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Worker Assignment in Dual Resource Constrained Assembly 

Job Shops with Worker Heterogeneity: An Assessment by 

Simulation 

  

Abstract 

Most shops in practice are constrained by more than one resource. Consequently, a large body 

of literature on dual resource constrained shops has emerged. This research typically focuses 

on worker assignment rules, with attention being on when and where to move workers. In 

contrast, the decision concerning who to reallocate to a station has received limited attention. 

The limited prior work assumes workers are assigned to a new station as soon as they become 

available or seeks to minimize the risk of worker idleness. Using simulation, we question this 

assumption and show that it can be beneficial to introduce additional worker idleness to ensure 

workers only work at their most efficient station(s). In general, it is less likely that there are 

several workers available for one station than it is for there to be multiple stations available for 

one worker. Consequently, the Who Rule is used less frequently than the Where rule and has 

less of an impact on performance. Finally, considering the criticality of work orders as part of 

the Where Rule is important in assembly shops; but if labor is heterogeneous then the focus 

should be on efficiency. The findings have important implications for research and practice. 

 

Keywords:  Worker Assignment; Assembly Systems; Job Shop; Simulation; Dual Resource 

Constrained Shop. 
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1. Introduction 

This study was motivated by an assembly job shop with dual resource constraints and a 

heterogeneous labor force observed in practice. An “assembly job shop” is hereby used to refer 

to a simple assembly system, where the final product (or assembly order) is made up of several 

subassemblies (or work orders) with independent routings that have to be coordinated in order 

for the subassemblies to arrive together at the final assembly station (e.g. Sculli, 1980; Adam 

et al., 1987; Philipoom et al., 1991; Lu et al., 2011; Thürer et al., 2012; Komaki et al., 2019; 

Shi et al., 2019). Meanwhile, being “dual resource constrained” (DRC) means that the shop is 

restricted by not one but two resources, most typically by machines and labor (e.g. Bobrowski 

& Park, 1989; Felan et al., 1993; Malhotra et al., 1993; Fredendall et al., 1996; Bokhorst et al., 

2004a; Bokhorst & Gaalman, 2009; Thürer et al., 2019). Finally, “heterogeneous labor” refers 

to shops where workers are not perfectly interchangeable, i.e. they have different levels of 

proficiency at each station leading to potential productivity losses when workers are reassigned 

(e.g. Hogg et al., 1977; Bobrowski & Park 1993; Bokhorst et al. 2004a; Lian et al. 2018). 

Taken together, these three elements create a complex planning and control problem that has 

received insufficient attention in the literature to date. 

Given its practical importance, a large body of research has emerged on the problems of 

DRC shops. This work typically focuses on worker assignment rules, i.e. on decisions 

concerning when to move workers, where workers should be moved to, and who to move (e.g. 

Bobrowski & Park, 1993; Malhotra & Kher, 1994; Fredendall & Melnyk, 1996; Jensen 2000; 

Kher, 2000; Bokhorst et al., 2004a; Salum & Araz, 2009; Sammarco et al., 2014). However, 

while the decisions concerning when and where to move workers have received much research 

attention, the decision concerning who to reallocate to a station has received only limited 

attention. One explanation is that the latter decision only occurs in shops with a heterogeneous 

labor force. Moreover, the extant literature that considers the Who Rule assumes workers are 

assigned to a station as soon as they become available or seeks to minimize the risk of worker 

idleness (Bokhorst et al., 2004a). In contrast, it is argued here that if workers are heterogeneous 

and realize different service rates at different stations it can be more advisable to let the worker 

wait, and thus be idle, until a station at which he/she is more efficient needs a worker. 

Meanwhile, an assembly system may introduce different priorities for the Where Rule. 

Previous literature on DRC shops has argued that the Where Rule should be based on urgency 

or on the workload requirements of the orders in a queue (for systems with homogenous labor), 

or efficiency (for systems with heterogeneous labor). Yet this literature typically neglects 

assembly systems. Assembly order performance in an assembly job shop is complex and 



4 

 

depends on the progress of all work orders – final assembly cannot take place until all work 

orders have been finished and the work orders have arrived at the final assembly station. The 

coordination of work order progress on the shop floor is consequently a major focus of 

dispatching rules presented in the literature on assembly job shops (e.g. Sculli, 1980; Adam et 

al., 1987; Philipoom et al., 1991). These coordination rules seek to synchronize the material 

flow. Meanwhile, worker assignment rules determine the availability of resources or capacity 

– they consequently have a direct impact on work order progress. It is therefore argued here 

that the Where Rule should support co-ordination, for example, by assigning labor to a station 

with a “critical work order”, referring to the last work order that is needed to complete an 

assembly order. 

In response to the above, we use a simulation model of a DRC assembly job shop to assess 

the performance impact of different worker assignment rules that consider a delay to the worker 

assignment decision and critical parts under different degrees of worker heterogeneity. The 

intention is to contribute not only to the DRC literature, but also to assist practitioners in 

making worker assignment decisions. 

The remainder of this paper is structured as follows. In Section 2, we review relevant 

literature and outline the two research questions that motivate our study. The simulation model 

used to evaluate performance is then described in Section 3 before the results are presented, 

discussed, and analyzed in Section 4. Finally, conclusions are presented in Section 5. 

 

2. Literature Review 

In general, a broad literature exists on a heterogeneous labor force in the context of DRC shops. 

This literature models worker heterogeneity either in the form of a flexibility matrix, which 

indicates whether a worker can work at a station, or in the form of an efficiency matrix, which 

reflects the proficiency of each worker at each station. These two perspectives are introduced 

in Section 2.1 and Section 2.2, respectively. Section 2.3 then discusses the main focus of our 

study – worker assignment rules – and introduces the two research questions that motivate our 

study. 

 

2.1 Worker Flexibility 

Labor flexibility has been defined as the number of different departments or stations at which 

a worker can perform operations (Fry et al., 1995). Nelson (1967) was one of the first to 

introduce the concept of labor flexibility, considering two polar extremes, i.e. a completely 

inflexible scenario, where each worker can only work at one station, and a completely flexible 
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scenario where each worker can work at every station. These scenarios were extended by a 

further two scenarios to include where a worker can work at two or three stations in a five 

station DRC job shop by Park & Bobrowski (1989). Park (1991) later added the scenario where 

a worker can work at four stations. Both studies concluded that cross-training workers, so they 

can work at multiple stations, leads to improved performance. A major insight however from 

these earlier studies was that most of the benefits associated with worker flexibility can be 

realized at moderate flexibility levels. Felan & Fry (2001) later suggested that it is better to 

have a mix of workers with some having no flexibility and others being very highly flexible 

rather than all workers having equal flexibility. This finding was extended by Yue et al. (2008) 

who showed that a minimum level of flexibility is desired and that having long chains of 

workers with overlapping capabilities is better than having several short chains.  

The idea of chaining originally emerged in the context of process flexibility (Jordan & 

Graves, 1995), which can be defined as the ability of plants to produce different types of 

products (Bokhorst et al., 2004b). Linking products and plants by a single path allows for the 

shifting of product assignments across plants, thereby balancing the workload. This concept of 

chaining has received much attention in environments constrained by a single resource 

(Bokhorst et al., 2009), where the chains link products to plants (process flexibility), products 

to machines (routing flexibility), or workers to tasks (cross-training). Chaining in the context 

of worker flexibility however links workers to stations. Unlike with product assignments, this 

has no direct effect on the workload assigned to a station (which is reflected in the routing of 

an order). Rather, it enables worker assignment rules to balance the workload across workers 

(Bokhorst et al. 2004b), which is arguably more important in the context of DRC shops where 

labor is the main constraint. Linking workers to stations also allows for capacity adjustments 

if more than one worker can work at a station, such as if there are several identical machines 

at each station (see, e.g. Yue et al., 2008). 

 

2.2 Worker Efficiency 

Labor efficiency is here defined as the level of the service rate at which a worker can work at 

a station. The concept of flexibility discussed in Section 2.1 above does not consider this effect; 

rather, workers are assumed to either have the maximum level of efficiency or to be unable to 

work at a station. This would be an ‘ideal’ situation where operators are perfectly 

interchangeable without productivity losses due to different levels of proficiency. One of the 

first studies to question this assumption was presented by Bobrowski & Park (1993), who used 

three efficiency matrices. Simulation results in Bobrowski & Park (1993) showed that 
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efficiency is likely to dominate worker assignment rules in contexts characterized by differing 

labor efficiencies. This study was later extended by Malhotra & Kher (1994) who showed that 

it is better to train workers so that some machines always work faster, such as the first machine, 

or having some workers completely interchangeable and others less efficient. The latter is 

similar to the senior/junior worker concept proposed by Bobrowski & Park (1993) and overlaps 

with the results in Felan & Fry (2001) on labor flexibility, as discussed in Section 2.1 above. 

Brusco & Johns (1998) later tested different cross-training configurations showing that cross-

training employees at 50% in secondary skill classes realizes the majority of the cost savings 

or performance benefits available from cross-training at full efficiency. Finally, the results in 

Bokhorst et al. (2004a) confirmed that a heterogeneous labor force (in terms of efficiency) 

leads to better performance compared to a homogeneous labor force if an appropriate worker 

assignment rule is in place.  

 

2.3 Worker Assignment 

This section only discusses the literature on DRC shops that is of relevance to our study; for an 

all-encompassing review, the reader is referred to Treleven (1989), Hottenstein & Bowman 

(1998), and Xu et al. (2011). First, we only focus on literature in stochastic environments. This 

excludes most of the literature on advanced scheduling techniques (e.g. El Maraghy et al., 2000; 

Araz & Salum, 2010; Jaber & Neumann, 2010; Lei & Guo, 2014; Lei & Guo, 2015; Li et al., 

2016; Zheng & Wang, 2016; Zhang et al., 2017), which presupposes that demand and capacity 

availability are known in advance and therefore deterministic. In contrast, we consider a high 

variety make-to-order environment where processing times, routings, and the inter-arrival 

times of orders follow a stochastic process. It is this type of environment where worker 

assignment rules play a major role since worker assignment cannot be predetermined or 

scheduled. Second, we assume worker heterogeneity to be stable over time. Dynamic worker 

heterogeneity would interfere with the performance of worker assignment rules and potentially 

blur performance differences across rules. This excludes most of the literature on learning and 

forgetting (e.g. Malhotra et al., 1993; Fry et al., 1995; Kher et al. 1999; Kannan & Jensen, 

2004; Zamiska et al., 2007; Yue et al., 2008). 

Literature on worker assignment rules typically focuses on decisions concerning when to 

move workers, where workers should be moved to, and who to move (e.g. Bobrowski & Park, 

1993; Malhotra & Kher, 1994; Fredendall & Melnyk, 1996; Jensen 2000; Kher, 2000; Bokhorst 

et al., 2004a; Salum & Araz, 2009; Sammarco et al., 2014). There are mainly two types of 

When Rules applied in the literature: a ‘centralized’ rule that transfers a worker each time a job 
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is completed and a ‘decentralized’ rule that transfers a worker after completing all jobs at the 

current station. The centralized rule tends to outperform the decentralized When Rule but at 

the expense of an increase in the number of worker transfers (Thürer et al., 2019). Meanwhile, 

it has been shown that incorporating future workload information into the When Rule does not 

improve performance enough to impact a manager's decisions (Fredendall et al. 1996). There 

also exists a broad set of different Where rules; however, the literature typically argues that the 

Where Rule has less impact than the When Rule (Xu et al. 2011). In general, while the decision 

concerning when to move workers and where workers should be moved to has to be made in 

every DRC shop, the question concerning who to move only has to be answered if there is 

worker heterogeneity. This may explain why the Who Rule has received less research attention.  

A major study on the Who Rule was presented by Bokhorst et al. (2004a). The authors 

considered four different Who rules: (i) choose the available worker with the longest idle time, 

from Rochette & Sadowski (1976); (ii) choose from the available workers randomly; (iii) 

choose the available worker who can perform the fewest tasks; and, (iv) choose the available 

worker who is the most efficient, from Hogg et al. (1977). While the former two rules neglect 

worker heterogeneity, the latter two explicitly consider flexibility and efficiency, respectively. 

An important aspect of both of the latter two rules is that they seek to minimize worker idle 

time. In contrast, here we argue that depending on the degree of heterogeneity in the efficiency 

level of workers, it may be a better decision to only assign a worker to the stations where he/she 

is most efficient. This means that a worker is not assigned to a station even if he/she is available 

and consequently becomes idle, except if it is one of his/her most efficient stations. This leads 

to the following research question: 

 

RQ1:  Is it advisable to introduce additional worker idle time in DRC shops with worker 

heterogeneity to ensure workers only work at their most efficient station(s)?  

 

A simulation model of a DRC assembly job shop will be used to answer this question. The 

assembly job shop was chosen as a shop type commonly found in practice. Research on DRC 

shops is typically set in contexts without assembly structures. The assembly structure itself 

suggests refinements to the Where Rule. A broad literature exists on dispatching in assembly 

job shops (e.g. Sculli, 1980; Adam et al., 1987; Philipoom et al., 1991). Most of the rules 

described in this body of work base the dispatching decision on the remaining work orders, 

such as the Number of Unfinished Parts (NUP) rule (e.g. Maxwell & Mehra, 1968). Similarly, 

we argue that existing worker assignment rules from the DRC literature should be enhanced to 

incorporate the number of critical parts in DRC assembly job shops. In response, we also ask: 
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RQ2:  Should critical parts be considered when assigning workers in DRC assembly job 

shops? 

 

3. Simulation 

Simulation is a powerful tool for experimenting with different system designs (Mourtzis, 2019). 

A stylized standard model of a DRC assembly job shop is used in this study to avoid 

interactions that may otherwise interfere with our understanding of the main experimental 

factors. While any individual DRC shop in practice will differ in many aspects from our 

stylized environment, the model used in this study captures the job and shop characteristics of 

high variety make-to-order shops, i.e. high routing variability, high processing time variability, 

and high arrival time variability. The shop and job characteristics modeled in the simulations 

are first summarized in Section 3.1. How we model labor heterogeneity is then outlined in 

Section 3.2 before the different worker assignment rules are discussed in Section 3.3. The 

priority dispatching rules applied for controlling the progress of work orders on the shop floor 

are then described in Section 3.4. Finally, the experimental design is outlined and the measures 

used to evaluate performance are presented in Section 3.5. 

 

3.1 Overview of Modeled Shop and Job Characteristics 

A simulation model of an assembly job shop has been implemented in SIMIO©. The model is 

a generalization of assembly shop structures commonly found in practice (e.g. Silva et al., 2006; 

Stevenson & Silva, 2008; Stevenson et al., 2011). It extends the pure job shop model proposed 

by Melnyk & Ragatz (1989). We model a balanced shop to avoid distracting our focus away to 

unbalanced shops and fixed bottlenecks. The job shop contains six stations. In practice, each 

station may represent, for example, different machines such as a mill or a lathe. Each station is 

a single and unique capacity resource. As in previous DRC research, we consider machine 

capacity to be constant and we instead focus on different levels of labor capacity. Worker 

availability constrains the capacity. Only if a worker is assigned to a station is capacity realized 

and orders can be processed. We use only one staffing level since the impact of different 

staffing levels has recently been assessed in Thürer et al. (2019). We focus on the lowest 

staffing level from previous studies, i.e. 3 workers or 50% (e.g. Felan et al., 1993). This staffing 

level was chosen to allow for an equal distribution of stations across workers, which is required 

to realize a balanced shop, as will be described in Section 3.2 below.  

All stations have an equal probability of being visited and a particular station is required at 

most once in the routing of a work order (a sub-assembly). Work orders leaving the job shop 
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go to an assembly station where they await other work orders that make up the final assembly 

order. As in Lu et al. (2011), the assembly time is negligible in order to avoid distracting the 

focus of the study away from assembly orders to bottlenecks. When all work orders have 

arrived, the assembly order is considered complete and the work orders leave the simulation 

together as an assembled product. The number of work orders per assembly order is uniformly 

distributed between two and six.  

Operation processing times for a fully efficient worker follow a 2-Erlang distribution with 

a mean of 1 time unit. Set-up times are considered sequence independent and part of the 

operation processing time. The travel times of workers are considered to be negligible. The 

inter-arrival time of assembly orders follows an exponential distribution. The mean is set such 

that, theoretically, workers are occupied 90% of the time for the scenario where worker 

efficiency is neglected by the worker assignment rule. Due dates are set exogenously by adding 

a uniformly distributed random allowance factor to the assembly order entry time. This 

allowance factor is set between 65 and 100 time units based on preliminary simulation 

experiments. All work orders of an assembly order have the same due date. Finally, Table 1 

summarizes our job and shop characteristics.  

 

[Take in Table 1] 

 

3.2 Labor Heterogeneity 

Our main environmental variable is worker heterogeneity. Worker differences can be modelled 

in several ways, for example, through differences in task proficiency or in the number or range 

of workers’ skills (Bokhorst et al. 2004a; Lian et al., 2018). In this study, we focus on 

differences in task proficiency, i.e. efficiency. Workers are considered to be fully flexible, i.e. 

they can work at all stations, but they differ in terms of their efficiency level across stations. 

To avoid distractions away from our focus on worker assignment rules, we chose to adopt the 

simplest labor and station differential efficiency matrix (Hogg et al. 1977; Malhotra & Kher, 

1994). We assume that each worker is 100% efficient at two stations to realize a balanced shop. 

At all other stations, worker efficiency is given by an efficiency factor α (see Table 2). Five 

different levels of this efficiency factor are considered: 60, 70, 80, 90, and 100%. The efficiency 

factor is kept constant, i.e. the impact of fatigue, learning, forgetting etc. is neglected. As in 

Bobrowski & Park (1993), processing times are divided by this efficiency factor to obtain the 

actual realized processing times. One single setting for the inter-arrival time is adopted for each 

setting of α (as described above) since the efficiency factor has a direct impact on the capacity 

that can be realized. 
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[Take in Table 2] 

 

3.3 Worker Assignment Rules 

There are three major worker assignment decisions. First, when should the worker assignment 

decision be executed (i.e. the When Rule)? Second, for the case that there are multiple stations 

without a worker and therefore available to receive workers, where should a worker go (i.e. the 

Where Rule)? And third, for the case that more than one worker is not assigned to a station and 

is therefore available, who should be assigned to the station (i.e. the Who Rule)? In the case 

that there is more than one worker and more than one station unassigned or available at a given 

decision point, the Where Rule precedes the Who Rule, as in Bokhorst et al. (2004a). We do 

not consider a two-dimensional decision matrix given that this situation is only likely to occur 

if a new set of work orders enters a nearly empty shop due to the random processing times and 

random inter-arrival times chosen for our model. If a worker cannot be assigned to a station, 

then the worker goes to a central worker pool to await a new assignment.  

Based on results in previous research (e.g. Thürer et al., 2019), only the centralized When 

Rule is considered, i.e. a worker is eligible for transfer after each work order has been 

completed at a station.  

Meanwhile, the Who Rule is based on efficiency, i.e. the Most Efficient (MEFF) worker is 

chosen if more than one worker is available. As a baseline, we also include a Who Rule that 

neglects worker information and selects the worker Randomly (RND). To answer our first 

research question, we further include scenarios in which a worker can only be chosen if he/she 

is fully efficient at a station (the MEFFOnly rule). If no such worker exists in the set of available 

workers, no worker is assigned and the decision regarding who to assign to this station is 

postponed until another worker becomes available. Thus, additional idleness is introduced. 

Note that while we consider the MEFFOnly rule to be a Who Rule in our study, it is a special 

type of assignment rule since it does not choose from a set of workers at a given moment in 

time but rather delays the choice as the choice is constrained by being limited to the availability 

of the most efficient worker. 

Finally, the Where Rule is driven by urgency, i.e. a worker is transferred to the station with 

the queue that contains the work order with the most urgent due date (which may be the current 

station or a station without a worker). To answer our second research question, two variants of 

this rule are considered. The first variant, the Earliest Due Date (EDD) rule, neglects critical 

parts while the second – the Critical Part & Earliest Due Date & (CPEDD) rule – considers 

critical parts. This means any queue that contains a critical part receives priority. A critical part 
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or critical work order is hereby defined as the last item that needs to be completed to finish the 

assembly order. If there are ties, i.e. there are several queues containing a critical part or work 

order, then the one with the most urgent due date is chosen. In addition, we also evaluate a 

Where Rule that considers worker efficiency: the Most Efficient & Earliest Due Date 

(MEFFEDD) rule. For this rule, the station at which the worker is most efficient is prioritized. 

Any ties are resolved by the EDD rule.  

 

3.4 Shop Floor Dispatching Rules 

The worker assignment decision is usually taken together with a scheduling decision, which is 

often reduced to a mere dispatching decision (Ostermeier, 2019). The work order that should 

be selected for processing next from the queue in front of a particular station is determined by 

a shop floor dispatching rule. In this study, three alternative dispatching rules are applied: (i) 

the Operation Due Date (ODD) rule, which prioritizes the job with the most urgent operation 

due date; (ii) the Operation Due Date & Critical Part (ODDCP) rule, which gives additional 

priority to critical parts or work orders based on the importance ratio described below; and, (iii) 

the Modified Operation Due Date (MODD) rule (see, e.g. Baker & Kanet, 1983), which shifts 

between a focus on ODDs to complete work orders on time and a focus on speeding up work 

orders during periods of high load, i.e. when multiple work orders exceed their ODD (Land et 

al., 2015). 

Calculating the operation due date δij for the ith operation of a work order j follows Equation 

(1) below. The operation due date for the last operation in the routing of a work order is equal 

to the due date δj, while the operation due date of each preceding operation is determined by 

successively subtracting an allowance c from the operation due date of the next operation. This 

allowance is based on the operation throughput times realized in preliminary simulation 

experiments. It differs for each setting of α. 

 

cin jjij  )(  i:1... jn        (1) 

nj – number of operations in the routing of work order j 

 

To integrate information on the criticality of a work order for ODDCP, we use the 

importance ratio from Philipoom et al. (1991). This importance ratio is given as the quotient 

of completed work orders and total work orders that constitute an assembly order. Any ties are 

resolved by the ODD rule. Finally, the MODD rule prioritizes work orders according to the 

lowest priority number, given by the maximum of the operation due date δij and earliest finish 
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time. In other words, max(δij, t+pij) for an operation with processing time pij, where t refers to 

the time when the dispatching decision is taken. 

 

3.5 Experimental Design and Performance Measures 

The experimental factors are summarized in Table 3. A full factorial design with 135 scenarios 

(5x1x3x3x3) was used. Each scenario was replicated 100 times. Results were collected over 

10,000 time units following a warm-up period of 3,000 time units. These parameters allowed 

us to obtain stable results whilst keeping the simulation run time to a reasonable level. Finally, 

the performance measures considered in this study are summarized in Table 4. 

 

[Take in Table 3 & Table 4] 

 

4. Results 

To give a first indication of the performance impact of our experimental factors, statistical 

analysis of our results was conducted using an ANOVA (Analysis of Variance). ANOVA is 

here based on a block design, which is typically used to account for known sources of variation 

in an experiment. In our ANOVA, we treat the efficiency factor α as the blocking factor. This 

allows the main effects of this environmental factor and the main and interaction effects of our 

three control related factors – the Where Rule, Who Rule, and dispatching rule – to be captured. 

The results are presented in Table 5. All main effects, except for the dispatching rule in terms 

of the percentage of tardy work orders, were found to be statistically significant. Similarly, all 

two-way and three-way interactions were found to be statistically significant for all 

performance measures considered.  

 

[Take in Table 5] 

 

The Scheffé multiple comparison procedure was also applied to the results for the assembly 

orders to obtain a first indication of the direction and size of the performance differences. Table 

6 gives the 95% confidence interval. If this interval includes zero, performance differences are 

not considered to be statistically significant. We can observe significant performance 

differences for all pairs for at least one performance measure. In terms of our first research 

question, the results suggest that it is advisable to introduce additional worker idle time in DRC 

shops with worker heterogeneity to ensure workers only work at their most efficient station(s), 

since MEFFOnly appears to outperform all other Who rules. Note that the strong effect of the 

MEFFOnly rule also provides an explanation for why the Who Rule was found to have the 

largest impact in our ANOVA results (Table 5). However, further analysis is required as this 
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outcome is likely to depend on the level of α. Meanwhile, in terms of our second research 

question, we observe that critical parts should be considered when assigning workers in DRC 

assembly job shops, since both the CPEDD and ODDCP rules have the potential to outperform 

alternative Where rules and dispatching rules. This will be explored further in Section 4.1 and 

Section 4.2 where detailed results are presented for a homogeneous and heterogeneous labor 

force, respectively. A discussion of the results that presents a further analysis of the ‘hidden’ 

impact of heterogeneous labor is then presented in Section 4.3. 

 

[Take in Table 6] 

 

4.1 Performance Assessment – Homogeneous Labor Force 

Performance results for a homogeneous labor force, i.e. where α = 100%, are given in Table 7. 

Since labor is homogeneous, the Who Rule and the efficiency-based Where Rule (MEFFEDD) 

have no performance impact and so the corresponding results are not presented. The following 

can be observed from the relevant results: 

 Where Rule: Considering the critical part as an element of the Where Rule (CPEDD) 

significantly improves assembly order performance regardless of the dispatching rule 

applied. 

 Dispatching Rule: Considering the critical part at dispatching significantly improves 

performance if combined with the CPEDD Where Rule. In other words, both the dispatching 

rule and the Where Rule should consider the critical part. If ODDCP is combined with EDD 

then the mean tardiness of assembly orders increases. Meanwhile, for MODD we observe a 

deterioration in assembly order performance since the MODD rule’s shortest processing 

time element neglects the coordination of work orders. 

 

[Take in Table 7] 

 

4.2 Performance Assessment – Heterogeneous Labor Force 

The main message from our analysis of performance under a homogeneous labor force – i.e. 

that considering the critical part when making the decision concerning where to move workers 

to is essential in DRC assembly job shops – also holds for a heterogeneous labor force. Here 

however, considering the efficiency as part of the Where Rule is even more important than 

considering the criticality of parts. This can be observed from Table 8, which gives the 

individual performance results when α is less than 100%. Note that we only present the results 

for ODD dispatching since the performance impact is qualitatively similar across the different 
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levels of the dispatching rule. Likewise, there were no performance differences across the 

different Where Rules if the MEFFOnly Who Rule was applied for this experimental setting. 

We therefore only present one result, which is equal for all. 

In general, considering efficiency as part of the Where Rule appears to have a stronger 

performance impact than considering efficiency as part of the Who Rule. A possible 

explanation for this is that, in a DRC shop where labor is the primary constraint, it is much 

more likely that a worker has several stations from which to choose (Where Rule) than it is that 

there are several workers for one station to choose between (Who Rule). In other words, the 

Who Rule will have less of an impact than the Where Rule since it is used more infrequently. 

Meanwhile, additional efficiency gains can be obtained by combining the MEFFEDD Where 

Rule with the MEFF Who Rule. Finally, the MEFFOnly rule is the best-performing Who Rule 

at higher degrees of labor heterogeneity. While it is outperformed at higher levels of α by the 

RND and MEFF Who rules if these rules are combined with the MEFFEDD Where Rule, it 

leads to the best performance when α is below 70% and leads to comparable performance when 

α is at 80%.  

 

[Take in Table 8] 

 

4.3 Discussion 
 

4.3.1 Discussion of Results 

Our study provides three major contributions to the available literature on DRC shops. It 

highlights that: 

1. The criticality of a part or work order should be considered in an assembly job shop when 

making worker assignment decisions. In general, the best performance can be achieved if 

the dispatching and worker assignment rules are aligned. This is consistent with findings in 

shops with high priority jobs presented in earlier studies (e.g. Kher 2000).  

2. Considering efficiency as part of the Where Rule – as was the case in Bobrowski & Park 

(1993) – has a stronger performance impact than considering efficiency as part of the Who 

Rule, as was the case in Bokhorst et al. (2004a). The Who and Where Rules are used in 

different situations. It is less likely that there are several workers available for one machine 

in shops where labor is the main constraint. Consequently, the Who Rule is used less often 

and has less of an impact. Still, the Where and Who Rule can and should play 

complementary roles. 
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3. Introducing worker idle time leads to the best-performing Who Rule, i.e. the MEFFOnly 

rule, in our simulations. This questions the perspective of Bokhorst et al. (2004a) who saw 

reducing worker idle time as a main objective. While reducing worker idle time is important, 

it is not beneficial if this is at the expense of realized worker efficiency. This result re-

emphasizes earlier literature, which argued that it is more beneficial to have some highly 

specialized labor (e.g. Bobrowski & Park, 1993; Malhotra & Kher, 1994; Felan & Fry, 2001). 

It also extends these results by arguing that training workers so they are efficient at only one 

station may be enough, since it makes more sense to let operators wait for work than to keep 

them from being idle by reallocating them to another station where they are less efficient. 

 

 

4.3.2 The Hidden Effect of a Heterogeneous Labor Force 

Apart from our main results and their contribution to the literature, having a heterogeneous 

labor force also had an effect that we consider worthy of further discussion. In order to obtain 

comparable results for the different levels of α, we had to adjust our inter-arrival time such that 

the utilization rate remained at 90% for the scenarios where worker efficiency is neglected by 

the worker assignment rule. However, this adjustment could not be based on the arithmetic 

mean, i.e. the sum of all elements (6 x 1 + 12 x α) divided by the number of elements (18). We 

had to recognize that the distribution of the realized processing time is the result of two 

independent distributions (i.e. the processing time distribution and the distribution of realized 

worker efficiency). To assess this impact, we created random numbers for 5,000 operations 

and calculated the resulting processing time for different values of alpha ranging from 10 to 

100%. The results are given in Figure 1. We observe that although the median remains around 

one time unit, there is a significant non-linear increase in the realized mean (as given in the 

legend), which goes far beyond the increase that would be expected from using the arithmetic 

mean of the efficiency matrix. 

 

[Take in Figure 1] 

 

Some additional experiments were executed to explore this ‘hidden’ impact of worker 

heterogeneity further. To avoid distractions away from our focus on worker assignment rules, 

we chose the simplest labor and station differential efficiency matrix (Hogg et al., 1977; 

Malhotra & Kher, 1994). But, Malhotra & Kher (1994) used three different matrix structures – 

labor differential, station differential, and machine and station differential – which are 

schematized in Table 9. While the arithmetic mean of the efficiency of all three matrices should 

be equal, the realized efficiency is different for each matrix. For an α of 50%, the arithmetic 
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mean is 21 (the sum of all elements) divided by 36 (the number of elements). This mean 

efficiency of 0.583 is realized by the station differential matrix. Meanwhile, the labor 

differential matrix realizes higher efficiencies (0.631), and the labor and station differential 

matrix realizes lower efficiencies (0.565). Note that these values are realized for the RND Who 

Rule and the EDD Where Rule, which both neglect worker efficiency. However, while worker 

efficiency is neglected by the worker assignment rules it is still reflected in the queue state, i.e. 

whether or not there is work in the queue. This explains the impact of the labor and station 

differential matrix. Meanwhile, for the labor differential matrix, the most highly efficient 

worker completes jobs faster and is consequently available more often than the worker with 

the lowest efficiency. 

 

[Take in Table 9] 

 

The above re-emphasizes that the structure of the efficiency matrix itself also has a direct 

performance effect. Apart from its implications for future research (to be discussed below), 

there is a major message here for practice – that labor heterogeneity cannot simply be neglected. 

Hence, rather than basing worker assignment on some other measure, labor efficiency should 

always be considered when making worker assignment decisions.   

 

5. Conclusions 

This study was motivated by observing a practical case of an assembly job shop with dual 

resource constraints and heterogeneous labor. More generally, most shops are in fact 

constrained by more than one resource, e.g. by machines and labor. Likewise, most workers in 

practice differ somehow in their proficiency. Consequently, a large body of literature on DRC 

shops has emerged, including research on DRC shops with a heterogeneous labor force. This 

research typically focuses on worker assignment rules, i.e. on decisions concerning when to 

move workers, where workers should be moved to, and who to move. Although the decisions 

concerning when and where to move workers has received broad research attention, the 

decision concerning who to allocate to a station has received less attention. Moreover, the 

existing literature assumes that workers are assigned as soon as they become available, or 

research even seeks to minimize the risk of worker idleness. Our study has questioned this 

assumption.  

In answer to our first research question – is it advisable to introduce additional worker idle 

time in DRC shops with worker heterogeneity to ensure workers only work at their most 

efficient station(s)? – our simulation results highlight that the gains from staying put at the most 
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efficient station(s) can outweigh the losses incurred through idle time waiting for work to arrive, 

with a Who Rule that only allows workers to go to their most efficient station performing the 

best in our simulation experiments. Hence this option should be considered when selecting a 

worker assignment rule in practice. Moreover, the setting of the assembly job shop also raises 

the issue of work order coordination. The worker assignment rule determines when capacity 

becomes available at a station and thus impacts job progress on the shop floor. Our second 

research question therefore asked:  Should critical parts be considered when assigning workers 

in DRC assembly job shops? Our simulation result highlights that considering the critical part 

or work order is important, leading to significant improvements under a homogeneous labor 

force. But if labor is heterogeneous then the focus should be on efficiency. 

 

5.1 Managerial Implications 

A key message from our study is that if labor is heterogeneous in its proficiency then it is 

important that this is recognized as it will surface in the realized average efficiency of workers 

even if it is not recognized. A second important managerial implication is that our results 

question the need for cross-training, at least when it comes to realizing high worker efficiencies. 

Training workers so they are highly efficient at only one station may be sufficient, since it may 

make more sense to allow workers to wait for work than it does to send them to another station 

where they are less efficient just to avoid them being idle. However, there are three important 

related issues to consider. First, each shop is different and has different characteristics that have 

to be taken into account. We have simulated a general model, but this means that the findings 

are likely to require contextualizing and refining for specific practical settings. Second, high 

worker efficiency is not necessarily beneficial to other performance outcomes, such as 

throughput times. Third, cross-training remains a major means of coping with unexpected 

events, such as machine breakdowns or worker absenteeism, since it increases worker 

flexibility. This must also be taken into consideration by practicing managers.  

 

5.2 Limitations and Future Research 

A main limitation of our study is that we have only considered one When Rule and based all 

of our Where Rules on urgency. Different When and Where rules could be applied in future 

research. Similarly, the experimental setting could be extended to incorporate different 

environmental factors, e.g. different structures of the efficiency matrix, different coefficients 

of variation for the processing times, different degrees of due date tightness, and so on. We 

recognize both limitations, but we also consider our experimental design to be justified by the 

need to keep the study focused on worker assignment rules. Specifically, research on the 
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performance impact of the structure of the efficiency matrix is worthy of further attention. This 

structure has an impact on the realized efficiency, even if efficiency is neglected as part of the 

worker assignment rule. This includes the consideration of different chaining approaches or 

different link structures, for example, stations and workers (as in our study and most DRC 

research) or job operations and workers. Future research could also explore how efficiency 

matrices should be designed to provide guidance on effective worker cross-training. Finally, 

future research could consider dynamic efficiencies. While we have considered worker 

efficiency to be static, fatigue or proficiency losses due to labor attrition or forgetting are likely 

to create dynamic efficiencies in practice. This could include research that explores how 

ergonomic aspects should be considered to avoid proficiency losses (e.g. Hochdörffer et al., 

2018). 
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Table 1: Summary of Simulated Shop and Job Characteristics 
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Shop Type 

Routing Variability 

No. of Stations 

No. of Workers 

Interchange-ability of Stations 

Station Capacities 

 

 

Dual Resource Constrained Assembly Job Shop 

Random routing; no-re-entrant flows 

6 

3 

No interchange-ability 

All equal 
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No. of Work Orders per Assembly Order 

No. of Operations per Work Order 

Operation Processing Times (100% Eff.) 

Due Date Determination Procedure 

Inter-Arrival Times 

 

 

Discrete Uniform [2, 6] 

Discrete Uniform [1, 6] 

2–Erlang; (mean = 1) 

Due Date = Entry Time+ d; d U ~ [65,100] 

Exp. Distribution 

 

 

 

 

 

 

Table 2: Efficiency Matrix 
 

 Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 

Worker 1 100% 100% α α α α 

Worker 2 α α 100% 100% α α 

Worker 3 α α α α 100% 100% 

 

 

 

 

 

Table 3: Experimental Design 
 

Factor Levels 

Efficiency Factor α 
(5 levels) 

60, 70, 80, 90, 100% (homogenous labor) 

When Rule 
(1 level) 

Centralized, i.e. after each job completion 

Where Rule 
(3 levels) 

Earliest Due Date (EDD); Critical Part & Earliest Due Date (CPEDD); Most 
Efficient & Earliest Due Date (MEFFEDD) 

Who Rule 
(3 levels) 

Random (RND); Most Efficient (MEFF); Most Efficient Only (MEFFOnly) 

Dispatching Rule 
(3 levels) 

Operation Due Date (ODD); Operation Due Date & Critical Part (ODDCP); 
Modified Operation Due Date (MODD)  
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Table 4: Summary of Performance Measures 
 

Name Abbreviation Brief Description 

Assembly Order 
Lead Time 

AOtlead 
The assembly order completion date (i.e. all work orders 
belonging to an assembly order are completed) minus the 
time at which the assembly order entered the system. 

Percentage Tardy 
Assembly Order 

AOPtardy The percentage of assembly orders which are tardy. 

Assembly Order 
Mean Tardiness 

AOMtardy 
That is 𝑇𝑙 = 𝑚𝑎𝑥( 0, 𝐿𝑙), with 𝐿𝑙 being the lateness of assembly 
order l (i.e. the actual delivery date minus the due date). 

Work Order Lead 
Time 

WOtlead 
The work order completion date minus the time at which the 
work order entered the system. 

Percentage Tardy 
Work Order 

WOPtardy The percentage of work orders which are tardy. 

Worker Efficiency Eff. The average of the realized worker efficiency across stations. 
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Table 5: ANOVA Results 
 

 
Source of Variance 

Sum of 
Squares 

Degrees  
of freedom 

Mean  
Squares 

F-Ratio p-Value 

AOtlead 

Alpha (α) 297165.66 4 74291.42 195.73 0.00 

Where 27130.99 2 13565.49 35.74 0.00 

Who 723853.45 2 361926.72 953.56 0.00 

Dispatching (Disp) 23627.95 2 11813.97 31.13 0.00 

Where x Who 10216.05 4 2554.01 6.73 0.00 

Where x Disp 178484.26 4 44621.06 117.56 0.00 

Who x Disp 75964.88 4 18991.22 50.04 0.00 

Where x Who x Disp 89927.82 8 11240.98 29.62 0.00 

Error 5112200.40 13469 379.55   

AOPtardy 

Alpha (α) 11.14 4 2.78 175.96 0.00 

Where 1.34 2 0.67 42.33 0.00 

Who 33.55 2 16.78 1060.22 0.00 

Dispatching (Disp) 0.25 2 0.13 7.93 0.00 

Where x Who 0.46 4 0.11 7.20 0.00 

Where x Disp 8.29 4 2.07 130.93 0.00 

Who x Disp 2.20 4 0.55 34.77 0.00 

Where x Who x Disp 4.58 8 0.57 36.16 0.00 

Error 213.14 13469 0.02   

AOMtardy 

Alpha (α) 59715.05 4 14928.76 103.66 0.00 

Where 2736.16 2 1368.08 9.50 0.00 

Who 87260.53 2 43630.27 302.96 0.00 

Dispatching (Disp) 1243.69 2 621.85 4.32 0.01 

Where x Who 2184.47 4 546.12 3.79 0.00 

Where x Disp 26107.20 4 6526.80 45.32 0.00 

Who x Disp 3971.03 4 992.76 6.89 0.00 

Where x Who x Disp 17650.68 8 2206.33 15.32 0.00 

Error 1939721.90 13469 144.01   

WOtlead 

Alpha (α) 159788.14 4 39947.04 166.59 0.00 

Where 19480.05 2 9740.02 40.62 0.00 

Who 562609.47 2 281304.73 1173.15 0.00 

Dispatching (Disp) 11486.71 2 5743.36 23.95 0.00 

Where x Who 6783.80 4 1695.95 7.07 0.00 

Where x Disp 118809.25 4 29702.31 123.87 0.00 

Who x Disp 55561.03 4 13890.26 57.93 0.00 

Where x Who x Disp 60616.76 8 7577.09 31.60 0.00 

Error 3229672.40 13469 239.79   

WOPtardy 

Alpha (α) 4.70 4 1.17 144.65 0.00 

Where 0.66 2 0.33 40.40 0.00 

Who 17.39 2 8.69 1070.26 0.00 

Dispatching (Disp) 0.01 2 0.01 0.72 0.48 

Where x Who 0.24 4 0.06 7.27 0.00 

Where x Disp 4.02 4 1.01 123.82 0.00 

Who x Disp 1.01 4 0.25 30.94 0.00 

Where x Who x Disp 2.39 8 0.30 36.74 0.00 

Error 109.40 13469 0.01   
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Table 6: Results for Scheffé Multiple Comparison Procedure: Assembly Order Results 
 

 
Rule (x) Rule (y) 

AOtlead AOPtardy AOMtardy 

lower1) upper lower upper lower upper 

Where  
Rule 

CPEDD EDD -3.681 -1.670 -0.023 -0.010 -1.535 -0.296 

MEFFEDD EDD -4.260 -2.249 -0.030 -0.017 -1.610 -0.371 

MEFFEDD CPEDD -1.585* 0.426 -0.014 -0.001 -0.694* 0.545 

Who  
Rule 

MEFF RND 1.980 3.991 0.012 0.025 1.053 2.292 

MEFFOnly RND -14.829 -12.818 -0.102 -0.089 -4.978 -3.740 

MEFFOnly MEFF -17.815 -15.804 -0.120 -0.107 -6.651 -5.412 

Dispatching  
Rule 

ODDCP ODD -2.060 -0.049 -0.001* 0.012 -1.220* 0.019 

MODD ODD 1.121 3.132 0.004 0.017 -0.540* 0.698 

MODD ODDCP 2.175 4.186 -0.001* 0.012 0.060 1.299 
1) 95% confidence interval; * not significant at 0.05 

 

 

 

 

Table 7: Results for Homogeneous Labor 
 

Where 
Rule 

Dispatching 
Rule 

AOtlead AOPtardy AOMtardy WOtlead WOPtardy 

EDD ODD 49.1 16.8% 6.3 40.6 10.6% 

CPEDD ODD 45.2 13.1% 3.9 39.0 10.0% 

EDD ODDCP 45.4 14.9% 5.3 35.8 8.8% 

CPEDD ODDCP 42.6 11.9% 3.6 35.5 7.7% 

EDD MODD 51.7 17.1% 8.7 40.8 10.0% 

CPEDD MODD 46.5 12.1% 4.8 38.6 8.3% 
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Table 8: Results for Heterogeneous Labor and ODD Dispatching 
  

α 
Where 
Rule 

Who  
Rule 

AOtlead AOPtardy AOMtardy WOtlead WOPtardy Eff. 

90% 

EDD RND 49.2 16.7% 5.8 40.4 10.6% 93.3% 

CPEDD RND 49.1 16.2% 5.5 42.6 11.5% 93.3% 

MEFFEDD RND 35.2 4.7% 1.0 29.3 2.8% 97.1% 

EDD MEFF 50.8 17.8% 7.1 42.1 11.7% 93.6% 

CPEDD MEFF 47.4 14.9% 5.0 41.0 11.3% 93.6% 

MEFFEDD MEFF 34.8 4.8% 0.9 28.9 3.0% 97.5% 

All equal MEFFOnly 41.5 7.2% 1.7 33.8 4.6% 100.0% 

80% 

EDD RND 56.7 22.1% 9.5 47.0 14.7% 86.5% 

CPEDD RND 52.3 18.3% 6.6 45.2 14.5% 86.5% 

MEFFEDD RND 29.8 1.4% 0.2 24.2 0.8% 93.3% 

EDD MEFF 52.2 19.0% 7.3 43.1 13.5% 87.1% 

CPEDD MEFF 50.2 16.7% 5.6 43.2 12.5% 87.1% 

MEFFEDD MEFF 30.0 1.8% 0.3 24.4 0.9% 94.3% 

All equal MEFFOnly 31.1 2.0% 0.3 24.6 1.0% 100.0% 

70% 

EDD RND 58.5 23.1% 9.7 48.4 15.8% 79.6% 

CPEDD RND 57.6 23.2% 8.9 49.9 16.9% 79.6% 

MEFFEDD RND 27.9 0.6% 0.0 22.2 0.2% 88.9% 

EDD MEFF 58.4 24.1% 9.8 48.3 16.3% 80.6% 

CPEDD MEFF 56.4 22.4% 8.6 48.9 17.4% 80.5% 

MEFFEDD MEFF 26.6 0.5% 0.0 21.1 0.3% 90.3% 

All equal MEFFOnly 24.9 0.5% 0.0 19.1 0.2% 100.0% 

60% 

EDD RND 73.1 34.2% 18.2 61.0 25.8% 72.6% 

CPEDD RND 67.3 30.9% 13.4 58.5 23.5% 72.6% 

MEFFEDD RND 26.8 0.2% 0.0 20.7 0.1% 83.6% 

EDD MEFF 70.7 32.7% 17.2 58.9 23.5% 73.8% 

CPEDD MEFF 64.1 27.6% 13.2 55.8 21.7% 73.9% 

MEFFEDD MEFF 25.8 0.2% 0.0 20.1 0.1% 85.9% 

All equal MEFFOnly 20.7 0.1% 0.0 15.5 0.0% 100.0% 
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Table 9: Different Efficiency Matrix Structures (based on Malhotra & Kher (1994)) 
  

  Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 

Labor 
differential 

Worker 1 100% 100% 100% 100% 100% 100% 

Worker 2 α α α α α α 

Worker 3 α α α α α α 

Worker 4 α α α α α α 

Worker 5 α α α α α α 

Worker 6 α α α α α α 

Station 
differential 

Worker 1 100% α α α α α 

Worker 2 100% α α α α α 

Worker 3 100% α α α α α 

Worker 4 100% α α α α α 

Worker 5 100% α α α α α 

Worker 6 100% α α α α α 

Labor and 
Station 

differential 

Worker 1 100% α α α α α 

Worker 2 α 100% α α α α 

Worker 3 α α 100% α α α 

Worker 4 α α α 100% α α 

Worker 5 α α α α 100% α 

Worker 6 α α α α α 100% 
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Figure 1: Distribution of Realized Processing Times for Different Levels of the Efficiency 

Factor α 

 


