimental set-up.43

204 Uptake kinetics. 

205 The binding agent (Oasis HLB, 60 μm particle size, 80 Å pore size, 830 m2/g surface area) 

206 used in the DGT devices is a water-wettable polymer, with high capacity for a wide range of 

207 compounds and is stable at pH 0–14. Uptake kinetics of the binding layer were investigated 

208 by immersing binding gel discs in 40 mL solutions containing ca. 200 μg/L OPEs and 0.01 M 

209 NaCl at 21 ± 2 °C (in triplicate), and shaken horizontally for 24 hours. Solution samples (0.2 

210 mL) were collected at different times up to 24 hours, for further instrumental analysis, and the 

211 mass taken up by the binding gels was derived from the mass balance calculation.

212 DGT deployment.

213 To test the DGT principle for measuring OPEs, DGT devices were deployed in 2.5 L solution 

214 containing ca. 20 μg/L OPEs and 0.01 M NaCl for various deployment times up to 45 hours 

215 at 19 ± 1 °C. According to the DGT equation (2), the mass of OPEs accumulated in the 

216 devices (MDGT) should be increased linearly with deployment time (t). 

217                                                                                                                      (2)𝑐DGT =
𝑀DGT∆g

𝑡𝐴𝐷

218 Further test was conducted for longer deployment time up to 7 days in solution with lower 

219 OPEs concentration. Devices were exposed in 2.5 L solution containing around 2.5 μg/L 
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11

220 OPEs and 0.01 M NaCl and the solution was renewed every 12 hours to keep the 

221 concentrations approximately constant. The solution temperature ranged from 19 to 22 °C 

222 over the course of the experiment. To minimize the diffusive boundary layer, samplers were 

223 fixed on a steel frame in the solution and the solution was well stirred at 300 rpm by a glass-

224 coated stirrer bar. Solution samples were collected before, during and after renewing the 

225 solution and samplers were retrieved at different times from 3 hours to 7 days. Binding gels, 

226 diffusive gels and membrane filters from every DGT device were extracted by acetonitrile 

227 immediately after deployment to obtain the mass of chemicals on them.

228 QA/QC 

229 Quality control standards (50 μg/L) were prepared using independent weighing and they were 

230 run every 10 samples (concentration to be within 20% of target). Linearity (R2) of calibration 

231 standards was >0.99 over all analyses and all compounds. Matrix matched calibrators made 

232 by blank DGT extracts and 0.01 M NaCl solution were compared with calibrators made by 

233 pure acetonitrile and water. As a result, the matrix effects were negligible. The instrumental 

234 limit of detection (LOD) was from 0.01 (TEP) to 0.62 (TDCPP) μg/L (more details in SI). 

235 Where concentrations were below the detection limit, in statistical analyses, these values 

236 were substituted with LOD divided by the square root of 2.

237 RESULTS AND DISCUSSION

238 Sorption.

239 Sorption on glassware walls. 

240 There was negligible sorption of 7 OPEs [TEP, TCEP, TPrP, TCPP, TDCPP, TBP, TPP, log 

241 KOW (0.8–4.6), water solubility (1.9–5.0×105 mg/L)] in all glass containers and diffusion cells 

242 as their concentrations were stable at all 4 levels (2.5, 20, 200, 1000 μg/L). The 

243 concentrations of the 2 most hydrophobic OPEs [ToCP and TEHP, log KOW (5.11, 9.49)] with 
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12

244 much lower water solubility (360 and 600 μg/L) were stable at low concentrations such as 2.5 

245 and 20 μg/L but decreased sharply at high concentration 200 μg/L (Figure S5).

246 Sorption on DGT materials.

247 i) DGT moldings and gels: Seven OPEs (except ToCP and TEHP) reached sorption 

248 equilibrium quickly (<3 hours), on the DGT plastic moldings and diffusive agarose gels, with 

249 negligible sorption (<1% of total mass in the solution) observed, as the concentrations in test 

250 solution hardly decreased. When extracting OPEs from DGT plastic moldings and diffusive 

251 agarose gels by acetonitrile, very small amounts (<1% of total mass in the solution) of 

252 chemicals, including ToCP and TEHP, were detected. This is consistent with studies on other 

253 organic chemicals5, 18, 32 and it is encouraging, as the application of the current DGT 

254 moulding units and diffusive agarose gels are becoming widespread for the environmental 

255 sampling of trace organic chemicals. 

256 ii) Membrane filters: Sorption varied considerably between membrane filters and compounds, 

257 but one finding was consistent: more hydrophobic compounds (TDCPP, TBP, TPP, ToCP 

258 and TEHP, log KOW from 3.7 to 9.5) were always more prone to sorption onto the 3 types of 

259 membrane filters than more hydrophilic compounds (TEP, TCEP, TPrP and TCPP, log KOW 

260 is from 0.8 to 2.6). However, less sorption occurred with PTFE than with the other two 

261 membrane filter types (Figure 2). In detail, there was little adsorption of TEP (0.28% ± 

262 0.02% of total mass 5 μg), TCEP (0.38% ± 0.01%), TPrP (0.42% ± 0.04%) and TCPP (0.78% 

263 ± 0.03%) onto the PTFE membrane filter; slightly higher adsorption of TDCPP (6.8% ± 

264 2.7%) and TBP (1.5% ± 0.11%) onto PTFE membrane filters was found; TPP (14.2% ± 

265 5.1%) and ToCP (41.9% ± 11.2%) were significantly absorbed by PTFE membrane (see later 

266 for the detailed sorption profiles). PTFE was therefore chosen to be the filter for further 

267 study. 

268
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269

270 Figure 2. Adsorption of tested OPEs by 3 types of membrane filters in 25 mL solutions 

271 containing ca. 200 μg/L OPEs and 0.01 M NaCl for 6 hours. Error bars were calculated from 

272 the standard deviation of triplicates. Note, TPP, ToCP and TEHP appeared to have not 

273 reached sorption equilibrium after 6 hours, the time of this experiment.

274 For three chemicals (TPP, ToCP and TEHP) sorption equilibrium to membrane filters had not 

275 reached equilibrium after 6 hours, as the solution concentrations of those chemicals continued 

276 to decrease in the test solution. Experiments over much longer time were carried out and the 

277 results showed that TPP did not reach equilibrium until about 4 days, while ToCP and TEHP 

278 needed >6 days (Figure 3 for sorption profiles of OPEs on PTFE membrane filters). Endo and 

279 Matsuura did a sorption experiment which also showed that 6 out of 14 chemicals did not 

280 reach apparent equilibrium on PES polymer over 7 days.42

281
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282 Figure 3. Sorption profiles of 5 OPEs on PTFE membrane filters from DGT samplers 

283 exposed in solution with a few micrograms per liter OPEs (Figure S8) and 0.01 M NaCl from 

284 3 hours to 7 days (note that the solution was renewed every 12 hours to keep the 

285 concentrations approximately constant), error bars were calculated from the standard 

286 deviation of triplicates. The other 4 compounds (TEP, TCEP, TPrP and TCPP) showed 

287 negligible sorption on PTFE membrane filters and are not present here. 

288

289 KPTFE/W values (the ratio of the concentration of a studied chemical in PTFE membrane filter 

290 and water at equilibrium at the temperature in this study) were plotted against KOW to 

291 compare the sorption strength of the PTFE membrane filter across studied chemicals (Figure 

292 4). Log KPTFE/W was significantly correlated with log KOW (log KPTFE/W = 0.52 log KOW – 0.02, 

293 R2 = 0.73, p < 0.05). Note that for TEHP, which didn’t reach equilibrium after 7 days, a 

294 sorption mass of 16.8 µg on the 7th day was used (R2 = 0.76 if estimated sorption mass was 2 

295 times of 16.8 µg,  R2 = 0.82 if estimated sorption mass was 10 times of 16.8 µg). Although 

296 sorption by PTFE in comparison to KOW has been conducted before with, e.g., carcinogens, 

297 industry additives, solvents and pharmauceticals,42, 44 no significant correlations between log 

298 KPTFE/W and log KOW were found. We consider the chemical property ranges were not wide 

299 enough to see a correlation. Log KPTFE/W was <1.78 for all studied chemicals in the study by 

300 Leggett and Parker,44 log KPTFE/W was <1.65 for all studied chemicals in study by Endo and 

301 Matsuura,42 while this study substantially pushed the boundary to 4.61 (log KPTFE/W of ToCP). 

302 Thus, hydrophobicity (as reflected by log KOW) seems one factor influencing chemicals 

303 sorption on PTFE polymer and this slow equilibration (Figure 4). Diffusion through the filter 

304 pores is strongly retarded by sorption to the polymeric matrix. However, this cannot explain 

305 that relatively hydrophilic chemicals, like caffeine (log KOW = –0.07, 194.2 Da) showed slow 

306 sorption equilibration (>7 d) on the PES matrix.42 ToCP stands out of the regression line in 
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307 Figure 4, which seems also to suggest hydrophobicity is not the only factor influencing this 

308 slow equilibration. We speculate that aromatic rings in caffeine (imidazole ring) cause slow 

309 equilibration, by increasing electrostatic interactions between electron-rich π systems and the 

310 polymeric matrix,39 the same as ToCP (benzene ring) in this study. 

311

312 Figure 4. Log KPTFE/W vs log KOW (note that KPTFE/W of TEHP were estimated based on 

313 membrane filters sorption study the sorption capacity of PTFE membrane filter for TEHP 

314 was higher than 16 µg). The dashed line indicates the linear regression for studied chemicals 

315 (log KPTFE/W = 0.52 log KOW – 0.02, R2 = 0.73, p < 0.05).

316 Diffusion coefficients. 

317 Diffusion coefficients of seven OPEs in diffusive gel measured using the diffusion cell are 

318 presented in Table S7. Good linear relationships (R2 from 0.97 to 0.99) of diffused masses 

319 versus time were obtained (Figure S3). The two least water soluble compounds ToCP and 

320 TEHP (360 and 600 μg/L, respectively) showed significant sorption to the diffusion cell wall, 

321 which made it impossible to keep the concentrations in source compartment stable with the 

322 normal diffusion cell system used here. The difficulties of working with very low aqueous 

323 solubility compounds in laboratory experiments is well known;45, 46 different approaches, 

324 such as the use of a generator column or a loaded stirrer bar, may be useful in future studies 

325 on these types of chemicals. 
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326 The diffusion coefficients (D) at 25 °C were 6.77 × 10-6, 6.19 × 10-6, 5.47 × 10-6, 6.17 × 10-6, 

327 5.26 ×10-6, 4.46 × 10-6 and 5.61 × 10-6 cm2/s for TEP, TCEP, TPrP, TCPP, TDCPP, TBP and 

328 TPP, respectively, which agreed well with D of 5 OPEs (TCEP, TCPP, TDCPP, TPrP and 

329 TBP) published before.20 The ratios of D in this study to those published by Zou et al were in 

330 the range of 0.9–1.1.

331 Uptake kinetics.

332 When the DGT binding layer rapidly and irreversibly binds target chemicals, this ensures the 

333 concentration of the analyte at the interface between the binding layer and diffusion layer is 

334 effectively zero. Then the mass transport of the analyte through the diffusion layer can achieve 

335 a steady state and the DGT equation (2) can be used to accurately determine the DGT 

336 concentration (cDGT) of the analyte in the solution.                                                      

337 The OPEs were taken up rapidly (ca. 40% uptake in 1 hour) by the binding gels, followed by 

338 more gradual uptake (Figure S4) for all the compounds except ToCP and TEHP. The 

339 concentration of ToCP and TEHP decreased sharply, due to rapid sorption to the glassware 

340 (Figure S5). Further procedures mentioned earlier are needed to keep ToCP and TEHP water 

341 concentrations relatively constant, in order to assess uptake kinetics. 

342 As the DGT principle only works within the linear accumulation range of the resin gel, it is 

343 important to verify the DGT performance by deploying devices in a solution at constant 

344 concentration for different times. For all 9 OPEs tested, 7 of them (except ToCP and TEHP) 

345 showed linear increase in accumulated mass with deployment time. The linear relationship 

346 was compared with a theoretical line of mass versus time predicted using DGT equation (2). 

347 At initial stages of the deployment, analytes have to diffuse through the membrane filter and 

348 then the diffusive gel layer. For chemicals with high affinity to the membrane filter, the 

349 resulting lag times cause the actual mass accumulation line to deviate from the theoretical 

350 line as shown in Figure 5 except ToCP. The greater the sorption onto the membrane filter, the 
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351 greater the deviation from the theoretical linear line. This point is demonstrated by the results 

352 of TPP, ToCP and TEHP (Figures 5, S6).

353

354 Figure 5. Linear mass accumulation of 4 selected OPEs over time by DGT samplers exposed 

355 in 2.5 L solution containing ca. 20 μg/L OPEs and 0.01 M NaCl for various deployment 

356 times up to 45 hours. The solid red line is the theoretical mass accumulation line, assuming δ 

357 = 0.3 mm. Error bars were calculated from the standard deviation (SI) of triplicates. (Figure 

358 S6 presents all the compounds). 

359 Establishing steady state.

360 The time to achieve linear mass accumulation (steady state), tss, can be estimated using 

361 equation (3).47 Here g represents the diffusion layer thickness, with the diffusion coefficient 

362 being an aggregated value for the diffusive gel and membrane filter.

363                                                                                                                         (3)𝑡𝑠𝑠 = ∆g2/2𝐷
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364 If the overlaid membrane filter had negligible adsorption effect, the transient times for OPEs 

365 (except ToCP and TEHP) were about 16 minutes, which would be consistent with previous 

366 works.48-50 However, the interactions of analytes with the membrane filter substantially 

367 extend the time needed to reach steady state. This study provides a standard procedure to 

368 measure it by exposing a series of DGT samplers at environmental concentration levels 

369 (nanograms to micrograms per liter)51, 52 of a testing solution until linear mass accumulation 

370 is achieved. 

371 Figure 6 illustrates the masses accumulated in binding gels for the longer deployment time of 

372 7 days. Black dotted lines show the establishment of steady state in the binding gels and 

373 intercepts of the time-axis are the lag times required for establishing it. For DGT device with 

374 a 0.8 mm thick diffusive gel and a 0.14 mm thick PTFE membrane filter under the testing 

375 solution conditions (a few micrograms per liter OPEs, Figure S8), steady state was effectively 

376 reached within 18 minutes for TEP and 42 minutes for TCEP. The errors caused by lag time 

377 are <3% for deployments of 24 h or greater for shorter sampling windows. Longer 

378 deployment times of >24 h for TPrP and more than a week for TCPP are necessary to ensure 

379 <10% error. For TDCPP, TBP, TPP, ToCP and TEHP, the recommended minimum 

380 deployment time would be 2 weeks to 2 months due their long lag times (Table S8). As 

381 shown in Figure 7, DGT measured concentrations of TEP, TCEP, TPrP and TCPP agreed 

382 well with the bulk solution concentrations, with cDGT/csoln ranging from 0.95–0.99, whereas 

383 the deviation of DGT measurement from the solution concentration increased for TDCPP, 

384 TBP and TPP. The theoretical method quantitation limits (MQLs) of the DGT technique can 

385 be converted from MDLs [1.05 ng/L (TEP), 0.49 ng/L (TCEP) and 0.43 ng/L (TPrP), refer 

386 Table S5, MDGT equals 1.05, 0.49 and  0.43 ng, respectively] to a concentration by equation 

387 (2), depending on the deployment time. For 24 hour deployment, using D = 6.77E-06 cm2/s 

388 (TEP), 6.19E-06 cm2/s (TCEP), 5.47E-06 cm2/s (TPrP), = 0.125 cm, As = 3.14 cm2, the ∆g 
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389 MQLs are 71 ng/L (TEP), 36 ng/L (TCEP) and 36 ng/L (TPrP) and for 1 week deployment, 

390 the MQLs are 10 ng/L (TEP), 5 ng/L (TCEP) and 5 ng/L (TPrP). The single-digit ng/L 

391 sensitivity agrees well with this field study.26 It’s worth mentioning that the lag time was 

392 tested at a general environmental concentration level (a few micrograms per liter). In the case 

393 where the adsorption of the chemicals on the membrane filter is significant, the lag time is 

394 dependent on not only the D value, but also the concentration of the chemicals in the 

395 environment due to the adsorption capacity of the membrane filter. If the testing solution is at 

396 very high concentrations or the environmental concentrations are extraordinary high (>10s 

397 μg/L or even >100s μg/L), the lag time could be negligible.

398

399 Figure 6. Mass accumulation of 3 selected OPEs over time by DGT samplers exposed in 2.5 

400 L solution containing a few micrograms per liter OPEs (Figure S8) and 0.01 M NaCl from 3 

401 hours up to 7 days. The solid red line is a theoretical mass accumulation line, δ = 0.3 mm. 

402 Error bars were calculated from the standard deviation (SI) of triplicates (Figure S7 for all the 

403 compounds).
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404

405 Figure 7. Ratios of DGT-measured OPEs concentrations, cDGT, to their concentrations in the 

406 bulk solution, csoln, during DGT deployment in which DGT samplers were exposed in 2.5 L 

407 solution containing a few micrograms per liter OPEs (Figure S8) and 0.01 M NaCl from 3 

408 hours up to 7 days. The solid line represents the target value of 1.0. Values were expressed as 

409 mean ± standard deviation of 18 DGT samplers.

410 CONCLUSIONS

411 DGT integrated with UHPLC-MS/MS can be used to monitor trace organic pollutants in 

412 aquatic systems. This study used 9 OPEs as model chemicals, which covered ≈75% of the 

413 organic chemicals (in terms of log KOW and molecular weight) for which the DGT technique 

414 has been developed, to investigate limitations of the standard DGT configuration for 

415 measuring organic chemicals. We have demonstrated that DGT is potentially reliable for 

416 measuring hydrophilic [log KOW (0.8–2.6)] and non-aromatic-ring chemicals at short and long 

417 deployment times. Organic chemicals with high hydrophobicity or aromatic rings are prone 

418 to retention on membrane filters, which delays their diffusion, causing a lag time before 

419 linear mass accumulation in the DGT sampler. For those compounds, a standard procedure to 
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420 determine lag times is presented, by deploying a series of DGT devices in waters until linear 

421 mass accumulation with time in the devices is achieved and the time-axis intercepts are 

422 treated as lag times. In practice, a deployment time of 24 hours in an experiment or field 

423 monitoring situation would have a sampling time error of <3% for compounds TEP and 

424 TCEP; when the deployment time is 2 weeks, the sampling time error is <10% for most 

425 compounds (TEP, TCEP, TPrP, TCPP, TDCPP and TBP) but is higher for TPP (≈20%), 

426 ToCP (≈40%) and TEHP (>40%). Although a membrane filter could cause retention from 

427 minutes to days, it is necessary to protect the diffusive gel from clogging by particles and to 

428 prevent organisms going into the DGT device. This study focuses on the limitation of the 

429 current DGT sampler for measuring organic chemicals and we have identified the absolute 

430 limitation to use the current DGT device for organics is adsorption in the diffusion layer, 

431 mainly in membrane filters. However, it is possible to extend the DGT technique for a wider 

432 range of chemicals, for example, by replacing the current DGT membrane filter with a new 

433 type of membrane filter which does not interact with compounds such as ToCP and TEHP. 

434 New configurations of DGT devices using different materials for housing the binding and 

435 diffusion layers, new types of diffusion layer and membrane filters should be developed for 

436 both fields of research and monitoring. Studies are being undertaken to address concerns over 

437 effects of biofouling and compound degradation/loss during sample handling/storage on the 

438 sampler performance and will be the subject of a separate article.

439
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