[PROJECT NAME]: teaching science concepts in schools using Minecraft

Туре

Research paper

Keywords

engagement, interactive learning, informal learning, outreach, Minecraft

Abstract

Background

[PROJECT NAME] is an outreach project based at [UNIVERSITY], UK. It uses the computer game Minecraft, alongside interactive discussion and hands-on demonstrations, to engage children with scientific research topics and science learning.

Material and methods

As part of ongoing evaluation, the efficacy of this approach as an educational intervention was tested via pre- and post-activity questionnaires for two session topics, with 492 children participating through schools in 2017 and 2018.

Results

Statistically significant mprovement in subject knowledge was seen in post-intervention scores for both topics. There was some variation in both absolute and improvement score results between boys and girls, and primary and secondary school students.

Conclusions

Participation leads to improved subject knowledge and understanding, regardless of prior existing knowledge.

Explanation letter

Dear Editors,

Thank you for your further response to our manuscript ARISE-00012-2019-02. Please accept the slight delay in responding due to summer leave and part-time working.

We have now responded to the reviewer comments; please see the table attached for elaboration. We sincerely hope that the manuscript is now acceptable for publication.

Many thanks

ARISE-00012-2019-02_revisions 2.docx

Manuscript body Download source file (47.15 kB) [PROJECT NAME]: teaching science concepts in schools using Minecraft Introduction While it is essential that children develop a range of skills and knowledge that enable them to understand scientific and technological aspects of the world around them ('scientific

literacy') (Harlen, 2018), school science often fails to engage children (e.g. Archer et al., 2012 and references therein). There is strong evidence that children's interests in science form by age 14 (Archer et al., 2012 and references therein) with decline beginning around age 10 (Murphy and Beggs, 2005). Decline is less apparent when children are involved in practical, investigative activities (Murphy, Beggs, Carlisle, and Greenwood, 2004); teachers suggest that the best way to improve science teaching and learning is to increase its relevance to pupils' experience (Murphy and Beggs, 2005). Cultural biases such as perceptions of scientists as 'brainy' also lead to people feeling that science is not 'for them' outside of formal education settings (e.g. Archer et al., 2013; Science and Technology Committee, 2017). Therefore, initiatives which complement science learning in formal education and encourage young people to engage with science are vital (Science and Technology Committee, 2017).

The [PROJECT NAME] outreach project is one such initiative, using the computer game Minecraft to communicate scientific concepts and inspire interest in and enthusiasm for science in children. Drawing on the knowledge of the increased efficacy of learning when it is fun (Lepper and Cordova, 1992) and long history of using computer games to enhance education (e.g. Betz, 1995; Amory, Naicker, Vincent, and Adams, 1999; Jayakanthan, 2002), the project currently engages upwards of 6000 children per academic year, working in schools, at public events ([AUTHOR] et al., in press(a)) and in dedicated Minecraft Clubs

26

27	25	([AUTHOR] et al., 2019). With a Widening Participation focus, it aims to reach children who
28	26	may experience barriers to accessing Higher Education. These barriers include, but are not
29	27	limited to, disability, low family income, being of the first generation in their family to
30	28	attend university, being of Black, Asian and Minority Ethnic background, and being in care/a
31	29	care leaver (Lancaster University, 2019a). Extensive work is undertaken with children with
32	30	Autism Spectrum Disorder (ASD) in particular ([AUTHOR] et al., in press(b)); alternative
33	31	methods of communication such as computer games can be valuable for people with
34	32	conditions such as ASD, who may face challenges with face-to-face interactions (Mazurek,
35	33	Engelhardt, and Clark, 2015; Ringland, Wolf, Faucett, Dombrowski, and Hayes, 2016).
36	34	Further detail can be found in [AUTHOR] et al. (2018a; 2018b; 2019).
37	35	This evaluation assesses work in schools, through which sessions are delivered in primary,
38	36	secondary and specialist schools in the United Kingdom. Due to the range of educational
39	37	levels involved, sessions are designed to be flexible so that delivery and content can be
40	38	adapted for varying ages and needs. While topics are covered that children may not
41	39	experience in such detail until much later, or indeed at all, in their school careers, the skills
42	40	and concepts supported are linked to the relevant stage of the National Curriculum, as is key
43	41	content (Department of Education, 2014).
44	42	Minecraft is an effective medium for communicating scientific concepts (e.g. Nebel,
45	43	Schneider, and Rey, 2016; [AUTHOR] et al., 2019); [PROJECT NAME] does this within a
46	44	specifically designed framework. Data from activities at public events, which employ the
47	45	same approach as delivery in schools, demonstrate that children hugely enjoy [PROJECT
48	46	NAME] sessions ([AUTHOR] in press(a)). As enjoyment can have an impact on learning
49	47	(Lepper and Cordova, 1992), and data collection on children's understanding can be better
50	48	controlled in a school environment than at public events, the focus of this evaluation was to
i i		

51		Manuscript body Download source file (47.15 kB)
52	49	explore the efficacy of the project's approach in improving children's knowledge of scientific
53	50	topics.
54	51	
55	52	Theoretical framework
56	53	Minecraft is an open-world game in which players are free to explore, building creations
57	54	using a wide range of blocks with a variety of textures and properties. It replicates a range of
58	55	ecological and physical settings and processes analogous to those in the real world,
59	56	providing a virtual platform in which concepts such as formation of volcanic rocks, which
60	57	cannot be directly investigated in reality due to constraints of time, resources, ethics,
61	58	location and safety, can be safely explored. Minecraft is extremely popular with children
62	59	(Lane and Yi, 2017) and employed across a wide range of educational contexts, (e.g. literacy
63	60	– Lancaster University, 2019b; Short, 2012; and chemistry – Hullcraft, 2016). It is accessible
64	61	for classroom use due to its simplicity and relatively low cost, facilitating active construction
65	62	of knowledge and affording children opportunities to collaborate and engage with questions
66	63	within its interactive environment (Nebel et al., 2016). While boys are more likely to play
67	64	the game, start playing it at a younger age and spend more time on it than girls, it has
68	65	appeal to both boys and girls (Mavoa, Carter, and Gibbs, 2018, and references therein).
69	66	Thus, Minecraft is an ideal tool with which to communicate scientific principles and increase
70	67	scientific literacy and engagement (Nebel et al., 2016; Lane and Yi, 2017; Short, 2012;
71	68	[AUTHOR] et al., 2018a). The project's pedagogical approach to this utilises learner-centred
72	69	constructivism (Brooks and Brooks, 1995; Rovai, 2004) characterised by a teaching
73	70	environment that facilitates a positive impact on learning (Rosen and Salomon, 2007).
74	71	Students are enabled to direct their own learning, in line with their interests and solving
75	72	problems through use of Minecraft. A clear emphasis is placed on constructing

understanding and meaning from the information given, within the context of the game. A scientific topic is introduced using hands-on activities and interactive discussion. Children are then challenged to complete a related task in Minecraft, such as building a volcano, exploring the concepts discussed and developing their learning and understanding by creating related builds. While they receive guidance and support from the project staff, the ultimate outcomes are directed by the children, according to creativity and imaginations and the aspects of the topic that most interest them. Setting a task related to a specified theme considering a real-world problem or demonstrating a real-world process, and allowing children to decide how they address this in Minecraft, enables them to test and explore concepts in a way that is not possible in reality and pursue their own interests by focusing on aspects of the topic that most engages them. Thus, anchored instruction (The Cognition and Technology Group at Vanderbilt, 1990) and constructionism (Papert and Harel, 1991) are applied by contextualising the themed building challenge in a real-world situation and building upon knowledge to explore the topic and advance understanding (AUTHOR, 2019). Minecraft is operated in its 'creative' mode; users have access to an unlimited supply of building blocks. Research areas covered include parasite ecology, food security, volcanology, plant biology, flood management, animal adaptations, insect ecology, and bioluminescence. Scaffolding and collaborative learning approaches (Vygotsky, 1978; Mercer and Littleton, 2007) help children construct meaning with each other through the dialogue they engage in through learning and play (Bruner, 1974). Enhancing participation and involvement can lead to children feeling more in control and more motivated to learn (Brown and Kennedy, 2011). This also allows the adults working with the children to avoid epistemic injustice (adults listening 'for' the right answer rather than listening 'to' what the child organically

101

102	97	and meaningfully contributes (Murris, 2008)). Using the information given and the
103	98	discussion they engage in, tailored to their educational level, children can maintain interest
104	99	in and understand a scientific topic, consequently feeling that science is 'for them'
105	100	([AUTHOR] et al., 2018a). The style of teaching not only draws upon social constructionist
106	101	models and dialogic styles, but also gives a voice to the children involved; this participatory
107	102	pedagogy treats children as active learners rather than passive. The individual is
108	103	acknowledged and appreciated for the valuable information they bring with them to
109	104	discussion, motivating children to learn (Brown and Kennedy, 2011).
110	105	Further detail on the project's pedagogical approach can be found in [AUTHOR] et al.
111	106	(2018a).
112	107	
113	108	Evaluation of efficacy for learning
114	109	The efficacy of this approach in enhancing children's knowledge and understanding of
115	110	scientific topics was assessed as part of the project evaluation using short pre- and post-
116	111	intervention questionnaires. The working question for this evaluation was "does
117	112	participating in [PROJECT NAME] sessions lead to an increase in knowledge of the subject
118	113	under discussion?". All participants were from Widening Participation backgrounds, with
119	114	most having Special Educational Needs. Some children were in specialist schools and the
120	115	project team were aware from teachers that, as is often the case throughout the project,
121	116	many of the children participating had difficulties engaging in or benefiting fully from
122	117	standard school lessons. Therefore, a statistically significant increase in correct answers
123	118	following the project (rather than a set level of correct answers) would be taken as a
124	119	successful outcome.

ARISE

125		Download source file (47.15 kB) Action Research and Innovation in Science Education
126	120	Secondary school students have had more opportunities for prior learning about topics than
127	121	primary school students as they are older. Analysis of our audiences at public events shows
128	122	no significant difference in interest in Minecraft between boys and girls who attend
129	123	([AUTHOR] et al., in press(a)), however monitoring data shows that more boys than girls
130	124	attend our public events (through choice) and school sessions (chosen by teachers); gaming
131	125	has been stereotyped as a male pastime (Shaw, 2010 and references therein) and many girls
132	126	see Science, Technology, Engineering and Maths (STEM) subjects as 'not for them'
133	127	(MacDonald, 2014). Therefore, potential differences in impact between primary and
134	128	secondary school students, and boys and girls, were also explored.
135	129	Therefore, the null (H_0) and alternative (H_1) hypotheses were:
136	130	H0: participating in [PROJECT NAME] sessions does not produce a statistically significant
137	131	change in subject knowledge
138	132	H_1): participating in [PROJECT NAME] sessions produces a statistically significant change in
139	133	subject knowledge.
140	134	
141	135	Methods
142	136	Evaluation approach
143	137	Between June 2017 and July 2018, 492 children in school years 3 to 10 (ages 7 to 14) from
144	138	32 schools taking part in [PROJECT NAME] 'volcanoes' and 'habitats' topic visits, answered
145	139	short questionnaires before and after their session. These topics were selected because
146	140	they:
147	141	had at least one year of preceding delivery, allowing practitioners to select questions
148	142	ensuring consistency across data collection as relevant content was guaranteed to be
149	143	covered in sessions;

Manuscript body

Download source file (47.15 kB)

were key topics for delivery during the sampling period, providing sufficiently-sized samples (Bartlett et al., 2001); cover different scientific areas (earth sciences and ecology), representing the project as a whole. Table 1 gives details of sample and population sizes. [PROJECT NAME] is an outreach project; data collection was collected for efficacy evaluation purposes. This secondary analysis of the data has been approved by the [UNIVERSITY] Faculty of Science and Technology Ethics Team. Suitability for the audience is essential in activity evaluation (e.g. University of Manchester, 2012); it was vital that data collection did not interfere with children's experiences of the outreach intervention, including impacting on their enjoyment and time available for participation in the content delivery. All responses were anonymous, recording only children's school year and whether they were male or female for evaluation purposes. Children were assured that their answers would not impact them, as this was an assessment of the project's performance, not theirs. To preserve anonymity, schools are not named here. Details of types of schools involved are given in Table 2. Basic demographics of children are given in Table 3. Questionnaires consisted of three questions relating to the topic, the correct answers to which were taught during sessions as determined during the pre-sampling period. The number of questions was limited to three because: questionnaires had to be suitable for a range of educational levels, with a larger number of questions potentially excluding some students; completion of questionnaires had to be integrated into sessions without impacting on participants' enjoyment of the activity or time available for core delivery.

175

176	168	Children answered these questions at the start of the session, before any delivery of
177	169	content, and again after the session to enable comparison between scores before and after
178	170	participating. One 'point' was assigned per correct answer and the total points
179	171	improvement averaged across all participants for each topic. Statistical analysis was
180	172	performed using SPSS Statistics 24 (https://www.ibm.com/analytics/spss-statistics-software,
181	173	RRID:SCR_002865). Non-parametric tests were used for analysis as data did not meet the
182	174	parametric assumption of normality. Paired sign tests were performed to determine
183	175	whether there was a significant change between before and after scores.
184	176	Mann Whitney U tests were performed to assess whether there were significant differences
185	177	between the scores of boys and girls, and primary and secondary school students.
186	178	Significance was set to the 0.05 level.
187	179	
188	180	The 'volcanoes' topic
188 189	180 181	The 'volcanoes' topic In Minecraft, interaction of lava and water mimics that of the real world in that when lava
189	181	In Minecraft, interaction of lava and water mimics that of the real world in that when lava
189 190	181 182	In Minecraft, interaction of lava and water mimics that of the real world in that when lava and water come into contact, the source block (the first block placed, i.e. the hottest part)
189 190 191	181 182 183	In Minecraft, interaction of lava and water mimics that of the real world in that when lava and water come into contact, the source block (the first block placed, i.e. the hottest part) of the lava flow will form obsidian. In reality, obsidian is an acrystalline, volcanic glass which
189 190 191 192	181 182 183 184	In Minecraft, interaction of lava and water mimics that of the real world in that when lava and water come into contact, the source block (the first block placed, i.e. the hottest part) of the lava flow will form obsidian. In reality, obsidian is an acrystalline, volcanic glass which can form when lava is cooled sufficiently rapidly – e.g. in contact with water – that crystals
189 190 191 192 193	181 182 183 184 185	In Minecraft, interaction of lava and water mimics that of the real world in that when lava and water come into contact, the source block (the first block placed, i.e. the hottest part) of the lava flow will form obsidian. In reality, obsidian is an acrystalline, volcanic glass which can form when lava is cooled sufficiently rapidly – e.g. in contact with water – that crystals do not have time to form and grow. In Minecraft, this takes place on the source block only;
189 190 191 192 193 194	181 182 183 184 185 186	In Minecraft, interaction of lava and water mimics that of the real world in that when lava and water come into contact, the source block (the first block placed, i.e. the hottest part) of the lava flow will form obsidian. In reality, obsidian is an acrystalline, volcanic glass which can form when lava is cooled sufficiently rapidly – e.g. in contact with water – that crystals do not have time to form and grow. In Minecraft, this takes place on the source block only; lava that has flowed away from this point has begun to cool down in the (virtual) air and
189 190 191 192 193 194 195	181 182 183 184 185 186 187	In Minecraft, interaction of lava and water mimics that of the real world in that when lava and water come into contact, the source block (the first block placed, i.e. the hottest part) of the lava flow will form obsidian. In reality, obsidian is an acrystalline, volcanic glass which can form when lava is cooled sufficiently rapidly – e.g. in contact with water – that crystals do not have time to form and grow. In Minecraft, this takes place on the source block only; lava that has flowed away from this point has begun to cool down in the (virtual) air and therefore crystals can grow.
189 190 191 192 193 194 195 196	181 182 183 184 185 186 187 188	In Minecraft, interaction of lava and water mimics that of the real world in that when lava and water come into contact, the source block (the first block placed, i.e. the hottest part) of the lava flow will form obsidian. In reality, obsidian is an acrystalline, volcanic glass which can form when lava is cooled sufficiently rapidly – e.g. in contact with water – that crystals do not have time to form and grow. In Minecraft, this takes place on the source block only; lava that has flowed away from this point has begun to cool down in the (virtual) air and therefore crystals can grow. During a 'volcanoes' session, in varying levels of detail, children are introduced to volcanic
189 190 191 192 193 194 195 196 197	181 182 183 184 185 186 187 188 189	In Minecraft, interaction of lava and water mimics that of the real world in that when lava and water come into contact, the source block (the first block placed, i.e. the hottest part) of the lava flow will form obsidian. In reality, obsidian is an acrystalline, volcanic glass which can form when lava is cooled sufficiently rapidly – e.g. in contact with water – that crystals do not have time to form and grow. In Minecraft, this takes place on the source block only; lava that has flowed away from this point has begun to cool down in the (virtual) air and therefore crystals can grow. During a 'volcanoes' session, in varying levels of detail, children are introduced to volcanic rock samples. These include obsidian, facilitating discussion of how it forms in Minecraft and

answers. It involves question forming, active participation and the children learning from any mistakes made (Brown and Kennedy, 2011). They also handle a sample of rhyolite, a lava rock containing crystals for comparison to the acrystalline obsidian, and pumice from a pyroclastic flow (another volcanic hazard). The features of volcanoes and mechanics of eruptions, including the difference between magma and lava, are discussed, and children consider the relative risks of volcanic hazards. They then complete a building challenge in Minecraft; dependent on age and ability this could be to create obsidian in the game, build a volcano, create an eruption or manage hazards to protect a home, farm or village (Figure 1). Children were asked multiple-choice questions relating to terminology (molten rock being called magma before eruption), hazards (pyroclastic flows presenting the highest risk to life of the hazards listed) and lava-water interactions (obsidian being a product of this). The first question relates to information that is taught via the National Curriculum. The second concerns a common misconception that occurs during these sessions which requires understanding of the properties and processes of volcanic hazards to address, and the third relates to a fact (obsidian forming due to interaction of lava with water) which some children know through playing Minecraft without being familiar with the real-world processes involved, and others have no knowledge of because, outside Minecraft, this is post-statutory school education knowledge. Therefore, a difference in results for each question might be expected and questions were analysed separately as well as summatively. All of these questions are answered in each [PROJECT NAME] 'volcanoes' sessions, regardless of adaptations for age and ability, and are consolidated by even the most basic exploration in Minecraft within the sessions, as simply placing lava and water blocks facilitates investigation and discussion of lava placement, movement (including in relation to the behaviours of other hazards) and formation of obsidian or rock in contact with water.

225

226	216	Therefore, all participants are able to consolidate understanding of the concepts presented
227	217	and considered in the questions through using the game. More experienced or able players
228	218	can build an internally representative volcano through layering blocks, create different types
229	219	of eruption using various blocks and processes, and experiment, for example, with using
230	220	different materials as protective barriers around houses to find which is most effective. A
231	221	fuller description of the ways in which the project uses Minecraft in Earth Sciences is given
232	222	in Author (2018b).
233	223	
234	224	The 'habitats' topic
235	225	Minecraft contains a range of geographical biomes and a variety of animals. During
236	226	'habitats' sessions, adaptations of animals to different environments are demonstrated and
237	227	discussed, linking to virtual biomes and animals found in Minecraft. Children then select a
238	228	premade Minecraft world containing the habitat of their choice, such as snow, desert,
239	229	savannah or rainforest, and use knowledge of animal adaptations to habitats acquired in the
240	230	introduction to either build an animal that would live in that environment, or design their
241	231	own animal which is adapted to that environment. During this phase, they consider the
242	232	habitat the animal should live in, living conditions of the habitat, and the animal's body
243	233	shape, colouration and eye position (Figure 2). Although children are building within a single
244	234	biome, the processes involved in creating an adapted animal support consolidation and
245	235	understanding of adaptations to other habitats that they have learnt about in the topic
246	236	discussion.
247	237	Children were asked multiple-choice questions about adaptations of animals to their
248	238	environments; reason for polar bear fur colour, reason for desert hare ear size and
249	239	identifying polar bear skin colour. These three questions address knowledge and

250

251	240	understanding that require comprehension of concepts such as heat absorption and surface
252	241	area to volume ratios, as well as specific scientific terminology which they may or may not
253	242	have addressed in school or encountered through gameplay. As with the volcanoes topic,
254	243	there is opportunity for understanding of the underlying concepts involved to be
255	244	consolidated through the Minecraft part of the session, whichever setting and approach are
256	245	chosen. Again, questions were analysed separately as well as summatively.
257	246	
258	247	Results
259	248	Volcanoes
260	249	Results of pre- and post-intervention questionnaires for the 'volcanoes' topic are shown in
261	250	Table 4. Mann-Whitney U tests conducted to determine whether the demographics of the
262	251	students taking part affected their pre- or post-activity test scores are given in Table 5.
263	252	No significant differences were found between results for primary and secondary school
264	253	students. As a significant difference was found between the scores of girls and boys at the
265	254	pre-activity stage (p <.05, Table 5), their answers were also compared at the primary and
266	255	secondary school levels. Girls in primary schools (n=84) had a mean total score of 1.5 \pm 0.1,
267	256	while boys (n=86) had a mean score of 1.9 \pm 0.1; a Mann-Whitney U test determined that
268	257	this was significant (p=.004). At secondary school level, both girls (n=26) and boys (n=73)
269	258	had a mean total score of 1.8 \pm 0.1, with a p-value of .692; there was a significant difference
270	259	between the mean pre-activity scores of girls and boys at primary school level, and no
271	260	significant difference at secondary school level.
272	261	Girls at primary school level achieved lower scores than boys across all three 'volcanoes'
273	262	pre-test questions. However, the only question for which this difference was statistically
274	263	significant (Mann-Whitney U test, p < .001) was question 3, for which the mean pre-test

275		Manuscript body Download source file (47.15 kB) 12
276	264	score for primary school girls was 70.2% \pm 5.0% and that for primary school boys was 93.0 \pm
277	265	2.8%.
278	266	There were significant differences (p < .001) between pre- and post-activity mean total
279	267	scores. Results showed an average 30.5% improvement from a mean starting point of 57.5%
280	268	correct answers pre-activity (maximum possible improvement 42.5% if all children scored
281	269	100% post-activity).
282	270	
283	271	Habitats
284	272	Results of the before and after 'habitats' questionnaires are shown in Table 6. Results of
285	273	Mann-Whitney U tests performed on the data to assess whether there were significant
286	274	differences in scores depending on the demographics of the students are shown in Table 7.
287	275	No significant differences between scores for boys and girls were found. As there were
288	276	significant differences between pre- and post-activity scores for primary and secondary
289	277	school students, the rates of improvement for primary (mean improvement = 1.4 \pm 0.1) and
290	278	secondary school (mean improvement = 1.6 ± 0.2) students were compared. No significant
291	279	difference (p = .221) between improvement rates was found.
292	280	There were significant differences (p < .001) between pre- and post-activity mean total
293	281	scores; a 46.8% improvement from a mean starting score of 19.4% (maximum possible
294	282	improvement 80.6%).
295	283	
296	284	Discussion
297	285	Overall impact

286 Substantial and significant improvement in children's knowledge and understanding of both

298

²⁹⁹ 287 topics followed participation in [PROJECT NAME] Minecraft sessions. Expected relative

300

ARISE Action Research and Innovation in Science Educat

301	288	differences in levels of prior knowledge for the three 'volcanoes' questions are reflected in
302	289	the average starting scores for each question (Table 4). Significant improvements were seen
303	290	for all questions for both topics. These outcomes demonstrate that participation in
304	291	[PROJECT NAME] school sessions, using the project's specific pedagogical approach
305	292	combining interactive discussion with creative Minecraft play to consolidate concepts, has a
306	293	clear positive impact on subject knowledge and understanding.
307	294	
308	295	Effect of student demographics on outcomes
309	296	Mann-Whitney U tests demonstrated no significant difference between male and female
310	297	students, at any stage for the 'habitats' sessions, and a significant difference between
311	298	primary school boys and girls, with girls achieving lower scores, for the pre-activity
312	299	'volcanoes' questions. There was no significant difference between scores for boys and girls
313	300	after the 'volcanoes' sessions.
314	301	While primary school aged girls scored lower than boys across all three questions in the
315	302	'volcanoes' pre-testing, there was only one question for which this difference was
316	303	statistically significant. This was question 3, which asked what (out of four possible answers)
317	304	forms when lava erupts into water. As described above, the answer to this question was
318	305	obsidian and the process can be observed in Minecraft.
319	306	Primary school girls did not have poor knowledge of this; their mean pre-test mean score
320	307	was 70.2% \pm 5.0% and this was the question that they performed best on. The difference
321	308	arises because their male counterparts, also demonstrating that this is the question about
322	309	which they had most existing prior knowledge, returned a mean score of 93.0 \pm 2.8%. This
323	310	question is the only of the six asked for which the relevant knowledge could be obtained
324	311	through playing Minecraft alone; there was no significant difference between results for

325

326	312	boys and girls for any of the other 'volcanoes' or 'habitats' questions. While the reason for
327	313	this difference cannot be extracted from these data, anecdotally we know that children who
328	314	are already aware of obsidian and how it forms have this knowledge through playing
329	315	Minecraft. We show them a piece of real obsidian during sessions, and when they can name
330	316	it we ask them how they know what it is; the answer is invariably that they've encountered
331	317	it in Minecraft.
332	318	While girls also have good knowledge and are also playing Minecraft, schools send more
333	319	boys than girls to our Minecraft sessions. This is not a unique issue; Mavoa et al. (2018)
334	320	highlighted the need to ensure that girls do not miss out on opportunities to learn through
335	321	digital play. The mean pre- and post-test results here demonstrate that playing Minecraft
336	322	can be an effective learning activity and this difference between boys and girls could suggest
337	323	that prior gameplay enables children to have higher pre-existing knowledge on which to
338	324	build when attending our sessions, and from which boys are benefitting to a greater extent;
339	325	this is an area for future exploration. Regardless of the reason for the difference in
340	326	knowledge pre-activity, these results demonstrate that our sessions brought girls' results to
341	327	parity with boys'.
342	328	It is unclear why the difference between girls and boys decreased at secondary level.
343	329	Possible reasons are:
344	330	• girls are more likely to play Minecraft as they get older (Mavoa et al., 2018), which
345	331	could increase their pre-existing knowledge;
346	332	• as interests in science are formed by age 14 (Archer et al., 2012 and references
347	333	therein), with decline in interests beginning at around age 10 (Murphy and Beggs,
348	334	2005), secondary school teachers have a clearer sense of which children are
349	335	interested in science and are selecting those children to take part, so that they are

Manuscript body

Download source file (47.15 kB) more likely to have pre-existing knowledge and interest while girls who would score lower on the pre-activity questionnaires are not being chosen to take part. It is well known that many girls do not see STEM subjects as being 'for them' (MacDonald,

2014) and therefore this selection is likely to disproportionately affect girls. Teacher bias

may also play a part in this; there is substantial evidence that teachers perceive boys as

being better and more naturally able at science than girls (MacDonald, 2014 and references

therein) and may therefore be preferentially selecting boys alongside only those girls who

show a clear interest in STEM subjects, thereby restricting the opportunities of other girls.

Conversely, girls and children from other under-represented groups - including white and

black boys from low socioeconomic status backgrounds (Archer, DeWitt, and Willis, 2014) -

who do not see science as 'for them' would particularly benefit from taking part in [PROJECT

NAME] activities. A core aim of the activities is to help children identify with science and

scientists and there is a strong representation of female scientists from Widening

Participation backgrounds on the project team.

Analysing the impact of specific prior Minecraft experience and habits of participants in the sample is beyond the scope of this study, the aim of which is to determine whether or not there is an impact on learning for participants in [PROJECT NAME] sessions across all children; this is a potential area for future exploration, particularly as a separate analysis conducted by the project of 174 school students aged 4-18 ([AUTHOR] in review) revealed that an equal proportion of boys and girls had high interest in using Minecraft for learning about a scientific topic. Regardless of the underlying reasons for differences between results for boys and girls found here and despite stereotyping of gaming as a male pursuit, 42% of the UK's gamers are female (UKIE, 2018) and girls do play Minecraft (Mavoa et al., 2018, and

references therein); increased play by females and through the generations provides a solid platform for [PROJECT NAME] to inspire disadvantaged children and girls about science. There were no significant differences in scores between primary and secondary school students for the 'volcanoes' topic, while there was significant difference between the test scores for these two age groups for the 'habitats' topic, both pre- and post-activity. While both cohorts significantly improved their scores between the pre- and post-test questions (there was no significant difference in overall improvement between primary and secondary school students), secondary school students scored significantly higher than primary school students both before and after the activity. This indicates that secondary school students came to the sessions with substantially more pre-existing knowledge than primary school students, which was not the case with the 'volcanoes' topic. This is most likely due to the increased coverage and level of complexity with which content relevant to the 'habitats' topic is addressed over the key stages of the National Curriculum (for example, first learning about camouflage and later being introduced to terms such as prey and predator, and introduction of concepts such as surface area to volume ratio at secondary school level), whereas volcanoes are covered, at least at some level, earlier in the curriculum and thus most primary school students will have some exposure to the facts and concepts related to them.

377

394 378 **Conclusions**

379 These outcomes suggest that there remains a need to ensure that girls (and other groups
 380 that don't see science as 'for them') are included in science engagement interventions.
 381 Nevertheless, participating in a [PROJECT NAME] school session leads to improved subject
 382 knowledge and understanding, regardless of prior existing knowledge; Minecraft and the

399		Download source file (47.15 kB) 17
400	383	[PROJECT NAME] approach to using it constitutes is an effective teaching tool for improving
401	384	scientific knowledge and understanding. Thus, H_0 is rejected, and H_1 , that participation in
402	385	[PROJECT NAME] sessions has a statistically significant effect on subject knowledge, is

- accepted. This impact is positive. Given the wide range of possibilities presented by the
- functionality of Minecraft, there is much scope for further research and future expansion of
- this approach for increasing scientific literacy.
- References
- [AUTHOR] Eos
- [AUTHOR] Roots Education Review

Manuscript body

- [AUTHOR] Journal of Science Communication
- [AUTHOR] Research for All
- [AUTHOR] Digital Learning
- [AUTHOR] School Science Review
- Amory, A., Naicker, K., Vincent, J. and Adams, C. (1999). The use of computer games as an
- educational tool: identification of appropriate game types and game elements. British
- Journal of Educational Technology, 30(4), 311-321.
- Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., Wong, B. (2012). Science aspirations,
- capital, and family habitus. American Educational Research Journal, 49(5), 881-908.
- Archer, L., DeWitt, J. and Willis, B. (2014). Adolescent Boys' Science Aspirations: Masculinity,
- Capital, and Power. Journal of Research in Science Teaching, 51(1), 1-30.
- Betz, J. (1995). Computer Games: Increase Learning in an Interactive Multidisciplinary
- Environment. Journal of Educational Technology Systems, 24(2), 195-205.

- 424 406 British Educational Research Association (2014). *Ethical Guidelines for Educational Research*.
- 425 407 Retrieved from https://www.bera.ac.uk/researchers-resources/publications/ethical-
- 426 408 guidelines-for-educational-research-2011
- 427 409 Brooks, J.G. and Brooks, M. (2001). In search of understanding: The case for constructivist
- 428 410 *classrooms, 2nd edition*. London, UK: Pearson.
- 429 411 Brown, K. and Kennedy, H. (2011). Learning through conversation: exploring and extending
- 430 412 children's involvement in classroom talk. *School Psychology International*, 32(4), 377-396.
- 431 413 Bruner, J. S. (1974). From communication to language—A psychological perspective.
- ⁴³² 414 *Cognition, 3*(3), 255-287.
- 433 415 Department for Education. (2014). *National Curriculum*. Retrieved from
- 434 416 https://www.gov.uk/government/collections/national-curriculum
- 435 417 Harlen, W. (2018). *The Teaching of Science in Primary Schools (7th edition)*. London, UK:
- 436 418 Routledge.
- 437 419 Hullcraft. (2016). *MolCraft*. Retrieved from: <u>http://www.hullcraft.com/molcraft/</u>
- 438 420 Jayakanthan, R. (2002). Application of computer games in the field of education. The
- ⁴³⁹ 421 Electronic Library, 20(2), 98-102.
- 440 422 Lancaster University (2019a). *Widening Participation Frequently Asked Questions*.
- 441 423 Retrieved from https://www.lancaster.ac.uk/about-us/widening-participation/frequently-
- 442 424 <u>asked-questions/</u>
- 443 425 Lancaster University (2019b). *Litcraft*. Retrieved from
- 444 426 <u>https://www.lancaster.ac.uk/chronotopic-cartographies/litcraft/</u>

Manuscript body

- Environment for Practice and Research. In F.C. Blumberg and P.J. Brooks (Ed.). Cognitive
- Development in Digital Contexts (pp. 145-166). Massachusetts, US: Academic Press.
- Lepper, M.R. and Cordova, D.I. (1992). A Desire to Be Taught: Instructional Consequences of
- Intrinsic Motivation. *Motivation and Emotion*, 16(3), 187-208.
- MacDonald, A. (2014). "Not for people like me?" Under-represented groups in science,
- technology and engineering. Bradford, UK: WISE.
- Mavoa, J., Carter, M. and Gibbs, M. (2018). Children and Minecraft: a survey of children's
- digital play. New Media and Society, 20(9), 3283-330.
- Mazurek, M.O., Engelhardt, C.R. and Clark, K.E. (2015). Video games from the perspective of
- adults with autism spectrum disorder. Computers in Human Behaviour, 51, 122-130
- Ringland, K.E., Wolf, C.T., Faucett, H., Dombrowski, L. and Hayes, G.R. (2016). "Will I always
- be not social?": Re-Conceptualizing Sociality in the Context of a Minecraft Community for
- Autism. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems,
- 1256-1269
- Mercer, N. & Littleton, K. (2007). Dialogue and the development of children's thinking: a
- sociocultural approach. Abingdon: Routledge.
- Murphy, C. and Beggs, J. (2005). Primary science in the UK: a scoping report. Final report to
- the Wellcome Trust. London, UK: Wellcome.
- Murphy, C., Beggs, J., Carlisle, K. and Greenwood, J. (2004). Students as 'catalysts' in the
- classroom: the impact of co-teaching between science student teachers and primary
- classroom teachers on children's enjoyment and learning of science. International Journal of
- *Science Education, 26*(8), 1023-1035.

469

- 470 450 Murris, K. (2008). Philosophy with children, the stingray and the educative value of
- 471 451 disequilibrium. *Journal of Philosophy of Education, 42*(3-4), 667-685.
- 472 452 Nebel, S., Schneider, S., and Rey, G. D. (2016). Mining Learning and Crafting Scientific
- 473 453 Experiments: A Literature Review on the Use of Minecraft in Education and Research.
- ⁴⁷⁴ 454 Educational Technology & Society, 19(2), 355–366.
- 475 455 Papert., S. and Harel, I. (1991). Situating constructionism. In I. Harel and S. Papert (Eds.).
- 476 456 *Constructionism*. California, USA: Praeger Publishing Inc.
- 477 457 Rogoff, B. (1991). Apprenticeship in thinking : cognitive development in social context. New
- 478 458 York, USA : Oxford University Press.
- 479 459 Rosen, Y. and Salomon, G. (2007). 'The differential learning achievements of constructivist
- 480 460 technology-intensive learning environments as compared with traditional ones: a meta-
- 481 461 analysis'. Journal of Educational Computing Research 36 (1), pp. 1–14.
- 482 462 Rovai, A.P. (2004). A constructivist approach to online college learning. *The Internet and*
- ⁴⁸³ 463 *Higher Education* 7(2), 79-93.
- 484 464 Science and Technology Committee (2017). Science communication and engagement,
- 485 465 *eleventh report of session 2016-2017*. London, UK: House of Commons. Retrieved from
- 486 466 <u>https://publications.parliament.uk/pa/cm201617/cmselect/cmsctech/162/162.pdf</u>
- 487 467 Shaw, A. (2010). What Is Video Game Culture? Cultural Studies and Game Studies. *Games*488 468 and Culture, 5(4), 403-424.
- 489 469 Short, D. (2012). Teaching scientific concepts using a virtual world Minecraft. *Teaching*
- ⁴⁹⁰ 470 *Science*, *58*(3), 55-58.
- ⁴⁹¹ 471 The Cognition And Technology Group At Vanderbilt (1990). Anchored Instruction and Its
- 492 472 Relationship to Situated Cognition. *Educational Researcher*, 19(6), 2-10.

493		Manuscript body Download source file (47.15 kB) 21
494	473	UKIE (2018). UK Video Games Fact Sheet. UK Interactive Entertainment Association UK video
495	474	games fact sheet (February 2018). London, Uk: UK Entertainment Association.
496	475	University of Manchester (2012). Evaluating your engagement activities. Manchester, UK:
497	476	University of Manchester. Retrieved from
498	477	http://www.engagement.manchester.ac.uk/resources/engagement/evaluating_public_enag
499	478	ement/Evaluating%20Your%20Public%20Engagement%20Activities.pdf
500	479	Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes.
501	480	Cambridge, USA: Harvard University Press.
502	481	
503	482	Acknowledgements
504	483	We gratefully acknowledge funding from [UNIVERSITY], the assistance of [UNIVERSITY]
505	484	student volunteers supporting session delivery, and staff and students at participating
506	485	schools.

COLLER PLIC

Table 1. Populations and sample sizes required (Bartlett et al., 2001), for each topic and

relative to all Minecraft sessions school delivery (not including assemblies) for a confidence

level of 0.95 and 0.05 confidence level, during the sampling period (June 2017-July 2018).

Торіс	Population	Sample size	Sample size	Difference between
		required	achieved	sample size required
				and achieved
Volcanoes	547	226	269	43
Habitats	432	204	223	19
All school	2465	332	492	160
session delivery				0

Table 2. Types of schools involved in topic evaluations.

Торіс	Primary	Secondary	Special	Total	Total
	school (Years	school (Years	schools	schools	children
	Reception-6 /	7-13 / age 11-			
	age 4-11)	18)			
Volcanoes	13	8	1	22	269
Habitats	8	1	1	10	223

Table 3. Basic demographics of children involved in each topic evaluation.

Торіс	Male	Female	Year							
			3	4	5	6	7	8	9	10
Volcanoes	159	110	51	0	56	63	43	22	21	13

Table

Habitats	120	103	25	0	52	112	14	18	0	0	
----------	-----	-----	----	---	----	-----	----	----	---	---	--

Table 4. Frequency and percentage of correct answers and paired sign test results for each 'volcanoes' question pre- and post-activity, along with mean and modal total scores.

Question	Pre-activity	Post-activity	Improvement	Paired sign test
	correct answers	correct scores		results
1 (magma	198 (73.6%)	245 (91.1%)	47 (17.5%)	Z = -6.23 ,p <
terminology)				.001
2 (volcano	50 (18.6%)	214 (79.6%)	164 (61.0%)	Z = -12.65, p <
hazards)				.001
3 (obsidian	216 (80.3%)	251 (93.3%)	35 (13.0%)	Z= -5.34, p <
formation)				.001
Mean total score	M = 57.5, SD =	M = 88.0, SD	M = 30.5, SD	Z = -12.59, p <
(%)	1.53	1.33	= 2.02	.001
Modal total score	2	3	1	

Table 5. Differences between mean pre- and post-activity test scores, with Mann-Whitney U test results, to determine whether scores differed significantly between boys and girls, and primary and secondary school students for the 'volcanoes' session.

Group	Girls	Boys	Mann-	Primary	Secondary	Mann-
	(n=110)	(n=159)	Whitney	school	school	Whitney
			U test	students	students	U test
			results	(n=170)	(n=99)	results

Pre-activity	52.1 ±	61.2 ±	U =	56.1 ±	59.9 ± 2.4%	U = 7865,
test mean	2.5%	1.9%	7269 <i>,</i> p	2.0%		p = .327
score			= 0.010			
Post-	88.5 ±	87.6 ±	U =	85.7 ±	91.9 ± 1.7%	U = 7473,
activity test	2.3%	1.6%	8084 <i>,</i> p	1.8%		p = .050
mean score			=0.177			

Table 6. Frequency and percentage of correct answers and paired sign test results for each 'habitats' question pre- and post-activity, along with mean and modal total scores.

Question	Pre-activity	Post-activity	Improvement	Paired sign test
	correct answers	correct scores		results
1 (reason for	73 (32.7%)	148 (66.4%)	75 (33.6%)	Z = -7.47, p <
polar bear fur				.001
colour)				
2 (reason for	11 (4.9%)	100 (44.8%)	89 (39.9%)	Z = -9.33, p <
hare ear size)	0			.001
3 (identify polar	46 (20.6%)	195 (87.4%)	149 (66.8%)	Z = -12.13, p
bear skin colour)				<.001
Mean total	19.4 ± 1.66%	66.2 ± 2.00%	46.8 ± 2.60%	Z = -12.01, p <
score ± standard				.001
error				
Modal total	0	2	2	
score				

Table 7. Differences between mean pre- and post-activity test scores, with Mann-Whitney U test results, to determine whether scores differed significantly between boys and girls, and primary and secondary school students for the 'habitats' session.

Group	Girls	Boys	Mann-	Primary	Secondary	Mann-
	(n=103)	(n=120)	Whitney	school	school	Whitney
			U test	students	students	U test
			results	(n=189)	(n=34)	results
Pre-activity	20.7 ±	18.3 ±	U =	18.0 ±	27.5 ± 4.33%	U = 2513,
test mean	2.39%	2.30%	3781 <i>,</i> p	1.78%		p = .023
score			= .351		N'C	
Post-	66.3 ±	66.7 ±	U =	63.7 ±	80.4 ± 4.25%	U = 2198,
activity test	3.00%	2.70%	6129 <i>,</i> p	2.19%		p = .002
mean score			= .911			

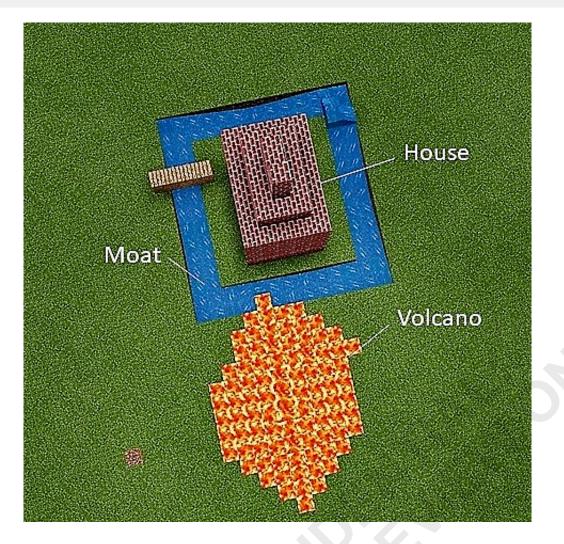


Figure 1. A house built in Minecraft is protected from a Minecraft volcano by a water-filled moat. This management of the virtual hazard demonstrates understanding that interactions between water and lava will cool the lava, therefore a moat could solidify lava, impeding its progress.

Figure 2. A crab built in Minecraft shows adaptations to its habitat. Its colouration camouflages it in relation to its surroundings, complex blocks represent compound eyes which enable efficient detection of motion and light and the eyes sit on stalks, giving a wide field of vision.

Manuscript body

Download source file (47.15 kB)

Tables

Download source file (15.38 kB)

Figures

Figure 1 - Download source file (653.36 kB)

Figure 1. A house built in Minecraft is protected from a Minecraft volcano by a waterfilled moat. This management of the virtual hazard demonstrates understanding that interactions between water and lava will cool the lava, therefore a moat could solidify lava, impeding its progress.

Figure 2 - Download source file (1.23 MB)

Figure 2. A crab built in Minecraft shows adaptations to its habitat. Its colouration camouflages it in relation to its surroundings, complex blocks represent compound eyes which enable efficient detection of motion and light and the eyes sit on stalks, giving a wide field of vision.

