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Abstract: Accurate information on crop distribution is of great importance for a range of 

applications including crop yield estimation, greenhouse gas emission measurement and 

management policy formulation. Fine spatial resolution (FSR) remotely sensed imagery provides 

new opportunities for crop mapping at a detailed level. However, crop classification from FSR 

imagery is known to be challenging due to the great intra-class variability and low inter-class 

disparity in the data. In this research, a novel hybrid method (OSVM-OCNN) was proposed for crop 

classification from FSR imagery, which combines a shallow-structured object-based support vector 

machine (OSVM) with a deep-structured object-based convolutional neural network (OCNN). 

Unlike pixel-wise classification methods, the OSVM-OCNN method operates on objects as the basic 

units of analysis and, thus, classifies remotely sensed images at the object level. The proposed 

OSVM-OCNN harvests the complementary characteristics of the two sub-models, the OSVM with 

effective extraction of low-level within-object features and the OCNN with capture and utilization 

of high-level between-object information. By using a rule-based fusion strategy based primarily on 

the OCNN’s prediction probability, the two sub-models were fused in a concise and effective 

manner. We investigated the effectiveness of the proposed method over two test sites (i.e., S1 and 

S2) that have distinctive and heterogeneous patterns of different crops in the Sacramento Valley, 

California, using FSR Synthetic Aperture Radar (SAR) and FSR multispectral data, respectively. 

Experimental results illustrated that the new proposed OSVM-OCNN approach increased markedly 

the classification accuracy for most of crop types in S1 and all crop types in S2, and it consistently 

achieved the most accurate accuracy in comparison with its two object-based sub-models (OSVM 

and OCNN) as well as the pixel-wise SVM (PSVM) and CNN (PCNN) methods. Our findings, thus, 

suggest that the proposed method is as an effective and efficient approach to solve the challenging 

problem of crop classification using FSR imagery (including from different remotely sensed 

platforms). More importantly, the OSVM-OCNN method is readily generalisable to other landscape 

classes and, thus, should provide a general solution to solve the complex FSR image classification 

problem. 

Keywords: crop mapping; object-based image classification; deep learning; decision fusion; FSR 

remotely sensed imagery 
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1. Introduction 

Accurate crop distribution information from regional-to-global scales is essential for estimating 

crop yield [1], modelling greenhouse gas (GHG) emissions from agriculture [2] and making effective 

agrarian management policies [3]. Moreover, agricultural ecosystems are often managed intensively 

and modified frequently [4], which might alter land cover/use patterns rapidly and, thus, influence 

ecological processes and biogeochemical cycles [5]. These spatial and temporal characteristics pose a 

great challenge for traditional approaches (e.g., ground surveys) to monitoring agricultural systems. 

Remote sensing using sensors onboard satellite and aircraft platforms, however, has been shown to 

be an effective means of crop monitoring at regional-to-global scales, and has the advantages of being 

consistent, timely and cost-efficient (e.g., [2,5]). 

Coarse and medium spatial resolution multispectral data, such as Landsat, SPOT and MODIS 

(Moderate Resolution Imaging Spectroradiometer), have been used widely for crop classification and 

mapping [3,6,7]. However, the accuracy of crop maps generated from these images is inevitably 

compromised by the spatial limitation [8], especially over the highly fragmented and heterogeneous 

agricultural areas. As stated by [9], a spatial resolution of less than 10 m is required for precision 

agriculture. More recently, remotely sensed imagery from fine spatial resolution (FSR) (<10 m) 

satellite systems (e.g., RapidEye, IKONOS, and WorldView) as well as airborne systems (e.g., 

Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR)) is now available commercially, 

providing new opportunities for crop classification and mapping in very fine detail [9,10]. However, 

high intra-class variance and low inter-class separability over croplands in FSR images may exist 

because of differences in climatic conditions, topographic properties, soil composition, farming 

practices and so on [11]. Moreover, FSR imagery has fewer multispectral bands (around four) in 

comparison to medium resolution data (e.g., MODIS and Landsat), which leads to subtle differences 

in spectral/polarimetric properties amongst crop types (i.e., crop types are difficult to discriminate). 

Therefore, developing advanced classification methods for accurate crop mapping and monitoring is 

of prime concern, especially with a view to exploiting the deep hierarchical features presented in FSR 

imagery. 

During the past few decades, a vast array of methods has been developed for remote sensing 

image classification [12–14]. These methods can be categorised into pixel-based and object-based 

methods according to the basic unit of analysis (either per-pixel or per-object) [15]. Pixel-based 

classification methods that rely purely upon spectral (or polarimetric) signatures have been used 

widely for crop classification using various types of imagery (including the newly-launched Sentinel-

2 imagery [16–18]). However, these methods often produce limited classification accuracy due to 

large intra-class variances as stated above. Severe salt-and-pepper effects may occur owing to the 

noise in FSR imagery. Although some post-classification algorithms (e.g., spatial filters) might 

alleviate the noise to some extent, they may also erase small objects of interest comprised of just a few 

pixels. Compared with pixel-wise algorithms, object-based image analysis (OBIA) built upon 

segmented homogeneous objects [15] is preferable for crop classification using FSR remotely sensed 

images (e.g., [19,20], in which objects instead of pixels are adopted as the basic unit of analysis. This 

allows spatial information (e.g., texture, shape) with respect to the objects to be incorporated into the 

classification process, thus, reducing the salt-and-pepper noise [15].  

Under the framework of OBIA, machine learning algorithms (e.g., the support vector machine 

(SVM), the multilayer perceptron (MLP) and the random forest (RF)) have been used for crop 

classification and mapping thanks to their ability to deal with multi-modal and noisy data [21]. The 

SVM, as a typical non-parametric machine learning classifier, was often found to outperform other 

machine learning algorithms in image classification due to its high generalisation ability [22]. The 

objected-based SVM (OSVM) has, thus, been popular for complex crop classification tasks [2,23]. In 

the OBIA classification process, there are generally two kinds of information that can be obtained 

from a spatially segmented region: within-object information (such as spectra, polarization, texture) 

and between-object information (such as configuration and topological relationships between 

adjacent objects) [24]. The OSVM classifier can extract within-object features (low-level information) 

from FSR images for classification. However, it is essentially a single-layer classifier (linear SVM) or 
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two-layer classifier (kernel SVM) [25], which might overlook the high-level between-object 

information that may be critical to crop identification. For example, crop swath direction conveys 

important information for the identification of crop pattern [26]. In this context, a series of object-

based spatial contextual descriptive indicators were developed based on spatial metrics, graphs and 

ontologies [27,28] to derive high-level semantic information from FSR images. However, it is often 

very difficult to characterise the spatial contexts as a set of “rules” in view of the structurally 

complicated and diverse agricultural landscapes [2], even if these complex spatial patterns might be 

interpreted by human experts [29].  

Recent developments in artificial intelligence and pattern recognition demonstrated that high-

level feature representations can be extracted with multi-layer neural networks in an “end-to-end” 

manner without using human-crafted “rules” [30]. These breakthrough deep learning algorithms 

achieved unprecedented success in a wide range of challenging domains, such as speech recognition, 

visual object recognition and target detection [30,31]. As a representative deep learning method, 

convolutional neural networks (CNNs) have drawn a lot of academic and industrial interest, and 

made huge improvements in the field of image analysis, such as text recognition [32], speech 

detection [31] and image denoising [33]. CNNs, with great capability in high-level feature 

characterization, were also applied to various remote sensing applications, such as object detection 

[34], image segmentation [35] and scene classification [36]. In addition, CNN-based approaches have 

been developed to solve the complex problem of remote sensing classification, where all pixels in an 

image are labelled into several categories. For example, Stoian, et al. [37] presented a fully-realized 

CNN model for land cover classification using multi-temporal high spatial resolution imagery. Chen, 

et al. [25] proposed a three-dimensional (3D) CNN for hyperspectral image classification by using 

both spectral and spatial features. Recently, Zhang, et al. [38] provided a novel approach by 

combining CNNs with rough sets for classification of FSR images. The above-mentioned work has 

achieved promising classification results, demonstrating the advantages of CNNs with respect to 

spatial feature representation. However, these pixel-based CNNs classify images by applying 

contextual patches as inputs, which often blurs the boundaries between adjacent ground objects, 

leading to over-smooth classification results [38]. To overcome this problem, a new object-based CNN 

(OCNN) framework was presented which combined the OBIA and CNN techniques, such that the 

segmented objects can be identified while retaining precise boundary information [24]. The OCNN 

method was applied to the complex land use classification task and produced encouraging 

classification results. However, with a fix-sized input window (receptive field), large uncertainties 

may be introduced into the OCNN classification process, especially for those objects with areas far 

smaller or larger than the input window [24]. Moreover, while the CNN model can explore the high-

level features hidden in remotely sensed images, low-level features (e.g., within-object spectra) 

observed by shallow models may be overlooked [38]. 

Any single classifier is unlikely to achieve promising results if the scenes of remotely sensed 

imagery are complex [38,39]. The combination of multiple classification methods with 

complementary behaviours would be a good idea to improve complex land cover classification [40] 

and crop classification [39], by better exploring the minute differences that may exist between the 

classes. Within the remote sensing community, there are generally three types of ensemble-based 

systems, namely “consensus classification’’, ‘‘multiple classifier systems’’ and ‘‘decision fusion’’ [41]. 

Relying on multiple types of datasets, the utility of consensus classification is constrained due to the 

lack of availability of such data. By means of manipulating training samples to generate subsets 

randomly (boosting and bagging) [42], multiple classifier systems require extremely large sample 

sizes and deliver high time complexity. In contrast, decision fusion that combines the outputs of 

individual classifiers with a certain fusion rule to take advantage of complementary characteristics is 

a generally effective ensemble strategy [40]. For example, different classifiers may produce accurate 

results over different areas within a classification map and, hence, produce complementary results 

[38]. However, the above-mentioned ensemble methods are always performed based on pixel-wise 

classifiers with shallow structures and, thus, are not well suited to cope with the complex FSR image 

classification problem.  
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In this research, a novel OSVM-OCNN approach was proposed by combining the OSVM (an 

object-based SVM model with shallow architectures) and the OCNN (an object-based CNN model 

with deep architectures) through a rule-based decision fusion strategy. Image segmentation was first 

used to partition the agricultural landscape into basic crop patches (objects), based on whether the 

SVM and CNN models were respectively applied to allocate a label to each object. The outputs of the 

two models were combined subsequently through a rule-based fusion strategy according to 

prediction probability output from the CNN. Such a fusion decision strategy allows the rectification 

of CNN predictions with low confidence using SVM predictions at the object level. The major 

contributions of this research can be summarised as: 1) the shallow architecture SVM and the deep 

architecture CNN was first found to be complementary to each other in terms of crop classification 

at the object level; 2) a straightforward rule-based decision fusion strategy was developed to 

effectively fuse the results of the OSVM and OCNN. We investigated the effectiveness of the 

proposed approach over two study sites with heterogeneous agriculture landscapes in California, 

USA, using the FSR UAVSAR and RapidEye imagery.  

The reminder of this paper is organised into five sections: Section 2 elaborates the proposed 

methods in detail. Section 3 provides the study area, datasets, model structure and experimental 

results. A thorough discussion of the observed results is made in Section 4, and the conclusions of 

this research are drawn in Section 5. 

2. Method  

2.1. Overview of the Support Vector Machine (SVM) 

The principle of the SVM is to determine an optimal classification hyperplane by which a 

maximum margin can be achieved to separate the dataset into a predefined number of classes [43]. 

In this case, a kernel function, with additional variables, is usually adopted to map the non-linear 

input vectors into a higher space (e.g., Euclidean) 𝚽(𝑋). 

Suppose there is a set of data (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚) distributed in the multi-dimensional 

feature space 𝑋, where 𝑥𝑖 denotes a sample vector with 𝑦𝑖 ∈ {−1, +1} as the corresponding target. 

The hyperplane in the transformed space can be defined as follows: 

𝑓(𝑥) = 𝜔 ∙ 𝚽(𝑥) + 𝑏 (1) 

where 𝜔 denotes the weight vector of the hyperplane, and 𝑏 represents the offset of the hyperplane. 

The SVM cost function is defined using the following equations: 

min𝜔,   𝑏,𝜀 𝐽(𝜔, 𝑏, 𝜀) =
1

2
‖𝜔‖2 + 𝐶 ∑ 𝜀𝑖

𝑚

𝑖=1

 (2) 

subject to: 

𝑦𝑖(𝜔(𝑥𝑖
T ∙ 𝑥𝑗) + 𝑏) ≥ 1 − 𝜀𝑖 , 𝑖 = 1, … , 𝑚. (3) 

where 𝜀𝑖 denotes the slack variables, and 𝐶 refers to the penalty parameter used to control the trade-

off between empirical risk and model complexity. 

2.2. Overview of Convolutional Neural Networks (CNNs) 

The CNN is a forward neural network that includes an input layer, multi-hidden layers and 

output layer, which are connected to each other with the output of the previous layer being the input 

of the next layer. High-level features contained in the raw data are extracted gradually through 

implementation of both a convolutional layer and a pooling/subsampling layer. To learn nonlinear 

representations of input data, a nonlinear activation function (e.g., sigmoid, rectified linear units) is 

adopted [31]. In general, the operations performed in a CNN can be summarised as: 

O𝑙 = pool𝑝(𝜎(O𝑙−1 ∗ 𝑤𝑙 + 𝑏𝑙)) (4) 
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where O𝑙−1 represents the input to the 𝑙th layer, 𝑤𝑙  and 𝑏𝑙 are the weights and biases of the layer, 

respectively, 𝜎(∙) indicates the non-linearity function and the symbol ∗ denotes linear convolution; 

a pooling operation (pool𝑝) with a window size 𝑝 is often performed following the convolution 

operation to extract invariant features of the input map, forming the output (O𝑙) of the current (𝑙th) 

layer.  

The feature maps outputted by the last pooling layer are then flattened into a one-dimensional 

array and classified using a logistic regression (LR). A softmax activation function is employed in the 

LR to ensure the prediction probability of each output unit belonging to a certain class sums to one. 

2.3. Hybrid Object-based SVM and CNN (OSVM-OCNN) Approach 

We propose a novel hybrid object-based SVM and CNN (OSVM-OCNN) approach for crop 

classification from FSR remotely sensed imagery. In brief, the trained SVM and CNN models were 

used to predict the class of each segmented object, respectively, and a fusion strategy was applied 

subsequently to combine the two classifications to achieve the final classification map. Figure 1 shows 

the workflow of the presented OSVM-OCNN methodology, which comprises four steps, namely (1) 

image segmentation, (2) SVM and CNN model training, (3) SVM and CNN model inference and (4) 

decision fusion of SVM and CNN predictions, details of which will be elaborated in the following 

sections.  

 

Figure 1. Flowchart illustrating the presented object-based support vector machine-object-based 

convolutional neural network (OSVM-OCNN) method with four major steps: (A) image 

segmentation, (B) model training, (C) model inference and (D) fusion decision. 

2.3.1. Image Segmentation 

Image segmentation is considered the fundamental step of the OSVM-OCNN as the prediction 

procedures of both SVM and CNN modules are based on segmented image objects (Figure 1). In this 

research, the widely used multi-resolution segmentation (MRS) algorithm was adopted to partition the 

imagery into crop patches (i.e., objects) with spectrally and spatially homogeneous information [44]. 

For the fully polarimetric UAVSAR data, three raw linear polarizations (bands HH, HV, VV) together 

with polarimetric parameters from the Cloude-Pottier (entropy, anisotropy, and alpha angle) and 

Freeman-Durden (fractions of double-bounce, single-bounce, and volume scatters) decompositions 

[45,46] were combined as input data for image segmentation. As for the optical RapidEye imagery, all 

five multispectral (Blue, Green, Red, Red Edge and Near Infrared) bands were used as input for 

segmentation. 

2.3.2. SVM and CNN Model Training 

In this research, the radial basis function (RBF) SVM was selected owing to its capacity to address 

complicated non-linear classification problems [47]. The SVM model was trained using the spectral 

(or polarimetric) information within the segmented patches. Two types of feature were extracted 

from each object for classification, including the mean and standard deviation of feature bands. All 
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these object-based hand-crafted features were fed into the SVM model for classification. Different 

from the SVM model, the image patches used to train the CNN model were extracted using a pre-

defined square input window rather than segmented patches. The input window size and a range of 

parameters of the CNN model were tuned empirically, as detailed in Section 3.  

The trained SVM and CNN models were used for the following model interference. 

2.3.3. SVM and CNN Model Inference 

At the model inference stage, the trained SVM was used directly to predict the label of each 

segmented object based on the hand-crafted features mentioned above. The inference procedure of 

the CNN model consists of two steps: the convolutional position of an object was first located to 

acquire the input image patch of CNN; then, the label of the object was predicted with the trained 

CNN model with the located convolutional positions and input image patches. To acquire 

representative features of crop patches, the object convolutional position should be located at the 

centre of each object. In this research, the convolutional position of each object was determined by its 

geometric centroid [48]. Figure 2 provides two examples of object convolutional position location. 

For a specific object, its crop class is inferred by the trained CNN model; at the same time, the 

SVM model also allocates a class label to the object. Thus, each object has two predictions coming 

from the SVM and CNN models. 

 

Figure 2. Two examples to illustrate the convolutional position (green star) of a specific object 

(highlighted cyan polygon) as well as the corresponding convolutional input window (yellow 

rectangle); the other segmented patches are delineated by red polygons. (a) and (b) demonstrate a 

subset of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and RapidEye 

imagery, respectively. Details of the two types of images employed here are provided in Section 3. 

2.3.4. Decision Fusion of the SVM and CNN Models 

For each object, the predictions of the SVM and CNN models are 𝑚-dimensional vectors 𝑃 =

(𝑝1, 𝑝2, … , 𝑝𝑚), where 𝑚 is the number of classes, and each dimension 𝑖 ∈ [1,2, … , 𝑚] denotes the 

predictive probability of the 𝑖th class. Ideally, the prediction probability should be 1 for the target 

class and 0 for the others. However, this is not likely to happen in consideration of the complexity of 

remotely sensed data. The probability for each class can be represented as 𝑓(𝑥) = {𝑝𝑥|𝑥 ∈ [1,2, … , 𝑚]}, 

where 𝑝𝑥 ∈ [0,1] and ∑ 𝑝𝑥 = 1𝑚
1 . The SVM and CNN models simply classify each object into the class 

with the maximum membership (class(𝐶)) across all classes as follows: 

class(𝐶) = argmax({𝑓(𝑥) = 𝑝𝑥|𝑥 ∈ [1,2, … , 𝑚]}) (5) 
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For a specific segmented object, the SVM model uses only the features that fall completely within 

the object (within-object information) for classification. As a result, objects with distinctive low-level 

features (e.g., light regions in Figure 3b) can be separated easily by the SVM, regardless of the size of 

objects. However, SVMs cannot identify accurately those objects with similar within-object features 

(e.g., dark regions in Figure 3b), due to the lack of contextual information in the classification process. 

In contrast, the CNN model can extract deep high-level features (between-object information) for 

classification and, thus, is superior to the SVM in identifying complex objects. Note that the CNN 

uses a pre-defined square input window to extract features and predict labels of objects. As a result, 

for a specific patch, there are two situations to consider: (1) if the size of the target object (e.g., small-

sized) mismatches with the scale of input window (i.e., a large area of other crop types as contextual 

information in the input window), the prediction probability of the object tends to be low (e.g., dark 

patches in Figure 3c); (2) if the input window covers only a homogeneous region, the probability 

tends to be large (e.g., light patches in Figure 3c).  

 

Figure 3. (a) A subset of the UAVSAR image (bands VV, HV and HH) used in this paper, (b) the 

prediction probability generated by the OSVM model, (c) the prediction probability achieved by the 

OCNN model. Note that the white objects denote high predictive probability, while dark objects 

represent low probability. 

In light of the above-mentioned complementarities of the SVM and CNN, a rule-based fusion 

strategy can be presented to combine the two models for increased classification accuracy. The fusion 

output gives credit to the CNN if its prediction probability is greater than or equal to a predefined 

threshold (𝛼); otherwise, it trusts the output of the SVM. Assume an image is segmented into 𝑁 

objects. For a given segmented object (𝑂𝑖 ), where 𝑖 = 1,2, … , 𝑁, a decision fusion strategy can be 

formulated to determine the class label (𝑐𝑙𝑎𝑠𝑠(𝑂𝑖)) of the object as follows: 

𝑐𝑙𝑎𝑠𝑠(𝑂𝑖) = {
𝑐𝑙𝑎𝑠𝑠𝑐𝑛𝑛                𝑝𝑟𝑜𝑏 𝑖

𝑐𝑛𝑛 ≥ 𝛼

𝑐𝑙𝑎𝑠𝑠𝑠𝑣𝑚               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
 (6) 

where 𝑐𝑙𝑎𝑠𝑠𝑐𝑛𝑛  and 𝑐𝑙𝑎𝑠𝑠𝑠𝑣𝑚 denote the predictions of the CNN and SVM models, respectively, and 

𝑝𝑟𝑜𝑏 𝑖
𝑐𝑛𝑛  represents the probability of the predicted class for the object 𝑖  achieved by the CNN 

model. Here, the threshold (𝛼) is estimated using a grid search approach [49], that is, the threshold 

with the greatest classification accuracy is regarded as the optimal 𝛼. 

To test the performance of the proposed OSVM-OCNN method, four benchmarks including the 

object-based SVM (OSVM), object-based CNN (OCNN), pixel-based SVM (PSVM) and pixel-based 

CNN (PCNN) were compared in this research. 

3. Experimental Results 

3.1. Study Area and Data 

In this research, two typical crop areas (Figure 4), S1 and S2, located in the middle of the 

Sacramento Valley, in northern California were selected as case study sites. California is considered 

as a productive agricultural state in the United States, and accounts for about 15% of national receipts 
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for crops [50]. The two study sites are heterogeneous and different from each other in crop 

composition, thus, being ideal to test remote sensing image classification algorithms. Based on the 

Crop Data Layer (CDL) produced by the United States Department of Agriculture (USDA) [51], 10 

dominant crop classes were found within S1 (Table 1), including walnut, almond, alfalfa, hay, clover, 

winter wheat, corn, sunflower, tomato and pepper, and nine major crop classes (Table 1) in S2, 

namely walnut, almond, fallow, alfalfa, winter wheat, corn, sunflower, tomato and cucumber.  

 

Figure 4. The two study sites S1 and S2 over the agricultural district of the Sacramento Valley, 

California. 

In S1, the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) image was captured 

on 29 August 2011 (the peak biomass stage). The UAVSAR, an airborne polarimetric interferometric 

radar system, is operated in L-band with a wavelength of 23.84 cm [52]. The range and azimuth pixel 

spacings in single look complex imagery are 1.66 m and 1 m, respectively. The UAVSAR used in S1 

is in the GRD format (georeferenced), in which the calibrated complex data were multilooked and 

projected to the ground coordinate. The data has a fine spatial resolution of 5 m and a spatial extent 

of 3474 × 2250 pixels. No additional filter algorithms were applied to the image, since multiplicative 

noise was reduced by the multilook procedure [53]. Three raw linear polarizations (HH, HV and VV), 

as well as six parameters (stated in Section 2.3.1) from the Cloude-Pottier and Freeman-Durden 

decompositions, were extracted for crop classification.  

In S2, a cloud-free RapidEye image (Level 3A Ortho product) was acquired on 10 July 2016. 

RapidEye is a constellation of five satellites that are equally spaced in the same orbital plane, 

producing a ground sampling distance (GSD) of 6.5 m at nadir [54]. The RapidEye imagery used in 

S2 is Ortho product, with sensor, radiometric and geometric correction using level 1 digital terrain 

elevation data, was delivered resampled to a spatial resolution of 5 m. The image employed in this 

research has a spatial extent of 3222 × 2230 pixels and five optical bands, namely blue (440–550 nm), 

green (520–590 nm), red (630–685 nm), red edge (690–730 nm) and near infrared (760–850). To obtain 

surface reflectance, the image was atmospherically corrected using the atmospheric and topographic 

correction method supported by the ERDAS IMAGINE software. 

We acquired sample points from the USDA-CDL data by means of stratified random sampling. 

The CDL data are widely used as a ground reference owing to their very high quality [10,55]. Patches 

of major crop types in each site were outlined [10] and split randomly into two equal subsets. A 50% 

subset was for training samples generation, and the other 50% subset for testing samples collection, 

so as to make sure that training and testing samples come from different crop patches. To acquire 

enough representative samples, the sample size for each crop class was set at around 200 over the 

two study sites (Table 1). A total number of 2268 and 2020 samples were acquired for S1 and S2, 

respectively. Note that 80% of the training samples were used to train individual classification 

methods and the remaining 20% (validation set) were employed to select the optimal hyper-

parameters of the classifiers.  
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To further test the generalisation of the proposed method, additional scenes of UAVSAR (03 

October 2011) at S1 and RapidEye (07 September 2016) at S2 were acquired and preprocessed as 

described previously. Three linear polarizations (HH, HV and VV) of the UAVSAR and four spectral 

bands (i.e., blue, green, red, red edge) of the RapidEye were extracted, respectively, for crop 

classification. 

Table 1. Number of collected samples for each crop class over the two study sites. 

Study 

Sites 
Crop Class 

Number of 

Objects 

Training 

Sample 

Testing 

Sample 

Total 

Sample 

S1 

Walnut 31 112 112 224 

Almond 33 110 110 220 

Alfalfa 55 125 125 250 

Hay 26 101 101 202 

Clover 41 110 110 220 

Winter 

wheat 
68 120 120 240 

Corn 45 108 108 216 

Sunflower 47 122 122 244 

Tomato 58 120 120 240 

Pepper 32 106 106 212 

S2 

Walnut 39 108 108 216 

Almond 45 115 115 230 

Fallow 30 90 90 180 

Alfalfa 35 124 124 248 

Winter 

wheat 
40 116 116 232 

Corn 22 93 93 186 

Sunflower 57 130 130 260 

Tomato 63 141 141 282 

Cucumber 21 93 93 186 

3.2. Model Structure and Parameters 

3.2.1. Segmentation Parameter 

We implemented the multi-resolution segmentation (MRS) algorithm in the eCognition 

Developer [56]. Three control parameters, namely, scale, colour/shape and smoothness/compactness, 

were tuned by means of a systematic trial-and-error process. A relatively small value of the scale 

parameter was set for a small amount of over-segmentation, thus, assuring the homogeneity of the 

segmented objects. The optimal combinations of image segmentation parameters over the two study 

sites are summarised in Table 2.  

Table 2. Parameters used in the multi-resolution segmentation algorithm in the two study sites. 

Study 

Sites 
Imagery Scale 

Colour/Sha

pe 

Smoothness/ 

Compactnes

s 

Number 

of 

Objects 

Mean Area  

of Objects (ha) 

S1 UAVSAR 25 0.8/0.2 0.3/0.7 4210 4.64 

S2 RapidEye 130 0.9/0.1 0.2/0.8 9192 2.95 

3.2.2. Model Structure and Parameter Settings 
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The object-based SVM (OSVM) model involves two major parameters that need to be pre-

defined, the penalty parameter (C) and the kernel parameter (γ), each of which has been shown to 

influence model outputs [57]. The former determines the trade-off between model complexity and 

training error, while the latter controls the shape of the hyperplane. To search for the best parameters 

for the model, a “grid-search” on C and γ with exponentially growing sequences (i.e., 10-2, 10-1, …, 

103) using five-fold cross-validation was performed [49]. The optimal combination of parameters 

over both study sites was found to be 1000 and 0.1, by which the OSVM delivered the best 

classification results.  

For the object-based CNN (OCNN) model, a range of pre-defined parameters need to be tuned, 

including the input window size, the number of layers, as well as the number of convolutional filters. 

The input window size of the OCNN was determined through cross-validation from a series of 

window sizes {24 × 24, 32 × 32, 40 × 40, 48 × 48, 56 × 56, 64 × 64}, and 40 × 40 and 32 × 32 were found to 

be the optimal sizes for S1 and S2, respectively. To balance network complexity and generalization 

ability, the number of network layers was tuned to six (Figure 5) and a 2 × 2 max pooling layer 

following each convolutional layer was used to further generalise the extracted features. The other 

parameters were designated as follows: the filter size was 3 × 3 for the convolutional layers (except 

for the first layer which was 5 × 5); the number of filters in each convolutional layer was 32; the 

learning rate and the number of epochs were respectively 0.01 and 500 to fully extract high-level 

features contained in the images. The cross-entropy loss was employed as the objective function. For 

training the entire network, the mini-batch stochastic gradient descent with a batch size of 20 samples 

was adopted to minimise the loss function. The CNN was built using Keras library with Tensorflow 

backend.  

 

Figure 5. The model structure and parameter settings of the CNN network employed in this research. 

3.2.3. Pixel-wise Classifiers and Their Parameters 

The RBF SVM model was used for traditional pixel-wise SVM classification. The two control 

parameters (C and γ) were optimised using a “grid-search” approach as mentioned above [49], and 

the optimal combination of parameters was found to be 100 and 1. 

The traditional pixel-wise CNN also requires a pre-defined series of control parameters. The 

input window size was selected from {16 × 16, 24 × 24, 32 × 32, 40 × 40 and 48 × 48} and 24 × 24 was 

found to be the optimal patch size at both the S1 and S2 sites. The number of layers was tuned to six 

and the number of filters at each convolutional layer was set to 32. The size of convolutional filters 

was 5 × 5 for the first convolutional layer and 3 × 3 for the other layers, the same as for the OCNN. 

The learning rate and the maximum number of iterations were designated as 0.01 and 500, 

respectively. 

3.3. Decision Fusion Parameters 

A rule-based decision fusion approach was performed based on the OCNN’s prediction 

probability and the classification results of both OSVM and OCNN models. As mentioned above, the 

parameter of the decision fusion rules was optimised by a grid search approach through cross-

validation. The optimal threshold (α) was found to be 0.98 at S1 and 0.91 at S2, respectively. 
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3.4. Results and Analysis 

3.4.1. Classification Maps and Visual Assessment 

The classification maps achieved by the OSVM-OCNN were examined at both study sites. We 

compared the new OSVM-OCNN method with its two sub-models (OSVM and OCNN), as well as 

the PSVM and PCNN. To provide a clear visualization, Figures 6 and 7 illustrate visual inspections 

of the classification maps using subset images of the two study sites. It is clear that the PSVM achieved 

undesirable results (salt-and-pepper noise), as demonstrated in Figures 6 and 7. Moreover, tomato 

and pepper, as well as walnut and almond, were frequently misclassified as each other, as shown in 

Figure 6a,c. However, the PCNN has certain advantages over the PSVM in discriminating these crop 

classes with similar spectral characteristics. For example, as illustrated by Figure 6c and Figure 7a, 

walnut and alfalfa were better distinguished from almond and tomato, respectively, in comparison 

to the PSVM classifications. Additionally, the salt-and-pepper noise was reduced to some extent due 

to the use of contextual information. The salt-and-pepper noise still existed in the CNN classifications 

(especially in the UAVSAR-based CNN classification), and the misclassifications between pepper and 

tomato and walnut and almond were still present, as illustrated in Figures 6 and 7.  

 

Figure 6. Three representative subsets (a, b and c) from the UAVSAR imagery with the corresponding 

classification maps; the first column shows the UAVSAR images (bands VV, HV and HH), the 

following columns illustrate the classification maps achieved by the PSVM, PCNN, OSVM, OCNN, 

and the proposed OSVM-OCNN, respectively; the regions with correct and incorrect classification 

results were labelled with yellow and red circles, respectively. 

In contrast to the pixel-wise SVM and CNN, the classification maps generated by the object-

based SVM and CNN exhibited very smooth visual appearance, and the salt-and-pepper noise was 

removed, as shown in Figures 6 and 7. The classification of fruit crops (walnut and almond), forage 

crops (alfalfa and hay) and summer crops (corn, tomato and pepper) was also improved to some 

extent as shown by the yellow circles in Figures 6 and 7. Specifically, parts of tomato were 

misclassified by the OCNN, whereas these areas were accurately classified by the OSVM (Figure 6a). 

In contrast, the OSVM was less accurate than the OCNN when identifying hay and tomato (Figure 
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6b,c). Similarly, the OSVM was more accurate than the OCNN in identifying wheat and tomato while 

the OCNN showed certain advantages over the OSVM in discriminating alfalfa, walnut and 

cucumber (Figure 7).  

 

Figure 7. Three representative subsets (a, b and c) from the RapidEye imagery with the corresponding 

classification maps; the first column shows the RapidEye images (bands Red, Green and Blue), the 

following columns illustrate the classification maps achieved by the PSVM, PCNN, OSVM, OCNN 

and the proposed OSVM-OCNN, respectively; the regions with correct and incorrect classification 

results were labelled with yellow and red circles, respectively. 

When checking the classification maps of the OSVM-OCNN, most of the aforementioned 

misclassifications achieved by OSVM and OCNN were revised while keeping the smoothness of the 

classifications. For example, the OSVM-OCNN modified the misclassifications of the OSVM for 

pepper, as shown in Figure 6a, and for sunflower and walnut, as shown by Figure 7, which benefitted 

from the accurate classification of the OCNN. Moreover, the OSVM-OCNN revised the classification 

errors of the OCNN for tomato (Figure 6a and Figure 7b) and wheat (Figure 7a). More importantly, 

some mutual misclassifications between the OSVM and OCNN were effectively resolved. For 

example, as illustrated in Figure 6b,c, some wheat and walnut patches were misclassified as hay and 

almond, respectively, in both the OSVM and OCNN classifications; however, they appeared at 

different places, and nearly all the mislabelled patches were rectified when combining the two 

classification results using the decision fusion strategy provided in this research. 

3.4.2. Classification Accuracy Assessment 

In addition to visual assessment, we further investigated the classification accuracy of the 

proposed OSVM-OCNN and the other benchmark methods, including the PSVM, PCNN, OSVM, 

and the OCNN over the two study sites. Tables 3 and 4 list the detailed classification accuracy of the 

methods in both S1 and S2 using the overall accuracy (OA), Kappa coefficient (𝜅) and per-class 

mapping accuracy. As shown in the tables, the OSVM-OCNN acquired the greatest OA of 90.74% at 

S1 and 86.63% at S2 with 𝜅 of 0.90 and 0.85, respectively, consistently greater than the OCNN (86.86% 

and 81.68% OA with 𝜅  of 0.85 and 0.79, respectively) and OSVM (86.42% and 81.39% with 
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corresponding 𝜅 of 0.85 and 0.79, respectively). The increase in classification accuracy was much 

more conspicuous when compared to the pixel-wise classifiers, such as the PCNN (81.31% and 79.11% 

OA with 𝜅 of 0.79 and 0.76, respectively) and PSVM (72.75% and 70.20% OA with corresponding 𝜅 

of 0.70 and 0.66, respectively). In addition, a McNemar test developed for pair-wise comparison 

further demonstrated the proposed OSVM-OCNN achieved significantly increased classification 

accuracy in comparison with the PSVM and PCNN, as well as the OSVM and OCNN, with z-value = 

12.56, 7.44, 4.35 and 4.92 in S1 and z-value = 10.76, 5.63, 6.57 and 4.32 in S2, respectively (Table 5). 

However, there was no significant difference between the OSVM and OCNN classifications over both 

study sites despite the OAs of the OCNN being slightly higher than those of the OSVM. 

Table 3. Overall accuracy as well as per-class accuracy achieved by the PSVM, PCNN, OSVM, OCNN 

and OSVM-OCNN method with the UAVSAR image in S1; the greatest classification accuracy per 

row is highlighted in bold font. 

Crop Type PSVM PCNN OSVM OCNN OSVM-OCNN 

Walnut 80.91  87.85  84.58  91.89  96.33  

Almond 76.56  88.60  86.76  91.15  95.65  

Alfalfa 72.51  88.35  84.87  88.26  89.96  

Hay 62.56  77.94  76.35  89.00  87.37  

Clover 71.68  90.83  91.63  91.16  94.17  

Winter wheat 70.13  64.68  83.47  80.49  83.26  

Corn 83.82  88.00  89.20  95.89  96.39  

Sunflower 69.60  80.46  95.51  85.96  93.62  

Tomato 74.89  74.89  89.16  81.27  87.55  

Pepper 63.16  70.71  80.18  74.40  83.10  

Overall accuracy (OA) 72.75 81.31 86.42 86.86 90.74 

Kappa coefficient (k) 0.70 0.79 0.85 0.85 0.90 

Table 4. Overall accuracy as well as per-class accuracy achieved by the PSVM, PCNN, OSVM, OCNN 

and OSVM-OCNN method with the RapidEye image in S2; the greatest classification accuracy per 

row is highlighted in bold font. 

Crop Type PSVM PCNN OSVM OCNN OSVM-OCNN 

Walnut 58.71  79.28  72.95  83.66  84.82  

Almond 55.11  63.54  75.34  69.38  79.65  

Fallow 61.08  66.36  70.93  70.37  78.82  

Alfalfa 67.46  79.83  76.68  78.46  82.35  

Winter wheat 79.52  80.70  88.89  83.66  91.92  

Corn 96.67  95.19  97.24  98.36  99.46  

Sunflower 70.64  83.02  81.66  85.07  87.69  

Tomato 75.00  83.51  86.12  84.09  87.91  

Cucumber 66.67  79.00  83.33  84.69  87.50  

Overall accuracy (OA) 70.20 79.11  81.39 81.68 86.63 

Kappa coefficient (k) 0.66 0.76 0.79 0.79 0.85 

The superiority of the OSVM-OCNN method was also checked with class-wise accuracy 

assessment (Tables 3 and 4). As shown in the tables, the OSVM-OCNN achieved the most accurate 

class-wise classification for most of the crop types in S1 and all types in S2. The largest increase was 

up to 8.70% for pepper in S1 and 10.27% for almond in S2, when compared with the OCNN. The 

accuracy increase was also significant for sunflower (7.66%) and tomato (6.28%) in S1 and fallow 

(8.45%) and winter wheat (8.26%) in S2. In comparison to the OSVM, most crop classes in S1 and all 

classes in S2 were classified with greater accuracy with the OSVM-OCNN. Specifically, walnut 

exhibited the greatest increase in accuracy over both study sites, up to 11.75% at S1 and 11.87% at S2, 

respectively. As for winter wheat, sunflower and tomato in S1, the accuracy of the OSVM-OCNN was 
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slightly less than that of the OSVM without significant differences. The accuracy increase of the 

OSVM-OCNN tended to be more obvious in comparison to the PSVM and PCNN. Here, the OSVM-

OCNN was constantly superior to the PCNN and PSVM at the class-wise level, with the largest 

increase up to 18.58% and 24.81% for winter wheat and hay in S1 and 16.11% and 26.11% for almond 

and walnut in S2, respectively.  

Table 5. McNemar test results for comparing the performance of the five methods over both study 

sites; bold font indicates that the compared two methods are significantly different at the 95% 

confidence level. 

Study Sites Classifiers 
Mcnemar Test z-value 

PSVM PCNN OSVM OCNN OSVM-OCNN 

S1 PSVM -        

 PCNN 5.98  -    

 OSVM 8.55  3.44  -   

 OCNN 9.92  4.58  0.35  -  

 OSVM-OCNN 12.56  7.44  4.35  4.92  - 

S2 PSVM -     

 PCNN 5.88  -    

 OSVM  7.43  1.61  -   

 OCNN 7.40  1.80  0.21  -  

 OSVM-OCNN 10.76  5.63  6.57  4.32  - 

For the four benchmark methods themselves (i.e., the PSVM, PCNN, OSVM and the OCNN), 

the OCNN achieved the greatest accuracy, followed by the OSVM and PCNN, while the PSVM was 

the least accurate. In S1, the two object-based methods (OSVM and OCNN) were significantly more 

accurate than the two pixel-wise methods (PSVM and PCNN), as demonstrated by the McNemar test 

(Table 5). In S2, the accuracies of the OSVM and OCNN were significantly greater than that of the 

PSVM (z = 7.43 and 7.40, respectively), but only slightly (about 2%) greater than that of the PCNN 

with no significant difference (z = 1.61 and 1.80, respectively). Between the same type of classifiers, it 

was found that the PCNN performed significantly more accurately than the PSVM (z = 5.98 and 5.88, 

respectively), while there was no difference between the OSVM and OCNN (z = 0.35 and 0.21, 

respectively) at both study sites as shown in Table 5. 

The proposed OSVM-OCNN method and the other benchmark comparators were also validated 

using additional scenes of UAVSAR and RapidEye imagery at S1 and S2 study sites. The classification 

accuracy assessment including the overall accuracy (OA) and Kappa coefficient (k) was summarised 

in Table 6. The OA and k of both study sites are in accordance with the previous experimental results, 

where the hybrid OSVM-OCNN achieves the greatest OA of 70.28% at S1 and 76.44% at S2, 

consistently larger than the two sub-modules (OSVM and OCNN), the PCNN, and the PSVM (Table 

6). Such coherency of classification accuracy further demonstrates the generalisability of the proposed 

method. 

Table 6. Classification accuracy comparison amongst PSVM, PCNN, OSVM, OCNN and the 

proposed OSVM-OCNN method using additional UAVSAR and RapidEye imagery. 

Imagery Date Accuracy PSVM PCNN OSVM OCNN 
OSVM-

OCNN 

UAVSAR 03/10/2011 OA 57.23% 68.17% 67.37% 68.61% 70.28% 

  k 0.52 0.65 0.64 0.65 0.67 

RapidEye 07/09/2016 OA 52.77% 68.32% 73.56% 72.77% 76.44% 

  k 0.47 0.64 0.70 0.69 0.73 
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3.5. Influence of the Decision Fusion Parameter 

In this subsection, the contribution of the decision fusion parameter (α) (i.e., the prediction 

probability of the OCNN model) in combining classification results of the two sub-modules (OSVM 

and OCNN) is investigated (Figure 8). Herein, Figure 8a shows the relations between parameter α 

and the final classification accuracy (through fusion decision) in S1 (dots in orange) and S2 (dots in 

blue), respectively; whereas Figure 8b illustrates the area percentage of the OCNN predictions 

influenced by α in the fused classification map over the two study sites. From Figure 8a, it can be 

seen that, although there was a difference in accuracy between the two sites resulting from different 

types of remotely sensed images, the general tendencies in overall accuracy influenced by α over S1 

and S2 were similar: the accuracy increased continuously until reaching the maximum accuracy (α = 

0.98 in S1 and α = 0.91 in S2), and then tended to decrease with further increases in α. Here, α = 0.98 

and α = 0.91 were found to be the optimal decision fusion parameters in S1 and S2, respectively. From 

Figure 8b, it is clear that when α was small, OCNN predictions dominated the fused outputs with 

little contribution from the OSVM; in contrary, too large a value for α resulted in a rapid decrease in 

the area percentage of CNN predictions, leading to a sharp decrease in overall accuracy (Figure 8a). 

When α approached initially the optimal value, the CNN predictions with low confidence were 

gradually replaced by accurate SVM predictions, resulting in a rapid increase in accuracy (Figure 8a). 

The selection of the optimal α value, thus, clearly demonstrates the complementary properties 

between the two sub-modules by the proposed decision fusion strategy.  

 

Figure 8. (a) Variation in classification accuracy and (b) area percentage of the CNN predictions in 

the fused output, plotted against α. 

4. Discussion 

Accurate classification of FSR remotely sensed images is considered a major challenge within 

the remote sensing community [57]. Combination of different classifiers is an effective means to solve 

the complex FSR image classification problem, where single classifiers should be as unique as 

possible, so as to produce different decision boundaries [38]. However, traditional classifier fusion 

methods by integrating classifiers at the pixel level are unsuitable for processing FSR imagery, given 

the potential for large amounts of noise (see the salt-and-pepper noise in the PSVM classifications, 

Figures 6 and 7).  

In this research, a novel method (OSVM-OCNN) was proposed for the first time by fusing the 

outputs of the object-based SVM (OSVM) and CNN (OCNN) at the object level for crop classification 

from FSR images. The OSVM determines the decision boundaries among classes based completely 

on the low-level within-object information (e.g., spectral, polarimetric, texture; [24]). In such a 

manner, the OSVM can identify the objects with salient spectral properties (i.e., light regions on the 

Figure 3b), but has difficulty handling those objects with similar within-object information (e.g., the 
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misclassifications between two types of forage crops (alfalfa and hay), Figure 6b). This is due mainly 

to the unavailability of high-level between-object information. In fact, for a large crop parcel, it is 

normally segmented into several small objects due to the heavy spectral and spatial variations. If only 

the within-object information is utilised, some of the segmented objects might be misclassified. 

However, if the between-object (contextual) information is also taken into account, sufficiently 

representative information can be achieved for the objects, thus markedly increasing the chance of 

correctly identifying those objects. The OCNN extracts hierarchical features from images via an input 

window using multiple convolution and pooling operations [24]; thus, both low-level and high-level 

features are incorporated into the classification process. However, with a fixed input window, the 

OCNN is incapable of accurately extracting key within-object information of particular objects (e.g., 

small-sized and linearly shaped objects) due to the mismatch between the observational scale of the 

OCNN and the scale of the objects themselves. For example, as shown in Figure 3c, the OCNN’s 

prediction probability of some small-sized objects (usually with distinctive within-object 

information) tends to be relatively low. In fact, as a state-of-the-art deep learning classifier, OCNN is 

especially distinguished in representing spatial contextual (i.e., between-object) information, whereas 

OSVM is superior in extracting within-object information. As a consequence, the shallow-structured 

OSVM and the deep-structured OCNN have intrinsically complementary characteristics in terms of 

remotely sensed image classification, as illustrated by Figure 8a. It should be noted that the 

incorporation of both within- and between-object information is normally necessary to identify and 

classify complex landscapes. This explains why the proposed hybrid OSVM-OCNN method 

consistently and significantly outperformed its sub-modules (the OSVM and OCNN) as well as 

traditional pixel-wise classifiers (the PSVM and PCNN) over both study sites (Tables 5, Figures 6 and 

7). 

Searching for the optimal parameter combination of decision fusion rules is a tedious and time-

consuming process [41]. In the proposed OSVM-OCNN, a novel decision fusion strategy was 

developed to integrate the two sub-models, primarily based on the prediction probability of the 

OCNN in consideration of its superiority in image classification. That is, the OCNN is regarded as 

the base classifier, and it is given credit as long the key information of the target object is acquired 

(i.e., high prediction probability); otherwise, the prediction of the OSVM is trusted. The combination 

of the two classifiers (OSVM and OCNN), therefore, represents a new rule-based decision fusion 

strategy that incorporates this key principle. Such a fusion strategy exactly capturing the 

complementarity between the two sub-modules, even with different types of data (optical and SAR 

images), is straightforward and efficient in comparison to previous methods (in which two or more 

parameters are usually employed, e.g., [38,58]), since only one parameter (𝛼) is required. Moreover, 

there are some other parameters that need to be finely tuned, including those used in the sub-modules 

and image segmentation. The control parameters of the SVM and CNN can be tuned relatively easily 

according to previous research. In contrast, the parameters of segmentation algorithms are usually 

hard to determine. In the MRS image segmentation algorithm, the scale parameter is considered the 

most important, as it directly controls the relative size of the segmented objects. In practice, it is 

almost impossible to select an optimal scale value that can accurately segment all of the ground 

patches with the boundaries being retained completely. In practice, a relatively small value is always 

a preferred alternative (e.g., [24]). By taking the UAVSAR experiment as an example, the impact of 

segmentation on the overall accuracy of the proposed method was illustrated (Figure 9). It can be 

seen from the figure that the OSVM-OCNN consistently outperformed the two sub-modules, 

regardless of how the scale parameter is tuned. The scale parameter selected in this research (i.e., 

scale = 25) that achieves a small amount of over-segmentation is suitable for crop classification. If the 

value is too small (e.g., scale = 20 in Figure 9), one crop patch may be partitioned into many very 

small objects; and if it is too large (e.g., scale = 30 in Figure 9), one segmented object may contain 

many crop patches. Obviously, both cases exert negative impact on the classification results (Figure 

9). Therefore, the segmentation parameters employed in this research by trial and error are relatively 

optimal. Algorithms that automatically determine segmentation parameters (e.g., [59]) could be 

integrated into the proposed method in future research. 
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Figure 9. Classification accuracy of the OSVM, OCNN and the proposed OSVM-OCNN based on the 

multi-resolution segmentation (MRS) image segmentation results achieved with difference scale 

values. 

The proposed hybrid OSVM-OCNN approach achieved promising crop classification results for 

FSR images. In fact, the proposed method that makes full use of both within-object and between-

object feature representations has wide potential applicability for a range of complex classification 

tasks (e.g., Mangroves, [60]; land use, [38]). The proposed classification method, therefore, provides 

a general solution to address the complex FSR image-based classification problem. It should be 

mentioned that the effectiveness of the OCNN, a sub-model of the OSVM-OCNN, is constrained by 

a so-called optimal (fixed-sized) input window as stated previously. A variable sized input window 

that adjusts dynamically according to the size of objects, thus, deserves to be introduced to the 

OCNN. This will be investigated in detail in future research. 

5. Conclusions 

In this research, a novel hybrid method (OSVM-OCNN) was proposed by fusing a shallow-

structured object-based SVM (OSVM) and a deep-structured object-based CNN (OCNN) at the object 

level for crop classification from FSR imagery. The OSVM has advantages in extracting low-level 

within-object features, while the OCNN is remarkable in terms of generalising high-level between-

object information. The proposed OSVM-OCNN method, thus, captures the complementary 

characteristics of both the OSVM and OCNN models through a set of rules with only one fusion 

parameter required. Thus, the two sub-models were combined in a concise and effective manner. We 

investigated the effectiveness of the proposed method over two study sites with distinctive crop 

compositions using two types of FSR images (UAVSAR and RapidEye), respectively. The OSVM-

OCNN consistently achieved the most accurate classification results in comparison to the two sub-

models (i.e., OSVM and OCNN), as well as the standard pixel-wise SVM (PSVM) and CNN (PCNN). 

Thus, we conclude that the presented OSVM-OCNN method is an effective and efficient approach 

for accurate crop classification (and classification of other complex landscapes) using FSR remotely 

sensed images, and it is suitable for different types of FSR remotely sensed images.  
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