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Abstract—Biological systems are never isolated, usually oscil-
latory, and invariably subject to noise and fluctuations that may
be of either internal or external origin. We present a method-
ological framework for studying the deterministic interactions of
biological oscillatory systems, while at the same time decomposing
and evaluating the noise strength. Based on dynamical Bayesian
inference, the method models coupled phase oscillators in the
presence of dynamical noise. We demonstrate first the potential
and the precision of the method on a predefined numerical
system. Then we illustrate its usefulness in detecting how the noise
strengths from three human physiological systems – the heart, the
lungs and the brain – are affected by general anæsthesia. The
results demonstrate the potential of the method for detecting
and quantifying noise from biological dynamical systems, quite
generally.

Index Terms—dynamical Bayesian inference, noise, interac-
tions, coupling functions, biological systems

I. INTRODUCTION

Biological systems are never isolated, usually oscillatory in
nature, and invariably subject to many different perturbing in-
fluences [1]–[4], often resulting in fluctuations and variability
around their dynamical states. Some of these influences are of
known deterministic origin; others are of currently unknown,
seemingly random, origin and may be treated as stochastic
noise [5]. The noise can act at many different levels, ranging
from the most basic molecular, sub-cellular processes up to
the dynamics of tissues, organs, organisms, populations and
their interactions.

Often, oscillatory biological systems mutually interact, with
the noisy perturbations in addition. Here, we focus on such
systems – studying their deterministic interactions while, at
the same time, decomposing and quantifying the noise.

In particular we will study oscillatory interactions through
their phase dynamics [6], subject to white noise, described
by bivariate stochastic differential equations. We will use the
method of dynamical Bayesian inference to model the coupled
phase oscillators in the presence of noise [7], based on real
biological data. The modeling will yield the deterministic in-
teractions and the coupling functions [8] between the systems,
as well as the stochastic noise strength. The deterministic
interactions described by the coupling functions have recently
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been studied intensively [8]–[14]. Here we will instead focus
primarily on the stochastic part of the inference, i.e. on the
inferred noise strength, and will discuss how it changes in
different states of the biological system.

After first presenting the inference method, we will demon-
strate its usefulness in a numerical example of a predefined
model of coupled phase oscillators. The stochastic model
will be inferred from the numerically generated time-series.
The results of the inference will provide an insight into the
properties and precision of the inference on the deterministic
dynamics, as well as on the noise strength.

The approach will then be used to illustrate its usefulness
in detecting how the noise strengths in human subjects are
affected by general anæsthesia. We will study three states:
awake resting, anæsthesia with propofol, and anæsthesia with
sevoflurane anæsthetic [15], [16]. We will study three hu-
man physiological systems – the heart, the lungs and the
brain. The recordings include the electrocardiogram (ECG),
the respiration signal and the electroencephalogram (EEG),
all measured simultaneously in individual subjects. We will
be interested in three groups of noise strengths: (i) for the
heart; (ii) for respiration; and (iii) for different brainwaves
(including delta, theta, alpha and gamma brainwaves), noting
how they are affected by general anæsthesia with the two
different anæsthetics.

II. DYNAMICAL BAYESIAN INFERENCE

In order to tackle the problem in hand – to infer the noise
from the data of interacting biological systems – we will
use a method based on dynamical Bayesian inference [7],
[17]. The method is able to infer separately the deterministic
part of the model, and the stochastic part of the dynamics.
Considering such a model defined by stochastic differential
equations (SDEs), we will infer the noise as a residual part of
the dynamics that is complementary to the deterministic part
of the model.

So we consider oscillating biological systems that mutually
interact. Their self and interacting dynamics will constitute
the deterministic part of the model. Moreover, due to their
oscillatory nature we will concentrate on the phase dynamics
reduction approach [6], leaving a single time-series for the
instantaneous phase of each system. Having these as input, we
will then apply the method of dynamical Bayesian inference
to find the coupling functions between the systems and the



noise perturbing them. Our focus here will be on the strength
of the noise.

We therefore consider a model pair of coupled phase
oscillators [6] described by the stochastic differential equation:

φ̇i(t) = ωi(t) + qi(φi, φj , t) + ξi(t), (1)

with i 6= j for i, j = {1, 2} and where ωi(t) is the parameter
for the natural frequency. The deterministic part given by
the base functions qi(φi, φj , t) describes the self and the
interacting dynamics. The external stochastic dynamics ξi(t)
is considered to be Gaussian white noise 〈ξi(t)ξj(τ)〉 =
δ(t − τ)Dij . Due to the periodic nature of the deterministic
dynamics, the base functions can be decomposed into infinite
Fourier series:

qi(φi, φj , t) =

∞∑
s=−∞

∞∑
r=−∞

c̃(t)i;r,s e
i2πrφi(t)ei2πsφj(t).

In practice, however, the dynamics is well-described by a finite
number of Fourier terms, so that one can rewrite the phase
dynamics as: φ̇i(t) =

∑K
k=−K c̃

(i)
k (t) Φi,k(φi, φj , t) + ξi(t),

where c̃(i)0 = ωi, and the rest of Φi,k and c̃(i)k are the K most
important Fourier components. The Fourier components Φi,k
act as base functions for the dynamical Bayesian inference,
through which the parameters c̃(i)k are evaluated. In the analysis
we used a second-order Fourier expansion (K = 2) because
the signals come from narrow-band intervals. Two phase time-
series and the order of expansion K act as inputs for the phase
model which is inferred for each interaction (e.g. δ-α), from
each subject.

Dynamical Bayesian inference [7], [9] enables us to eval-
uate the model parameters c̃, which give the time-evolving
coupling functions and coupling strength in the presence of
noise. From Bayes’ theorem one can derive the minus log-
likelihood function, which is of quadratic form. Assuming
that the parameters are represented as a multivariate normal
distribution (with mean c̄, and covariance matrix Σ ≡ Ξ−1),
and given such a distribution for the prior knowledge using
the likelihood function, one can calculate recursively [7], [17]
the posterior distribution of the parameters c̃k using only the
following four equations:

D =
h

L

(
φ̇n − ckΦk(φ∗·,n)

)T (
φ̇n − ckΦk(φ∗·,n)

)
,

rw = (Ξprior)kw cw + hΦk(φ∗·,n) (D−1) φ̇n+

− h

2

∂Φk(φ·,n)

∂φ
,

Ξkw = (Ξprior)kw + hΦk(φ∗·,n) (D−1) Φw(φ∗·,n),

c̃k = (Ξ−1)kw rw,

(2)

where summation over n = 1, . . . , N is assumed, and sum-
mation over the repeated indices k and w is implicit. We used
informative priors and a special procedure for the propagation
of information between consecutive data windows [7], [18],
which allowed inference parameters that varied with time
(for implementation, software toolbox and usage see [19]).
Given its ability to infer time-varying and noisy dynamics,

the Bayesian method is especially well-fitted for applications
to biological and physiological signals, like for example the
EEG, ECG and respiration signals.

Once we have the inferred parameters c̃, we can calculate
the deterministic coupling quantities, including the coupling
strength and the form of the coupling function. Complemen-
tary to these are the noise strengths Di inferred for each system
given with phase φi(t). The inference also gives the correlated
noises Di,j , between two systems given with phases φi(t) and
φj(t).

III. NUMERICAL EXAMPLE

Before considering applications to biological data, we first
demonstrate the Bayesian inference method on a simple nu-
merical example. We consider a pair of interacting phase
oscillators subject to white noise – a numerical example of
a type of dynamics we will analyse later from biological
systems. The systems are given by the following stochastic
differential equations:

φ̇1 = ω1 + a1 sin(φ2) + a3 sin(φ2 − φ1) + ξ1(t)

φ̇2 = ω2 + a2 sin(φ1) + a4 sin(φ1 − φ2) + ξ2(t).
(3)

Each phase oscillator is described by its frequency parameter
ω1 = 2, ω2 = 4.53, and the parameters for their interaction
dynamics a1 = 0.4, a2 = 0.6, a3 = 0.8 and a4 = 0.5. The
noises are set to be white Gaussian and mutually uncorrelated
with the following noise strengths D1 = 0.04 and D2 = 0.02.
The two oscillators are not synchronized. Fig. 1 shows samples
from the resultant time series to which dynamical Bayesian
inference is to be applied.

In this example we know beforehand the phase model and
the deterministic terms on the rhs of the coupled system (3)
that are the actual base functions to be used for inference of
the six parameters (ω1, ω2, a1, a2, a3 and a4). The inference
results from a single block of data (40 seconds long) from the
first system are presented in Table III. The agreement between
the actual (intrinsic) parameters and their inferred values is
good, and the method evidently works to high precision. In

Fig. 1. The instantaneous phases φ1(t) and φ1(t) simulated by the mathe-
matical model (3). The effect of noise on the phase is more clearly visible in
the enlarged inset on the right. The dark line and the inset show φ1(t), and
the light line shows φ2(t).



Parameters ω1 a1 a3 D1 D12

Intrinsic values 2 0.4 0.8 0.04 0
Inferred means 1.9826 0.4040 0.8017 0.0400 0.0005

TABLE I
RESULTS FROM INFERENCE OF THE φ1(t) DYNAMICS OF MODEL (3).

addition, the intensity and the correlations of the noise are
inferred very precisely.

IV. BIOLOGICAL EXAMPLE – NOISE IN THE PHASE
DYNAMICS OF CARDIAC, RESPIRATION AND NEURAL

OSCILLATIONS AS AFFECTED BY ANÆSTHESIA

In order to demonstrate the potential of this approach in
tackling the noise and fluctuations in biological systems, we
now consider an example of dynamical Bayesian inference
applied to the phase dynamics of interacting biological oscilla-
tors. In particular, we study the phase dynamics of oscillations
from the cardiac, respiration and neural activity, in each case
measured simultaneously from the same subject. Moreover,
this was done both in the awake state and under general anæs-
thesia induced by either propofol or sevoflurane i.e. three states
were compared: the awake (A); anæsthetized with propofol
(P); and anæsthetized with sevoflurane (S). The inference gives
two outputs, the deterministic dynamics and the noise strength.
The deterministic part comprises the self-dynamics of each
of the cardiac-respiration-neural oscillations plus those related
to the interactions described by the inter-oscillator coupling
functions. The focus here is on the latter output and, in
particular, on the noise strength of each oscillation.

The measurements included the electrocardiogram (ECG),
the respiration signal measured with an elastic belt propor-
tional to the thorax expansion, and an electroencephalogram
(EEG) signal. There were 25 awake and 29 anæsthetized
heathy subjects, aged 18 to 60 years, who were about to
undergo elective surgery. Of the 29 anæsthetized subjects,
14 were given propofol and 15 sevoflurane. The oscillation
intervals were estimated by standard digital filtering proce-
dures, including a FIR filter followed by a zero-phase digital
filtering procedure to ensure that no time or phase lags were
introduced by the filtering. The boundaries of the intervals
extracted were: h = 0.6 − 2Hz for the cardiac oscillations
from the ECG signal, r = 0.145− 0.6Hz from the respiration
signal, while for the brainwaves from the EEG signal they
were δ = 0.8 − 4Hz, θ = 4 − 7.5Hz, α = 7.5 − 14Hz,
β = 14 − 22Hz, and γ = 22 − 100Hz. Special care was
taken in dealing with frequency spillage between intervals,
heart artifacts, and powerline artifacts [20]. The phases of
the filtered signals were estimated by use of the Hilbert
transform and the protophase-to-phase transformation [21].
To determine whether the deterministic coupling relationships
were genuine, or just happened by chance, we used surrogates
data testing [22], [23]. From the large number of investigated
relationships, only those exhibiting a statistically significant
difference compared to their corresponding surrogates were
retained and, similarly, the noise from the β oscillation was not

presented as the couplings to this oscillation were insignificant
and there were no significant noise difference. To present
visually the differences between the distributions we used stan-
dard boxplots that refer to the descriptive statistics (median,
quartiles, maximum and minimum). Extended technical details
can be found in [15], [16].

Fig. 2. Noise strength of (a) the cardiac and (b) the respiratory oscillations,
evaluated from their phase dynamics. The boxplots present the subject
distributions of the three states: awake (A); anæsthetized with propofol (P);
and anæsthetized with sevoflurane (S). The line connectors on the tops indicate
cases where there is a statistically significant difference.

In Fig. 2 we present the noise strength results from the
heart and the lung activity, repesenting one of the most
important parts of the cardiovascular system. The cardiac
noise strength Fig. 2 (a) did not change significantly between
the three states, awake and anæsthetized with propofol and
sevoflurane. There was more variation (wider box plot) in the
anæsthetized states, but this change was not significant. The
respiration noise strength Fig. 2 (b), on the other hand, was
significantly different i.e. it decreased in the two anæsthetized
states in comparison to the awake state. There was also
significant difference between the two anæsthetics, indicating
that sevoflurane reduced the noise level more than the propofol
induced anæsthesia.

Fig. 3. Noise strength of neural brainwave oscillations in different frequency
bands, including: (a) δ; (b) θ; (c) α; and (d) γ oscillations. The boxplots
present the subject distributions of the three states: awake (A); anæsthetized
with propofol (P); and anæsthetized with sevoflurane (S). The line connectors
on the tops indicate statistically significant differences.



The effect of general anæsthesia on the noise strength of the
neural cognitive brainwaves is presented in Fig. 3. There was
not much difference on the noise level in the delta oscillations
Fig. 3 (a). In the theta oscillation band (b) the anæsthesed
state exhibited different noise strengths both for propofol and
sevoflurane, the noise intensity being higher than in the awake
state. In the case of the higher frequency oscillations, alpha in
(c) and gamma (d), anæsthesia induced a significant decrease
in noise strength compared to that in the awake state. In
none of the neural oscillations (all panels in Fig. 3) was
there any significant difference in noise strength dependant
on anæsthetic used, propofol or sevoflurane.

V. CONCLUSION

This study illustrates the potential of dynamical Bayesian
inference for describing the noise and fluctuations from biolog-
ical oscillatory systems. Our demonstration on the numerical
example showed that the method is able to infer both the
deterministic and the stochastic dynamics with high precision.

The application to a biological system demonstrates that
anæsthesia changes, not only the deterministic couplings, but
also some of the random fluctuations acting on the oscillations.
The decrease in the noise level in α, γ and respiratory
oscillations might be because the processes associated with
the onset of anæsthesia induce order, coupling and coherence
of the oscillations [24], [25].

It is worth pointing out that, without direct observation
or understanding of the processes that generated the noise,
we infer it just as a residual. It remains conceivable that
(some parts of) the noise are attributable to deterministic
non-autonomous influences [26]–[29], e.g. from some of the
other (finite number of) processes in the human body. This
inherent limitation of the study is, of course, shared, with
investigations of noise in other contexts. The nature and origin
of biological noise raises questions of some depth and subtlety,
and especially for an inverse approach they are ones that still
remain largely open and unanswered in general terms.

Finally, we comment that the methodological framework
described here in relation to oscillatory biological systems
also carries wider implications for applications to dynamical
systems, quite generally.
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