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Abstract

Vector-borne diseases have long presented major challenges to the health of rural communities
in the wet tropical regions of the world, but especially in sub-Saharan Africa. In this paper
we describe the contribution that statistical modelling has made to the global elimination
programme for one vector-borne disease, onchocerciasis.

We explain why information on the spatial distribution of a second vector-borne disease, Loa
loa, is needed before communities at high risk of onchocerciasis can be treated safely with
mass distribution of ivermectin, an antifiarial medication.

We show how a model-based geostatistical analysis of Loa loa prevalence survey data can be
used to map the predictive probability that each location in the region of interest meets a WHO
policy guideline for safe mass distribution of ivermectin and describe two applications: one
is to data from Cameroon that assesses prevalence using traditional blood-smear microscopy;
the other is to Africa-wide data that uses a low-cost questionnaire-based method.

We describe how a recent technological development in image-based microscopy has resulted
in a change of emphasis from prevalence alone to the bivariate spatial distribution of preva-
lence and the intensity of infection amongst infected individuals. We discuss how statistical
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modelling of the kind described here can contribute to health policy guidelines and decision-
making in two ways. One is to ensure that, in a resource-limited setting, prevalence surveys
are designed, and the resulting data analysed, as efficiently as possible. The other is to provide
an honest quantifi

cation of the uncertainty attached to any binary decision by reporting predictive probabilities
that a policy-de

fined condition for action is or is not met.

Vector-borne diseases have long presented major challenges to the health of rural communities
in the wet tropical regions of the world, but especially in sub-Saharan Africa. In this paper
we describe the contribution that statistical modelling has made to the global elimination
programme for one vector-borne disease, onchocerciasis.

We explain why information on the spatial distribution of a second vector-borne disease, Loa
loa, is needed before communities at high risk of onchocerciasis can be treated safely with
mass distribuiton of ivermectin, an antiflarial medication.

We show how a model-based geostatistical analysis of Loa loa prevalence survey data can be
used to map the predictive probability that each location in the region of interest meets a
WHO policy guideline for safe mass distribution of ivermectin and describe two applications:
one to data from Cameroon that assesses prevalence using traditional blood-smear microscopy;
one to Africa-wide data that uses a low-cost questionnaire-based method.

We describe how a recent technological development in image-based microscopy has resulted in
a change of emphasis from prevalence alone to the bivariate spatial distribution of prevalence
and the intensity of infection amongst infected individuals.

We discuss how statistical modelling of the kind described here can contribute to health
policy guidelines and decision-making in two ways. One is to ensure that, in a resource-
limited setting, prevalece surveys are designed, and the resulting data analysed, as efficiently
as possible. The other is to provide an honest quantification of the uncertainy attached to
any binary decision by reporting predictive probabilities that a policy-defined condition for
action is or is not met.

1 Problem statement

Vector-borne diseases have long presented major challenges to the health of rural communities
in the wet tropical regions of the world, but especially in sub-Saharan Africa. In this paper
we describe the contribution that statistical modelling has made to the global elimination
programme for one vector-borne disease, onchocerciasis.

Onchocerciasis was not always targeted for elimination. When the International Task Force
for Disease Eradication met in 1993, onchocerciasis was not among the six diseases considered
eradicable at the time (Centers for Disease Control and Prevention, 1993). Indeed, the On-
chocerciasis Control Program (OCP), and the African Programme for Onchocerciasis Control
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(APOC) that succeeded it, focused on controlling significant disease of the skin and eyes so that
onchocerciasis would no longer be a public health problem (Amazigo, 2008). That strategy for
control relied on mass drug administration (MDA) with ivermectin, an antifilarial medication
that kills larval-stage parasites (microfilariae) before they can either cause significant disease
in infected people or be transmitted to the blackfly vectors of infection. Ivermectin, under its
trade name MECTIZANR, has been provided free of charge since 1987 by its manufacturer,
Merck & Co Inc, to control onchocerciasis in all affected countries world-wide1. Even so, the
successful execution of a control programme using mass drug administration with ivermectin
(henceforth, MDA) faced formidable practical difficulties due to the size and inaccessibility of
the populations at risk and the low national income levels of many of the affected countries.
To address this challenge and ensure that even the most remote populations can be reached,
APOC developed a novel delivery strategy known as Community Directed Treatment with
Ivermectin (CDTI, Homeida et al, 2002), which has since been used by onchocerciasis pro-
grammes with great success.

The past two decades have seen tremendous success for onchocercaisis programmes. In the
Americas, where the infection is more focal and political will is strong, onchocerciasis has
now been eliminated in 11 of 13 foci of infection over 6 countries (World Health Organisation,
2013, 2014, 2015; Thiele et al, 2016). In Africa, over a dozen annual rounds of MDA led to
the interruption of transmission in selected foci in several countries including Mali, Senegal,
Uganda, Ethiopia, Nigeria and Sudan (World Health Organisation, 2018). Collectively, these
experiences demonstrated that the tools to detect and eliminate onchocerciasis infection exist
and can be used successfully by country programmes. As a consequence, in 2012 the World
Health Organization recognized that elimination is the appropriate target for onchocerciasis
in Africa, where 99% of the world’s population at risk live. This elimination effort is now
being coordinated by WHO’s regional office in Africa through their Expanded Special Project
for Elimination of Neglected Tropical Diseases (ESPEN, World Health Organisation, 2012).

In the midst of this great progress, there remains one insidious obstacle to the global elimina-
tion of onchocerciasis, namely the presence of Loa loa. Towards the end of the last century,
reports emerged of severe, sometimes fatal, reactions to ivermectin experienced by some in-
dividuals who were heavily infected with a second vector-borne parasitic infection, Loa loa
(Gardon et al, 1997; Boussinesq et al, 1998; Boussinesq et al, 2003). This discovery threat-
ened to de-rail the MDA progamme that until then had been regarded as safe. Because Loa
loa was not considered to be a major public health problem in its own right, there was limited
understanding of its geographical distribution in areas endemic for onchocerciasis, or of the
numbers of highly infected individuals considered to be at risk of experiencing serious adverse
reactions (henceforth, SAEs) to ivermectin. The presence of Loa loa has stymied the elimina-
tion effort in areas where the two parasites are co-endemic, as there has not been an agreed
upon strategy for how to deliver safe treatment with ivermectin. The remainder of the paper
describes how statistical modelling has been, and continues to be, used to address the “Loa
loa problem,” and hence to inform the operational policy around MDA for the elimination of
onchocerciasis.

1See: https://investors.merck.com/news/press-release-details/2017/Merck-Commemorates-30
-Years-of-MECTIZAN- Donation- Program-Progress/default.aspx
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2 Mapping Loaloa parasitological prevalence

To make safe ivermectin treatment decisions for onchocerciasis in areas where Loa loa is po-
tentially co-endemic, it is first necessary to map the areas where heavily infected individuals,
that is individuals harboring an abundant number of Loa loa parasites, are likely to be found.
A general feature of the epidemiology of vector-borne diseases is that heavily infected individ-
uals are more likely to be found in high-prevalence areas. For evidence in the current context,
see Boussinesq et al (2001). For this reason, and because it would have been infeasible to
test individuals for their levels of infection with Loa loa parasites before administering iverem-
ctin, Thomson et al (2000) used data from Loa loa prevalence surveys in conjunction with
satellite-derived images of environmental variables to map the geographical variation in Loa
loa prevalence. They fitted a logistic regression model to data on the presence/absence of Loa
loa parasites under microscopic examination of blood smears for “14,305 individuals sampled
from more than 100 villages” in five Loa loa-endemic west and central African countries. As
explanatory variables, they used data at 1km pixel resolution on forest cover, land use type
and soil type. Their model explained approximately 50% of the variation in prevalence over
the sampled villages. Thomson et al (2004) also developed a logistic regression model for
Loa loa prevalence using data for 14,225 individuals from 94 villages in Cameroon together
with a wider range of explanatory variables; their model explained approximately 60% of the
variation in prevalence over the sampled villages.

Variation in prevalence of an environmentally driven disease typically obeys Tobler’s so-called
first law of geography, which states that “everything is related to everything else, but near
things are more related than distant things” (Tobler, 1970). The statistical expression of this
is that empirical prevalence data usually exhibit spatial correlation. To the extent that the
relevant environmental risk-factors can be measured, this spatial correlation can be removed
by covariate adjustment, but this typically leaves an unexplained component of geographical
variation that manifests itself in residual spatial correlation. One way to account for this
residual spatial correlation is to extend the logistic regression model by including a latent,
spatially correlated process in the linear predictor (Breslow and Clayton, 1993; Diggle, Moyeed
and Tawn, 1998). The resulting model for P (x), the prevalence of disease at location x, is

log[P (x)/{1− P (x)}] = d(x)′β + S(x), (1)

where d(x) is a vector of covariates associated with x and S(x) is a latent, spatially continuous
stochastic process. Conditional on the prevalence surface P (x) throughout the region of
interest, the numbers Yi of infected individuals out of mi tested at locations xi : i = 1, ..., n
are independent, binomially distributed random variables with binomial probabilities P (xi)
and denominators mi.

Diggle, Thomson et al (2007) used this approach to refine the predictions in Thomson et
al (2004), using prevalence data for 21,938 individuals from 168 villages in Cameroon and
Nigeria. The addition of the stochastic term S(x) on the right hand side of (??) helps to
explain the geographical variation in Loa loa prevalence. Its purpose is two-fold: to give more
robust inferences about the effects of the environmental risk-factors and, more importantly in
this application, to give predictions of prevalence at unsampled locations that are both more
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Figure 1: Observed and predicted prevalences of Loa loa: (a) spatial model from Diggle,
Thomson et al (2007); (b) logistic regression model from Thomson et al (2004). Figure
reproduced from Diggle, Thomson et al, (2007).

accurate than can be obtained using only the available environmental risk-factors and more
honest in their associated measures of uncertainty. Diggle, Thomson et al (2007) examined
the residuals from a standard logistic regression model to suggest a suitable model for S(x).
This led them to specify S(x) to be a Gaussian process with covariance function

Cov{S(x), S(x′)} = σ2 exp(−||x− x′||/φ) + τ 2I(x = x′), (2)

where || · || denotes distance and I(·) is the indicator function. This model recognises two
sources of extra-binomial variation in the data, a spatial component σ2 and a non-spatial
component τ 2. Diggle, Thomson et al (2007) fitted the model using an MCMC implementation
of Bayesian inference, with the ratio τ 2/σ2 held fixed at 0.4 (owing to a limitation of the
software available to the authors at the time), an improper uniform prior for σ2 and the
regression parameters β, and a proper uniform prior for the spatial correlation range parameter
φ ∼ U(0, c) with c = 100km. The explanatory variables in the model were elevation and two
satellite-derived variables associated with greenness of vegetation. The rationale for choosing
these was that the vector, a Chrysops fly species, can breed successfully in hot, wet conditions;
in equatorial regions, elevation acts as a proxy for minimum temperature.

The minimum mean square error predictor for P (x) is its conditional expectation given the
data. The improvement in accuracy of prediction over the logistic regression model of Thomson
et al (2004) is summarised by the two scatterplots of observed against predicted prevalence
shown in Figure ??. A conventional measure of the associated uncertainty would be the
conditional variance of P (x) given the data. Diggle, Thomson et al (2007) argue that a more
useful way to summarise uncertainty is to map selected points of the predictive distribution
of each P (x), i.e. its conditional distribution given the data. This was particularly relevant
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Figure 2: Map of the predictive probability that prevalence of Loa loa exceeds 0.2 (20%). Solid
dots indicate the sampled village locations and their observed prevalences. Figure reproduced
from Diggle, Thomson et al, 2007.

to the application because by this time APOC policies included a requirement that in areas
where Loa loa prevalence exceeded 0.2 (20%), precautionary measures should be put in place
before implementation of MDA with evermectin, so as to be able to respond promptly to
any cases of SAEs. Accordingly, Figure ?? maps the predictive probability that P (x) > 0.2.
One striking feature of this map is that even in some areas where no data on prevalence are
available, the model can be almost certain that P (x) does not exceed 0.2, whereas it can
only be confident that P (x) does exceed 0.2 in areas where prevalences above 0.2 have been
observed. Put another way, the environmental variables alone can be sufficient to declare
an area “safe” for MDA with ivermectin, but not to declare an area “unsafe.” Finally, and
importantly, large swathes of the map in Figure ?? are pink, representing a close to fifty-fifty
call on prevalence exceeding 0.2. This is both the strength and the weakness of the map. Its
strength is it honesty in declaring an answer of “don’t know” to the policy-relevant question.
Its weakness is the extent of the pink regions, indicating a need for substantially more data.

3 Scaling up: the RAPLOA method

The conclusion from the Diggle, Thomson et al (2007) analysis is that the intensity of data-
collection in Cameroon is insufficient to delineate the whole of the country into “safe” and
“unsafe” areas for MDA. But expanding even this intensity of data collection to all of the
APOC countries would have been unaffordable. There was therefore an urgent need to develop
a low-cost alternative to blood-smear microscopy for estimating village-level prevalence. Such
an alternative had been proposed by Takougang et al (2002), and was in the process of being
validated at the time of the Diggle, Thomson et al (2007) study. This method, RAPLOA,
consisted of a three-item questionnaire: have you had past experience of eye worm? did it
look like this photograph (of an adult worm in the white part of the eye)? did the most
recent episode last between 1 and 7 days? Declaring a positive RAPLOA result as three ”yes”
answers gives village-level prevalence estimates that correlate well with estimates based on
blood smear microscopy, at a fraction of the cost. A validation study appeared in 2012 (Wanji
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Figure 3: Relationship between village-level blood smear prevalence and RAPLOA prevalence.
Black and red lines show the calibration models fitted to the original and validation data,
respectively. The left-hand panel shows the relationship on the log-odds scale, the right-hand
panel on the prevalence scale. Figure reproduced from Wanji et al (2012). Original data from
Takougang et al (2002)

et al, 2012) although the data underlying that study had been collected and the results of a
preliminary analysis reported to APOC some years previously, leading to the adoption of a
policy guideline equating 40% RAPLOA prevalence to 20% blood smear prevalence. In fact,
the results in Wanji et al (2012) suggested a best-guess equivalence slightly higher than 40%
but by this time the 40-20 rule had become well-established and changing this to one that
implied a less stringent safety threshold would not have been acceptable. The discrepancy
arose because the original analysis assumed a quadratic relationship between RAPLOA and
bood smear prevalences, whereas Wanji et al (2012) assumed a linear relationship between
log-odds-transformed prevalences; see Figure ??.

Zoure et al (2011) report on an Africa-wide study of RAPLOA prevalence, covering 381,575
individuals in 4,798 villages over an area of approximately 2500 by 3000 km in sub-Saharan
Africa. The two panels of Figure ?? map the locations of the 4,798 villages and the predictive
probability that RAPLOA prevalence exceeds 40%

4 Joint analysis of prevalence and intensity of infection:

the LoaScope

A major limitation of prevalence mapping as a way of identifying areas that are and are not
considered to be safe for MDA with ivermectin is that village-level prevalence is at best a proxy
for the proportion of village inhabitants who are heavily infected with Loa loa, and therefore
at risk of experiencing an SAE when given ivermectin. Schlüter et al (2016) addressed this by
investigating in more detail than hitherto the joint distribution of village-level prevalence and
the distribution of levels of infection. They used data from Takougang et al (2002) and Wanji
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Figure 4: Maps of survey locations (left-hand panel) and the predictive probabiity that
RAPLOA prevalence exceeds 40% (right-hand panel). Figure reproduced from Zoure et al
(2011).

et al (2012) consisting of blood smear counts of Loa loa microfilariae per ml obtained from
19,049 individuals in 222 villages in Cameroon, Republic of Congo and Democratic Republic
of Congo. They found that in most of the sampled villages the empirical distribution of
microfilariae per ml was reverse-J-shaped, and that in villages with higher observed prevalence
the distribution of positive counts typically had a longer upper tail; see Figure ??.

The behaviour illustrated in Figure ?? led Schlüter et al (2016) to propose a bivariate random
effects model of the following form. Let Y denote the number of microfilariae per ml for a
randomly sampled individual in a particular village, and (U, V ) a latent bivariate random
variable. Conditional on (U, V ), the distribution function of Y is

F (y) = 1− P × exp{−(y/Λ)κ} : y ≥ 0, (3)

where log{P/(1 − P )} = U , log Λ = V and the latent variable (U, V ) follows a bivariate
Normal distribution, realised independently in different villages. Schlüter et al (2016) found,
unsurprisingly, that in the fitted model Uand V were positively correlated (95% confidence
interval 0.534 to 0.864). This implies that it is possible to predict the proportion of highly
infected, and therefore high-risk, individuals in a village, given only the presence or absence
of Loa loa microfilariae in blood smears from a sample of village inhabitants. In most villages,
the infection levels considered to be indicative of a high-risk individual lie well into the upper
tail of the distribution. For this reason, model-based predictions based only on the sample size
and number of presences of Loa loa microfilariae were more precise than empirical predictions
based on the observed proportion of highly infected individuals.

Model-based predictions are, however, less robust than empirical ones, leading to an under-
standable reluctance to adopt them for routine use. A recent and potentially game-changing
technological development has been the invention of the LoaScope, a form of portable mi-
croscopy that uses image analysis of the movement of microfilariae in an individual’s blood
sample to estimate their level of infection (D’Ambrosio et al, 2015). The practical significance
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Figure 5: Empirical cumulative distributions of Loa loa microfilariae per ml in five randomly
selected villages. Figure reproduced from Schlüter et al (2016).

of this is that it enables individual-level testing to identify high-risk individuals at the point
of care and in real-time, without the need for trained microscopists. Kamgno et al (2017)
propose using the LoaScope in a test-and-not-treat strategy whereby individuals are tested
and ivermectin with-held if their estimated level of infection exceeds an agreed safe limit,
currently set at 20,000 microfilariae per ml. While this test-and-not-treat strategy is presently
the best tool for making safe ivermectin treatment decisions, the need to test every individual
makes it a resource-intensive approach. The Schlüter et al (2016) model can be applied at
village-level using LoaScope data from a sample of individuals to predict, with quantifiable
uncertainty, whether the village is safe to treat with ivermectin. The potential value of this
is that it can reduce the time and effort needed to establish whether MDA can be used in a
particular village.

The statistical argument is as follows. Suppose it would be acceptable to declare a village
safe for MDA if at most k individuals (where k may be zero or a small positive integer) would
give a LoaScope response in excess of 20,000 microfilariae per ml. Call this event T . The
Schlüter et al (2016) model can be used to calculate the predictive probability of T given a
set of LoaScope estimates y = (y1, ..., yn). If this probability is at least q, for an agreed value
of q close to 1, declare the village safe. If it is less than a second agreed value q′ close to
zero, declare it unsafe. If q′ < P(T |y) < q, increase the sample size. Provided that the village
population size, N say, is known, then with k = 0 this strategy converges to test-and-not-treat
as q approaches 1. If N is unknown, the model can only calculate the probability than an
unsampled individual will give a LoaScope estimate in excess of 20,000 microfilariae per ml.

Giorgi et al (2017) extended the Schlüter et al (2016) model by allowing the random effects
(U, V ) to be spatially correlated. Incorporating an estimate of the correlation structure of a
bivariate spatial process, {U(x), V (x)} leads to more precise prediction at any one location
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Figure 6: Maps of the predictive probability that at most 1% of individuals living at a partic-
ular location would give a Loa Scope estimate in excess of 20,000 microfilariae per ml. Solid
dots show survey locations. The left-hand panel was constructed from the first round of sur-
veys. In the right-hand panel the map has been updated to incorporate data from the second
round of surveys.

x by, in effect, allowing the pooling of information from neighbouring locations. As always,
this extra information is not a free lunch; it is bought at the cost of making additional, albeit
empirically test-able, modelling assumptions. Figure ?? shows a recent application of the
Giorgi et al (2017) model to LoaScope data from Gabon. In this application, the agreed
definition of “safe” was that with probability at least 0.95, at most 1% of the individuals
living at a location x would give a LoaScope estimate in excess of 20,000 microfilariae per ml.
After a first round of surveys concentrated in three distinct regions of Gabon, we constructed
the predictive probability map of T shown in the left-hand panel of Figure ??. This led to the
decision to conduct a second round of surveys in the areas adjacent to the western and eastern
surveyed regions, in the hope that this would extend the declared “safe” area. The result is
shown in the right-hand panel of Figure ??, which does show a modest extension of the “safe”
eastern area but also the emergence of a relatively unsafe area to the north of the western
cluster of sampled locations. Note that in areas remote from any survey location predictive
probabilities simply reflect the region-wide average properties of the data. For this reason, we
caution against mapping such areas at all, so as to avoid the risk of over-interpretation. In
Figure ?? we have chosen to restrict our predictions to locations for which the distance to the
nearest data-location is less than the so-called practical range, i.e. the distance at which the
fitted spatial correlation reaches the value 0.05.
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5 Combining information from multiple diagnostics

As illustrated in Sections ?? and ??, the development of alternatives to blood-smear mi-
croscopy for diagnostic testing has been of crucial importance in the Africa-wide mapping
of Loa loa risk. When different diagnostics have been used in the same geographical region,
statistical models that can combine information from multiple diagnostics have the potential
to make better use of all available data sources. Amoah et al (2018) introduce a geostatistical
framework for combining data from multiple diagnostics and apply this to prevalence data
obtained by blood-smear microscopy and by RAPLOA. They propose a bivariate geostatisti-
cal model that allows estimation of the calibration relationship between the two diagnostics,
and uses this relationship to predict blood-smear microscopy-based prevalence in subregions
where only the RAPLOA method has been used. Their proposed model can be expressed as

logit{PRL(x)} = d>(x)β1 + S1(x) + Z1

logit{PMF (x)} = d>(x)β2 + S2(x) + Z2 + αlogit{PRL(x)}

where PRL(x) and PMF (x) are, respectively, the underlying RAPLOA and blood-smear mi-
crosopy prevalences at location x. In this model, S1(x) and S2(x) are a pair of independent
Gaussian processes that are used to account for unexplained spatial variation specific to each
diagnostic. An advantage of this model over approaches that ignore the stochastic dependence
between the two diagnostics is the increased precision of the resulting predictions. Against
this, its practical utility in low-resource settings may be constrained by computational and
data-storage requirements.

6 Translating research into policy: decision-making un-

der uncertainty

An important implication of the shift from an onchocerciasis control programme to an elimi-
nation programme in Africa is that areas where ivermectin MDA was withheld, due to a low
risk of blindness or skin disease (previously referred to as hypoendemic areas), now need to be
reassessed and potentially treated if there is a potential for sustained transmission. The expan-
sion of ivermectin MDA into areas where onchocerciasis sequelae are less prevalent brings into
sharp focus the ethical dilemma of an acceptable SAE risk. How does one weigh the benefits
of eliminating onchocerciasis in areas where the population has seldom felt the acute effects
of the disease against the potential harm that treatment could inflict on some individuals?
A comprehensive policy for the safe use of ivermectin has yet to be agreed. Any such policy
would need to consider a complex mix of statistical, biomedical, social, economic and ethical
issues. Test-and-not-treat undoubtedly gives the best protection against the occurrence of
SAEs, which are not only catastrophic for the individuals concerned but harm the acceptabil-
ity of ivermectin to their communities. Against this, with-holding treatment leaves untreated
individuals at risk of onchocerciasis. Also, unless and until LoaScopes can be manufactured
at scale, test-and-not-treat slows the Africa-wide roll-out of protective ivermectin treatment
to regions where it is known that Loa loa is not co-endemic with onchocerciasis. One possible
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resolution is a hybrid policy in which spatial modelling can be used as a “first-pass” to deter-
mine if areas can be declared safe for MDA with ivermectin, based on a yet-to-be-determined
acceptable level of SAE risk. Where the spatial modelling results indicate that the safety
threshold has not been reached, individual village-by-village assessments using the Schlüter
et al (2016) model, converging to the test-and-not-treat strategy with increasing SAE risk,
would be required.

In the authors’ opinion, statistical method can make two contributions to this complex issue.
Firstly, given data and an agreed definition of “safe” at an agreed geographical scale, statistical
modelling in conjunction with predictive infererence can deliver an honest assessment of the
probability that the safety threshold has been reached. Secondly, when the available data are
insufficent to resolve the safety issue, statistical design can inform where addtional data should
be collected. Chipeta et al (2016) describe strategies for the adaptive design of sequential
prevalence surveys to optimise a context-specific criterion.

7 Conclusion

At the time of writing, the “Loa loa problem” persists. Statistical modelling and inference
can inform, but not resolve, the problem. Whatever policy decision is reached, it must be
acknowledged that there is no such thing as zero risk. Balancing the remote risk of causing
severe damage to a relatively small number of individuals against the likelihood of protecting
much larger numbers against life-changing disease is not something that can be done using
only statistical or, more broadly, “scientific” arguments. Social context must also be taken into
account and it is imperative that the affected countries be a leading voice in these deliberations.
Nonethless, in the authors’ opinion it is essential that any debate aimed at achieving consensus
is informed by the use of statistical methods that make the best possible use of relevant data
whilst acknowledging their necessary limitations.
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