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GENERAL ABSTRACT 

Water erosion affects all types of soils around the world at different intensities. 

However, in tropics water erosion is the most important form of soil erosion and 

has received much concern in the last decades. The major challenge in soil 

conservation is the development and implementation of strategies to mitigate the 

erosion processes in urban and rural areas. Thus, understanding the processes 

involved in each type of water erosion (sheet, rill and gully erosion), as well as 

its quantification, is a key factor in managing and developing soil conservation 

and erosion mitigation strategies. In that way, this thesis aims to investigate the 

efficiency of ground and air-based photogrammetry for soil erosion assessment, 

as well as to address some gaps in our understanding of the evolution of erosive 

processes in its different forms of occurrence. In doing so, we evaluated the 

factors that influence the development of erosion in micro and macro scales, with 

experiments in the laboratory and in the field. In the first chapter, it was 

evaluated the influence of gradient change and runoff volumes on rill erosion 

process, using digital close-range photogrammetry in a laboratory soil flume. In 

addition, morphological rill parameters were estimated to allow a better 

understanding of the rill erosion behaviour under different treatments. The 

results showed that the flow velocity in rills increased with water flow and slope, 

showing a strong correlation with the amount of rill erosion. On steep slopes the 

soil erosion was dominated by the rill erosion with less rill network density 

while, on low slopes, there were other types of soil erosion occurring together 

with rill erosion, causing the reduction of soil loss due to rill erosion. The digital 

close-range photogrammetry technique provided millimetric precision, which is 

sufficient for rill erosion investigations. In the second chapter aimed to evaluate 

the efficiency of SfM based on UAV images in obtaining accurate measurements 

of soil loss in areas of sheet erosion, under natural rainfall, where channelized 

erosion is not the principal mechanism. The measurements acquired from SfM 

were compared to the sediments collected in each soil erosion plots. The results 

of the soil losses obtained by UAV-SfM presented a high correlation with the 

sediments collected in the plots. This is of great relevance in the context of the 

monitoring and modelling of water erosion, since the quantification of soil loss 

around the world is mainly done using plots, a method that presents high 

operational cost. In addition, the study of laminar erosion through the UAV-SfM 

allows not only to calculate the soil loss values but to visualize the spatial 

variation of the erosion process (detachment, transport and deposition) 

practically in real time along the area. In the third chapter it was evaluated the 

application of UAV-SfM technique in a gully system. For the first time, a study 

was carried out evaluating the relative contribution of the different types of 

erosion (sheet, rill and gully sidewall) in the gully development. This was 

possible due to the millimetric level of precision of the point clouds, allowing to 

evaluate even the contribution of the laminar erosion, which is new in gullies 



  

studies. As a result, it was possible to quantify sediments volumes stored in the 

channels and lost from the gully system, as well as to determine the main 

sediment sources. The study suggests that the main source of sediments in the 

gully was due to the mass movements, followed by rills and sheet erosion. The 

UAV-SfM proved to be effective in the gully monitoring. The results findings by 

this thesis indicate that the use of ground and air-based photogrammetry are 

precise tools in detecting soil surface changes and can be used to assess water 

erosion in its various forms of occurrence in nature. In addition, the UAV-SfM 

has proven to be a very useful technique for monitoring soil erosion over time, 

especially in hard-to-reach areas. 

 

 

Keywords: Structure-from-motion. Unmanned aerial vehicle. Digital close-range 

photogrammetry. Erosion plot. Sheet erosion. Rill erosion. Gully erosion. 
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1. Literature Review 

1.1 Soil erosion 

Soil is a non-renewable resource and essential to the maintenance of 

humans and natural ecosystems, ensuring food, fibre, energy, and water quality. 

However, the unplanned use of soil can cause its degradation, with negative 

economic and social impacts on present and future generations. Currently, about 

800 million people are food insecure around the world (Lal, 2013) and 2 billion 

have no access to safe and affordable water (World Health Organization and 

UNICEF, 2015; Paul Obade and Lal, 2016). In addition, the world's population 

will probably reach 9·1 billion people in 2050 and, consequently, the demand for 

food is also expected to increase dramatically (Alexandratos and Bruinsma, 

2012). 

Considering that about 50 % of the earth's surface is dedicated to 

agriculture and more than 99·7% of the human’s food comes from the land 

(Pimentel, 2006) the soil is a key factor in order to provide food and water security 

for future generations. Thus, understanding the factors that cause its degradation 

is essential to implement reclamations and preservations measures of ecosystems 

and rural areas. 

In natural conditions, the slow loss of soil by the erosion process has been 

responsible for transforming and sculpting the landscape throughout geologic 
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time, through the mobilisation and deposition of soil particles, by water and air. 

However, whilst the natural soil erosion is a feature of any terrestrial ecosystem, 

anthropogenic soil erosion accelerates the geomorphic processes of natural soil 

erosion (Lal, 2001). 

Anthropogenic soil erosion, most associated with inappropriate land use, 

has significantly accelerated the rate of soil loss, causing considerable impacts in 

environment, economy and society worldwide. According to Pimentel (2006), 

about 80% of the agricultural land around the world suffers from severe or 

moderate soil erosion and 10% shows slight signals of erosion. As a result, about 

30% of productive areas worldwide have become infertile and abandoned for 

agriculture use (Pimentel, 2006). Therefore, due to the long-term negative impact 

on the soil properties, soil erosion becomes the most important land degradation 

problem in the world (Eswaran et al., 2001) and has been prioritized by 

environmental scientists and policymakers worldwide. 

1.2 Soil erosion by water 

Water erosion affects all types of soils around the world at different 

intensities (Blanco and Lal, 2010). However, in tropics water erosion is the most 

important form of soil erosion and has received much concern in the last decades. 

It is one of the most serious forms of soil degradation and a major threat to the 

sustainability of agroecosystems, affecting around one billion hectares 

worldwide (Lal, 2003; Luffman et al., 2015; Xu et al., 2016; Guo et al., 2017). 
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The water erosion is based on the processes of detachment, transport and 

deposition of soil particles by the impact of raindrop and overland runoff, mainly 

taking the form of concentrated and dispersed flow (Ellison, 1947; Kinnell, 2006; 

Shi et al., 2010). This refers to the movement of soil particles along the surface, 

with deposition of eroded materials in the lower slope regions and in 

watercourses (Horton, 1945). This eroded material may generate new soil, or 

simply silting rivers and lakes. In addition, these sediment losses are often 

associated with organic matter, nutrients, heavy metals and other contaminants, 

resulting in direct and indirect impacts on soil functions, and on aquatic and 

terrestrial ecosystems (Glendell and Brazier, 2014; Rickson, 2014). 

Different factors influence the evolution of the erosive process, such as the 

intensity and duration of rainfall, soil properties, slope, vegetation cover and soil 

surface roughness (Le Bissonnais et al., 2005; Mahmoodabadi and Sajjadi, 2016; 

Wang et al., 2017; Hao et al., 2019). 

The impact of raindrops plays an important role in water erosion because, 

in addition to promoting the detachment of soil particles, it also promotes 

increased transport of sediment through runoff (Zhang and Wang, 2017) (Figure 

1). Soil properties, such as the texture and aggregates stability, affect soil 

resistance to detachment and water infiltration (Le Bissonnais, 1996). Thus, the 

effects of rain intensity on erosion strongly depends on soil type (Defersha and 

Melesse, 2012; Wu et al., 2018). 
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Fig. 1. Illustration of rainsplash erosion and soil-particle mobilization, transport, 

and deposition. 

The major challenge of soil conservation today is the efficient 

implementation of conservation management practices in agricultural and urban 

areas. For this, the knowledge of the dynamics of erosion in the area, through the 

spatiotemporal studies of erosive processes and types of erosion (sheet, rills and 

gullies), as well as its quantification, are key factors in managing and developing 

soil conservation and erosion mitigation strategies. 

1.2.1 Sheet erosion 

Sheet erosion, also known as laminar and interrill erosion, mainly affects 

agricultural areas in sloping regions in tropical environments (Le Bissonnais et 



 5 

al., 1998; Sirjani and Mahoodabadi, 2014). Once it is started, the runoff develops 

in small rills and the portion of the overland flow flowing between the rills is 

called sheet erosion or interrill erosion. This type of erosion is characterized by 

the detachment of fine soil particles present on the surface due to the impact of 

raindrops and the dispersed flow over the surface (Kinnell, 2013; Maïga-Yaleu et 

al., 2015). 

Laminar erosion is the most common type of erosion, corresponding to 

about 70% of total soil erosion, occurring simultaneously to other erosive 

processes (Blanco and Lal, 2010). This type of erosion is affected by several factors 

such as rainfall intensity, slope gradient, vegetation, soil properties and surface 

characteristics, such as roughness and crusting (Dlamini et al., 2011; Ibáñez et al., 

2016; Zhang et al., 2019). 

During the sheet erosion process, a mixture of water and solid particles 

flows over the soil as a sheet, causing erosion through loss of successive layers of 

soil (Fournier, 1960). Sheet erosion can carry only fine particles, such as clay and 

silt, while coarse particles are associated with the development of rill erosion 

(Hao et al., 2019). This selective behaviour in the transport of the most useful soil 

particles is a harmful aspect of the sheet flow. Thus, in hillslopes sheet erosion is 

much more severe than gully erosion (Descroix et al., 2008), contributing to soil 

fertility loss, reduced productivity and being the initial stage of rill erosion 

(Müller-Nedebock et al., 2016). 

The correct measurement of soil losses from sheet erosion is a key factor 

for the development of conservation planning. However, the main form of 
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monitoring and quantification of sheet erosion in the world is through erosion 

plots under natural and artificial rainfall (Cerdan et al., 2010; García-Ruiz et al., 

2015; Guo et al., 2015; Zhao et al., 2019). This traditional method is considered a 

time-consuming and costly process, restricting the evaluation of sheet erosion 

only in places where there is a plot system installed in the field (Cerdan et al., 

2010). 

With the recent advances in technology, the use of high-resolution digital 

elevation models (DEM) has assumed an important role in the study of processes 

that occur on the earth's surface. These advances have become possible with the 

development of techniques such as Structure-from-Motion (SfM), which 

combines the principles of photogrammetry and modern methods of computer 

vision (Westoby et al., 2012). 

The SfM photogrammetry has been widely used to evaluate erosion in rills 

and gullies (Bazzoffi, 2015; Nouwakpo et al., 2015; Hänsel et al., 2016; Neugirg et 

al., 2016; Morgan et al., 2017). However, there are no studies with the application 

of SfM in the measurement of sheet erosion in areas where there is no incision of 

channels of concentrated water flow. Thus, because of the difficulty in 

monitoring the loss of millimetre layers of soil, remote monitoring of sheet 

erosion is a major challenge in soil science. 
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1.2.2 Rill erosion 

Rills are small concentrated flow paths in which the depth and flow 

velocity are greater than in the surface runoff and with erosive potential higher 

than sheet erosion (Govers et al., 2007; Blanco and Lal, 2010). Rill erosion occurs 

from soil detachment by scouring and transport of soil particles by the 

concentrated water flow in these narrow channels (Bagnold, 1966). 

Rill erosion is the main source of sediments and mechanisms for sediment 

transport in erosive processes on hillslopes and is related to the increase in 

erosion rates (Bryan, 1990; Rauws, 1987; Di Stefano et al., 2017). Once the rills 

established in an area, sediment production can increase by up to 40 times 

(Morgan, 1977). In addition, the presence of rills in sloping areas may correspond 

to 70% to 90% of total erosion (Renard et al., 1997; Zheng and Tang, 1997). 

Rill erosion is widespread mainly in dry regions, being one of the main 

forms of soil loss in agricultural lands around the world (Cerdan et al., 2002; 

Polyakov and Nearing, 2003; Hancock et al., 2008; Wirtz et al., 2012; Di Stefano et 

al., 2013; Jiang et al., 2018; Zhang et al., 2019). In addition, the transport of 

sediments from the hillslopes to the watercourses becomes more efficient as a rill 

network develops (Berger et al., 2010; Heras et al., 2011; Aksoy et al., 2013; He et 

al., 2016; Sofia et al., 2017). Thus, rill erosion affects significantly the 

micromorphology of the hillslopes, generating large rill networks in the area and 

increasing the connectivity between the sediments, besides promoting 
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permanent changes in the landscape with the evolution of rills to gullies (Berger 

et al., 2010; Wirtz et al., 2010). 

Several experiments have been conducted to study the formation and 

development of rill erosion (Bryan and Rockwell, 1998; Berger et al., 2010; Wirtz 

et al., 2012; He et al., 2016; Di Stefano et al., 2017; Lu et al., 2017; Sofia et al., 2017; 

Jiang et al., 2018; Zhang et al., 2019). Researches have shown that rill erosion is 

directly related to increased runoff (Mancilla et al., 2005), rainfall intensity 

(Brunton and Bryan, 2000) and slope (Berger et al., 2010). 

However, Wirtz et al. (2012) have shown that rill erosion is not a simple 

function related to rainfall intensity or slope gradient, but a complex process that 

is influenced by surface sealing, rill development, headcut incision, and sidewall 

collapse. Therefore, there are differences in the experimental results obtained, 

which vary according to the type of soil, rainfall conditions and spatial and 

temporal scales (Devente and Poesen, 2005; Govers et al., 2007). 

In the field, the slope gradient is constantly changing along the hillslope, 

influencing the flow velocity and, consequently, the rill network. However, due 

to the absence of adequate techniques for spatial monitoring of rill development, 

few studies are evaluating the influence of gradient change and runoff volume 

on the formation of the rill network. Thus, there is a gap to be explored in the 

study of morphological indicators and the spatial behaviour of the formation of 

rill networks at different slopes and water flow intensities. The understanding of 

the evolution and behaviour of rill erosion in each situation helps the 
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development of prevention and recovery strategies in areas affected by this type 

of soil erosion. 

1.2.3 Gully erosion 

Gully erosion is the most severe type of water erosion when compared to 

sheet and rill erosion, promoting soil degradation and causing large volumes of 

soil loss in agricultural areas (Valentin et al., 2005). Gully erosion occurs when 

the concentrated runoff begins to develop deep channels that expand into deep 

trenches over time (Luffman et al., 2015). Erosion caused by the concentrated 

water flow reduces the soil surface layer through the formation of gullies, 

impacting soil fertility and polluting adjacent streams (Allen et al., 2018; Bastola 

et al., 2018; Zabihi et al., 2018). In the early stages, the gullies develop rapidly to 

great depths, making difficult to control through agricultural machinery and 

making the area recovery expensive (Nachtergaele and Poesen, 2002; 

Vanwalleghem et al., 2005). 

Gullies represent a serious environmental problem in the world, occurring 

mainly in arid and semi-arid regions, where vegetation density is low, reducing 

soil protection to rainfall and runoff (Sankey and Draut, 2014). Although the 

gullies occupy around 5% of the area of a catchment, gully erosion represents the 

largest source of soil eroded sediments and may reach 94% of total erosion 

(Makanzu Imwangana et al., 2014; Ionita et al., 2015; Bollati et al., 2016). The 

development of gullies in an area promotes connectivity between sediment 
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channels and increases the volume of runoff on the hillslope, generating flood 

risks and sedimentation of rivers, lakes and reservoirs (Poesen et al., 2003). 

Gully erosion is controlled by several factors such as surface runoff, water 

movements in the sub-surface, and soil piping (Kirkby and Bracken, 2009; Poesen 

et al., 2018). Although the gullies are the result of natural processes that occur on 

the soil surface, human action can accelerate the formation and development of 

this type of erosion (Thorburn and Wilkinson, 2013; Rodrigo Comino et al., 2015). 

Therefore, to prevent these negative effects and implement reclamation 

strategies, it is necessary to understand the magnitude of the problem and the 

factors causing it (Mitas and Mitasova, 1998; Poesen et al., 2003). Measuring gully 

erosion can be very challenging because it is a highly complex process, with 

erosion and deposition occurring at the same time and in the same place (Gómez-

Gutiérrez et al., 2014). Consequently, the measurement accuracy of gullies is 

directly influenced by the spatial scales and by their morphology (Castillo et al., 

2012). In this way, to provide reliable data about soil losses, several techniques 

for monitoring and quantifying gully erosion are currently available, such as pins 

(Chaplot, 2013), Light Detection and Ranging (LiDAR) (Perroy et al., 2010), hand-

held mobile laser scanner (James and Quinton, 2014) and aerial photographs and 

photogrammetric techniques (Marzolff and Poesen, 2009; Castillo et al., 2012). 

Among the new methodologies used to monitor gully erosion, 

photogrammetry combined with three-dimensional (3-D) soil surface 

reconstruction methods have been widely used recently (Castillo et al., 2012; 

Gómez-Gutiérrez et al., 2014; Kaiser et al., 2014; Di Stefano et al., 2017; Ben 
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Slimane et al., 2018). However, although many studies have described the 

formation and development of gullies (Harvey, 1992; Vandekerckhove et al., 

1998; Sidorchuk et al., 2003; Conoscenti et al., 2014), few studies have evaluated 

the dynamics of the sediments movements and the relative contribution of each 

process to total erosion within the gullies complex. The understanding of the 

contribution rates of sheet erosion, rills and gully sidewalls, as well as the 

quantification of the sediments stored in the channels, is of great importance in 

the establishment of strategies for prevention, monitoring and recovery of gullies 

(Hosseinalizadeh et al., 2019). 

1.3 Topographic methods for soil erosion assessment 

During an erosive event, the soil surface is in continuous transformation. 

Depending on the volume of soil transported, the erosion processes can result in 

considerable topographic variations and may have negative impacts on 

agriculture (Heng et al., 2010). Thus, several technologies were developed by soil 

scientists to obtain detailed information on soil surface variation caused by 

erosion (Nouwakpo and Huang, 2012). 

Contact techniques such as erosion pins and rillmeter have been used for 

a long time to study the changes of soil surface during the erosion process (Elliot 

et al., 1997; Kronvang et al., 2012). However, although the observed change in the 

exposed part of the pin can be used to calculate the amount of erosion after an 

erosive event, the accuracy of this technique is limited by the low spatial coverage 
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due to the small number of pins installed in the monitored area (Sirvent et al. 

1997; Zhang et al., 2011). Otherwise, the rillmeter technique can obtain accurate 

soil surface change data but may affect the results due to the contact between the 

device and the soil surface (Elliot et al., 1997). Simple topographic instruments 

(theodolites or total stations) with contact with the measured surface were also 

used for a long time to study soil topography (Moser et al., 2007). 

Measurement techniques of soil microtopography change that do not 

involve surface contact during measurements are preferred as they do not cause 

any impact on the soil and reduce the time of data acquisition (Jester and Klik, 

2005). Laser scanning and digital photogrammetry have been the most used 

technologies among non-contact methodologies to obtain soil surface 

topographic data at high-resolution. 

1.3.1 High-resolution topographic methods 

High-resolution topographic data is of great importance in almost all 

applications of geosciences (James and Quinton, 2014; Agüera-Vega et al., 2018; 

Deng et al., 2018; Azareh et al., 2019). Thus, a wide variety of methods have 

evolved to meet these surveys demands such as aerial and terrestrial laser 

scanning, multibeam SONAR, RTK-DGPS and total station (Brasington, 2010; 

Höfle and Rutzinger, 2011; Hohenthal et al., 2011; Castillo et al., 2012; Day et al., 

2013; James and Quinton, 2014; Vinci et al., 2015). 
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However, despite the diversity of methods available, the generation of 

high-resolution DEMs requires large investments in personal training and 

equipment. Thus, with the emergence of image-based methods such as digital 

photogrammetry, it has drastically reduced these operating costs (Westoby et al., 

2012). 

1.3.2 Digital photogrammetry 

Digital photogrammetry is becoming increasingly accessible to 

researchers and users, due to the development of methods that allow accurate 

calibration of non-metric cameras and the reliable automation of the 

photogrammetric process (Fonstad et al., 2013). Since the emergence of aerial and 

digital close-range digital photogrammetry, this powerful technique has been 

widely used in obtaining 3-D soil surface models (Rieke-Zapp and Nearing, 2005; 

Gessesse et al., 2010; Heng et al., 2010; Nouwakpo and Huang, 2012; Stöcker et 

al., 2015; Guo et al., 2016; Goetz et al., 2018). 

Recent advances in digital close-range photogrammetry technologies, as 

well as computer vision, have made it possible to generate high-resolution soil 

topography models from consumer-grade digital cameras (Berger et al., 2010; 

Heng et al., 2010; Nouwakpo and Huang, 2012; Nouwakpo et al., 2014; Guo et 

al., 2016). Digital photogrammetry has the advantage of having a low cost of 

equipment acquisition, with values several orders of magnitude lower than laser 

scanner (Nouwakpo et al., 2014). 
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The reduction in cost and improvements in the quality of compact cameras 

and single lens reflex (SLR) has popularized the access to photogrammetric 

modelling and encouraged the use in several areas of the geosciences (Lane, 2000; 

Chandler et al., 2002; Brasington and Smart, 2003; Marzolff and Poesen, 2009; 

Bird et al., 2010). Thus, the digital close-range photogrammetry technique has 

been widely used to generate DEMs with sufficient resolution for soil 

microtopography studies (Babault et al., 2004; Rieke-Zapp and Nearing, 2005; 

Aguilar et al., 2009; Nouwakpo and Huang, 2012; Guo et al., 2016). 

Several studies have demonstrated the efficiency of the high-resolution 

digital close-range photogrammetry in monitoring soil erosion, producing DEMs 

with resolution of grids ranging from 1 to 15 mm (Brasington and Smart, 2003; 

Abd Elbasit et al., 2009; Aguilar et al., 2009; Rieke-Zapp and Nearing, 2005; Heng 

et al., 2010; Stöcker et al., 2015; Guo et al., 2016). 

1.3.3 Unmanned aerial vehicles (UAV) 

In order to overcome the limitations of traditional photogrammetry 

techniques, the use of photographic cameras coupled in unmanned aerial 

vehicles (UAVs) to acquire images of the soil surface has been objecting of study 

in the last years (Bemis et al., 2014; James and Robson , 2014; Nex and 

Remondino, 2014; Clapuyt et al., 2016; Di Stefano et al., 2017; O'Connor et al., 

2017; Eltner et al., 2018). UAVs have some advantages over piloted aircraft and 

satellites, especially in relation to low cost, operational flexibility and better 
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spatial and temporal resolution of the images from which DEMs can be derived 

(Laliberte et al., 2010; Harwin and Lucieer, 2012; Anderson and Gaston, 2013; 

Hugenholtz et al., 2015; Balek and Blahůt, 2017). 

UAVs require less time to acquire data when compared to other 

techniques, reducing operating costs. Moreover, the resolution and accuracy of 

the results obtained by UAVs cannot be achieved through satellite images 

(Immerzeel, et al., 2014), being useful mainly in places where the use of other 

techniques is not feasible or dangerous. The UAVs provide a convenient remote 

sensing platform for studies of landslides due to their ability to acquire high-

resolution images on terrains difficult to access (Lucieer et al., 2014). 

1.3.4 Structure-from-Motion (SfM) 

The structure-from-motion (SfM) is based on the basic principles of 

traditional photogrammetry, where the three-dimensional (3-D) structure can be 

reconstructed from a series of overlapping images (Westoby et al., 2012). This 

technique combines the computational vision approaches SfM (Ullman, 1979) 

and multiview-stereo (MVS; Seitz et al., 2006) algorithms. However, it differs 

from conventional photogrammetry as the scene geometry, orientations and 

camera positions are estimated automatically, without the need to specify in 

advance targets with known 3-D positions. 

These parameters are computed simultaneously using the highly 

redundant, iterative bundle adjustment procedure, based on the resources 



 16 

database extracted automatically from the set of overlapping images (Snavely, 

2008). This technique is suitable for sets of images that have a high degree of 

overlap, with the capture of the entire 3-D structure of the scene from a wide 

variety of positions (James and Robson, 2012), or according to the name, images 

obtained from a moving sensor. 

Based on the calculations of orientation and location of the camera, 

overlapping images are used to reconstruct a 3-D sparse point cloud from the 

surface. However, this result is still insufficiently detailed and very noisy for 

high-quality 3-D reconstruction. In the last years, 3-D reconstruction software has 

increased the quality of the models by linking the output of SfM with MVS image 

matching algorithms. The MVS process effectively filters out the noise and 

greatly increases the density of reconstructed points (James and Robson, 2012). 

Thus, the point clouds resulting from SfM-MVS processing are of sufficient 

quality to generate high-resolution DEMs but do not have geospatial or scale 

information. In this way, measurements of ground control points are necessary 

for later georeferencing of the models. 

Studies show that the use of SfM combined with MVS can produce high-

resolution 3-D models (centimetres to millimetres), with results similar to those 

generated from airborne LiDAR and terrestrial laser scanner (TLS) (Castillo et al., 

2012; James and Quinton, 2014; Eltner et al., 2015). However, there are no studies 

evaluating the accuracy of eroded volumes estimates via UAV-SfM and 

comparing them with independent measurements by collecting eroded soil in a 

controlled environment, such as erosion plots. The validation of UAV-SfM for 
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monitoring thin surface layers of erosion opens up opportunities in the use of 

this technique to elaborate strategies to control complex erosive environments, 

where sheet erosion, grooves and gullies occur at the same time. 

Recent studies were carried out using UAV images and SfM techniques 

for soil surface mapping. The applications include monitoring of soil 

microtopography change detection (Eltner et al., 2018), rill and interrill erosion 

(Eltner et al., 2015), gully erosion (Gómez-Gutiérrez et al., 2014; Stöcker et al., 

2015; Glendell et al., 2017), wind erosion (Pagán et al., 2019) and landslides 

(Lucieer et al., 2014; Turner et al., 2015). However, there is a gap of work using 

UAV-SfM to evaluate the behaviour of laminar erosion in the field, as well as the 

relative contributions of different types of erosion in the gully development. 

In this thesis, the SfM-MVS technique will be treated only as SfM, 

following the trend of the recent works in the area of geosciences (Hänsel et al., 

2016; Cook, 2017; Mlambo et al., 2017; Mosbrucker et al., 2017; Agüera-Vega et 

al., 2018; Zimmer et al., 2018). 

1.4 Thesis aims and objectives 

This project aims to investigate the efficiency of aerial and terrestrial 

photogrammetry in the detailed study of water erosion, as well as to address 

some gaps in our understanding of the evolution of erosive processes in its 

different forms (sheet, rill and gully erosion) of occurrence. In doing so, we will 

evaluate the factors that influence the development of erosion in micro and 
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macro scales, with experiments in the laboratory and in the field. The hypothesis 

is that the use of digital photogrammetry will allow soil scientists to accurately 

quantify laminar erosion, making it possible to replace traditional methods, such 

as erosion plots, with high operating costs. In addition, high-resolution 

photogrammetry will make it possible to study the dynamics of evolution of the 

gullies in space and time, allowing to evaluate the relative contribution of sheet 

erosion and rills to the growth of the gullies complex. 

This thesis sets out to develop an understanding at both a methodological 

level and in terms of wider soil erosion processes understandings. From a tightly 

controlled study to field observations, it will study the accuracy and application 

of ground and air-based photogrammetry for soil erosion assessment at a range 

of scales. The thesis consists of three experimental chapters designed to address 

the following objectives: 

(i) To evaluate the influence of gradient change and runoff volumes 

on rill erosion process, using digital close-range photogrammetry in a laboratory 

soil flume. In addition, to estimate morphological rill parameters for a better 

understanding of the rill erosion behaviour under different treatments. (Chapter 

1) 

(ii) To evaluate the efficiency of SfM based on UAV images in obtaining 

accurate measurements of soil loss in areas of sheet erosion, under natural 

rainfall, where channelized erosion is not the principal mechanism. The 
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measurements acquired from SfM were compared to the sediments collected in 

each soil erosion plots. (Chapter 2) 

(iii) A case study of a gully in Brazil using SfM to provide a detailed 

understanding of the dynamics of the sediment movements in the gully system. 

Thus, to evaluate the relative contribution of sheet and rill erosion, as well as 

gully sidewalls to sediment generation. In addition, to quantify the total volume 

of sediments stored and lost from the gully system over time. (Chapter 3) 
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2. Rill erosion and morphology development in response to changing 

discharge and slope profiles 

2.1 Introduction 

Rill erosion is the removal of soil by concentrating water flow into a 

narrow channel and, hence, increasing the sediment transport capacity of the 

flow (Chen et al., 2016). It represents an intermediate process between sheet and 

gully erosion (Jackson, 1997). The presence of rills in runoff plots can increase 

sediment yield by 40 times (Morgan, 1977). It can lead to large soil losses, water 

pollution, and damage to drainage networks (Morgan, 2005; Bewket and Sterk, 

2003; Poesen et al., 2003). In agricultural lands, rill erosion can be easy to observe, 

but it is difficult to measure due to its stochastic nature (He et al., 2016). During 

an erosive event, the soil surface is in continuous transformation, which can 

result in substantial topography variation at scales of few millimetres to as much 

as a metre, depending on the volume of transported soil (Gessesse et al., 2010; 

Heng et al., 2010). 

Several studies have focused on rill erosion processes (Favis-Mortlock et 

al., 2000; Wirtz et al., 2012), but research on rill network development remains 

limited. Most study only the main rills, ignoring the important role of the 

secondary channels on the rill network development (Mancilla et al., 2005; Shen 

et al., 2015). 
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The amount of soil loss in sloping croplands and rangelands is affected 

significantly by the rill morphology since water flow within rills has the capacity 

to transport large volumes of sediment (Favis-Mortlock et al., 2000; Gatto, 2000). 

Considering that rills change morphologically in time and space, it is necessary 

to consider temporal and spatial variations in their development (Lei and 

Nearing, 1998; Shen et al., 2015). 

As rills are micro-relief channels that are generally less than 0·3 m deep 

and wide (Nearing et al., 1997), a detailed spatial study requires high-resolution 

digital elevation models (DEMs). Digital close-range photogrammetry has been 

widely used within soil erosion studies to generate high-resolution DEMs (Abd 

Elbasit et al., 2009; Aguilar et al., 2009; Guo et al., 2016; Nouwakpo and Huang, 

2012; Rieke-Zapp and Nearing, 2005). This method is based on images of the soil 

surface taken from multiple positions at relatively low height (Abd Elbasit et al., 

2009), enabling 3D analysis of the rill erosion development at millimetre 

resolution, with instantaneous data acquisition using high-resolution consumer-

grade cameras. 

However, the presence of vegetation in the study area affects the 3D 

reconstruction of the soil surface by aerial images. In these cases, there are 

mathematical algorithms that filter the vegetation present in the 3D point cloud, 

for example CANUPO (Brodu and Lague, 2012) and CSF (Zhang et al., 2016), 

allowing to estimate the soil surface with compromised accuracy. Thus, soil 

surface DEMs obtained by digital close-range photogrammetry enable the 
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volumetric change detection and the assessment of microtopography change 

over the time (Eltner et al., 2018). 

Since conducting experiments on rill erosion processes and 

microtopography change are challenging in field environments, studies that 

simulate surface runoff in laboratory erosion plots are necessary to understand 

the basic processes and mechanisms of rill formation, rill density, rill network 

and distribution, as well as the magnitude of water flow associated with 

transport and development of rill erosion. 

To date, rill erosion studies have focus on rill formation over slopes of 

constant gradient (Armstrong et al., 2011; Favis-Mortlock, 1998; Gessesse et al., 

2010; Shen et al., 2016). However, rill development and morphology in regions 

where the gradient changes along the slope, have yet to be assessed. This works 

intends to address this research gap by evaluating the influence of gradient 

change and runoff volumes on rill erosion process, using a soil flume (3·9 × 1·4 

m). In addition, morphological rill parameters will be estimated to allow a better 

understanding of the rill erosion behaviour under different treatments. 

2.2 Materials and Methods 

2.2.1 Experimental design 

All experiments were conducted in the soil erosion laboratory of the 

Lancaster Environment Centre, Lancaster University, UK. A soil flume (3·9 m × 
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1·4 m) was used to evaluate the relationship between slope and water flow in rill 

formation. The flume was divided into two regions of different slope in order to 

assess sedimentation and rill formation under varying gradients and surface 

runoff. In the region A (see Figure 1), located 0 m to 1·5 m from the top of the 

slope, the slope was either 6% or 9%, while in region B, the slope had a constant 

value of 2% for both slopes (Figure 1). Whilst forming the surface, the slope 

gradient was measured using a handheld clinometer (Suunto PM-5, accuracy ± 

0·44%). 

Fig. 1. Representative soil profile of the experimental plot determined from the 

DEM (see section 2.2.4) showing the changing slope gradient and the position of 

theta probe sensors along the ramp length for the 9% slope treatment. Area A: 

variable slope gradient (6% or 9%); Area B: constant slope gradient. 

Water was supplied to the top of the flume using a weir maintained at a 

constant head. Two water flow rates were used (either 7 L min-1 or 12 L min-1) for 

30 minutes. This gave four slope-discharge treatments (Table 1) which were 

replicated in triplicate. To avoid edge effects, data from within 20 cm of the flume 

edges were ignored. 
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Table 1. Combinations between water flow rates and slope gradient used on 

experimental design. 

Water flow rate 

(L min-1) 

Variable 

slope 

(%) 

7 
6 

9 

12 
6 

9 

2.2.2 Soil flume set-up 

The plot was filled with a 40 cm layer of sand underneath 30 cm of soil 

(Fig. 2). The soil had 2.9% organic matter, a sandy loam texture with 5.1% clay, 

43.6% silt and 51.3% sand. Soil aggregate size was standardized by sieving to 10 

mm. The soil was added to the flume incrementally and compacted to a soil 

density of 1·3 g cm-3. To maintain the same conditions for every experiment, the 

soil surface was moistened until it reached field capacity. To measure soil 

moisture, theta probe sensors were installed at depths of 0.07 m and 0.12 m, and 

at distances of 0·5 m, 1·0 m, 2·0 m and 2·5 m from the top of the plot (Figure 1). 

After each repetition, 5 cm of soil was removed from the surface layer and 

replaced with new soil compacted to the same initial density. To ensure the same 

subsurface conditions between slope angles, after each experimental run the 

subsoil was turned over, raked and replaced. 
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Fig. 2. Soil flume filled with layers of sand (a) followed by soil (b). 

2.2.3 Design of image acquisition system 

Time-lapse photography was used to study the development of rill 

erosion during runoff. Photographs were obtained before the water flow, during 

flow at time intervals of one minute between each image, and 30 minutes after 

the end of the experiment, which was the time required for drainage of excess 

water at the soil surface. The images were captured using six synchronised 

Canon digital SLR cameras (five EOS 450D and one Canon EOS 600D), with 28 

mm fixed-focal lenses, located approximately 2·5 m above the soil surface. The 

EOS 450D features a 12 mega-pixel CMOS sensor of 22·2 × 14·8 mm (a pixel size 

of 5·2 μm) and delivered images of 4272 × 2848 pixels with a nominal ground 

sampling distance of 0.5 mm. The EOS 600D features an 18 mega-pixel CMOS 

sensor of 22·3 × 14·9 mm (a pixel size of 4·3 μm) and produced images of 5184 × 

3456 pixels with a nominal ground sampling distance of 0.4 mm. Lens apertures 

were set to f/5·6 and, to maintain a fixed geometry during the experiment after 

focussing, focus control was set to manual and adhesive tape was used to lock 
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the mechanisms. The cameras were arranged to produce three overlapping 

convergent stereo-pairs over the plot (Fig. 3) with synchronous image acquisition 

controlled by an intervalometer. 

 

Fig. 3. Convergent stereo-pair cameras directed to the central portion of the plot 

for time-lapse monitoring of rill erosion during runoff. 

2.2.3.1 Flow velocity 

To calculate the flow velocity, after each experimental run, red dye was 

injected into the flow and photographs taken using an extra camera (Canon 500D, 

15 mega-pixel, 22·3 × 14·9 mm CMOS sensor with 4·7 μm of pixel size, 4752 × 3168 

pixels, and a zoom lens set to 18 mm, with aperture of f/5·6) at one image per 

second for 10 seconds: the time required for the runoff to reach the end of the 

plot (Figure 4). 
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Fig. 4. Dye-pigmented water flow used as tracer for flow velocity calculations. At 

the sides of the experimental slope, photogrammetric control points for 

georeferencing the cloud of points can be seen. 

2.2.4 Photogrammetric workflow 

The structure-from-motion (SfM) photogrammetry technique was used to 

generate the three-dimensional (3D) point clouds. The images were processed 
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using Agisoft Photoscan  v1·4 software, as already used in many studies 

(Nouwakpo et al., 2014; Piermattei et al., 2016; Di Stefano et al., 2017; Prosdocimi 

et al., 2017). 

To generate the dense point cloud and then the digital elevation models, 

the first step was image alignment. In this step, all images were processed in 

order to detect the 2D location of matching tie point features in the images. For 

this process, Photoscan uses custom algorithms that are similar to the Lowe’s 

(2004) Scale Invariant Feature Transform (SIFT). The next step calculates camera 

position and 3D location (X, Y and Z) of tie points by means of a bundle-

adjustment algorithm. As a result of these first two steps, a sparse 3D point cloud 

was generated and then manually cleaned through removal of outliers to reduce 

reconstruction errors. 

For georeferencing, 14 ground control points (GCP) were located around 

the plot (Fig. 4), with eight points used for control, and six as check points to 

estimate precision and accuracy of the 3D models through the computation of 

root-mean-square-error (RMSE). Also, the control points were used in the bundle 

adjustment, ‘optimization’ in Photoscan. This process removes non-linear 

distortions and minimises the total residual error on image observations by 

simultaneously adjusting camera parameters and orientations, and the 3D point 

positions (Granshaw, 1980). The point coordinates were established by total 

station (Trimble C3, accuracy 2 mm), within an arbitrary local coordinate system. 

The third step uses the camera locations estimated previously, to produce 

a dense point cloud using multi-view reconstruction. The dense point clouds 
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were exported into Surfer  software, converted to raster DEMs of 1-mm grid size 

using the Kriging interpolation method, and cropped to remove the flume edges. 

The photogrammetric parameters applied on Photoscan in the above-mentioned 

steps are listed in Table 2. 

Table 2. Photoscan parameters settings used during the point cloud generation. 

Point cloud: alignment parameters Setting 
 Accuracy Highest 

 Generic preselection No 
 Reference preselection No 
 Key point limit 0 
 Tie point limit 0 
 Filter point by mask No 

Dense point cloud: reconstruction parameters  

 Quality Ultra-high 

  Depth filtering Mild 

2.2.5 DEM of difference 

DEMs of difference (DoD) were calculated to detect changes in the soil 

surface topography over time and to spatially quantify the volumes of sediment 

that were eroded and deposited. Georeferenced DEMs from different time 

periods were subtracted from each other to produce a raster of morphological 

change: 

DoD = DEMt2  −  DEMt1        (1) 

where t1 is the initial time and t2 is the consecutive time of DEM acquisition. 

Positive and negative values in the DoDs show deposition and erosion 

respectively. 
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2.2.6 DEM uncertainty 

DEM uncertainty was assessed through the generation of precision 

estimates based on a Monte Carlo approach (James et al., 2017) with post-

processing tools in sfm_georef software (James and Robson, 2012). This method 

consists of repeated bundle adjustments in Photoscan, in which different pseudo-

random offsets are applied to the image observations and the control 

measurements to simulate observation measurement precision. Precision 

estimates for each optimised model parameter were then derived by 

characterising the variance for each particular parameter in the outputs from the 

large number of adjustments. In this study, 4,000 bundle adjustments were 

carried out, as used by James et al. (2017). 

Precision maps were generated through the interpolation (1-mm grid size) 

of the vertical standard deviation (σZ) derived by the precision estimates, to 

enable precision estimates for both DEMs to be propagated into the DoD as 

vertical uncertainties (Taylor, 1997; Brasington et al., 2003; Lane et al., 2003; 

Wheaton et al., 2010). A spatially varying ‘level of detection’ (LoD) of significant 

elevation change was calculated for each DoD cell, according to the equation: 

LoD = t(σZ1
2 + σZ2

2)
1

2⁄
        (2) 

where σZ1 and σZ2 are the vertical precision estimates for each cell in the two 

DEMs and t is the t-distribution value defined by a specific confidence level (this 
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study 95%, giving t = 1·96). Thus, changes smaller than the LoD can be 

disregarded, and Surfer was used to generate the LoD-thresholded DoD maps. 

2.2.7 Rill development morphological indicators 

The rills were classified manually in the DEMs. The morphological 

indicators chosen were total rill length (RL, m), mean rill width (�̅�, cm), mean 

rill depth (�̅�, cm), rill width-depth ratio (WD) and rill density (RD, m m-2). The 

indicators were calculated according to the equations: 

RL = ∑ RLin
i=1           (3) 

where RLi is the i rill length (m), and n is the number of rills, 

�̅� =  
∑ 𝑤𝑖

𝑛
𝑖=1

𝑛
          (4) 

where wi is the i rill width (cm), 

�̅� =  
∑ 𝐷𝑖

𝑛
𝑖=1

𝑛
          (5) 

where Di is the i rill depth (cm), and 

𝑊𝐷 =
�̅�

�̅�
          (6). 
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Rill density is a measure of the rill erosion coverage in the area, being directly 

proportional to soil erosion and bifurcation ratio, and also reflect the degree of 

rill fragmentation (Shen et al., 2015). 

𝑅𝐷 =
∑ 𝑅𝐿𝑛

𝑖=1

𝐴
          (7) 

where A is the study area (m2). 

The erosion measurements were performed using the Simpson's rule 

method (see Easa, 1988), which assumes nonlinearity in the profile between grid 

points. This technique shows greater precision in the determination of volume 

compared to linear methods, such as the trapezoidal rule (Fawzy, 2015). The soil 

volume was converted to mass (kg) through soil bulk density.  

Principal component analysis (PCA) was used to assess the relationship 

between morphological and quantitative indicators of rill erosion. Each variable 

was standardized to have mean zero and unity variance, to avoid the effects of 

differences in scales or magnitudes of the variables. The first two principal 

components were visualized in a PCA biplot to represent how the variables relate 

to one another and how the observations differ regarding to those variables. 

2.3 Results 

2.3.1 Precision results 
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The photogrammetric errors (RMSE) calculated by the Photoscan on x,y 

and z-axes for the control, check and tie points of each SfM point cloud are listed 

in Table 3. The point clouds show average errors of order ~1 mm on xyz on control 

and check points, whereas the tie points image residual RMS was ~ 0·3 pix. 

Table 3. Root mean square error (RMSE) of check points, control points and tie 

points image residuals. 

Water flow 

(L min-1) 

Slope 

(%) 

RMS tie points 

image 

residuals (pix) 

RMSE of control points 

(mm) 

RMSE of check points 

(mm) 

X Y Z X Y Z 

7 

6 

0·35 0·872 0·468 1·323 0·775 1·742 0·592 

0·32 0·619 0·505 0·918 0·536 1·721 1·372 

0·28 0·651 0·832 0·876 0·291 0·301 0·419 

Average 0·32 0·714 0·602 1·039 0·534 1·255 0·794 

9 
0·31 0·49 0·719 0·722 0·789 0·022 0·825 

0·27 0·668 0·624 0·572 0·378 0·084 0·424 

Average 0·29 0·579 0·672 0·647 0·584 0·053 0·625 

12 

6 

0·32 0·604 0·981 0·616 0·408 0·841 0·752 

0·28 0·33 0·565 0·681 0·517 0·386 0·389 

0·31 1 0·887 0·77 1·052 0·533 0·89 

Average 0·30 0·645 0·811 0·689 0·659 0·587 0·677 

9 

0·47 0·777 0·674 1·456 0·597 0·241 0·237 

0·36 0·804 0·728 0·673 0·679 0·092 0·682 

0·35 0·641 0·485 0·742 0·052 1·197 0·578 

Average 0·39 0·741 0·629 0·957 0·443 0·510 0·499 

The precision maps show the spatial variation of precision along the flume 

(Fig. 5), with LoD values ranging from 1 mm to 2·8 mm. The smaller values were 

concentrated in the area around the centroid of control. 
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Fig. 5. Digital elevation models, precision maps and LoD showing the spatial 

distribution of the error along the flume. Changes with magnitudes smaller than 

the LoD can be disregarded. 

2.3.2 DEM of Difference (DoD) 

The DoD maps obtained for the flume (Figs. 6 and 7) show the different 

spatial behaviour of rill erosion due to changes in the slope and water flow rate. 

Both erosion (red), and deposition (blue) were detected. The treatments with 7 L 

min-1 of flow rate (Fig. 6) showed short and shallow rills, whereas the rills from 

12 L min-1 of water flow rate were longer and deeper (Fig. 7). 

The sediment depositional area corresponded with the gradient change 

for 7 L min-1 treatments, with rills on the steeper section of the flume and the 

depositional areas on the shallower section (Fig. 6). However, at 12 L min-1, the 
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water flow was able to transport the soil further past the gradient change, causing 

deposition at the bottom of the flume and higher rates of rill erosion. 

Fig. 6. DEM of difference (DoD) maps, overlain over hillshaded topography, 

showing rill erosion over runoff at 7 L min-1 of flow rate in two slopes, 6 % (A) 

and 9 % (B). Colour scale ranges from red (erosion) to blue (deposition). 
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Transparent regions mean no significant changes (DoD is less than the level of 

detection). 

Fig. 7. DEM of difference (DoD) maps, overlain over hillshaded topography, 

showing rill erosion over runoff at 12 L min-1 of flow rate in two slopes, 6% (A) 
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and 9% (B). Colour scale ranges from red (erosion) to blue (deposition). 

Transparent regions mean no significant changes (DoD is less than the level of 

detection). 

2.3.3 Rill erosion and soil loss 

The rates of soil loss and rill erosion were greater at 12 L min-1 than at 7 L 

min-1 of water flow, regardless the slopes (Table 4). Increasing the water flow rate 

from 7 L min-1 to 12 L m-1 increased the amount of soil removed by rill erosion by 

about three times, on both slopes assessed. For the water flow rate of 7 L min-1, 

the steeper-slope experiments showed greater values of soil erosion than the 

shallower-slope experiments, whereas for 12 L min-1 the amount of soil loss was 

about 1 kg m-2 greater at 6% than at 9% of slope. The proportion of rill erosion as 

a fraction of the total soil loss increased with the water flow and slope. However, 

the water flow rate contributed the most to the formation of rill erosion. In the 

treatments with 12 L min-1, the rill erosion accounted for more than a half of the 

soil loss in the study area. 

Table 4. Rill erosion and soil loss in different water flows and slopes. 

Water flow 

(L min-1) 

Slope 

(%) 

Rill erosion 

(kg m-2) 

Soil loss 

(kg m-2) 

Proportion of soil loss due 

to rill erosion 

(%) 

7 
6 0·58 d 2·32 d 25·1 

9 0·94 c 2·77 c 33·9 

12 
6 2·42 b 4·12 a 58·8 

9 3·05 a 3·72 b 82·0 
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Means in a column followed by the same letter are not significantly different from 

one another (α = 0·05) according to the Tukey test. 

2.3.4 Rill morphology 

Total rill length increased with an increase slope at 7 L min-1, but at 12 L 

min-1, the slope had an opposite effect on rill length (Fig. 8). The total rill length 

on 12 L min-1 at 6% of slope was 2.1 times longer than the 9% slope. Otherwise, 

the main rill length was longer on low slopes for both water flow rates (Fig. 8). 
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Fig. 8. Rill erosion characteristics and morphological parameters under different 

water flow and slope gradients. Error bars represent the standard error of the 

mean (n = 3). 

The mean rill depth showed a positive relationship with the water flow 

rate and slope. On the other hand, the rills were wider on low flow rates and 
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slopes, with the 7 L min-1 at 6% slope showing the widest rill among the 

treatments studied (Fig. 9). This is reflected in the behaviour of the rill width-

depth ratio (WD). Taking the WD ratio value for 12 L min-1 flow rate as the 

example, at 9% slope the WD ratio was approximately four times lower than the 

7 L min-1 flow rate at 6% slope. 

 

Fig. 9. Principal component analysis (PCA) for the morphological and 

quantitative indicators of rill erosion in flows of 7 and 12 L m-1 and slopes of 6% 

and 9%. FV: flow velocity; RD: rill density; MD: mean rill depth; MRL: main rill 

length; MW: mean rill width; WD: width-depth ratio; RE: rill erosion; SL: soil 

loss. 
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The flow velocity (FV) for 7 L min-1 flow rate did not show a significant 

difference between slopes of 6% and 9%. On the other hand, the FV increased by 

1·28 times with the increase of slope for 12 L min-1 flow rate. At 6% the change in 

water flow rate did not affect the FV, whereas, when considering 9 % slope, the 

increase from 7 L min-1 to 12 L min-1 increased the FV by 1·32 times. 

The rill density showed a different behaviour according to the rate of the 

water flow. For 7 L min-1, the rill density increased with the increase of slope. 

However, for 12 L min-1, the density of rills in the area decreased when the slope 

increased, being 2·08 times higher in 12 L min-1 at 6% than at 9% slope. 

2.4 Discussion 

2.4.1 Rill network development 

In this study we introduce the use of close-range photogrammetry to 

study the rill network development with millimetric accuracy, allowing the 

extraction of rills and parameter calculations (i.e. rill width, depth, length) by 

applying image processing methods. The spatial distribution of the rills (Figs. 6 

and 7) shows that the highest rates of soil erosion were at the top of the plot, with 

erosion decreasing down-slope. This occurs mainly because of the gradient 

change, with slope decreasing and becoming constant at the bottom of the soil 

flume. In addition, the clean water at the top of the rills has the maximum soil 

detachment potential (Nearing et al., 1989; Chen et al., 2014). Also, as the 
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concentration of the sediments on the water flow increases along the rills, the soil 

detachment capability continues to decrease, due to the energy being used by the 

transportation of soil particles (Chen et al., 2016). 

Table 4 shows that the amount of soil eroded by rill erosion increased with 

flow rates and slope gradients. The increase in the slope gradient also promotes 

an increase of the velocity and energy of concentrated flow (Li et al., 2005). 

Similar results were founded by Chen et al. (2016) and Kinnell (2000). 

Furthermore, another parameter that influenced rill erosion was FV, 

which has an important role in rill development and soil erosion. When the flow 

rate was at its highest level (12 L min-1) the increase in slope gradient increased 

the FV, leading to a greater eroding force. Thus, higher FV values imply the 

generation of deeper rills, because it is easier for the water to erode an existing 

rill than create another one (Mancilla et al., 2005). Then, the rill erosion intensity 

was closely associated with the FV in the area. 

The slope gradient change along the plot showed clearly that the sediment 

transport capacity was directly related to changes in flow velocity (Lei et al., 

1998). For the two different discharges, sediment deposition was different in the 

2% slope area. For the 7 L min-1, the transported sediments were deposited in thin 

layers at the boundary between the area of the higher and shallower slope. 

However, for the 12 L min-1 flow rate, deposition was concentrated towards the 

bottom of the rills, further into the lower slope area. This reflects the greater 

distance required for the flow energy to fall to the point at which deposition 

occurs. 
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2.4.2 Soil loss due to rill erosion 

The proportion of soil loss due to rill erosion was directly affected by the 

increase of slope and water flow rate. Studies show that the increase of slope 

gradient also increase the collapse of rill heads and sidewalls, accounting for > 90 

% of rill erosion (Xiao et al., 2016), which can lead to a greater contribution to 

total soil loss (Jiang et al., 2018; Wang and Shi, 2015). Zheng et al. (1987) and Shen 

et al. (2015), also observed that rill erosion accounted for up to 74·2 % and 86·7 % 

of soil losses, respectively. 

Contrary to expectations, for the 12 L min-1 flow rate experiments, the 

increase of slope gradient did not coincide with an increase in soil loss. This can 

be explained by the higher bifurcation showed for 6% slopes in contrast with for 

9% slopes (Fig. 7). On steeper slopes, the rill network pattern comprises deep rills 

with fewer secondary channels, whereas at 6% slope, the rills were shallower and 

with high values of rill density, producing greater total soil losses but smaller rill 

erosion rates (Fig. 9). 

When comparing different types of soil erosion, rill erosion generates 

greater soil losses than other types of soil erosion (sheet and splash erosion) (Shen 

et al., 2015). Thus, once rill erosion is initiated and became the main erosion 

pattern, the rate of soil loss increases very rapidly (Kimaro et al., 2008; He et al., 

2016). 

2.4.3 Rill network morphology 
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As the flow velocity increase, the rills became deeper and narrow (Fig. 9). 

Mean rill width decreased when the slope gradient increased, regardless of the 

water flow rate, while the mean rill depth increased with increasing slope. 

Similar results were founded by Lei and Nearing (2000) and He et al. (2016). This 

behaviour can be explained by the increase in eroding force and erosion intensity 

promoted by the high stream power on high slopes (Chen et al., 2016). 

Rill density values reflected the rill fragmentation (Figs. 6 and 7) and were 

related to the main rill length (Fig. 9). The highest values of rill density were for 

12 L min-1 at 6 % of slope. On the other hand, the rill density was statistically the 

same for 7 L min-1 at 6% and 12 L min-1 at 9% of slope. This means that high water 

flow, combined with high slope gradient can generate substantial amounts of soil 

loss in non-complex rill network. Thus, the amount of rill erosion is primarily 

related to the depth and flow velocity than the rill network density. 

2.5 Conclusions 

In this study, a runoff simulator was used to investigate the influence of 

different slopes and water flow on the behaviour of soil erosion and sediment 

transport. The gradient change had a great influence on the rill erosion behaviour 

along the slope, with the highest soil erosion rates being concentrated in the 

upper part of the plot. The gradient change also resulted in different patterns of 

rill network, reducing depth and promoting soil sedimentation. The flow velocity 

in rills increased with water flow and slope, showing a strong correlation with 
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the amount of rill erosion. The rills produced at a lower water flow rate (7 L min-

1) were wider, with width-depth ratio almost 5 times greater at 6% slope than at 

12 L min-1 at 9% of slope. 

The greatest amount of soil loss and rill density was found for 12 L min-1 

on a 6% slope, whereas the greatest rill erosion was on 12 L min-1 at 9% of slope. 

These results demonstrate that on steep slopes the soil erosion is dominated by 

the rill erosion with less rill network density while, on low slopes, there are other 

types of soil erosion occurring together with rill erosion, causing the reduction of 

soil loss due to rill erosion. 

Despite the known effects of vegetation cover on erosion reduction and 

sediment production, this work did not evaluate treatments with vegetation on 

the surface. Obtaining high-resolution DEMs through SfM in vegetated areas 

requires further processing, using mathematical algorithms to classify and filter 

the point cloud in vegetated and non-vegetated areas. Thus, the accuracy of 

DEMs obtained by SfM in areas with vegetation cover is compromised, as well 

as volumetric measurements in these regions. The use of SfM to study the 

morphology and development of the furrow network in vegetated areas is still a 

challenge. 
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3. High resolution monitoring of sheet (interrill) erosion using structure-

from-motion 

3.1 Introduction 

Soil erosion is one of the main factors that lead to the degradation of 

agricultural land worldwide (Boardman et al., 2003; Bakker et al., 2004; Zhao et 

al., 2019). It threats agricultural sustainability by reducing the water retention 

capacity, the nutrient content, and total organic carbon of the soil (Quinton et al., 

2010; Zhao et al., 2016), causing pollution of water bodies (Lal, 1998). Thus, the 

accurate measurement of erosion rates becomes a key factor for better 

understanding the erosive process in different scenarios and to promote efficient 

recovery strategies aiming to reduce soil loss in sloping areas (Cerdan et al., 2010; 

Di Stefano and Ferro, 2017). 

In the last decades, soil erosion has been studied primarily from plots of 

soil loss under natural and artificial rainfall conditions (Araya et al., 2011; García-

Ruiz et al., 2015; Guo et al., 2015; Fang et al., 2017; Zhao et al., 2019). However, 

soil erosion data acquired from traditional methods is considered a time-

consuming and costly process (Cerdan et al., 2010). Recently, with the 

technological advances, digital elevation models (DEM) produced from high-

resolution surveying techniques have played an important role in the 

understanding of geomorphological processes. These advances have been 

facilitated by the development of Structure-from-Motion (SfM; Ullman, 1979), a 
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technique that combines well-established photogrammetric principles with 

modern computational methods (Westoby et al., 2012). 

SfM photogrammetry, using images acquired from unmanned aerial 

vehicle (UAV), is being adopted for the generation of high-resolution DEMs in 

studies of surface processes (Colomina and Molina, 2014). The use of UAVs have 

made the acquisition of aerial photographs cheap and easy, allowing surveys at 

high temporal and spatial resolution. This makes it possible to monitor and 

quantify rapidly changing landscapes (Cook, 2017). 

In geosciences, the application of photogrammetry using SfM is now 

considered an established method to describe high-resolution topography (Cook, 

2017; Eltner et al., 2018). This technique has been used in several Earth surface 

surveys, in studies of fluvial, glacial, and coastal geomorphological processes 

(Dietrich, 2016; Westoby et al., 2016; Warrick et al., 2017), as well as in the 

monitoring and quantification of soil erosion volumes in gullies (Castillo et al., 

2012; Gómez- Gutiérrez et al., 2014; Stöcker et al., 2015, Glendell et al., 2017). 

However, photogrammetry applications from SfM with the use of UAVs 

in studies of soil erosion where there are no large mass movements and gullies 

are still scarce. This is due to difficulties in defining a stable coordinate reference 

system, which is important for quantifying changes of small magnitudes that are 

typical of laminar erosion processes. There are studies involving SfM and UAVs 

that quantify erosion at large magnitudes (Bazzoffi, 2015, Neugirg et al., 2016); 

however, the evaluation of sheet erosion under natural rainfall is still limited 
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(Eltner et al., 2015; Nouwakpo et al., 2015, Hänsel et al., 2016, Morgan et al., 2017; 

Prosdocimi et al., 2017). 

The assessment of the accuracy of data derived from SfM has been carried 

out by several studies (James and Robson, 2012; Westoby et al., 2012; Gómez-

Gutiérrez et al., 2014; Eltner et al., 2015; Cook et al., 2017; James et al., 2017a; 

Morgan et al., 2017) using aerial and terrestrial laser scanning or control points 

with high precision as a reference. The reported accuracies vary widely from sub-

decimetre to more than 1 m, reflecting the dependence of SfM accuracy on the 

image quality, distortion and orientation, vegetation presence, soil surface 

characteristics, number and precision of the ground control points and scale. 

The SfM relative precision ratio (measurement precision: observation 

distance) is limited by the model used for camera calibration in software, but 

generally exceed 1:1000, which implies the accuracy of centimetres over distances 

of 10s of metres. (James and Robson, 2012). Comparative studies have shown that 

SfM generates topographic data with quality, resolution and accuracy similar to 

those obtained by laser scanning and classical photogrammetry surveys 

(Westoby et al., 2012; Fonstad et al., 2013; Mancini et al., 2013; Stumpf et al., 2013; 

White et al., 2013; James and Quinton, 2014; Ouédraogo et al., 2014; Cook, 2017). 

Repeated topographic surveys of the same area are often carried out in 

order to establish spatial patterns of erosion, deposition, and changes in volume. 

Therefore, when successive DEMs are subtracted from each other, the DEM of 

difference (DoD) can be generated, highlighting areas of erosion and deposition 

(Lane et al., 2003). However, there are no studies that validate such volume 
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measurements conducted by UAVs through SfM and DoD through comparison 

with measurements of sediment collected in standard erosion plots. 

The speed of data acquisition from UAVs, coupled with the high precision 

of the DEMs generated by the SfM can be important tools in obtaining soil loss 

values that are used in modelling water erosion. Thus, this study aims to evaluate 

the efficacy of SfM in obtaining sub-centimetre level precision measurements of 

soil loss in areas of sheet erosion under natural rainfall in standard plots of soil 

loss where there are no large furrows or gullies. 

3.2 Materials and Methods 

3.2.1 Experimental area 

All the experiments were conducted on the campus of the Federal 

University of Lavras, Lavras, Brazil (21º13'20'' S and 44º58'17'' W), during two 

hydrological years. The area presents a typical humid subtropical climate, with 

an annual average rainfall of 1,530 mm. The soil is classified as an Inceptisol, 

according to the US Soil Taxonomy, with 47·8% sand, 15·8% silt and 36·4% clay, 

presenting a density of 1,400 kg m-3. Three plots (12 m × 4 m) were installed in 

the area to monitor soil erosion on a 23% slope, under bare soil and natural 

rainfall (Fig. 1). The longest dimension of the plot followed the direction of the 

slope. 
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Fig. 1. Typical erosion plot showing dimensions and control point layout. 

3.2.2 Sediments measurements on erosion plots 

The collector system comprised two tanks installed in sequence, the first 

with 500 L capacity and the second 250 L (Fig. 2). Among the sedimentation tanks 

there was a Geib divisor system with 15 windows so that after filling the first 

tank, only 1/15 of the runoff was conducted to the second tank. 
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Fig. 2. Runoff collection system used on soil loss plots. Inset shows the detail of 

a ground control point. 

To quantify soil losses, runoff samples and sediments were collected from 

the collection tanks. After stirring, three aliquots of predetermined volume were 

collected, transferred to the laboratory, the supernatant decanted and the 

remaining sediment dried at 105°C before weighing. 

3.2.3 Image acquisition 

A UAV, DJI Phantom 3 Professional, was used for data acquisition. The 

UAV features integrated a gimbal-stabilized FC300X camera with 12-megapixel 

(4000 × 3000) Sony EXMOR 1/2·3 sensor, 94º field of view (FOV) and 20-mm focal 

length. The lens aperture was set to f/2·8 and images acquired in RAW format. 
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Seven flights were performed on each erosion plot, from June 2016 to April 

2018. The flights were conducted manually using a combination of orthogonal 

and oblique photos to provide convergent image geometries between the lines 

(James et al., 2014). In order to reduce the influence of direct sunlight at noon, 

flights were conducted either in the morning or in the afternoon on cloudy days. 

Flight heights were over 4 m with a nominal ground sampling distance of 1·5 

mm. A total of 35 photos were taken in each survey, with 70% of forward and 

side overlap. 

For georeferencing, 14 ground control points (GCP) were installed around 

the plots (Fig. 1), with ten points used for control and four as check points to 

estimate the precision and the accuracy of the 3D models by calculating the root 

mean square error (RMSE). The coordinates of the points were established by 

total station (Geodetic GD2i, accuracy 2 mm), within an arbitrary local coordinate 

system. 

3.2.4 Structure from motion (SfM) point cloud generation 

The generation of three-dimensional point clouds (3D) was performed 

using the SfM photogrammetry technique, which allows the reconstruction of the 

topography from randomly distributed and oriented images from uncalibrated 

cameras (James and Robson, 2012; Fonstad et al., 2013; Agüera-Vega et al. 2018). 

The images were processed using the commercially available SfM software 

Agisoft Photoscan Professional® v1.4, which have been used for several studies 
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(Brunier et al., 2016; Di Stefano et al., 2017; Prosdocimi et al., 2017). All processing 

was done through cloud computing using a virtual machine (24 Intel Xeon 

Platinum 3.7 GHz CPUs, two NVIDIA Tesla K80 GPUs and 128 GB RAM). 

Firstly, image alignment was done to generate the dense point cloud and 

then the DEMs. In this step, all images were processed in order to detect the 2D 

location of matching tie point features in the images. For this process, Photoscan 

uses custom algorithms that are similar to the Lowe’s (2004) Scale Invariant 

Feature Transform (SIFT). The next step calculates camera position and 3D 

location (X, Y and Z) of tie points by means of a bundle-adjustment algorithm. 

The control points were used in the bundle adjustment, ‘optimization’ in 

Photoscan. This process reduces non-linear distortions and minimises the total 

residual error on image observations by simultaneously adjusting camera 

parameters and orientations, and the 3D point positions (Granshaw, 1980). As a 

result of these first two steps, a sparse 3D point cloud was generated. 

The third step uses the camera locations estimated previously, to produce 

a dense point cloud using multi-view reconstruction. The dense point clouds 

were exported into Surfer 16 software, converted to raster DEMs of 4-mm grid 

size using the nearest neighbour interpolation method, and cropped to remove 

the plot edges. The photogrammetric parameters applied on Photoscan in the 

above-mentioned steps are listed in Table 1. 
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Table 1. Photoscan parameters settings used during the point cloud generation. 

Point cloud: alignment parameters Setting 
 Accuracy Highest 

 Generic preselection Yes 
 Reference preselection Yes 
 Key point limit 120,000 
 Tie point limit 0 
 Filter point by mask No 

Dense point cloud: reconstruction parameters  

 Quality Medium 

  Depth filtering Mild 

3.2.5 Erosion measurements using SfM 

The erosion measurements in each plot were performed using the 

Simpson's rule method (see Easa, 1988), which assumes nonlinearity in the 

profile between grid points. This technique shows greater precision in the 

determination of volume compared to linear methods, such as the trapezoidal 

rule (Fawzy, 2015). The soil volume was converted to mass (kg) through soil bulk 

density, to correlate with the sediment collected from each runoff tank in the 

interval between the two drone flights. 

DEMs of difference (DoD) were calculated to detect changes in the soil 

surface topography over time and to spatially quantify the volumes of sediment 

that were eroded and deposited. This technique consists of subtracting 

georeferenced DEMs from different periods to generate a raster of morphological 

change: 

DoD = DEMt2  −  DEMt1        (1) 
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where t1 is the initial time and t2 is the consecutive time of DEM 

acquisition. Positive and negative values in the DoDs show deposition and 

erosion respectively. 

3.2.6 DEM uncertainty and Level of Detection (LoD) 

DEM uncertainty was assessed through the generation of precision 

estimates based on a Monte Carlo approach (James et al., 2017a) with post-

processing tools in sfm_georef software (James and Robson, 2012). This method 

consists of repeated bundle adjustments in Photoscan, in which different pseudo-

random offsets are applied to the image observations and the control 

measurements to simulate observation measurement precision. Precision 

estimates for each optimised model parameter were then derived by 

characterising the variance for each particular parameter in the outputs from the 

large number of adjustments. In this study, 4,000 bundle adjustments were 

carried out, as used by James et al. (2017a). 

Precision maps were generated through the interpolation (4-mm grid size) 

of the vertical standard deviation (σZ) derived by the precision estimates, to 

enable precision estimates for both DEMs to be propagated into the DoD as 

vertical uncertainties (Taylor, 1997; Wheaton et al., 2010). A spatially varying 

‘level of detection’ (LoD) of significant elevation change was calculated for each 

DoD cell, according to the equation: 

LoD = t(σZ1
2 + σZ2

2)
1

2⁄
        (2) 
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where σZ1 and σZ2 are the vertical precision estimates for each cell in the 

two DEMs and t is the t-distribution value defined by a specific confidence level 

(this study 95%, giving t = 1·96). Thus, changes smaller than the LoD can be 

disregarded, and Surfer was used to generate the LoD-thresholded DoD maps. 

3.2.7 Statistical analysis 

For assessing the agreement between measurements obtained by sediment 

collection (response variable) and by SfM (explanatory variable) a linear 

regression model was fit to the data. Because the same plots were repeatedly used 

through time for data collection, we investigated whether measurements from 

the same plot were statistically dependent by introducing a random intercept for 

each plot in the linear regression model, following a mixed modelling approach 

(Gelman and Hill, 2007; Zuur et al., 2009). 

However, after fitting the model, we observed that the variance associated 

with the random intercept was null, indicating no evidence of statistical 

dependence caused by the plot effect. A drawback of that approach is the low 

number (three) of groups available for estimating the variance associated with 

the random effect of plots. 

As an alternative approach to further investigate whether a statistical 

dependence among observations could be attributed to a plot effect, an analysis 

of covariance was performed, with both plot and SfM as explanatory variables, 

and amount of collected sediments as response variable. In agreement with the 



 72 

results from the previous approach, no significant effect of plots was observed 

(F2,14 = 0.4, P = 0.68). For the above reasons, the final model was simplified by 

omitting the plot effect and an ordinary linear regression approach was used, 

assuming statistical independence of the model residuals. 

3.3 Results 

3.3.1 Precision results 

The photogrammetric errors (RMSE) calculated by the Photoscan on x,y 

and z-axes for the control, check and tie points of each SfM point cloud are listed 

in Table 2. The point clouds show average errors of order ~3 mm on xyz on control 

and check points, whereas the tie points image residual RMS was ~ 0·3 pix. 

Table 2. Root mean square error (RMSE) of check points, control points and tie 

points image residuals. 

Plot Date 

RMS tie points 

image residuals 

(pix) 

RMSE of control 

points 

RMSE of check 

points 

(mm) (mm) 

X Y Z X Y Z 

1 

06/06/16 0·264 2·464 2·987 2·154 2·387 3·690 1·196 

22/08/16 0·236 2·164 1·626 1·901 1·135 1·583 2·690 

30/11/16 0·305 2·106 2·968 1·071 1·253 2·694 1·214 

22/02/17 0·295 1·572 1·450 2·477 2·100 1·613 4·850 

25/05/17 0·323 2·743 3·520 1·639 1·379 3·307 2·329 

28/09/17 0·271 2·755 2·431 1·540 2·605 2·742 1·472 

26/04/18 0·290 1·169 0·802 0·570 1·015 1·133 1·953 

2 

06/06/16 0·307 3·682 2·511 2·140 2·254 3·219 3·211 

22/08/16 0·292 3·752 1·827 1·120 3·328 2·255 2·765 

30/11/16 0·27 3·047 1·704 1·516 3·468 1·308 3·176 

22/02/17 0·275 2·864 1·907 2·299 2·905 2·427 1·803 

25/05/17 0·318 3·754 2·182 2·553 1·011 1·173 1·864 
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28/09/17 0·255 2·720 1·540 1·098 2·312 1·437 2·829 

26/04/18 0·388 2·421 2·013 2·274 3·080 2·066 1·834 

3 

06/06/16 0·363 3·507 2·015 1·964 3·017 3·797 5·500 

22/08/16 0·332 3·133 2·695 1·277 3·506 1·709 0·737 

30/11/16 0·277 3·068 3·563 1·261 3·441 3·826 1·399 

22/02/17 0·269 2·500 2·599 1·237 1·981 2·218 2·221 

25/05/17 0·331 1·721 2·193 0·999 0·943 2·298 2·658 

28/09/17 0·273 2·880 1·579 1·380 2·776 2·274 1·138 

26/04/18 0·292 1·544 2·280 1·172 1·463 2·701 1·646 

The LoD maps show the spatial variation of precision along the plot (Fig. 

3), with values ranging from 1·4 mm to 7·4 mm. The larger values were 

concentrated in the area with less image overlap. 

Fig. 3. Level of detection (LoD) maps showing the spatial distribution of potential 

error along the flume. Changes with magnitudes smaller than the LoD can be 

disregarded. 

3.3.2 DEM of Difference (DoD) 



 74 

The DoD maps obtained from the erosion plots (Fig. 4) showed 

remarkable variations in relation to soil movement over the studied period, with 

95% of the area showing significant changes in soil surface (i.e. larger than LoD). 

Although erosion was predominant, it was also possible to detect soil deposition, 

mainly in the lower part of the plots near the sediment collectors. The periods 

where there were major soil movements were between November 2016 - 

February 2017 and September 2017 - April 2018 (Fig. 4), which match with the 

rainy season in the Southwest of Brazil. The dry season, which corresponds to 

the period between May and September, was also represented by the DoD maps, 

by less soil movement along the plot. 

Sheet erosion was the predominant type of soil erosion over the study 

period. However, between September 2017 - April 2018, it was possible to 

observe the formation of rill erosion, where the highest rates of water erosion 

were concentrated. 
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Fig. 4. DEM of difference (DoD) maps, overlain over hillshaded topography, 

showing soil erosion over natural runoff. Colour scale ranges from red (erosion) 

to blue (deposition). Transparent regions mean no significant changes (DoD is 

less than the level of detection). 

3.3.3 Erosion measurements 
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The soil loss values obtained by SfM showed a high correlation (R2 = 

95·55%) with the traditional sediment collection method (Fig. 5). Considering the 

measurements performed by both methods, it was observed that the values of 

soil losses obtained through the sediment collection tended to present values 

slightly higher than those found by the SfM (Table 3). However, the soil loss 

measurements made by the SfM were closely related to the amount of sediments 

collected in all seasons of the year, both in summer (rainy season) and winter 

(dry season). 

 

Fig. 5. The relationship between the soil loss from sediments collection and 

structure from motion method. The dashed line represents the 1:1 relation. The 

grey zone is the confidence interval for the mean. 
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Table 3. Averaged soil loss calculated from sediment collection and structure 

from motion (SfM), and natural rainfall rates during each studied period. 

Date Sediments (kg) SfM (kg) Rainfall (mm) 

Jun/2016 – Aug/2016 53.04 42.57 92 

Aug/2016 – Nov/2016 129.93 127.40 194 

Nov/2016 – Feb/2017 418.20 338.20 661 

Feb/2017 – May/2017 304.33 294.67 149 

May/2017 – Sep/2017 87.13 98.33 115 

Sep/2017 – Apr/2018 520.45 470.11 1121 

Measurements using the SfM followed the sediment data for the three 

studied plots. However, in plot 1 the magnitude of the water erosion values in 

rainy periods was higher than the other two monitored plots (Fig.6). 
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Fig. 6. Soil loss measurements calculated from structure from motion (SfM) and 

sediment collection for three erosion plots. Lines are to illustrate trend and do 

not imply a relationship between the points. The grey bars show the amount of 

rainfall during each studied period. 
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3.4 Discussion 

3.4.1 Erosion measurements from SfM 

This was the first time the use of SfM to determine ‘sheet’ flow has been 

evaluated independently using sediment collection. The high correlation 

between the soil loss from SfM and collected on runoff tanks opens up the 

possibility to use SfM for erosion studies where channelized erosion is not the 

principal mechanism. This represents a great step forward on soil erosion 

assessment around the world. Also, due to the limitations related to erosion plots, 

such as high operational costs, measurements variability, due to human 

disturbance in collecting data (Zobisch et al., 1996) and plots of different sizes 

(Bagarello and Ferro, 2004), the SfM can potentially increase the quality of the 

global soil erosion database. 

Soil erosion is a process composed of three sub-processes: erosion, 

transport, and deposition (Morgan, 2005). Sediment and surface runoff 

collections are restricted to the evaluation of the amount of soil lost rather than 

the soil erosion volume, since the traditional method does not allow the 

determination of the mass of soil moved during erosion-transport-deposition 

processes. Through SfM, it is possible to generate erosion and deposition maps 

that allow the volume of soil moved at different times and positions to be 

determined (Fig. 4). In addition, this method can distinguish the differences 
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between soil eroded volume and soil lost volume. Also, it can be used to 

investigate the sediment delivery rate (Guo et al., 2016). 

However, SfM does rely on images of the soil surface, meaning that it is 

not suitable for areas with significant vegetation cover. Thus, applying the SfM 

technique to measure erosion in cultivated areas, where the highest soil loss 

values occur, is still a major challenge. To overcome this limitation and allow soil 

surface 3-D reconstruction in vegetation cover areas, vegetation filtering 

algorithms are being developed (e.g. CANUPO (Brodu and Lague, 2012) or CSF 

(Zhang et al., 2016)). However, the accuracy of DEMs obtained from these 

techniques is not yet enough to measure laminar erosion accurately. 

In periods with high precipitation values, the highest soil loss values 

found by SfM, compared to the collected sediments, in plots 2 and 3 (Fig. 6), 

occurred because the SfM soil loss calculations considered the variation in 

microtopography and high rainfall can change the soil surface, promoting its 

consolidation. Soil consolidation occurs because of gravity causing particles to 

collapse due to their own weight and the impact of raindrops (Eltner et al., 2015). 

SfM will also capture changes to the soil surface that are not due to erosion, for 

example the consolidation of the soil following tillage (Eltner et al., 2015), 

crusting and degradation of the soil structure are expected due to wetting and 

drying cycles, causing reduction of soil roughness, or its disturbance by soil 

animals. 

3.4.2 Evaluation of SfM accuracy 
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The accuracy of the 3D point coordinates acquired from SfM can be 

affected by photogrammetric factors such as image geometry and georeferencing 

(James et al., 2017a). In this study, the spatial variation of LoD was related to 

photogrammetry, more precisely to the image overlap along the flight. This 

occurred due to the manual navigation of the UAV used in this study, which 

requires operator care to achieve the necessary coverage of the monitored area. 

In addition, flight speed must be adjusted to achieve the required overlap among 

photographs and reduce risks of blurred images at high speeds. 

Other factors that influence the accuracy of SfM models are surface types 

(mainly vegetation), soil roughness, and the presence of water (Eltner et al., 2015; 

James et al., 2017b). In the present study, considering only the bare soil, the SfM 

results showed a strong correlation with the values obtained by the sediment 

collection (Fig. 5). However, it is important to note that areas with vegetation 

present a complication for the interpretation of erosion measured using UAV. 

This is of great importance for regions where soil loss changes from vegetated to 

a non-vegetated surface. 

SfM point clouds tend to smooth the soil surface in smaller scale 

roughness. This can be controlled by the quality parameters in Photoscan during 

dense cloud generation; but cloud noise might increase when “ultra-high 

quality” is used (Cook, 2017). Thus, care should be taken when analysing 

roughness surface data by choosing flight heights, overlapping, and image 

resolution to ensure accurate representation of the soil surface texture at the 

desired scale. The smoothing of photogrammetric data has been observed (Smith 
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et al., 2004; Jester and Klik, 2005); however, the effect of the measurement 

technique has been combined with the interpolation effect during the generation 

of DEM or meshing (Lane et al., 2000). 

3.5 Conclusions 

This work evaluated for the first time the capacity of SfM in measuring 

soil erosion comparing with independent data collected from runoff tanks. The 

high correlation between the soil loss from SfM and collected on runoff tanks 

opens up the possibility to use SfM for erosion studies where channelized erosion 

is not the principal mechanism, enabling new insights into sheet, and interrill, 

erosion processes. 

The use of UAV associated with the SfM technique generates a cheap, 

portable, and easy way to obtain erosion measurements on a smaller scale with 

high accuracy, in contrast to the traditional standard plot methods of erosion 

monitoring worldwide. The results of SfM allows not only the quantification of 

soil loss, for later use in models such as USLE, but also represents the spatial and 

temporal dimensions of the soil erosion process, which is of great importance in 

understanding the mechanisms of the water erosion. 

3.6 References 

Agüera-Vega, F., Carvajal-Ramírez, F., Martínez-Carricondo, P., López, J.S-H., Mesas-

Carrascosa, F.J., García-Ferrer, A., Pérez-Porras, F.J., 2018. 



 83 

Araya, T., Cornelis, W.M., Nyssen, J., Govaerts, B., Bauer, H., Gebreegziabher, T., Oicha, 

T., Raes, D., Sayre, K.D., Haile, M., Decker, J., 2011. Effects of conservation agriculture 

on runoff, soil loss and crop yield under rainfed conditions in Tigray, Northern Ethiopia. 

Soil Use Manage. 27, 404–414. 

Bagarello, V., Ferro, V., 2004. Plot-scale measurement of soil erosion at the experimental 

area of Sparacia (southern Italy). Hydrol. Process. 18, 141–157. 

Bakker, M.M., Govers, G., Rounsevell, M.D., 2004. The crop productivity–erosion 

relationship: an analysis based on experimental work. Catena 57, 55–76. 

Bazoffi, P., 2015. Measurement of rill erosion through a new UAV-GIS methodology. 

Ital. J. Agron. 10, s1:708. 

Boardman, J., Evans, R., Ford, J., 2003. Muddy floods on the South Downs, southern 

England: problem and responses. Environ. Sci. Pol. 6, 69–83. 

Brunier, G., Fleury, J., Anthony, E.J., Gardel, A., Dussouillez, P., 2016. Close-range 

airborne structure-from-motion photogrammetry for high-resolution beach 

morphometric surveys: examples from an embayed rotating beach. Geomorphology 261, 

76–88. 

Castillo, C., Pérez, R., James, M.R., Quinton, J.N., Taguas, E.V., Gómez, J.A., 2012. 

Comparing the accuracy of several field methods for measuring gully erosion. Soil Sci. 

Soc. Am. J. 76, 1319–1332. 

Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., 

Vacca, A., Quinton, J., Auerswald, K., Klik, A., Kwaad, F., Raclot, D., Ionita, I., Rejman, 

J., Rousseva, S., Muxart, T., Roxo, M., Dostal, T., 2010. Rates and spatial variations of soil 

erosion in Europe: A study based on erosion plot data. Geomorphology 122, 167–177. 

Cook, K.L., 2017. An evaluation of the effectiveness of low-cost UAVs and structure from 

motion for geomorphic change detection. Geomorphology 278, 195–208. 

Colomina, I., Molina, P., 2014. Unmanned aerial systems for photogrammetry and 

remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 92, 79–97. 

Di Stefano, C., Ferro, V., 2017. Testing sediment connectivity at the experimental SPA2 

basin, Sicily (Italy). Land Degrad. Dev. 28, 1992–2000. 

Dietrich, J.T., 2016. Riverscape mapping with helicopter-based Structure-from-Motion 

photogrammetry. Geomorphology 252, 144–157. 

Easa, S.M., 1988. Estimating pit excavation volume using nonlinear ground profile. J. 

Surv. Eng. 114, 71–83. 

Eltner, A., Baumgart, P., Maas, H.G., Faust, D., 2015. Multi-temporal UAV data for 

automatic measurement of rill and interrill erosion on loess soil. Earth Surf. Process. 

Landf. 40, 741–755. 



 84 

Eltner, A., Maas, H-G., Faust, D., 2018. Soil micro-topography change detection at 

hillslopes in fragile Mediterranean landscapes. Geoderma 313, 217–232. 

Fang, N.F., Wang, L., Shi, Z.H. Runoff and soil erosion of field plots in a subtropical 

mountainous region of China. J. Hydrol. 552, 387–395. 

Fawzy, H.E-D., 2015. The accuracy of determining the volumes using close range 

photogrammetry. J. Mech. Civ. Eng. 12, 10–15. 

Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., Carbonneau, P.E., 2013. 

Topographic structure from motion: a new development in photogrammetric 

measurement. Earth Surf. Process. Landf. 38, 421–430. 

García-Ruiz, J.M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J.C., Lana-Renault, 

N., Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology, 

239, 160–173. 

Gelman, A., Hill, J., 2007. Data analysis using regression and multilevel/hierarchical 

models. Cambridge University Press, New York. 

Gómez-Gutiérrez, A., Schnabel, S., Berenguer-Sempere, F., 2014. Using 3D photo-

reconstruction methods to estimate gully headcut erosion. Catena 120, 91–101. 

Glendell, M., McShane, G., Farrow, L., James, M., Quinton, J., Anderson, K., Evans, M., 

Benaud, P., Rawlins, B., Morgan, D., Jones, L., Kirkham, M., DeBell, L., Quine, T., Lark, 

M., Rickson, J., Brazier, R., 2017. Testing the utility of structure from motion 

photogrammetry reconstructions using small unmanned aerial vehicles and ground 

photography to estimate the extent of upland soil erosion. Earth Surf. Process. Landf. 42, 

1860–1871. 

Granshaw, S.I., 1980. Bundle adjustment methods in engineering photogrammetry. 

Photogramm. Rec. 10, 181–207. 

Guo, M., Shi, H., Zhao, J., Liu, P., Welbourne, D., Lin, Q., 2016. Digital close range 

photogrammetry for the study of rill development at flume scale. Catena 143, 265–274. 

Guo, Q., Hao, Y., Liu, B., 2015. Rates of soil erosion in China: a study based on runoff 

plot data. Catena, 124, 68–76. 

Hänsel, P., Schindewolf, M., Eltner, A., Kaiser, A., Schmidt, J., 2016. Feasibility of high-

resolution soil erosion measurements by means of rainfall simulations and SfM 

photogrammetry. Hydrology 3 (38). 

James, M.R., Quinton, J.N., 2014. Ultra-rapid topographic surveying for complex 

environments: the hand-held mobile laser scanner (HMLS). Earth Surf. Process. Landf. 

39, 138–142. 

James, M.R., Robson, S., 2012. Straightforward reconstruction of 3D surfaces and 

topography with a camera: accuracy and geoscience application. J. Geophys. Res. 117, 

F03017. 



 85 

James, M.R., Robson, S., 2014. Mitigating systematic error in topographic models derived 

from UAV and ground-based image networks. Earth Surf. Process. Landf. 39, 1413–1420. 

James, M.R., Robson, S., Smith, M.W., 2017a. 3-D uncertainty-based topographic change 

detection with structure-from-motion photogrammetry: precision maps for ground 

control and directly georeferenced surveys. Earth Surf. Process. Landf. 42, 1769–1788. 

James, M.R., Robson, S., d'Oleire-Oltmanns, S., Niethammer, U., 2017b. Optimising UAV 

topographic surveys processed with structure-from-motion: Ground control quality, 

quantity and bundle adjustment. Geomorphology 280, 51–66. 

Jester, W., Klik, A., 2005. Soil surface roughness measurement—methods, applicability, 

and surface representation. Catena 64, 174–192. 

Lal, R., 1998. Soil erosion impact on agronomic productivity and environment quality. 

CRC Crit. Rev. Plant Sci. 17, 319–464. 

Lane, S.N., James, T.D., Crowell, M.D., 2000. Application ofdigital photogrammetry to 

com- plex topography for geomorphological research. Photogramm. Rec. 16, 793–821. 

Lane, S.N., Westaway, R.M., Hicks, D.M., 2003. Estimation of erosion and deposition 

volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf. 

Process. Landf. 28, 249–271. 

Lowe, D., 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. 

Vis. 60, 91–110. 

Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., Gabbianelli, G., 2013. Using 

unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The 

structure from motion approach on coastal environments. Remote Sens. 5, 6880–6898. 

Morgan, R.P.C., 2005. Soil Erosion and Conservation. third ed. Blackwell Publishing 

Ltd., Cornwall. 

Morgan, J.A., Brogan, D.J., Nelson, P.A., 2017. Application of Structure-from-Motion 

photogrammetry in laboratory flume. Geomorphology 276, 125–143. 

Neugirg, F., Stark, M., Kaiser, A., Vlacilova, M., Della Seta, M., Vergari, F., Schmidt, J., 

Becht, M., Haas, F., 2016. Erosion processes in calanchi in the upper Orcia Valley, 

southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and 

UAV surveys. Geomorphology 269, 8–22. 

Nouwakpo, S., Weltz, M., McGwire, K., 2015. Assessing the performance of structure-

from-motion photogrammetry and terrestrial lidar for reconstructing soil surface 

microtopography of naturally vegetated plots. Earth Surf. Process. Landf. 41, 308–322. 

Ouédraogo, M.M., Degré, A., Debouche, C., Lisein, J., 2014. The evaluation of unmanned 

aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of 

agricultural watersheds. Geomorphology 214, 339–355. 



 86 

Papiernick, S.K., Schumacher, T.E., Lobb, D.A., Lindstrom, M.J., Lieser, M.L., Eynard, 

A., Schumacher, J.A., 2009. Soil properties and productivity as affected by topsoil 

movement within an eroded landform. Soil Tillage Res. 102, 67–77. 

Phan Ha, H.A.P., Huon, S., Henry des Tureaux, T.H., Orange, D., Jouquet, P., Valentin, 

C., De Rouw, A., Tran Duc, T.T., 2012. Impact of fodder cover on runoff and soil erosion 

at plot scale in a cultivated catchment of North Vietnam. Geoderma 177, 8–17. 

Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E., Rodrigo Comino, J., Cerdá, 

A., Tarolli, P., 2017. Rainfall simulation and structure-from-motion photogrammetry for 

the analysis of soil water erosion in Mediterranean vineyards. Sci. Total Environ. 574, 

204–215. 

Quinton, J.N., Govers, G., Van Oost, K., Bardgett, R.D., 2010. The impact of agricultural 

soil erosion on biogeochemical cycling-s2. Nat. Geosci. 3, 1–6. 

Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R., 2006. A comparison and 

evaluation of multi-view stereo reconstruction algorithms. IEEE Conference on 

Computer Vision and Pattern Recognition. IEEE Computer Society, New York. 

Smith, M.J., Asal, F.F.F., Priestnall, G., 2004. The use of photogrammetry and lidar for 

landscape roughness estimation in hydrodynamic studies. Int. Arch. Photogramm. 

Remote. Sens. Spat. Inf. Sci. 35 (B3), 714–719. 

Stöcker, C., Eltner, A., Karrasch, P., 2015. Measuring gullies by synergetic application of 

UAV and close range photogrammetry — a case study from Andalusia, Spain. Catena 

132, 1–11. 

Stumpf, A., Malet, J.P., Kerle, N., Niethammer, U., Rothmund, S., 2013. Image-based 

mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 

186, 12–27. 

Taylor, J.R., 1997. An Introduction to Error Analysis: the Study of Uncertainties in 

Physical Measurements, second edition. University Science Books: Sausalito, California. 

Ullman, S., 1979. The interpretation ofstructure from motion. Proc. R. Soc. Lond. B Biol. 

Sci. 203, 405–426. 

Warrick, J., Ritchie, A., Adelman, G., Adelman, K., Limber, P., 2017. New techniques to 

measure cliff change from historical oblique aerial photographs and structure-from-

motion photogrammetry. J. Coast. Res. 33, 39 – 55. 

Westoby, M., Brasington, J., Glasser, N., Hambrey, M., Reynolds, J., 2012. ‘Structure- 

from-motion’ photogrammetry: a low-cost, effective tool for geoscience applications. 

Geomorphology 179, 300–314. 

Westoby, M., Dunning, S., Woodward, J., Hein, A., Marrero, S., Winter, K., Sugden, D., 

2016. Interannual surface evolution of an Antarctic blue-ice moraine using multi-

temporal DEMs. Earth Surf. Dyn. 4, 515–529. 



 87 

Wheaton, J., Brasington, J., Darby, S., Sear, D., 2010. Accounting for uncertainty in DEMs 

from repeat topographic surveys: improved sediment budgets. Earth Surf. Process. 

Landf. 35, 136–156. 

White, J., Wulder, M., Vastaranta, M., Coops, N., Pitt, D., Woods, M., 2013. The utility of 

image-based point clouds for forest inventory: a comparison with airborne laser 

scanning. Forests 4, 518–536. 

Zhao, J., Van Oost, K., Chen, L., Govers, G., 2016. Moderate topsoil erosion rates 

constrain the magnitude of the erosion-induced carbon sink and agricultural 

productivity losses on the Chinese Loess Plateau. Biogeosciences 13, 4735–4750. 

Zhao, J., Yang, Z., Govers, G. Soil and water conservation measures reduce soil and 

water losses in China but not down to background levels: Evidence from erosion plot 

data. Catena 337, 729–741. 

Zobisch, M.A., Klingspor, P., Oduor, A.R., 1996. The accuracy of manual runoff and 

sediment sampling from erosion plots. J. Soil Water Conserv. 51, 231–1233. 

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed effects 

models and extensions in ecology with R. Springer, New York, New York, USA.  



 88 

4. Evaluation of sediment source and volume of soil erosion in a gully system 

using structure-from-motion and UAV data: A case study from Minas Gerais, 

Brazil 

4.1 Introduction 

Gullies represent a significant source of sediments, especially in tropical 

environments (Poesen, 2011), reaching areas of about 3·5 ha for a single gully (Lin 

et al., 2015). Gully erosion can be defined as being an erosive process where the 

water concentrates in the landscape, being affected by the presence of tracks and 

the lack of conservation measurements in the area (Poesen et al., 2002; Valentin 

et al., 2005; Lin et al., 2015). The concentrated flow reduces top soil by the gully 

initiation, causing severe impacts in farmland productivity and waterways 

sedimentation (Allen et al., 2018; Bastola et al., 2018; Zabihi et al., 2018). 

Long-term studies report that gullies develop randomly and are linked 

with the natural mass movements associated with the removal of vegetation 

cover (Harvey, 1997; Lin et al., 2015). However, gully development involves 

several sub-processes related to water erosion and mass movements, such as 

detachment, transport and deposition of sediments, gully bank retreat, piping 

and fluting (Harvey, 1992). The complex interaction between these sub-

processes, with erosion and deposition occurring simultaneously in the area 

(Gómez-Gutiérrez et al., 2012), coupled with the three-dimensional nature of the 
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gullies, make it difficult to measure and quantify directly in the field (De Rose et 

al., 1998; Poesen et al., 2003). 

Thus, traditional methods such as pins (Desir and Marín, 2007), 

microtopographic profiles (Casalí et al., 2006), surveys with total stations 

(Ehirobo and Audu, 2012) and poles are being replaced by techniques based on 

high-resolution photogrammetry (Castillo et al. 2012). Several studies have 

quantified gully erosion through photogrammetry associated with three-

dimensional soil surface reconstruction methods, such as Structure from Motion 

(SfM) (Castillo et al., 2012; Gómez-Gutiérrez et al., 2014; Kaiser et al., 2014, Di 

Stefano et al., 2017; Ben Slimane et al., 2018). However, few studies used the SfM 

for detailed study of sediment sources and their movement over time in the gully 

environment. Considering that gullies have a complex growth dynamics, the 

study of spatial and temporal evolution through aerial images are important for 

the development of control strategies and mitigation of degraded areas. 

Through SfM photogrammetry it is possible to elucidate better the erosive 

processes that occur in the gully system, by obtaining DEMs with high spatial 

and temporal resolution. With recent advances in the use and availability of 

unmanned aerial vehicles (UAVs), the use of SfM photogrammetry to produce 

high-resolution DEMs has become popular in geosciences (d’Oleire-Oltmanns et 

al., 2012; Carollo et al., 2015; Di Stefano et al., 2017), because it is cheap, less time-

consuming, requires little knowledge due to the automation of processes and has 

similar accuracy to the most accurate methods currently available (such as laser 

scanning) (Castillo et al., 2012; James and Robson, 2012; Fonstad et al., 2013). 



 90 

The knowledge of the contribution rates of rills and gully sidewalls, as 

well as the quantification of sediments stored in the channels and lost from the 

gully system is important for the development of effective strategies to control 

soil erosion in gullies (Hosseinalizadeh et al., 2019). This spatial and temporal 

variation of sediments in gully development are indicators used by land 

managers to identify the stage of development and stabilization of the gully 

system (Betts et al., 2003). When the amount of lost sediment becomes smaller 

than that stored in the channels, it indicates a stabilization of the erosive process 

in the gully (Kasai et al., 2001). 

Although many studies have described the formation and development 

processes of gullies (Harvey, 1992; Vandekerckhove et al., 1998; Sidorchuk et al., 

2003; Conoscenti et al., 2014), few papers have evaluated the high spatial 

resolution of the dynamics of soil movement along the gully system. Using high-

resolution DEMs it is possible to elucidate the complex erosion processes that 

occur simultaneously in gullies, visualize the dynamics of soil movement in the 

system over time and devise effective strategies to mitigate sediment delivery in 

watercourses. 

The changes in the macro and micro topography of the gully system 

requires the understanding of the continuous process of source-transport-

deposition of sediments (Valentin et al., 2005). Thus, the objectives of this study 

were to use SfM (1) to determine the relative contribution of rills and gully 

sidewalls to sediment generation, (2) to quantify the sediment volumes stored in 
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channels and lost from the gully, and (3) to quantify the total volume of 

sediments produced by the gully. 

4.2 Materials and Methods 

4.2.1 Study area 

The studied gully is located in a degraded area (Fig. 1) on the campus of 

the Federal University of Lavras, Southeastern Brazil (21°13'37.3" S and 

44°59'11.9" W). The study area has a humid subtropical climate and an average 

annual rainfall of 1,530 mm. The gully has a total catchment area of 530 m2. 

 

Fig. 1. Location of the study area. 

4.2.2 Image acquisition for SfM 
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Images were acquired using the UAV DJI Phantom 3 Professional 

integrated with a gimbal-stabilized FC300X camera with 12-megapixel (4000 × 

3000) Sony EXMOR 1/2·3 sensor, 94º field of view (FOV) and 20-mm focal length. 

The lens aperture was set to f/2·8 and images acquired in RAW format. Two 

flights were performed in the gully area, the first in October 2017 and the second 

in May 2018. 

In order to cover the complex 3-D area of the gully it was acquired oblique 

images, which also added to the strength of the network geometry (James et al., 

2017a). However, as a result of the multiple camera angles, the overlap 

percentage between the images was highly variable (Fig. 2a). Thus, the number 

of images in which some point is present was used as the metric to describe the 

image overlap. In this study, most areas were captured by more than 30 

overlapping images, because of the oblique angles. Surveys comprised about 300 

images, which reflects the complex nature of the gully morphology. The flying 

altitudes ranged between 5 and 15 m, resulting in a nominal ground sampling 

distance between 2 and 6 mm. 
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Fig. 2. Annotated computer screenshot of Photoscan showing (a) camera 

positions and orientations, and (b) control point layout. 

To compare the SfM results at different times, both surveys must be in the 

same coordinate system. Thus, for the georeferencing, 15 permanent ground 

control points (GCP) were installed in the area (Fig. 2b). The GCP coordinates 

were determined by a total station (Geodetic GD2i, accuracy 2 mm), within an 

arbitrary local coordinate system. 

4.2.3 SfM point cloud generation 

The three-dimensional point clouds (3D) were generated from the sets of 

photographs using the SfM commercial software Agisoft Photoscan version 1.4.5 

(Agisoft, 2018) (see Chapter 1). The photogrammetric parameters used on 

Photoscan are listed in Table 1. All surface reconstructions were done through 
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cloud computing using a virtual machine with 24 cores, 128 GB RAM and two 

NVIDIA Tesla K80 GPUs. 

Table 1. Photoscan parameters settings used during the point cloud generation. 

Point cloud: alignment parameters Setting 
 Accuracy Highest 

 Generic preselection Yes 
 Reference preselection Yes 
 Key point limit 120,000 
 Tie point limit 0 
 Filter point by mask No 

Dense point cloud: reconstruction parameters  

 Quality High 

  Depth filtering Mild 

4.2.4 Change detection and 3D precision maps 

To evaluate the soil surface changes in the different surveys, it was used 

the precision maps (PM) variant of the Multiscale Model to Model Cloud 

Compare algorithm (M3C2; Lague et al., 2013), an analytical tool implemented in 

CloudCompare. M3C2-PM is a more appropriate technique for analysing 

complex 3D environments than DEM of Difference (DoD) (Lague et al., 2013). 

Comparisons using DEMs can overestimate errors on steep terrain since small 

lateral shifts can produce large vertical differences (Cook, 2017). 

The M3C2-PM algorithm finds the most appropriate normal direction for 

each point and calculates the distance between the two point clouds along a 

cylinder of a given radius projected along the normal. The comparisons used core 

points with 1 cm spacing, a cylinder with a 30 cm diameter, and multiscale 

normals with radii from 0.2 m to 1 m with a step of 0.2 m. 
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The native M3C2 uses a roughness-based metric to estimate precision, but 

this is not appropriate for photogrammetric point clouds (James et al., 2017b). 

Thus, in this study the PM it was used to obtain the confidence intervals in the 

detection of changes between the surveys. M3C2-PM approach has a greater 

capacity to detect changes in areas of complex topography, such as gullies, 

considering the spatial and 3D variation of survey accuracy (James et al., 2017b). 

A detailed explanation of M3C2-PM is given by James et al. (2017b). 

However, in this study, the precision estimates were derived by 

reprocessing the Photoscan using DBAT bundle adjustment (Murtiyoso et al., 

2018), integrated into SfM_georef (James and Robson, 2012). All these data were 

provided to me by Michael James. The precision maps were generated through 

the interpolation (5-mm grid size) of the vertical standard deviation (σZ) derived 

by the precision estimates. It was used median as interpolation method to 

minimise the influence of outliers (James et al., 2017b). 

To calculate the gully erosion volume, as well as the relative contribution 

of rill erosion and mass movements, the dense point clouds were interpolated (5-

mm grid size) using the Kriging method. The zones related to each type of 

erosion were delimited considering as rills channels with more than 0.01 m in 

width and depth (Foster, 2005) and as gullies channels of at least 0.3 m in width 

and depth (Blanco and Lal, 2010). The volumes of sediments stored and lost from 

the gully system were calculated using the Simpson's rule method (Easa, 1988), 

which assumed non-linearity in the profile between the grid points. The volume 
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calculations and maps were performed using Surfer (Golden Software Inc., 

Golden, CO). 

4.3 Results 

4.3.1 Accuracy of SfM point clouds 

Both surveys had similar magnitudes of photogrammetric error (Table 2). 

The point clouds showed average errors of order ~ 4 mm on xyz on control and 

check points, whereas the tie points image residual RMS was ~ 0·6 pix. It was 

used five check points and ten control points in the area (Fig. 3). 

Table 2. Root mean square error (RMSE) of check points, control points and tie 

points image residuals. 

Date 

Number 

of 

Images 

Dense 

Cloud 

Points 

RMS tie 

points image 

residuals 

(pix) 

RMSE of control 

points (mm) 

RMSE of check 

points (mm) 

X Y Z X Y Z 

27/10/17 277 51,002,599 0·568 4·2 2·5 1·3 4·2 4·5 2·0 

26/05/18 325 65,475,214 0·561 2·8 3·3 4·5 3·2 3·5 2·6 
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Fig. 3. Location of the control and check points in the study area. 

The precision maps show the spatial variation of precision on each survey 

along the gully, with M3C2-PM uncertainty values ranging from 0·006 m to 0·276 

m (Fig. 4). The highest values were concentrated in shaded areas and at the 

bottom of the gully. The first survey was less accurate than the second one, 

especially in the more complex areas. 
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Fig. 4. Precision maps for both October 2017 (A) and May 2018 (B) surveys. 

The image overlap, as well as the number of images, were sufficient to 

produce a distribution of the points in the clouds without large holes. For gully 

erosion studies, it could be considered a large hole an empty place in the cloud 

with about 10-cm spacing between the points. The 3D reconstruction of the 

topography of the most complex areas of the gully was done adequately, 

reproducing with fidelity the terrain morphology (Fig. 5). 
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Fig. 5. Dense point cloud showing the 3D reconstruction of complex topographic 

areas inside the gully. 

4.3.2 Sediment source dynamics 

The significant changes found by the M3C2-PM method showed a high 

visual correlation with the observed differences between both DEMs in the area 

(Fig 6). Significant changes were detected in the topsoil, rill erosion and in the 

mass movements, such as gully sidewalls, inside the gully. 
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Fig. 6. DEMs for the two surveys and the map showing the significant change, in 

red, over the studied period. 
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During the study period, a total of 71 m3 of sediments were generated 

(Table 3), and 76% of this volume was lost from the gully system. Almost all sheet 

erosion was stored in the area, contributing with less than 1% to the output of 

sediments from the gully. Rill erosion contributed 8% of the sediment yield in the 

gully, in large part being lost in the erosion process and only 0·76 m3 stored in 

the channels. 

Table 3. The relative contribution of each erosion process in the gully system 

between October 2017 and May 2018. 

Erosion process 

Sediments 

generation 
Sediments stored Sediments lost 

------------------------------- m3 ------------------------------ 

Sheet erosion 2·12 1·83 0·28 

Rill 5·69 0·76 4·93 

Gully sidewall 63·39 14·38 49·01 

Total 71·20 16·97 54·22 
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Fig. 7. Erosive processes (rills and mass movements) in the gully system. 

The mass movements, including gully sidewall erosion, corresponded 

to 89% of the total sediments produced. However, 23% of that volume was 

deposited and stored in the gully bed. Nevertheless, of the total soil loss from the 

system, more than 90% was originated from the mass displacements promoted 
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by the gully sidewall, while rill erosion accounted for approximately 9% of the 

sediment lost. The dynamics of the gully development, as well as the contribution 

of gully side wall retreat, are well represented by the difference between the two 

point clouds obtained by M3C2-PM (Fig. 7). 

 

Fig. 8. Point cloud showing the difference (M3C2-PM distance) between the 

October 2017 and May 2018 gully surveys. Colour intensity shows relative 

amounts of erosion (red) and deposition (green). 



 104 

4.4 Discussion 

4.4.1 SfM measurements errors 

For the study of active and dynamic environments, such as gullies, where 

the variations in the soil surface are in the order of centimetres and metres, RMSE 

values in the order of 4 mm for xyz, as found in this study, are acceptable. These 

values are lower than those founded by Agüera-Vega et al. (2018), who also 

studied topography reconstruction in complex areas using UAV. A millimetric 

precision on this kind of survey is very important, because allow the assessment 

of all erosion types occurring in the area, from laminar erosion to large mass 

movements. 

The largest photogrammetric errors, obtained in the regions of the most 

complex and shaded topography (Fig. 4), can be reduced by performing flights 

on cloudy days with indirect light, increasing the number of oblique images and 

adding images taken in different height (Castillo et al., 2012, Gómez-Gutiérrez et 

al., 2014, Stöcker et al., 2015; Carbonneau and Dietrich, 2017, James et al., 2017b). 

Moreover, in areas where there is large soil movement, such as the gully 

environment, it is advisable to use dGPS rather than total station (with an 

arbitrary local coordinate system) to collect GCPs locations. This is to avoid 

repeatable GCPs surveys due to the soil movements, especially in points located 

in the bed and near the gully sidewalls. 

4.4.2 Source of sediments in the gully 
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The present study showed that the gully growth occurred towards the 

main erosion channels present in the area (Figs. 6 and 7). The runoff concentrated 

in rills or depressions has the capacity to remove soil particles from the gully 

through sluicing (Lin et al., 2015). The gully side walls usually retreat due to three 

processes: mass displacement, the detachment of soil particles by splashes, or 

water running along gully banks (Chaplot et al., 2011). In the studied gully, the 

gully side wall retreated primarily due to the mass displacement, as showed by 

the M3C2-PM distance map (Fig. 8). These results correspond to those of 

Vandekerckhove et al. (2003) and Hosseinalizadeh et al. (2019). 

In contrast to previous gully erosion studies (Prosser and Slade, 1994; 

Inoubli et al., 2017; Ben Slimane et al., 2018), sediment generation in the studied 

gully was predominantly by the mass displacement process due to the erosion of 

the gully side walls. These results are similar to those found by De Rose et al. 

(1998) and Betts et al. (2003). Mass movements of gully side walls are also 

recognized by Harvey (2001) as an important process in the absence of extreme 

rainfall events and have been related to reactivation of gullies. 

Studies indicate that in stabilized gullies it is expected that the amount of 

sediment stored in the channels will exceed the volume of soil lost in the gully 

system (Kasai et al., 2001; Betts et al., 2003). In the present study, 54·22 m3 was 

lost from the gully system in only 8 months of monitoring, a value similar to that 

was found by Ben Slimane et al. (2018) for annual production of sediment in 

gullies. While just 16·97m3 of sediments generated were stored on the system. 
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These results showed that the studied gully is not stabilized yet. In that 

way, a detailed knowledge of the complex dynamics of gully evolution has 

implications for the correct management and application of stabilization 

practices of gully prone areas. The accelerated evolution of this gully 

demonstrates that conservation strategies should be applied in the early stages 

of the gully formation before the channels deepen and the mass movement 

processes accelerate the evolution of the gully erosion. Attempts to reduce the 

expansion of the gullies complex become less efficient in these advanced stages. 

4.5 Conclusions 

This study evaluated the relative contribution of the different erosive 

processes that occur simultaneously in a gully. For the first time, the sediment 

sources of a gully were quantified remotely and with millimetric precision. 

Through the SfM, it was generated high resolution measurements, allowing to 

evaluate even the contribution of sheet erosion in the generation of sediment of 

the gully. This opens up new possibilities in the studies involving the dynamics 

of gullies, since the understanding of the spatial and temporal behaviour of the 

erosive processes are important in the development of control strategies and 

monitoring of the evolution of a gullies complex. 

The results revealed that the main source of sediment in the gully studied 

was due to the mass movement processes. Rills and laminar erosions contributed 

9% and 1%, respectively, to the total sediment yield, while the mass movements 
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corresponded with most of the sediment generation in the gully. Of the total 

sediment produced in the system, only 24% was stored in the gully, indicating 

its high activity and instability. 
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5. General Conclusions 

This thesis contributes to a new insight on studies of erosive processes in 

the Earth’s surface, by investigating the efficiency and accuracy of digital 

photogrammetry in a detailed study of the main types and scales of occurrence 

of water erosion. 

Considering that soil erosion is composed of three sub-processes that 

occur on the soil surface: erosion, transport and deposition. Collecting sediment 

and runoff allows only the assessment of soil volume lost, not soil erosion 

volume. Thus, this thesis presents techniques that allow the visualization, 

spatialization and quantification of soil movement during erosion-transport-

deposition processes, allowing to distinguish the differences between soil erosion 

volume and lost soil volume, besides investigating the relative contribution. of 

each type of erosion in the monitored area. The erosion map, represented by the 

erosive processes in the area, is a powerful tool in the elaboration of effective soil 

and water conservation management strategies. 

Under laboratory and controlled conditions, the digital close-range 

photogrammetry provided a detailed study of the development of rill erosion, 

allowing the extraction of morphological indicators and quantification of soil 

movement during runoff with millimetric precision. In addition, it was possible 

to correlate water flow rate and slope gradient with the rill erosion development. 

It was also evaluated the use of SfM combined with UAV images, in 

obtaining soil loss measurements in areas where channelized erosion is not the 
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main mechanism. This represents the first time this kind of research was 

conducted, providing valuable insight into a new direction for soil erosion 

studies in erosion plots. The results of the soil losses obtained by UAV-SfM 

presented a high correlation with the sediments collected in the plots. This is of 

great relevance in the context of the monitoring and modelling of water erosion, 

since the quantification of soil loss around the world is mainly done using plots, 

a method that presents high operational cost. In addition, the study of laminar 

erosion through the UAV-SfM allows not only to calculate the soil loss values but 

to visualize the spatial variation of the erosion process (detachment, transport 

and deposition) practically in real time along the area. 

Finally, the application of the UAV-SfM technique in gully erosion was 

evaluated. For the first time, a study was carried out evaluating the relative 

contribution of the different types of erosion (sheet, rill and gully sidewall) in the 

gully development. This was possible due to the millimetric level of precision of 

the point clouds, allowing to evaluate even the contribution of the laminar 

erosion, which is new in gullies studies. As a result, it was possible to quantify 

sediments volumes stored in the channels and lost from the gully system, as well 

as to determine the main sediment sources. Since gully development studies are 

quite difficult to perform on field, due to the 3-D nature and the several factors 

acting simultaneously, the UAV-SfM proved to be effective in the gully 

monitoring and could be an important tool in the development of strategies of 

control and mitigation of this serious environmental problem that affects several 

agricultural and urban areas in tropical regions. 
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In summary, the results presented here indicate that the use of ground and 

air-based photogrammetry are precise tools in detecting soil surface changes and 

can be used to assess water erosion in its various forms of occurrence in nature. 

In addition, the UAV-SfM has proven to be a very useful technique for 

monitoring erosion over time, especially in hard-to-reach areas. 

6. Future Work 

This thesis advances our understanding of the use of ground and air-based 

photogrammetry for soil erosion assessment. However, it also highlighted 

several challenges, that would provide interesting future work. 

• The results demonstrate that on steep slopes the soil erosion is 

dominated by the rill erosion with less rill network density. It 

would be interesting to develop a time-lapse study in order to see 

the rill erosion evolution in real time. To make it possible, it is 

necessary to think about an experimental design to avoid the water 

reflection during the 3-D reconstruction of the soil surface. 

• The results of the soil losses obtained by the UAV-SfM technique 

presented high accuracy when compared to the sediments collected 

from the erosion plots. However, it would be interesting for future 

studies to evaluate the effectiveness of UAV-SfM in water erosion 

monitoring with the presence of vegetation and different levels of 
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soil cover. For this, the accuracy of the mathematical algorithms 

that filter the point cloud vegetation in order to estimate the 

covered soil surface should be tested. 

• The 3-D reconstruction of the studied gully presented millimetric 

precision. However, due to the complexity of the soil surface in the 

gully, shading areas present a lower density of points, affecting the 

level of detection in these regions. Thus, it would be interesting for 

future studies to combine UAV and terrestrial images, using 

consumer-grade or smartphones cameras, in gully modelling. In 

addition, in large gullies, where it is difficult to install control 

points, it would be interesting to test the effectiveness of UAV 

coupled with post-processed kinematic (PPK) or RTK GPS in the 

generation of DEMs and point clouds.  
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Appendix A 

ANOVA results for the effects of slope gradient and water flow rate on rill 

erosion and soil loss (Chapter 2). 

Factors df Sum Sq Mean Sq F value P (> F) 

Rill erosion 

Slope 1 1·3488 1·3488 161·5766 4·32 × 10-6 *** 

Water flow 1 10·3549 10·3549 1240·4187 3·86 × 10-9 *** 

Slope × Water flow 1 0·0486 0·0486 5·8185 0·047 * 

Residuals 7 0·0584 0·0083   

Soil loss 

Slope 1 0·0362 0·0362 1·5714 0·2502 

Water flow 1 5·4430 5·4430 236·0131 1·19 × 10-6 *** 

Slope × Water flow 1 0·4785 0·4785 20·7468 0·002621 ** 

Residuals 7 0·1614 0·0231   
Significance: *** P< 0·001, ** P<0·01, * P<0·05 


