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Abstract — The paper presents a solution to the problem of
planar contour tradking with a force-controlled robot. The
contour shape is unknown and is charaderized a ead time
step by the airvature together with the orientation angle and
arc length. The unknown contour curvature, continuously
changing, is wpposed to be within a preliminary given
interval. An Interading Multiple Modd (IMM) filter is
implemented to cope with the uncertainties. The interval of
possble curvature values is discretized, i.e., a grid is formed
and several Extended Kaman filters (EKFs) are run in
paralel. The arvature estimate represents a fusion d the
vaues from the grid with the IMM probabilities. The
orientation angle estimate is also a fusion d the estimates,
obtained from the separate Kaman filters with the mode
probabilities. A single-model EKF is implemented to locdize
the unknown initial robot end-effedor position over the
contour. The performance of both agorithms is investigated
and results, based onred data, are presented.
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|. INTRODUCTION

Surface traking along planar paths is required in
severa industrial applicaions such as cleaning, pali-
shing and deburring of cast pieces. Often, these opera-
tions have to be executed by robds in the presence of
uncertainties (e.g. for the piecepasition and orientation,
shape deformations cdled burrs, cdibration errors).
Moreover, the robatic operations sould be performed
with a high speed and acaracy. Previous works
devoted to problems of such kind are [4, 5, 2, 3, 7].
Different approaches have been developed, both model-
based [4, 5] and non-model-based [2, 3, 5], in which
mathematica models are not present and look-up tables
with data ae used. A visual servoing-based determinis-
tic gpproach has been propaosed in [2, 3] where, with the
help of avision system, tracking and force @ntrol tasks
are performed. The visual information is not only used
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to estimate the todl pasition around the ntour, but
aso to predict approaching of sharp edges and corners.

This paper presents a solution for tracking contours
with continuously varying curvature, based on the
multiple-model approach, and, in particular, by the
Interading Multiple Model (IMM) estimator [1, 8]. The
case with known initial position over the contour is
considered and the @ntinuoudly varying curvature is
replacad by discrete values within its uncertainty
interval. The locdization of the roba end-effector over
the contour with known curvature and unknown initial
paosition is performed by asingle EKF.

II. PROBLEM STATEMENT

In many industrial applications a roba equipped with a
toal is required to tradk planar contours moving with a
given tangential velocity, keeing a spedfied arienta-
tion with respea to the norma of the contour, and
applying a preset normal contad force Encoders on the
roba measure the end-effector's position in x and y

diredions.

In the present work the problem of tracking contours
with an arbitrary form, like the objed represented in
Fig.1, is considered. To follow this contour the
orientation ange 6, the angle between the x axis of
the asolute (fixed) coordinate system and the tangent
to the contour (Fig.2), is estimated. The norma and
tangential diredions are denoted by n and t, respedive-
ly, and the gplied forceby F,.

The following problems are cnsidered here: i) iden-
tification of the mntour geometry, i.e., computation of
the ntour curvature; ii) contour profile tracking
(following) - the orientation angle 6, hasto be estima-

ted at eat time instant k, and also the aurvature & a
function of the ac length from the measured end-
effector positions; iii) localization of the initial roba
end-effedor position along the contour.
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Fig.1. The considered planar contour

The velocities v, and v, of thetool in x and y di-
rections with respect to the absolute coordinate system
(Fig. 2) can be computed as follows

VX,k :(Xk+1—Xk)/T, Vy,k :(Yk+l_Yk)/T (1)

from the measured in two subseguent points positions
( Xk, Y) and (X, Yesr), corrupted by noise.
T =1/ f denotes the sampling interval and f the
sampling frequency.

Fig. 2. The contour with the absolute (fixed) coordinate
system xOy and the moving coordinate system nPt,

tangent to the contour

From the velocities of the tool the measured orientation
angle 6, can be determined at each time step as
follows

Vx k
6, =arctan— 2
Vyk
and the measured curvature as

Wy
ky =- , 3
Vx,k
where w, is the rotational velocity. Due to the pre-
sence of uncertainties as measurement errors, burrs

(small contour deformations), the variables (1),(2) and
(3) areinaccurate.

[11. IMM ALGORITHM FOR PLANAR CONTOUR TRACKING
1.1 State and measurement models
Planar contour tracking can be considered as a hybrid

stochastic estimation problem (with continuous and
discrete uncertainties) and can be described by [1]

Xier = F O M) 4)
2 = 9% &k ). )

where X, isthe system state vector, z, isthe measure-

ment vector, n, and &, are respectively the process
and measurement vectors, assumed zero mean white
Gaussian noises, mutually uncorrelated, with covarian-
ces Q and R. Functions f(.) and g(.) are nonlinear

in general. The unknown parameter m, corresponds

here to the unknown contour curvature. It is supposed
that the curvature change can be governed by a first-
order Markov chain with transition probabilities

5 = P{my(k+D) [m=m(K)}, i,j=12..,n;.

A state model of form (4) for the contour tracking
problem (Fig. 1) can be derived from the fact that the
continuously varying curvature k represents the deri-
vative of the orientation angle 8 with respect to the arc
length s [6]

de
= (6)

Equation (6), written in a discrete form with respect to
the orientation angleis

k=

Oys1 =6, +k, A4S, ,

and teking into account that the arc length is the
integral of the constant tangential velocity v, of the
robot end-effector, it follows

Oys1 =0y I v, T . (7)

The unknown curvature of the contour is supposed to
vary in a preset interval: I, D[km,kmax]. It is
assumed that the signed curvature is negative on locally
convex curve segments and positive on locally concave
curve segments [4, p.35] . The estimated state variable
X, isthe orientation angle 8, i.e. x, =6, . Since Ik is

unknown, multiple models for 6, are constructed with
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different curvature values k; from the uncertainty
interval. Then the state equation has the form:

Xiks1 = Xix HhiVvi T+ 8

Theindex i denotes different models depending on the
curvature values. The processnoise refleds discretiza
tion and model errors.

1.2 EKFsfor Unknown Contour Trading

The measured data ae the positions X, and Y, of the
roba end-effedor, on the basis of which the velocities
Vi and vy, are omputed by (1). The velocity vy,
corrupted by the noise &,

Z =Vyy + ¢y
is used as measurement sequence {z,} for the filtering.
The measurement function z, = g(xk) can be e-
pressed in the following way *

9(%) =Vy i = Viectan(x,). ©)

With the state euations (8) and the measurement
equation (9), several Extended Kaman filters are
synthesized :

Xi 1/ ket = Kigernrk KoVt (10)
Xisrrk = X FIGVT (11)
Vika = Zieon = (& i), (12)
Pk = Bk Qs (13)
Kiket = Pricsrri O ket S ket (14)

Pkt kit = Bk ~ Kikn S g Ki ke (19)

Siks1 = Oy k1P Ox ki R, (16)
where X; i is the filtered state estimate; X; ;- iS
the one-step predicted state estimate; B, is the state

estimation covariance Vv;, is the innovation with
covariance S ;

Oy k+1 = 00k (R k1) 0% i

is the measurement Jacobian

Vx,k+1

Ox k+1 = - :
cos’ (Xi,k+1/k)

! Equation (9) is applied when -1/ 4<x, =6, <1/ 4 or
-3/ 4< % =6, <5m/ 4. Outside these intervals it is not
well condtioned numericdly, and it is replacal by
g(xk) = Vx,k = Vy,kCOt(Xk)

Within the framework of the IMM approach [8], the
overal estimate (here the orientation angle estimate)
represents the probabilisticdly weighted sum of the
estimates from the filtersworking in parald , i.e.

Ny

Xerk = Z_ Xi ks kMix »
|:

where n¢ is the number of filters and ;) are the

IMM mode probabiliti es. The mode probabiliti es are an
indicaor at eadh moment what model describes the
state the most adequately.

The ontour curvature can also be evaluated as a
probabili sticdly weighted sum of preset curvature
values from the uncertainty interval with the mode

probabiliti es p;
n¢

fey = > kil - 17
Ei

The ac length etimate S, is computed as foll ows

k
,ék = SO + ZA%I , (18)
J:

where

A5, :\/(Xk+1 - Xk)2 +(Yk+1 _Yk)2 ,

and s, istheinitial arc length shift, charaderizing the
initial position over the contour.

IV. EKF FOR LOCALIZATION OF THE ROBOT END-EFFEC-
TOR POSITION OVER A CONTOUR WITH KNOWN SHAPE

After the estimation of the curvature of the cntour, its
shape is yet known. It is aso important in some robaic
applicdions to locdize the starting unknown end-
effector position s, over the cntour. In this case the

estimated state represents the ac length shift, i.e
X =58y . Theoreticdly X remains constant.

The state equation is of the form
Xk+l = Xk I

i.e. no noise is present and hence the system covariance
Q=0.

The measurements are the noisy curvature values,
provided by (3). The measurement function

z, =h(x,{y) =k(5),

is derived from the estimated curvature profile (Fig.10).
{ is the measurement noise with a covariance R, .

The analyticd derivative h, =dk/dS on segments with



constant curvature an not be found and it is replaced
by the aurvature computed with finite differences

Nyer = (l€k+l _’Ek )/ 45, .

Thefilter equations are

,)\(k+l = ,)\(k + Kk+1Vk+1v (19)
Bk =AR ks (20)
Kis1 = Pk+1hx,k+1pk+lsx_11! (21)

Pertr ke = Bk = KieaSeaaKias (22
S = Mya Pasrrkaa ks F Ro ke (23)

where A isthe fudge fador improving the filter perfor-
mance, the innovation v, represents the difference

between the measured noisy curvature (3) and the
curvature identified by (17)

Viesr = lyag —Kian - (24)

V. PERFORMANCE ANALYSIS

The following measures of performance ae used: the
estimated curvature (representing a fusion between the
values from the grid weighted by the mode probabili -
ties), the normali zed innovation squared (NIS) (charac
terising the estimate cnsistency) [1], the mode proba
biliti es, the averaged overall state estimate, compared to

the noise-corrupted (mezsured) angle 6, .

The normalized innovation squared ¢, is computed
from the "averaged" innovation (as a probabili sticdly
weighted sum of the innovations from the EKFs) and its
covariance S, asfollows &, =V, SV .

The results presented are based on processng of red
experimental data for one tour around the @ntour. The

interval for the curvature values is: I, D[— 0.04,015]

mm*, determined from the preliminary avail able

information.

The designed IMM filter is implemented with a set of
six values for the arvature, namely

K*® ={-004, 001, 0,003, 005, 0135 015} mm*

chosen to cover well the uncertainty interval. The
measurement covariance R is experimentaly deter-
mined, from the information of the sensor errors and it

is R=0.001(mm/ s)’. The system noise cvarianceis

Q=0.005rad?. It refleds the expected error from the

substitution of the mntinuously varying curvature by a
set of discrete values. The experimental data ae re-
caved with a sampling frequency f =10[HZ] and the
tangential velocity is constant, known to be
v, = 20[mmg].

The IMM estimator is run with the following initial
trangition probability matrix and the mode probability
vedor

[0.940 0012 0012 0012 0012 0.012]
H.012 0940 0012 0012 0012 0012
_[0.012 0012 0940 0012 0012 0.0120],
0= %012 0012 0012 0940 0012 00127
%).012 0.012 0.012 0.012 0940 0.012Y
[0.012 0012 0012 0012 0012 0.9407

U, =[1/6 1/6 1/6 1/6 1/6 1/6]T,

the initial state estimates and covariances are x;o =0,
Po =10°. The initiad mode probabiliti es are chosen

equal, which corresponds to the ladk of information
about the contour curvature.

The NIS test and the averaged innovation process
charaderize the transitions from parts with different
curvature. The plots of the estimated and measured
curvature (Fig. 3), the estimated orientation angle (Fig.
4), the aror between the estimated and measured angle
(Fig.5), the normalized innovation squared ¢,

(Fig.6), the IMM mode probabiliti es (Figs. 7-9), and the
estimated curvature with resped to the ac length (Fig.
10) are given. As a result of filtering the estimated
curvature is smoothed and at each moment the aontour
is tracked. The mode probabiliti es provide information
about switching between the diff erent curvature values.

The performance eval uation results of the EKF (19)-24)
for the starting point locdization are given in Fig. 11
and Fig.12. The measurement noise @variance is

R, =1.6mm? and the fudge fador A =1.01. The red

roba end-effedor initial arc length shift is s, = 20mm.
The estimation acaracy and the rate of convergence of
this EKF depend on the acaracy of the estimates for
the aurvature and the ac length shift. The EKF (19)-24)
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Fig. 3. Estimated lAck and measured k, curvature
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Fig. 10. Estimated curvature fck with resped
to the etimated arc length S,

is working with the arvature estimated by the IMM
algorithm. Because the provided by the IMM curvature
estimate is accurate, respedively the mmputed estimate
for the initia position over the contour is acairate. The
EKF consistency, charaderized by the NIS test is aso
better (Fig. 12) than the NIS test of the presented in [4]



similar EKF. In [4] the identified curvature values are
taken from a CAD model of the undeformed contour
model, whereas here the results obtained by the IMM
algorithm are used. As obvious from Fig. 11, a quick
convergence toward the true value is observed.
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Fig. 11 Estimated arc length shift with respec
to the ac length estimate
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Fig. 12 Normali zed Innovation Squared ¢,

V1. CONCLUSIONS

In this work the problem of planar contour tradking in
the presence of pose axd modd errors has been
considered as a hybrid stochastic estimation problem.

An IMM filter has been implemented and its
performance evaluated. The inherent charaderistic of
the IMM filter gives the posshility to estimate on-line
the wntour curvature and the orientation angle on the
basis of a set of values for the arvature taken from a
preset interval. So, both contour shape identification
and traking are performed. The IMM mode
probabiliti es provide information about the position of
the tod over different parts of the cntour.

The multiple model approach can be extended to other
similar problems, such as trading of curved surfaces, if
suitable mathematica models are provided.

The problem of locdizaion of the toaol over a planar
contour (estimation of the initial position) has also been
considered. A single EKF is g/nthesized. The perfor-
mance of the implemented algorithms is charaderized
by the normalized innovation squared test and the
estimated variables. Results from experiments with red
data ae presented.

ACKNOWLEDGMENTS

H. Bruyninckx is a Postdoctoral Fell ow of the Fund for
Scientific Reseach-Flanders (F.W.O) in Belgium.
Financial suppat by the Belgian Programme on Inter-
University Attradion Poles initiated by the Belgian
State-Prime Minister's Office-Science Policy Prog-
ramme (IUAP), the FW.O. under grant G.029596N,
K.U.Leuven's Concerted Reseach Action GOA/99/04
is gratefully acknowledged.

REFERENCES

[1] Bar-Shalom, Y., and X.R. Li, Estimation and
Tracking: Principles, Techniques and Software, Artech
House, 1993

[2] Baden, J., W. Verdonck, H. Bruyninckx, and J. De
Schutter, Combining Force Control and Visua
Servoing for Planar Contour Following, Machine
Intelligence & Robdic Control, Vol. 2, No. 2, pp. 3-9,
2000

[3] Bagen, J., H. Bruyninckx, and J. De Schutter,
Combining Eye-in-hand Visual Servoing and Force
Control in Robaic Tasks Using the Task Frame, In
Proc. of 1999 |EEE Internationd Conf. on Multi sensor
Fusion and Integration for Intelli gent Systems, Taipel,
Taiwan, Aug. 1999 pp. 141-146.

[4] Demey S., H. Bruyninckx, and J. Schutter, Model-
Based Planar Contour Following in the Presence of
Pose and Modd Errors, International Journa of
Robatics Research, Vol. 16, No. 6, Decenber 1997,
pp.840-858

[5] Demey, S., Shag Identification an Shpe Matching
for Compliant Motion Based on Invariant Differential
Shde Descriptions, PhD thesis, Katholi eke Universiteit
Leuven, 1996

[6] Do Carmo, M., Differencial Geometry of Curves
and Surfaces, N.J,, Prentice Hall, 1976.

[7] Gorinevsky, D., A. Formalsky, A. Schneider, Force
Control of Robdics Systems, CRC Press New York,
1997

[8] Li, X. R. Hybrid Estimation Techniques. Cortrol
and Dynamic Systems. (Ed. C. T. Leondes), Vol. 76,
pp. 213-287, Academic Press Inc., 1996



