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Abstract 

The work disclosed within this thesis describes the use of photochemistry to develop efficient 

and scalable methodology to access functionalised four-membered rings. 

Chapter 2 examines the synthesis and synthetic potential of 1,2-dihydropyridazines. The 

feasibility of the current literature syntheses of 1,2-dihydropyrdazines on multigram scales has 

been investigated, which has resulted in the development of a novel, scalable route to 

unsubstituted 1,2-dihydropyridazines. Currently, the synthesis is not amenable to the synthesis 

of substituted 1,2-dihydropyridazines. 1,2-Dihydropyridazines are precursors to interesting 

molecular scaffolds through double bond transformations, however in some cases the isolated 

product was not the expected product.  

Chapter 3 investigates the optimisation and scale up of the 4-π photocyclisation of 1,2-

dihydropyridazines using commercially available batch and flow photoreactors. The use of a 

batch photoreactor gave better yields, purity and productivity for the synthesis of bicyclic 1,2-

diazetidines compared to the flow photoreactor. The photophysical properties of 1,2-

dihydropyridazines have been studied and the data has provided guidance for optimisation and 

rationale for the observed results. 

Chapter 4 explores the stability and synthetic potential of bicyclic 1,2-diazetidines to access 

functionalised 1,2-diazetidines, cyclobutenes and other products that were not expected at the 

outset of the project. Attempts to access cyclobutenes (through N-N cleavage) were 

unsuccessful due to a facile 4-π electrocyclic ring opening, whereas it was possible to synthesis 

a range of novel monocyclic functionalised 1,2-diazetidines.   

Chapter 5 provides overall conclusions, as well as a comparison of the synthesised compounds 

to Lipinski’s “rule of five” and lead-like space using open access software and ideas for future 

work  

Chapters 6 and 7 will provide the experimental details and characterisation of novel 

compounds that have been reported in this thesis. The appendix gives details on the X-ray 

crystal structures and differential scanning calorimetry traces for a select few examples. 
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1.1 The Growing Interest In sp3-Rich Compounds 

A recent study exemplified the huge investment required for drug discovery and showed that 

the estimated cost for each new marketable drug was around 2.6 billion dollars.1 As a result, 

significant effort has focused on making the process more efficient and determining at the 

earliest possible stage whether the drug candidate will fail. A key addition has been the 

development of computational techniques and these have become a vital tool in improving 

efficiency and reducing costs of the drug discovery process.2,3 More commonly, there are some 

key structural factors that can help medicinal chemists to validate potential drug candidates. 

The pioneering work by Lipinski, termed Lipinski’s rule of five, has helped to provide some 

guidelines for the development of drug molecules.4,5 Lipinski’s rule of five is made up of four 

elements: ≤ 5 hydrogen bond donors; ≤ 10 hydrogen bond donors; molecular weight ≤ 500; logP 

≤ 5. Firstly, hydrogen bond donors are hydrogen atoms attached to electronegative heteroatoms 

such as oxygen and nitrogen, whereas the hydrogen bond acceptors are the heteroatoms 

themselves. Molecular weight is the total weight of the compound and the octanol-water 

partition coefficient, logP, provides information on whether a substance will be absorbed by a 

plant, animals, humans or other tissue and whether it will be easily removed and distributed by 

water. A positive value implies the compound is lipophilic (non-polar), whereas a negative value 

implies the compound is hydrophilic (polar). For drug candidates to have good solubility in 

aqueous media requires more polar molecules and as such a lower logP. Lipophilic compounds 

have been shown to have poor aqueous solubility and can lead to an increase in toxicity.6 

Subsequently, factors such as the number of rotatable bonds (≤ 10 – making the compound 

more rigid) and the polar surface area (≤ 12 hydrogen bond donors and acceptors), the ability 

of a compound to get into cells, have been found to be important for orally active drugs.7 In 

addition, drug candidates must have good absorption, distribution, metabolism, excretion and 

toxicity (ADMET) properties, as well as having good stability under a variety of conditions.  

Over the last decade there has been a movement within the pharmaceutical industry to 

introduce more structural diversity into drug discovery programmes. The development of robust 

methodologies that tolerate a variety of functional groups and the broad range of commercially 

available substrates has resulted in aromatic systems (sp2 hybridisation) being widely used.8 

These compounds play a crucial role in drug discovery and can provide π-π stacking/π-cation 

interactions to increase binding efficiency with biological targets, whilst stereochemistry is not 

a concern as found with saturated compounds. Macdonald and co-workers at GlaxoSmithKline 

have reported that any synthetic methodology needs to be robust, have the functionality to carry 

out parallel synthesis to easily access a library of compounds, be tolerant of a variety of 

functional groups and potentially amendable to late stage functionalisation.9 The authors went 

on to report that medicinal chemists used a lot of the same reactions because reactions such 

as alkylations, palladium-catalysed cross couplings, condensation reactions and protecting 

group manipulations are amenable to a lot of substrates (63% of nearly 4900 reactions at 

GSK).9 Cross-coupling reactions exemplify these desired characteristics and can tolerate a 
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variety of different functional groups attached to aromatic, heteroaromatic and aliphatic 

substrates, which are invaluable when trying to determine the structure-activity-relationship 

(SAR). More recently, a perspective written by leaders from the pharmaceutical industry has 

highlighted some key points for the field of organic chemistry in relation to drug discovery.10 

One of the key messages was that organic synthesis is often the thing that slows down the 

discovery process, however through collaboration with academia, the growing potential in areas 

such as C-H functionalisation and photoredox catalysis, as well as the constant improvement 

of enantioselective catalysis and C-C/C-X bond formation, reactions are providing new 

methodologies that can be rapidly used and speed up the process. Other emerging areas such 

as machine-assisted synthesis, artificial intelligence and computational retrosynthesis software 

have the potential to have a huge effect on the discovery of new drugs.10 The authors again 

stressed that a major hindrance with the uptake of methodology into industry is that often the 

substrate scope does not exemplify functional group tolerance and/or negative results are not 

published. Drug candidates are required fast and medicinal chemists do not have the time to 

develop and optimise novel methodologies, which can lead to a lot of the same types of 

compounds being used in their library screenings. As a consequence, a vast number of current 

drugs are rich in sp2 systems, and the exploration of saturated systems (sp3 hybridisation) is 

often overlooked due to ineffective or under-developed methodologies. A study in 2014 by 

Taylor and co-workers found that 40% of current drugs on the market did not have any rings 

that contained any sp3 carbon atoms.8 As a result, there has been a skew towards the 

compounds that organic chemists are likely to include in their target molecules, which has led 

to certain fragments being extensively used.11–13 From the analysis of the types of rings used in 

compounds listed on the CAS registry, Lipkus and co-workers found that chemists are more 

likely to use a specific ring system if they have seen it used before.11 Brown and co-workers 

reported from analysis of a variety of databases and current drugs that para-substituted 

aromatic rings, in particular para-chloro and fluoro-aromatic rings, have been widely used 

compared to ortho- and meta- derivatives.12 At the start of 2016, Foley, Nelson and Marsden 

found similar results from the analysis of recent synthetic methodology papers in two high 

impact journals and also found that aromatic rings were used more often than heteroaromatic 

rings.13 Two literature studies on the reactions used within medicinal chemistry have shown that 

a lot of the same reactions are used.14,15 Brown and Boström have found that through 

comparison of the reactions used in 250 papers from 1984 and 2014, that a lot of similar 

reactions were still being used and some of the most commonly used reactions in 2014 had not 

been discovered in the last twenty years.15 

The seminal analysis by Lovering and co-workers discovered the link between the presence of 

sp3 character and/or chirality and the improved success of drug candidates going from discovery 

through to market.16 A few years later, Lovering also reported that an increase in sp3 character 

can improve the selectivity of drug candidates, thus reducing the amount of off-target 

interactions.17 Through computational analysis, Hann and co-workers have shown that 

increasing molecular complexity (e.g. greater sp3 character), resulted in fewer interactions of 
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compounds with off-target biological receptors.18 Selzer and co-workers found that from a 

selection of drugs in the World Drug Index that on average, highly active molecules were 

structurally more complex, however stressed that complexity had to be balanced with other 

properties, e.g. lipophilicity.19 Clemons and co-workers have put the theories proposed by 

Lovering and Hann into practice by screening around 15,000 compounds either from 

commercial or academic sources against 100 different proteins, and demonstrated that greater 

sp3 character resulted in improved selectivity.20 In addition to selectivity, the use of saturated 

systems provides three-dimensional shapes, unlike flat sp2 systems, which enable a greater 

area of chemical space to be explored, and has the potential to provide compounds with more 

desirable “drug-like” properties, such as improved solubility and lower melting points.6,16 

Ishikawa and Hashimoto have found that replacing an aromatic ring on lead compounds with 

poor aqueous solubility with a saturated ring can give improved aqueous solubilities and lower 

melting points.21 The authors reasoned that the improved properties stemmed from the 

disruption of molecular planarity and symmetry through decreasing the efficiency of crystal 

packing through a reduction in aromatic character. Ritchie and Macdonald’s study on 

compounds in the GlaxoSmithKline collection showed that for substrates where the number of 

aromatic rings were low, there was a greater chance of progression, whereas three or more 

aromatic rings correlated with a higher attrition rate.6 Walters and co-workers analysed over 

400,000 compounds published in the Journal of Medicinal Chemistry over a fifty year period 

(1959-2009) and found a steady decline in the proportion of sp3 compounds over the time 

period, and many compounds violated one or more of Lipinski’s rules of five.22 An interesting 

example of the power of sp3-hybridised compounds has been the use of cubane as a bioisostere 

for an aromatic ring (Figure 1.1).23 In 1992, Eaton proposed the pharmaceutical potential of 

cubanes,24 however it was over twenty years until Tsanaktsidis, Savage, Williams and various 

co-workers proved this.23 The biological activity of five known drugs and five cubane derivatives 

in which cubane replaced the aromatic ring, showed the same or marginally increased biological 

activity for four out of five of the cubane-containing compounds. These results exemplify the 

potential sp3 systems have in drug discovery. More recently, Faul, Walker and co-workers have 

discussed how the increase in molecular complexity in drug candidates has helped to drive 

innovation in process development.25 

 

Figure 1.1 

New open-access computational tools have recently been developed that can help guide 

synthetic methodology and provide more relevant scaffolds.26,27 One such example has been 

the development of the lead-likeness and molecular analysis (LLAMA) software by Marsden, 

Nelson and co-workers, which enables the generation of virtual libraries through common 

transformations on a single scaffold to give a variety of different compounds and a lead-likeness 

score (Figure 1.2).27 The molecules generated are ranked according to a lead-likeness penalty 

based on guidelines proposed by Churcher and co-workers (-1≤ logP≤3, 14≤heavy atoms≤26 
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e.g. molecular weight 200-350, remove reactive functional groups, decrease the amount sp2 

character e.g. 1 or 2 aromatic rings),28 which is set within the guidelines set out by Lipinski’s 

rule of five. Using both rules enables chemists to get an idea of what types of medicinally 

relevant compounds could be made when investigating a substrate scope. Other information 

such as three-dimensionality (whether the compounds is rod, disc or spherical in shape), 

novelty, mass distribution, AlogP distribution and fraction of sp3 distribution data can also be 

acquired for the library. Foley, Nelson and Marsden have used this software to study a variety 

of literature reactions and propose some future targets.13 

 

Figure 1.2 The lead-likeness penalty predicts whether a substrate will fall within lead-like space. 
Guidelines for good substrates: 14≤heavy atoms≤26 (count of all atoms apart from hydrogen), -1≤ 

logP≤3 (lipophilicity), number of aromatic rings = 1 or 2 (limit sp2 character), presence of bad (reactive) 
functional groups. From https://llama.leeds.ac.uk/help.php#lead-likeness-penalty 

It is clear that there is a growing need for the development of efficient and robust methodologies 

to access sp3 hybridised systems. One class of compounds that has gained attention recently 

has been four-membered rings.29,30 The development of more robust synthetic methodologies, 

driven by a move to introduce more structural diversity into drug candidates, has resulted in the 

use of more carbocyclic four-membered rings such as cyclobutanes 1 and cyclobutenes 2,29,31 

and heterocyclic four-membered rings such as oxetanes 3, azetidines 4, β-lactams 5 and 1,2-

diazetidinones 6 (Figure 1.3).29,32 Currently there are no examples of 1,2-diazetidines 7 as drug 

candidates, however the synthesis of these compounds has been a lot less studied in 

comparison to other four-membered ring systems (vide infra). The development of new 

synthetic methodology to generate these systems can provide access to new areas of chemical 

space, which can be used in screening libraries with the potential of having therapeutic value. 

https://llama.leeds.ac.uk/help.php#lead-likeness-penalty
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Figure 1.3 

1.2 Project Aims and Objectives  

The project aimed to develop new methodology for the photochemical 4-π electrocyclisation of 

1,2-dihydropyridazines 9 to access key bicyclic 1,2-diazetidines 10, which could be further 

transformed through cleavage of the N-N bond to yield highly functionalised cyclobutene 

derivatives 11, as well as through oxidative cleavage of the C=C to generate 1,2-diazetidines 

12 (Scheme 1.1). The successful development of this synthetic approach would allow the 

conversion of simple starting materials into complex small ring systems in very few steps, in 

contrast with the long synthetic sequences that would be required to access these building 

blocks using traditional approaches (i.e. non-photochemical routes). The key photochemical 

step would be optimised using commercially available batch and flow photoreactors. Initial 

investigations were to be done with batch photoreactor before being transferred to the flow 

photoreactor for optimisation and scale-up work. The use of flow chemistry would hopefully 

reduce scale-up concerns associated with batch photochemistry by reducing reaction times, 

which can lead to over irradiation (degradation), and ensure good light penetration into the 

reaction mixture. A good understanding of the stability of bicyclic 1,2-diazetidines 10 was not 

already known, therefore it was essential to gain a good understanding of the properties of 10 

and whether safety precautions were required. It was desirable that this new methodology 

provided 1,2-dihydropyridazines 9 and bicyclic 1,2-diazetidines 10 in multigram quantities, 

which meant that the synthesis and photochemistry of 1,2-dihydropyridazines 2 had to be 

efficient. The synthesis of 1,2-dihydropyridazines 9 starting from azo compounds 8 is known,33–

36 however if this proved unsuccessful a new route would have to be developed. In any case, 

the synthesis of 1,2-dihydropyridazines 9 should enable the synthesis of derivatives to ascertain 

the effect that this would have on the 4-π photocyclisation. The synthetic potential of 1,2-

dihydropyridazines 9 has not been exploited in the literature and they are interesting synthetic 

intermediates that should undergo typical double bond transformations to give novel structures.  

 

Scheme 1.1 PG = protecting group 
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1.3 The Synthesis of 1,2-Diazetidines 

1,2-Diazetidines 13 are four-membered rings that contain two nitrogen atoms adjacent to one 

another, and aside from the nitrogen atoms there are up to two positions where substituents 

can be added (Figure 1.4). Nevertheless, the reported syntheses of 1,2-diazetidines remain 

limited, especially compared with the renewed interest in azetidines 14 over the last decade.37,38 

The attempted synthesis of 1,2-diazetidines has been reported over the last 150 years, however 

many of these early reports were found to be incorrect and it was not until the late 1940’s that 

the first legitimate examples were published.39,40  

 

Figure 1.4 

1.3.1 Synthesis of 1,2-Diazetidines via [2+2] Cycloaddition 

One of the most common ways to synthesise 1,2-diazetidines has been to utilise [2+2] 

cycloadditions of alkenes and azo compounds in which one of the two reactants must be 

activated with either electron donating or withdrawing groups. The most common examples 

have used azo compounds 8 bearing electron withdrawing groups (azodicarboxylates), whilst 

the alkene 15 possesses electron donating groups,40 though there are limited examples using 

halogenated alkenes (Scheme 1.2).39–42 A concerted thermal [2+2] cycloaddition is forbidden 

by Woodward-Hoffmann rules on orbital symmetry grounds and as such these reactions must 

go via a stepwise mechanism through diradical or dipolar intermediates.43–46 A possible side 

reaction is the inverse electron-demand [4+2] cycloaddition, in which the highest occupied 

molecular orbital (HOMO) of an alkene 15 with electron donating groups reacts with the lowest 

unoccupied molecular orbital (LUMO) of an electron deficient heterodiene 8 to form oxadiazines 

17. For reactions with electron rich alkenes, the electron deficient nitrogen of the heterodiene 

was attached to β-carbon of the olefin. 

 

Scheme 1.2 

The [2+2] cycloaddition of acyclic and cyclic azo compounds with a variety of different alkenes 

has given varied results (Scheme 1.3).47–56 In 1926, Diels and Alder first reported the reaction 

of indene 15a with an acyclic azo compound 8b,48 however it was originally proposed these two 

compounds underwent an ene reaction, not a [2+2] cycloaddition.49 Huebner and co-workers 
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suggested that the 1,2-diazetidine had formed through analysis by infrared (IR) and nuclear 

magnetic resonance (NMR) spectroscopy,50 although a few years later a couple of different 

research groups concluded that the oxadiazine 17a had formed.51,53 A similar observation was 

made when indene 15a was changed to styrene 15c, although when cyclic cis-locked azo 

compounds 8h,o,p were used both indene 15a and styrene 15c formed 1,2-diazetidine 16a,b 

products in 34-58% yield.51,54,55 Subsequent work has shown that the [2+2] cycloaddition at low 

temperatures also worked with indene derivative 15b, although above room temperature an 

ene reaction is favoured.57 1,2-Diazetidines 16d-h have also been successfully formed with azo 

compounds 8b,h when diadamantyl-substituted alkene 15d,58,59 tetracyclopropylethene 15e,60 

fluorinated diene 15f, cyclopropyl alkene 15g and various fluorinated alkenes 15h were 

employed.39,41,42,56,61 The use of cyclohexene 15i, hex-1-ene 15j or (E/Z)-but-2-ene 15k resulted 

in an ene reaction taking place,47,62 whereas none of the desired 1,2-diazetidines 16l,m were 

obtained when azo compounds 8a,h were reacted with substituted alkenes 15l and ethylene 

15m.56,63 

 

Scheme 1.3 
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The [2+2] cycloaddition of azo compounds 8a,b,h,o with substituted alkenes bearing stronger 

electron donating groups has been more extensively studied (Scheme 1.4). Various research 

groups have used enol-ethers 18a with alkyl chains (R’ = alkyl) to synthesise O-substituted 1,2-

diazetidines 19a in low-good yields (28-86%).51,64–66 For enol ethers that possessed an aromatic 

group (R’ = Ar), there was competition between 1,2-diazetidine 19a and oxadiazine 20a 

formation dependent on what groups were attached to the aromatic ring.53 The highest yields 

of 1,2-diazetidines 19a were achieved with no substitution, a methyl, methoxy or chloro group 

attached to the aromatic ring (67-87%), whereas when a strong electron withdrawing group, 

such as a nitro group, was present the yield sharply dropped (5%). The opposite was true for 

the formation of oxadiazines 20a and the highest yields were achieved when a nitro group was 

present on the aromatic ring (>95%). In addition, oxadiazines 20a are the major product if the 

nitrogen atoms are protected with benzoyl groups (>95%). The use of monocyclic and acyclic 

enamines 18b tended to give N-substituted 1,2-diazetidines 19b, however little to no isolated 

yields have been reported and the products were easily ring-opened through hydrolysis.64,67–69 

The [2+2] cycloaddition reaction with vinyl sulfides 18c (R’ = alkyl) gave small amounts of 1,2-

diazetidine 19c formation (28-35%) and the major products were oxadiazines 20c (65-72%).70 

Vinyl esters 18d with isopropyl, tert-butyl and phenyl groups  produced 1,2-diazetidines 19d in 

low yields but provided evidence for a stepwise mechanism,71 in contrast vinyl acetate 18i 

resulted in the [4+2] reaction to give oxadiazines 20i as the major pathway.53  For vinyl ethers 

18e, low yields of 1,2-diazetidines 20e were obtained (22%), however the use of acetone as 

the solvent trapped any dipolar intermediates preventing 1,2-diazetidine formation.72 Similar 

observations were found with methanol for [2+2] cycloadditions using either but-2-ene or 

isobutylene.62,73 The use of (Z)-1,2-methoxyethene 18f with acyclic azo compounds 8a resulted 

in the formation of a 1:4 mixture of 1,2-diazetidine 19f and oxadiazine 20f, however when 1,4-

dioxene 18g was reacted with cyclic azo compounds 8h only 1,2-diazetidine 19g formation was 

observed.51 Hoffmann and Häuser have studied the [2+2] cycloaddition using 

tetramethoxyethene 18h.74,75 The authors reported that 1,2-diazetidine 19h was isolated in high 

yields (95%) and no sign of the oxadiazine product 20h was observed under these reaction 

conditions. Finally, the [2+2] cycloaddition of ketene acetals 18j, keten-N,N-acetals 18k and 

aminals 18l formed unstable 1,2-diazetidines that could not be isolated and immediately reacted 

further to give non-cyclic products.76–78 
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Scheme 1.4 EDG = electron donating group 

More recently, Breton and co-workers have utilised a [2+2]-cycloaddition to synthesise 1,2-

diazetine 21 (Scheme 1.5).79 4-Methyl-1,2,4-triazoline-3,5-dione (MeTAD) 8o was reacted with 

phenyl vinyl sulfide 18c to form an unstable 1,2-diazetidine intermediate that was immediately 

further reacted to give the more stable sulfoxide 23 in low yields (15%), followed by pyrolysis to 

give 1,2-diazete 21 in around 70% yield. 1,2-Diazete 21 was stable and did not undergo thermal 

ring opening as found when acyclic protecting groups were attached to the nitrogen atoms.35,80 

The authors went on to form a variety of bicyclic 1,2-diazetidines through Diels-Alder reactions 

with various dienes, whilst Breton and Martin carried out a bromination reaction to access 

dibromide 22 in good yields.81 

 

Scheme 1.5 
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Xu and co-workers have detailed a tertiary amine-catalysed [2+2] cycloaddition reaction 

between allenoates 24 and azo compounds 8 to give a series substituted 1,2-diazetidines 25 

(Scheme 1.6).82 The functionalised 1,2-diazetidines 25 were synthesised in moderate-good 

yields and all gave a cis-double bond in the product. Unsubstituted and γ-alkyl-substituted 

allenoates 24 with either ethyl or benzyl esters were tolerated under the reaction conditions, 

whereas α-allenoates did not react. The authors suggested the formation of 1,2-diazetidines 25 

began with the addition of the tertiary amine to allenoate 24 to give a stabilised zwitterion 26/26’, 

which underwent a Michael-type reaction with the azo compound to give intermediate 27. 

Cyclisation of zwitterion 27 produces the 1,2-diazetidine ring 28, followed by elimination of the 

tertiary amine catalyst to form the double bond and product 25. 

 

Scheme 1.6 DABCO = 1,4-diazabicyclo[2.2.2]octane; R’ = alkyl or benzyl; R’’ = Et, iPr or tBu 

Okitsu and co-workers have reported the thermal [2+2] cycloaddition reaction of allenamides 

29 with a series of azo compounds 8 (Scheme 1.7).83 These reactions formed unstable 1,2-

diazetidines 30, which could not be isolated as they underwent a ring opening reaction to give 

zwitterion 31. The authors were able to trap intermediate 31 with a variety of silyl enol ethers, 

allyl- and allenylsilanes in the presence of a Lewis acid, trimethylsilyl trifluoromethanesulfonate 

(TMSOTf).  



4- Photocyclisation: A New Route to Functionalised Four-Membered Rings 

12 
Thomas Britten – April 2019 

 

Scheme 1.7 R’ = Me, Et, iPr and CH2CCl3 

1.3.2 Other Methods to Synthesise 1,2-Diazetidines 

1.3.2.1 Synthesis of 1,2-Diazetidines 

Warrener and co-workers have demonstrated the synthesis of 1,2-diazetidine 34 from 1,2-

diazete 33 (Scheme 1.8 and see also Section 4.1.1, Scheme 4.4).35,80 1,2-Diazete 33 was 

synthesised from tricycle 32 in a good yield, though it was found to be thermally unstable and 

started to form diimine 36 in solution (vide infra). Nevertheless, 1,2-diazetidine 34 was formed 

in moderate yield when 1,2-diazete 33 was reduced through hydrogenation.  

 

Scheme 1.8 

In the mid-1960’s, Horvitz of the FMC Corporation patented a new route to access 1,2-

diazetidines starting from alkyl hydrazines 37 and dihalides 38.84 Hall et al. and Nelsen et al. 

have utilised this methodology on multigram scales to access some alkyl-1,2-diazetidines 39 in 

moderate to low yields (Scheme 1.9).85,86 The authors reported that slow addition of 1,2-

dibromoethane 38 was essential to ensure good reactivity and a large excess of the dihalide 

was required, as it was susceptible to an elimination reaction. These conditions were used to 

synthesise two 3-substituted-1,2-diazetidines 40 in low yields.  
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Scheme 1.9 

Shipman and co-workers have developed a synthesis to a series of 1,2-diazetidines 34b-d from 

tri-substituted hydrazines 41 equipped with a iodide leaving group (Scheme 1.10).87 The 

presence of iodide was found to be crucial and for hydrazines with carbamate protecting groups, 

leaving groups such as bromide, chloride, mesylate or under Mitsunobu conditions, gave 

oxadiazine 42b as the major product. The authors reason that the use of the softer iodide 

leaving group promoted cyclisation through the nitrogen, whereas for harder leaving groups 

cyclisation was favoured through the carbamate oxygen.  

 

Scheme 1.10 

Cui et al. have developed a multigram synthesis for unsubstituted 1,2-diazetidines 34 bearing 

sulfonyl protecting groups (Scheme 1.11).88 Hydrazine 43m was first doubly deprotonated and 

the dianion reacted with 1,2-dibromoethane to give 1,2-diazetidine 34e in a good yield (78%) 

and has been successfully performed on a fifty gram scale. The methodology has been 

expanded to give 1,2-diazetidines with aryl-sulfonyl groups that contained aromatic rings with 

electron donating (OMe) and withdrawing groups (CF3 and CN), as well as 2-naphthalene 

sulfonamide. Introduction of nitro groups or a mesitylene ring caused a sharp decrease in yields 

and the procedure was not successful with hydrazines that contained carbonyl groups. 1,2-

Diazetidine 34e was successfully ring-opened to give sulfonyl imines 44 in mostly high yields 

using a variety of alkyl and aromatic thiols bearing bulky, electron donating or withdrawing 

groups and alkyl thiols. The authors suggested that, after deprotonation of the thiols with 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU), the thiolate 45 would facilitate a nucleophilic (SN2) N-N 
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cleavage to give amine 46 after protonation of the nitrogen anion, followed by elimination of the 

tosyl group to give the observed product 44.  

 

Scheme 1.11 DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene; DMF = dimethylformamide 

1.3.2.2 Synthesis of 3-Substituted-1,2-Diazetidines 

Ma and co-workers reported the first enantioselective synthesis of 3-substituted 1,2-diazetidine 

49 from an enantioenriched hydrazine 47 acquired from a (R)-proline-catalysed Michael 

addition from the corresponding aldehyde and dibenzyl azodicarboxylate (Scheme 1.12).89 

Seven other examples were shown, however the legitimacy of this route has been disputed by 

Shipman and co-workers, who proved that with the hard mesylate leaving group the major 

product should be oxadiazine 48 and not the 1,2-diazetidine 49.87 

 

Scheme 1.12 

Shipman and co-workers were the first to report the synthesis of 1,2-diazetidines 52 bearing an 

alkene directly attached to the ring (Scheme 1.13).90,91 Allylic alcohols 50 were converted into 

trisubstituted hydrazines 51 in good yields under Mitsunobu conditions, without an external 

nucleophile present. Hydrazines 51 were then converted into 1,2-diazetidines 52 in excellent 

yields through a copper-catalysed cyclisation reaction with an alkenyl bromide or iodide group 

(X in Scheme 1.13). The reaction tolerated a variety carbamate protecting groups, including an 

orthogonally protected system and was successful for alkenes substituted with a phenyl, chloro, 

acyclic and cyclic alkyl groups. The reaction does not give the desired product when an 

additional iodo group was present on the alkene (R = I in Scheme 1.13).  
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Scheme 1.13 X = Br or I; DMEDA = 1,2-dimethylethylenediamine 

More recently, Shipman and co-workers have exploited enantioenriched hydrazines 53a-c to 

synthesise 1,2-diazetidines equipped with an alkene functional handle (Scheme 1.14).92 The 

primary alcohol in hydrazine 53a-c had to be first converted into the required iodide leaving 

group, then cyclisation under basic conditions gave the desired 1,2-diazetidines 54a-c in good 

yields with a tosyl group and lower yields with a nosyl group. In all cases, the enantiomeric 

excess (ee) was retained from the enriched hydrazines 53a-c. 

 

Scheme 1.14 a R-enantiomer synthesised; Ts = toluenesulfonyl; Ns = p-nitrobenzenesulfonyl 

1.3.2.3 Synthesis of Other Substituted-1,2-Diazetidines 

The 2π + 2σ + 2σ cycloaddition reaction between quadricyclane 55 and azo compounds 8 has 

been widely studied (Scheme 1.15).86,93–98 The reaction has been successful with azo 

compounds equipped with methyl and ethyl carbamates or benzoyl groups with electron 

donating and withdrawing groups,86,93,94 which can be reduced using lithium aluminium hydride 

to give alkyl and benzyl 1,2-diazetidines.86,96,98 Thermolysis experiments have shown that at 

high temperatures cleavage of the N-N bond took place, followed by a ring opening to give imine 

57.95 Sharpless and co-workers have shown that reactions with dimethyl azodicarboxylate 

(DMAD) 8a can be speeded up when an aqueous suspension is used (on water conditions).97 

Zare and co-workers found the reaction rate could be sped up even further using microdroplets 

generated through electrospray ionisation.99 
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Scheme 1.15 Conditions: neat or organic solvent, ∆ 

Cheng and Ma have evaluated the palladium-catalysed cyclisation reaction of allene-substituted 

hydrazines 58 with aryl iodides to access substituted 1,2-diazetidines 59 (Scheme 1.16).100,101 

The use of alkyl and benzyl substituted allenes 58 and methyl, methoxy or unsubstituted aryl 

iodides resulted in the formation of 1,2-diazetidines 59 in 63-77% yield. When aryl iodides with 

electron withdrawing groups were used, the yields of 1,2-diazetidines 59 decreased and the 

formation of dihydropyrazoles 60 began to dominate. In the cases where 1,2-diazetidine 59 was 

formed, the authors found that the alkene and the R were trans to each other, probably to reduce 

steric clashes. 

 

Scheme 1.16 

Mackay and co-workers have described the synthesis of bicyclic 1,2-diazetidines 63 formed 

through a Diels-Alder reaction, followed by a thermal rearrangement (Scheme 1.17).102,103 The 

Diels-Alder reaction of 2,5-dimethyl-3,4-diphenyl-cyclopentadienone 61 and a variety of 

azodicarboxylates 8 gave cycloadducts 62 in good yields, which isomerised to give oxadiazines 

64 when heated to 80˚C. When the cycloadducts 62 were heated at higher temperatures (120 

°C), 1,2-diazetidines 63 were formed in good yields apart from when tert-butyl carbamate 

protecting groups were used. The isomerisation reactions are reversible, however prolonged 

reaction times resulted in degradation of cycloadduct 62. 

 

Scheme 1.17 R = Me or Et; R’ = Me, Et, tBu, Ph or CH2CCl3; TCE = tetrachloroethylene 
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1.3.2.4 Peripheral Functionalisation of 1,2-Diazetidines  

Shipman and co-workers have utilised alkylidene 1,2-diazetidine 52a for derivatisation (Scheme 

1.18).90,104 A palladium-catalysed Heck reaction with iodobenzene installed a phenyl group to 

give 1,2-diazetidine 52b in a moderate yield and selectively gave the trans-double bond, which 

was proposed to minimise any steric clashes between the phenyl group and the carbamate 

protecting groups.90 Shipman and co-workers have also carried out an asymmetric 

hydrogenation of the double bond in 52a to access an enantioenriched alkyl hydrazine 65 in 

good yields and enantiomeric excess.104 

 

Scheme 1.18 NBD = norbornadiene 

Shipman and co-workers have employed the double bond attached to the ring to synthesise 

some spirocyclic 1,2-diazetidines (Scheme 1.19).91 Under typical conditions to form dichloro- 

and difluoro-carbene, alkylidene-1,2-diazetidines 52 were converted into a variety of spirocyclic 

1,2-diazetidines 67 in moderate-excellent yields. The reaction was successful with 1,2-

diazetidines with symmetrical and orthogonal protecting groups on the nitrogen atoms, however 

only unsubstituted or methyl substituted alkenes were successful and alkenes bearing an 

electron withdrawing group did not give the desired products. The yields for the difluoro-carbene 

derived products were higher than those found with dichloro-carbene, as the latter tended to 

insert into the N-N bond to form a ring expanded urea 68, after hydrolysis of 68’. 1,2-Diazetidine 

52 also underwent a [2+2] cycloaddition with the electron poor alkene tetracyanoethylene 69 to 

give spirocycles 70 in good yields. The highest yields were achieved when there was less steric 

bulk on the carbamate protecting groups and with little substitution on the double bond. 
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Scheme 1.19 Dichlorocarbene conditions: Et3N(Bn)Cl (10 mol%), CHCl3, NaOH (50 wt. %), rt, 0.25-6 

hrs; difluorocarbene conditions: TMSCF3 (2.5 eq), NaI (0.2 eq), THF, 65 °C, 5-6 hrs; TMS = trimethylsilyl 

Shipman and co-workers have employed some common double bond transformations with 

vinyl-1,2-diazetidines 54a,b to access novel 1,2-diazetidine scaffolds (Scheme 1.20 and 1.21).92 

Ozonolysis, followed by reductive work up with either triphenylphosphine or sodium borohydride 

formed an aldehyde and alcohol, respectively. In the case of the former, the aldehyde was 

immediately further reacted through a reductive amination reaction to give amine 71 in 

moderate yields and when sodium borohydride was used, alcohol 72 was isolated in excellent 

yields. The alkene could be reduced using in situ formed diimide to give ethyl-1,2-diazetidine 

73 in high yields. Using 73, it was possible to selectively deprotect each of the carbamate and 

sulfonamide protecting groups in good yields under acidic conditions or with magnesium-

methanol. 

 
Scheme 1.20 

The same authors went on to demonstrate the use of olefin cross metathesis on 1,2-diazetidine 

54a,b bearing a vinyl group (Scheme 1.21).92 Using either Grubbs 2nd generation 75 or 



Chapter 1: Introduction 

19 
Thomas Britten – April 2019 

Hoveyda-Grubbs 2nd generation 76 catalysts and external alkenes that contained either alkyl 

chains, esters, halogens or phenyl rings, 1,2-diazetidines 54a,b was selectively transformed 

into (E)-vinyl-1,2-diazetidines 74 in good yields. 

 

Scheme 1.21 R = tBu or Bn 

1.4 The Thermal Stability of Substituted Cyclobutenes 

Cyclobutenes are strained four-membered rings, which can be derivatised through the double 

bond to give cyclobutanes or used to make dienes through a thermal electrocyclic ring opening 

(Scheme 1.22). The synthesis of dienes from cyclobutenes is often stereoselective and is 

governed by Woodward-Hoffmann rules and the properties of the substituents are also a key 

factor.43–45 Moreover, there are rare examples of cyclobutenes in natural products (e.g. 79),31 

however the ring opening of cyclobutenes has been utilised more in the synthesis of various 

natural products.105–111  

 

Scheme 1.22 

In relation to this project, there are currently no examples in the literature for the synthesis of 

protected cis- or trans-diaminocyclobutenes 11 (Figure 1.5). These cyclobutenes are not 

expected to be thermally stable, and have been predicted to undergo a 4-π electrocyclic ring 

opening to the corresponding dienes (vide infra).112 Herein, the 4-π electrocyclic ring opening 

of cyclobutenes and any substituent effects shall be discussed. 
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Figure 1.5 PG = protecting group 

1.4.1 Torquoselectivity - Theory 

The thermal 4-π electrocyclic ring opening of cis- and trans-3,4-disubstituted cyclobutenes can 

technically give four potential diene products (Scheme 1.23). The advent of Woodward-

Hoffmann rules described, based on orbital symmetry, that 4-π electrocyclic reactions are 

conrotary and disrotary for thermal and photochemical reactions, respectively.43–45 As a result, 

the thermal formation of dienes derived from the disrotary process are forbidden. For both 

isomers, the conrotatory ring opening process can form two products, however the favoured 

formation of one diene can be predicted using theories developed by Houk and various co-

workers.[71-83] They termed the preferential formation of one diene as torquoselectivity and this 

is the stereoselective twisting of the breaking C-C σ orbital in the transition state with the 

substituents rotating inwards or outwards dependent on their electronic properties. In general, 

electron donors (e.g. R = OH or NH2) and mild electron acceptors (e.g. CO2H) favour outward 

rotation, whereas strong electron acceptors (e.g. CHO) tend to favour inward rotation (vide 

infra).112,115,116 Houk and Dolbier have written a short review on this area and outline how 

experimental results have provided further support to the theory.126 

 
Scheme 1.23 

Electron donor substituents, upon inward rotation in the transition state, undergo a destabilising 

four electron interaction between the filled orbital of the donor and the HOMO of the breaking 

C-C σ bond (85), which results in a large increase in the activation energy (Figure 1.6). Outward 
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rotation of the donor minimises this interaction (80 and 84) and enables the stabilisation of the 

C-C σ* LUMO by the filled orbital on the donor, which in turn lowers the activation energy for 

this process (80). Stabilisation of the LUMO is minimal when the donor rotates inward (81). The 

opposite is observed when a strong electron acceptor is used that contains a low energy LUMO. 

When the acceptor rotates inwards, a stabilising interaction is possible between the empty 

orbital located on the acceptor and the HOMO of the breaking C-C σ bond (87). The interaction 

lowers the activation energy for the process, more so than if the acceptor rotates outwards 

where it can only interact with one of the orbitals (86). 

 
Figure 1.6 

Houk and co-workers, as well as other research groups, have carried out computational 

calculations on 3-substituted cyclobutenes to predict whether substituents prefer to rotate 

inwards or outwards (Table 1.1).112,113,115,116,127,128 In simple terms, the activation energies of the 

inward and outward rotations were first calculated and the values were subtracted from one 

another to give positive values if outward rotation is favoured and negative values for inward 

rotation. In almost all cases, the activation energies were lower for 3-substituted cyclobutenes 

in comparison to cyclobutene itself. Examples of functional groups that strongly favoured 

outward rotation include alkoxides (entry 2), alcohols (entry 3), amines (entries 4 and 5), thiols 

(entry 6), fluorine (entry 7), chlorine (entry 8), alkanes (entries 10 and 11), alkenes (entry 12), 

alkynes (entry 13), carboxylates (entry 18), nitriles (entry 23), nitro (entry 24) and phosphines 

(entry 34). Nitriles and nitro groups were described as a relatively poor acceptors and in the 

case of the former the filled orbitals on the nitrile can help to stabilise the LUMO of the breaking 

C-C bond. Trifluoromethyl groups (entry 9), ketones (entry 14), acids (entry 16), esters (entry 

19), cis-imines (entry 21) and sulfoxides (entry 26) showed only a partial preference for outward 

rotation. Cyclobutenes substituted with aldehydes (entry 15), imines (entries 20 and 22), nitroso 

(entry 25), sulfinic acid groups (entry 27), sulfonyl groups (entry 28), boron (entries 29 and 30), 

silyl groups (entries 31-33) and organostannanes (entry 35) all showed a strong preference for 

inward rotation. Aldehydes, protonated imines and boron containing compounds gave the 

lowest activation energies for inward rotation. Houk and co-workers calculated that protonation 
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of acids and imines, which in the process makes them more electron withdrawing, switched the 

rotation preference from outwards to inwards (entries 17 and 22).115,119 In contrast to these 

findings, when the donor or acceptor substituent is directly attached to the double bond the 

activation energy for ring opening is similar to that of cyclobutene.112,115 

 

Entry -R Einwards – Eoutwards
a Reference 

1 H 0 115 

2 OLi 24.4 115 

3 OH 16.4-17.2 112,115 

4 NH2 14.7-19.6 112,115,116 

5 NH3
+ 6.2-7.9 115 

6 SH 13.7 115 

7 F 14.4-16.9 112,115 

8 Cl 13.6 115 

9 CF3 2.3-2.6 115 

10 Me 5.9-7.4 112,115,116 

11 tBu 7.1 128 

12 HC=CH2 4.9 115 

13 C≡CH 7.6 115 

14 C(O)Me 1.2-2.1 112,115 

15 CHO −3.9-−4.6 115 

16 CO2H 2.3 115 

17 CO2H2
+ −4.8 115,119 

18 CO2
− 7.3 115 

19 CO2Me 1.2 115 

20 HC=NHtrans −3.0 115 

21 HC=NHcis 3.0 115 

22 HC=NH2
+ −10.1 115 

23 CN 4.3-4.7 112,115 

24 NO2 6.4-7.3 112,115 

25 NO −2.6 115 

26 S(O)H 0.1 115 

27 SO(OH) −1.4 115 

28 SO2H −0.3 115 

29 B(Me)2 −11.5 115 

30 BH2 −15.9-−18.2 115 

31 SiH3 −1.5-−1.7 116,127 

32 SiMe3 −1.0-−1.3 116 

33 SiF3 −3.8-−4.1 116 

34 PH2 4.1-4.2 116 

35 SnMe3 −0.6 128 

Table 1.1 Calculated activation energies for outward and inward 4-π electrocyclic ring opening of 3-
substituted cyclobutenes; a positive value = outward rotation favoured, negative value = inward rotation 

favoured 
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For 3,3 and cis-3,4 disubstituted cyclobutenes one group must rotate inwards, which can lead 

to an increase in the activation energy. Houk and Rondan have shown this increase in energy 

for cis-dimethyl- and dichloro-3,4-cyclobutenes.114 Sheikh has carried out a computational study 

on the activation energies of 4-π electrocyclic ring opening of 1,2-, 1,3-, 1,4- and trans-3,4-

disubstituted cyclobutenes in comparison to unsubstituted cyclobutene (Figure 1.7).112 In most 

cases, the addition of two substituents on the double bond 2b resulted in an increase in the 

activation energy, which was highest with one electron donating and one withdrawing group to 

give an extended π system (e.g. NH2 and NO2). 1,3-, 1,4- and trans-3,4 disubstitution 2c-e all 

gave lower activation energies than cyclobutene, with the trans-3,4 systems giving the lowest 

values especially when both an electron donating and withdrawing group were present. The 

author termed the effect of having electron donating and withdrawing substituents on the rate 

of electrocyclic ring opening as captodative substitution.  

Maryasin and Maulide have computationally studied the stability of cis- and trans-cyclobutene 

derivatives 88a-f towards 4-π electrocyclic ring opening at room temperature (Scheme 1.24).129 

The activation energy for the malonate derived cyclobutene 88a was too high for the reaction 

to take place at room temperature, in line with the groups experimental findings.130 For 

cyclobutenes 88b-f, the activation energies were considerably lower, with the energy barrier 

decreasing from alkyne 88b through to ether 88f and were expected to undergo ring opening 

spontaneously. In agreement with the theories proposed by Houk (vide supra), the authors 

found that the group adjacent the acid component showed preference for outward rotation to 

give dienes 89a. 

 

Scheme 1.24 

1.4.2 Torquoselectivity – Experimental Evidence 

The pioneering work between 1950-1970 provided experimental evidence for the conrotatory 

nature of the thermal 4-π electrocyclic ring opening of 3,3 and 3,4 disubstituted cyclobutenes 

2e,f, however the effect of substituents was not fully understood and the products from these 

reactions were often rationalised on steric grounds (Figure 1.7).131–139 Since the development 

of the concept of torquoselectivity, these results could all be described using the theories 

proposed by Houk and co-workers and research has since focused on obtaining experimental 
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evidence to support the theoretical calculations. For many of the early examples the formation 

of the diene was highly selective to give a preferred isomer. Vogel was the first to report that 

the addition of electronegative atoms to the allylic positions of cyclobutene resulted in a sharp 

decrease in stability,131 whilst Brauman and Archie noted similar observations with cis-3,4-

diphenylcyclobutenes.139 On the other hand, Frey and various co-workers noticed that the 

addition of alkyl groups to give 3,3- or 3,4-disubstituted cyclobutenes resulted in an increase in 

the activation energy for ring opening.135–137 Criegee and co-workers found that when heated, 

trans-3,4-dimethylcyclobutene 90 selectively formed the E/E-diene and none of the Z/Z-diene 

was observed.132 In addition, various research groups have reported that bicyclic cyclobutenes 

91 have activation energies that are considerably higher than unsubstituted and alkyl 

substituted cyclobutenes, likely caused by the unfavourable strain that the formed dienes would 

possess.131,140,141 Jefford, Boschung and Rimbault showed that 3-cyclobutenes 92 bearing 

oxygen atoms selectively formed E-dienes.142  

 

Figure 1.7 

The early steric explanation for the preferential formation of certain dienes began to be called 

into question when unexpected results began to arise.143–146 Curry and Stevens noticed that the 

ring opening of some 3,3-disubstituted cyclobutenes 2e bearing a methyl group and an alkyl 

chain did not agree with this theory (Table 1.2).143 Systems that contained ethyl, propyl or 

isopropyl groups favoured inward rotation to form diene 93b in slight excess (entries 1-3). For 

the larger tert-butyl and phenyl groups outward rotation was preferred to form diene 93a (entries 

4 and 5). Houk and co-workers reasoned that outward rotation of the methyl group minimised 

destabilising interactions in the transition state.120 

  

Entry  R 93a:93b 

1 Et 32:68 

2 n-Pr 38:62 

3 iPr 34:66 

4 tBu 68:32 

5 Ph 70:30 

Table 1.2 
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Dolbier, Burton and various co-workers cast further doubt on the steric explanation from the 

ring opening of cyclobutenes bearing fluoroalkyl groups (Scheme 1.25).144–146 The authors 

discovered through the formation of dienes 95, 97, 99, 101 that fluorine preferred to rotate 

outwards, meaning that the fluoroalkyl groups had to rotate inwards. These observations were 

opposite to what was observed with alkyl substituents, and could be explained using the theory 

proposed by Houk and co-workers, in which fluorine acts as a donor to stabilise the LUMO σ* 

of the breaking C-C bond. Dolbier and co-workers have also evaluated the ring opening of 3-

substituted cyclobutenes with fluorine or trifluoromethyl groups.147 Fluorine exclusively gave E-

diene 103, whilst a trifluoromethyl group 104 was found to be more stable than cyclobutene 

itself. Upon heating at high temperatures, a mixture of dienes 105a,b was formed, and this was 

the first example where more than one product was observed for the ring opening of 3-

substituted cyclobutenes. For 3,3-difluorocyclobutene 106 there was large increase in the 

activation energy shown by the high temperatures that required due to a fluorine atom having 

to rotate inwards.  

 

Scheme 1.25 n.r = not reported 

Houk, Rudolf and Spellmeyer have proven experimentally that aldehyde 108 favoured inward 

rotation to give Z-diene 109 after heating, which rearranged to the more stable E-isomer under 

acidic or basic conditions (Scheme 1.26).118 In a similar fashion, Murakami and co-workers have 

shown that the ring opening of boronic ester 110 gave solely Z-diene 111, which is in agreement 

with the theoretical predictions.148 Niwayama and Houk have shown the slight preference for 

outward rotation for the electrocyclic ring opening of 3-acetylcyclobutene 112 to give dienes 

113a,b.123 The calculated values above suggested that ketones were less powerful π acceptors 
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compared to aldehydes and favoured outward rotation (Table 1.1, entry 14), however the 

addition of a Lewis acid, specifically zinc iodide, reversed the torquoselectivity from outward to 

inward rotation to give diene 113b as the major product.123,125 Sodium carbonate had to be 

present to prevent the Lewis acid from isomerising Z-diene 113b to E-diene 113a. Murakami 

and co-workers have gone on to show that the 3-cyclobutenes that contained silyl and tin groups 

114,116 gave considerably more inward rotation than found with 3-tert-butylcyclobutene 

118.127,128 The silyl and tin compounds contain a low energy σ* (Si-C or Sn-C) orbital that is 

able to accept electron density from the HOMO of the cleaving C-C bond, thus lowering the 

activation energy for inward rotation. Cyclobutene 118 does not have a low energy C-C σ* 

orbital preventing the tert-butyl group from accepting electron density and resulting in outward 

rotation of this group only.  

 

Scheme 1.26 Yields not reported; pin = pinacol; R = PhMe2C 

Houk and Niwayama have further evaluated the inward rotation of aldehydes with cyclobutene 

120, which selectively formed diene 121 where the aldehyde group rotated inwards and the 

ester group rotated outwards (Scheme 1.27).122 Diene 121 was unstable and readily cyclised to 
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give pyran 122. From the calculated values above (Table 1.1), acids and esters only show a 

minor preference for outward rotation and aldehyde a strong preference for inward rotation, 

therefore this result was not unexpected. If an acid was used instead of an aldehyde the 

selectivity of the reaction was lost and equal quantities of dienes 124a,b were formed for the 

ring opening of cyclobutene 123.149 The ring opening 3,3-disubstituted cyclobutenes 125 

bearing a methyl group with either an acid, ester or a carboxylate formed only dienes 126 where 

the methyl group preferentially rotated outwards.150 The authors reasoned that the energy 

barrier for outward rotation of the methyl group should be slightly lower than for the carboxylate. 

Changing the methyl group to a primary alcohol formed diene 128, in which the primary alcohol 

group rotated outwards and it was shown that this functional group showed similar rotation 

properties to a methyl group.150 Replacement of the carbonyl group with a nitrile group resulted 

in the formation of a mixture of dienes 130a,b, as nitriles also favour outward rotation.118,150 

 

Scheme 1.27 Yields not reported 

Curry and Stevens found that the ring opening of 3-tert-butyl-3-methylcyclcobutene gave a 

larger proportion of a diene where the larger tert-butyl group rotated outwards (Scheme 1.28).143 

Houk and co-workers noticed that when the methyl group was replaced with a silyl ether or a 

methoxy group, the ring opening of this cyclobutene 131 only formed diene 132, where the 

methoxy group rotated outwards and the tert-butyl group rotated inwards.151 These findings 

suggested that oxygen was a strong donor and can force even bulky groups to rotate inwards. 
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For cyclobutene 133, Murakami and co-workers established that when a strong and a weak 

electron acceptor were present a larger proportion of diene 134a where the strong electron 

acceptor group rotated inwards was formed. The authors reasoned that the vacant p orbital on 

the boron atoms accepted electron density more efficiently than the Si-C σ*.148 

 

Scheme 1.28 Yields not reported 

Murakami and co-workers have demonstrated the selective formation of dienes from 3,3-

disubstituted cyclobutenes (Scheme 1.29).152 For cyclobutene 135 (which contains both donor 

and acceptor substituents), diene 136 was formed through preferential inward and outward 

rotation of each group, respectively, however when the silyl group was changed to a butyl group 

a mixture of dienes 138a,b was again formed. 1,2-Addition of an organolithium to a 

cyclobutenone formed cyclobutene 139 in situ, which at 0 °C ring opened spontaneously to give 

diene 140, and the enolate was trapped with acetyl chloride. The strong preference of alkoxides 

for outward rotation was observed in this reaction.  

 
Scheme 1.29 

Trost and McDougal have shown the minor preference for the outward rotation of esters 

compared to acids from cis-3,4-cyclobutene 141 (Table 1.3).105 The authors noticed an increase 

in E-selectivity as the solvent was changed from dimethyl sulfoxide (DMSO) to 1,2-
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dichloroethane (DCE). The authors rationalised that in DMSO hydrogen bonding of the solvent 

to the acid moiety would increase the steric bulk of the acid and helps to increase the amount 

of outward rotation (entries 1-6). In chlorinated solvents such as DCE, this hydrogen bond 

interaction is not present and resulted in the ester group preferably rotating outwards (entries 3 

and 6).  

 

Entry  R Solvent Temperature (°C) E:Z 142a:142b 

1 n-Bu DMSO 110 50:50 

2 n-Bu DME 85 55:45 

3 n-Bu DCE 83 75:25 

4 CH2CH2TMS DMSO 85 55:45 

5 CH2CH2TMS DME 83 75:25 

6 CH2CH2TMS CCl4 76 75:25 

Table 1.3 DMSO = dimethyl sulfoxide; DME = 1,2-dimethoxyethane; DCE = 1,2-dichloroethane; TMS = 

trimethylsilyl 

As described above, the steric argument to answer the observed selectivity is often unreliable 

and Wallace and co-workers have found esters to have a stronger preference for outward 

rotation in comparison acids and acid chlorides (144a,b), thus meaning esters are slightly better 

donors than these groups (Scheme 1.30).153–155 Piers and Lu have also found experimentally 

that esters preferred outward rotation.156 Wallace and co-workers have also shown the selective 

formation of diene 146 from cis-3,4-cyclobutene 145 using groups which favoured inward and 

outward rotation.153–155 

 

Scheme 1.30 PMB = para-methoxybenzyl 

In accordance with the results seen with 3,3-disubstituted cyclobutenes, Huet and co-workers 

have shown that cis-3,4-disubstituted cyclobutene 147 that contained an amide and a primary 

alcohol gave a mixture of dienes 148a,b, where the major product (148a) was a result of the 

outward rotation of the primary alcohol group (Scheme 1.31).157 Huet and co-workers were the 
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first to demonstrate the strong outward rotation preference for nitrogen substituents on 3,4-

disubstituted cyclobutenes 149 in the presence of other groups that favour the same rotation.157–

159 

 

Scheme 1.31 

There have been a couple of examples of the thermal ring opening of highly substituted 

cyclobutenes 151-153, which have resulted in the outward rotation of the oxygen substituents 

(Figure 1.8).160,161 

 

Figure 1.8 

1.5 Conclusions 

From analysis of the literature, for synthetic methodology to be adopted and used in drug 

development programmes there needs to be robust methodology in place that can access a 

wide variety of scaffolds. In addition, these new methodologies need to be tolerant towards 

other functionality in the molecules, as well as giving properties that adhere to Lipinski’s rule of 

five, amongst other guidelines. To this end, the synthesis of unsubstituted and substituted 1,2-

diazetidines has been achieved in moderate to high yields under a variety of conditions. There 

are currently no general routes to efficiently access a broad scope of highly substituted 1,2-

diazetidines and most of the cutting-edge research has focused on the synthesis of the 3-

substituted systems. To have any chance of 1,2-diazetidines being adopted by industry, new 

methodologies are required that are scalable and able to access a large variety of scaffolds 

bearing a variety of functional handles or groups.  

For cyclobutenes, in order to synthesise compounds that are stable at room temperature, 

careful consideration must be given to which functional groups will be attached to the ring, 

otherwise there is a high chance that only diene products can be isolated. Groups bearing alkyl 

groups have been shown to increase the activation energy of the 4-π electrocyclic ring opening, 
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whereas heteroatoms and electron donating groups seemed to decrease the activation energy 

and make diene formation a lot easier. The development of torquoselectivity has provided 

valuable prediction and rationalisation tools on the preferential rotation of certain functional 

groups in the ring opening of cyclobutenes. In combination with these rules, cyclobutenes have 

fantastic potential for selectively giving defined dienes and through further exploration, can 

provide access to novel diene building blocks.
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Chapter 2: Synthesis and Reactions of 1,2-

Dihydropyridazines 
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2.1 Introduction 

2.1.1 Synthetic Approaches to 1,2-Dihydropyridazines 
1,2-Dihydropyridazines 9 are heterocycles that possess two nitrogen atoms adjacent to one 

another and can be viewed as precursors to pyridazines 155 (Figure 2.1). There are only limited 

examples of the synthesis and use of 1,2-dihydropyridazines in the literature and they have 

most commonly been synthesised from 1,2,3,6-tetrahydropyridazines 154 (herein referred to as 

tetrahydropyridazines) through a range of reactions: allylic bromination-elimination,33–36,162,163 

bromination-elimination,164–166 under basic conditions,167 using selenium dioxide.168 

Nevertheless, other routes to synthesise 1,2-dihydropyridazines 9 have been developed from: 

substituted dienes,167,169 1,4-diketones,170 cyclopentadienones,102,103 metallacylces,171,172 and 

pyrones.173,174 

 

Figure 2.1 PG = protecting group 

Tetrahydropyridazines 154 are related heterocycles with two adjacent nitrogen atoms, and have 

often been synthesised through Diels-Alder reactions between dienes and azo compounds 

(Scheme 2.1). Successful reactions have been reported using a range of dienes: 

butadiene,35,36,168,175–189 butadiene derivatives,162,168,180,182,190–197 bicycloheptadiene,185 

cyclcoheptatriene,185,198 cyclopentadiene177,183,185,198 and furans,168,199–207 though more recently 

alternative methods using organo- and transition metal catalysis have been developed.208–211  

 

Scheme 2.1 

The first reported synthesis of 1,2-dihydropyridazines was in the mid-1950’s by Alder and 

Niklas.168 The authors described the oxidation of the diphenyl-cycloadduct 156 with selenium 

dioxide (SeO2) to give 1,2-dihydropyridazine 157a (Scheme 2.2). Treatment of 156 with 

selenium dioxide would form intermediate 158, which under the reaction conditions should 

facilitate the formation of iminium ion 159 to form the desired product 157a after deprotonation. 

Rigaudy and Brelière also utilised this reaction in their synthesis of a similar 1,2-

dihydropyridazine 157b that possessed ethyl carbamate protecting groups.212 Fisher and co-

workers found that diphenyl-1,2-dihydropyridazine 157b did not react with 4-phenyl-1,2,4-
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triazoline-3,5-dione 8h (PTAD or PhTAD) even when heated at 120 °C.213 The authors reasoned 

that in order for a Diels-Alder reaction to occur a high energy planar transition state would have 

to form, in which unfavourable steric interactions between the carbamate protecting groups and 

the adjacent phenyl groups would occur. 

 

Scheme 2.2  

A few years later, Rink and co-workers exploited a two-step bromination-dehydrobromination 

reaction in the synthesis of 1,2-dihydropyridazine 9b on decagram scales (Scheme 2.3).164 

Bromination of tetrahydropyridazine 154b gave dibromide 160, which was then treated with 

potassium hydroxide to form 1,2-dihydropyridazine 9b in good yield. When more potassium 

hydroxide was used, hydrolysis of the carbamate protecting group was observed and gave the 

mono-protected 1,2-dihydropyridazines 161 in low yield. More recently, Sheradsky and 

Moshenberg have synthesised gram quantities of bicyclic 1,2-dihydropyridazines through a 

bromination-elimination reaction.165,166 Bicycles 162h,o derived from PTAD 8h and phthalazine-

1,4-dione 8o were converted into their respective dibromides 163h,o, then subjected to basic 

conditions to access 1,2-dihydropyridazines 9h,o in moderate yields. The reaction with 

dibromide 163h was temperature sensitive, and above –55 ˚C the ring opened 1,2-

dihydropyridazine 9q was formed in a moderate yield. No such issues were described with 

bromide 163o under the basic conditions. Sheradsky and Moshenberg have also studied the 

reactivity of the bicyclic 1,2-dihydropyridazines 9h,o. 9h,o reacted rapidly with PTAD 8h in a 

Diels-Alder reactions to give tricycles 164 and 165 in moderate-good yields, however 9h,o did 

not react with carbon dienophiles. 
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Scheme 2.3 a Yield over two steps 

Altman et al. first reported the conversion of tetrahydropyridazines 154 into 1,2-

dihydropyridazines 9 using a two-step allylic bromination-elimination reaction (Scheme 2.4).33,34 

Oxidation of tetrahydropyridazine 154a through an allylic bromination reaction with N-

bromosuccinimide (NBS) in carbon tetrachloride (CCl4) formed bromide 166, which underwent 
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an elimination reaction when heated in the presence of base to give 1,2-dihydropyridazine 9a 

in 66-81% yield. Moreover, this method was successfully applied for the synthesis of another 

two 1,2-dihydropyridazines 9b,c, although no experimental details were disclosed. More 

recently, Warrener et al. have further evaluated this methodology.35 Under nearly identical 

conditions, except for the addition of benzoyl peroxide in the allylic bromination reaction, 

cycloadduct 154a was converted into 1,2-dihydropyridazine 9a in 74% yield. Whitman and 

Carpenter have subsequently used this route to access a partially deuterated version of 1,2-

dihydropyridazine 9a.162 Stearns and Ortiz de Montellano have demonstrated the synthesis of 

1,2-dihydropyridazine 9b in moderate yields from cycloadduct 154b through an analogous 

allylic bromination-elimination reaction.36 In all cases, the authors completed these reactions on 

gram scales and did not attempt to isolate bromide 166, but instead immediately took the crude 

reaction mixture into the elimination reaction. 

  

Scheme 2.4 a Yield over two steps 

Sheradsky and Moshenberg employed a similar two-step methodology to access tricyclic 1,2-

dihydropyridazine 157o (Scheme 2.5).166 Tricycle 156o did not react with selenium dioxide 

under the conditions developed by Alder and Niklas for monocyclic systems.168 Instead, an 

allylic bromination reaction in the presence benzoyl peroxide was carried out to give bromide 

167 in 68% yield. Bromide 167 readily underwent SN1 reactions but attempts to convert bromide 

167 into the desired product 157o under basic conditions resulted in the removal of the 

protecting group to give pyridazine 155o. Instead, the bromide 167 was heated at high 

temperatures, under a vacuum (1 mm Hg) to form the product 157o in a 40% yield. No 

mechanistic details were provided for the formation of 157o, but the first step is likely to be the 

cleavage of the C-Br bond to give stabilised cation 168, followed by deprotonation to give the 
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product 157o. The same authors have synthesised diphenyl substituted 1,2-dihydropyridazine 

157h in low yields through an initial allylic bromination reaction, followed by treatment under 

basic conditions at low temperatures, which was tolerated with these protecting groups.163 

 

Scheme 2.5 a Yield over two steps 

Ried and Reiher have exploited enones derived from substituted dienes 169 in their synthesis 

of substituted 1,2-dihydropyridazines (Scheme 2.6).169 Enone 170 was accessed in moderate-

good yields through a Diels-Alder reaction between silyl-diene 169 and either diethyl 

azodicarboxylate (DEAD) 8b or PTAD 8h, followed by removal of the silyl groups with 

hydrofluoric acid. The α,β-unsaturated ketones 170 were then converted into substituted 1,2-

dihydropyridazines 171b,h in high yields through the formation of an enolate, which was trapped 

with tert-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf).  

 

Scheme 2.6 a Yield over three steps 
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Avery and co-workers have also used substituted dienes in their attempts to synthesise bicyclic 

1,2-dihydropyridazine 173 (Scheme 2.7).167 When the pyrazolin-5-one derivative adduct mixture 

172 was treated under basic conditions, 1,2-dihydropyridazine 174 was isolated in 16% yield 

alongside the addition products 174a,b in 42% yield. The authors attempted to improve the yield 

under different conditions: 1,8-diazabicycloundec-7-ene (DBU)/dichloromethane, 

pyridine/dichloromethane, potassium carbonate/dichloromethane, boron trifluoride ethyl 

etherate/dichloromethane, however these resulted in either decomposition or no reaction at all 

(no specific details were disclosed for which reactions failed or decomposed). 

 

Scheme 2.7 

An alternative route to access 1,2-dihydropyridazines directly would be to use 2-pyrones 175. 

These reactions proceed via an initial Diels-Alder reaction with azo compounds 8 to give the 

intermediate 176, followed by a retro-Diels-Alder reaction to eliminate carbon dioxide to form 

1,2-dihydropyridazines 9 (Scheme 2.8).  

 

Scheme 2.8 PG = protecting group 

Arora and Mackay demonstrated the first example of this reaction in 1969 with acyclic azo 

compounds (Table 2.1).173 When equimolar amounts of 2-pyrone 175 and azo compounds 8 

were heated in benzene only minor amounts of 1,2-dihydropyridazines 9 were formed (entries 

1-3). The major product from these reactions were the bis-adducts 175 in 22-60% yield, which 

were formed from the reaction of the azo compounds 8 with 1,2-dihydropyridazines 9. The low 

yields observed for azo compounds with small alkyl groups could be attributed to the 

degradation of azo compounds at higher temperatures. Altman et al. have shown that 1,2-

dihydropyridazine 9i can be accessed through the reaction with 2-pyrone 175 and bis(2,2,2-

trichloroethyl) azodicarboxylate 8i, but no further details were reported (entry 4).34 



Chapter 2: Synthesis and Reactions of 1,2-Dihydropyridazines 

39 
Thomas Britten – April 2019 

 

Entry R Time (days) Yield 9 (%) Yield 177 (%) Reference 

1 Me 10 n.d 26 173 

2 Et 7 16 22 173 

3 Ph 3 0 60 173 

4 CH2CCl3 n.r n.r n.r 34 

Table 2.1 n.r = not reported 

Sheradsky and Moshenberg further evaluated the use of pyrones in their synthesis of the 

substituted bicyclic 1,2-dihydropyridazine 179h (Scheme 2.9).174 Here, the reaction between an 

ester substituted 2-pyrone 178 and PTAD 8h afforded 1,2-dihydropyridazine 179h in 42% yield, 

though the bis-adduct 180 was still formed in 20% yield. When 1,2-dihydropyridazine 179h was 

directly reacted with PTAD 8h, the bis-adduct 180 was formed in quantitative yields. The authors 

used 2-pyrones after failure to convert bicycle 181h into 1,2-dihydropyridazine 179h with 

selenium dioxide or the two-step allylic bromination-elimination reactions. 

 

Scheme 2.9 

Mackay and co-workers found that cyclopentadienone derived cycloadducts 62 decomposed at 

high temperatures to give small quantities of 1,2-dihydropyridazines 182, as well as other major 

products (Scheme 2.10).102,103 At temperatures above 80 °C, a select few cycloadducts 62 

underwent decarbonylation to give 1,2-dihydropyridazines 182, but most only underwent 

rearrangement reactions (Section 1.3.2, Scheme 1.17). In all cases, irradiation of cycloadducts 

62 resulted in decarbonylation to give the tetrasubstituted 1,2-dihydropyridazines 182, though 

no yields were reported. 
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Scheme 2.10 a) R’ = Me; b) R’ = Et; c) R’ = CH2CCl3; d) R’ = Ph; e) R’ = tBu 

Takahashi and co-workers have demonstrated the only example where 

zirconacyclopentadienes 183 were used to form tetra-substituted 1,2-dihydropyridazines 184a-

e, through a reaction with a variety of azo compounds (Scheme 2.11).171,172 The reaction was 

successful with methyl, ethyl, isopropyl and benzyl azo compounds and  tetra-alkyl-substituted 

zirconacyclopentadienes to give a series of 1,2-dihydropyridazines 184a-e in moderate to good 

yields. 

 

Scheme 2.11 R’ = Me, Et, iPr or Bn 
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Zelenin and Dumpis have described the condensation reaction of a 1,4-diketone 185 with alkyl 

hydrazines 37 to access methyl substituted 1,2-dihydropyridazines 186 (Table 2.2).170 The 

condensation reaction of acetonylacetone 185 with methyl and ethyl hydrazine 37, in the 

presence of a Lewis acid, gave 1,2-dihydropyridazine 186 in moderate yields, as well as the 

formation of the side product 187. 

 

Entry R Yield 186 (%) Yield 187 (%) 

1 Me 36 10 

2 Et 39 8 

Table 2.2 

In 2007, Lautens and co-workers proposed a Lewis acid catalysed synthesis of monoprotected 

1,2-dihydropyridazine 191 from methylenecyclopropyl hydrazones 188 (Scheme 2.12).214 When 

hydrazone 188 was treated with magnesium chloride (MgCl2) and N,N,N,N-

tetramethylethylenediamine (TMEDA) it was initially thought that 1,2-dihydropyridazine 191 was 

formed in 86% yield, with >20:1 selectivity over the 1,6-dihydropyridazine 190. It has since been 

determined that the product was pyrrole 189 and not 1,2-dihydropyridazine 191.215 The authors 

proposed that after initial coordination of the Lewis acid to the hydrazine to give intermediate 

192 that formation of the five membered ring could take place through two pathways. Firstly, 

through a direct rearrangement reaction or secondly, through an initial ring opening of the 

cyclopropyl ring to give allylic cation 193, which could then undergo cyclisation to form 194. The 

precursor 194 could then undergo a hydrogen atom transfer to give the product 189.  

 

Scheme 2.12 
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There are limited examples in which hydrazines and azo compounds have been reacted with 

aromatic compounds to form fused 1,2-dihydropyridazines 195-198 using vinylnaphthalene,216 

perylenes,217 pyrroles,218 and other aromatic derivatives (Figure 2.2).219,220 In addition, the 

oxidation of alkylated hydrazines with mercuric oxide (HgO) produced small quantities of 1,2-

dihydropyridazines 199.221 

 

Figure 2.2 

2.1.2 Conformational Studies 
Previous studies have shown that the use of nuclear magnetic resonance (NMR) spectroscopy 

to analyse and characterise tetrahydropyridazines and, to a lesser extent, 1,2-

dihydropyridazines is not trivial due to complex NMR spectra.187,213,222–231 Three major factors 

are thought to be the cause of these problems: restricted rotation about the N-CO2R bond, 

nitrogen inversion of the carbamate and ring inversion. It has been proposed that in solution the 

slow equilibration of two half-chair (tetrahydropyridazines) or twist boat (1,2-dihydropyridazine) 

conformations is the major cause of the complicated NMR spectra at room temperature. The 

use of variable-temperature (VT) NMR showed that as the temperature was increased, so did 

the rate of interconversion, to give an average molecule that is rendered symmetrical on the 

NMR timescale.187,213,222–224,226–228,230,231 From 1H NMR analysis, Anderson and Lehn proposed 

that the diphenyl 1,2-dihydropyridazine 157b had a non-planar and non-symmetrical structure 

(Figure 2.3).222 The authors observed non-equivalent peaks for the ethyl carbamate CH2 

hydrogens at temperatures where rotation about the carbamate bond was thought to be fast. 

Instead, it was thought that 1,2-dihydropyridazine 157b underwent a slow equilibration between 

two “twisted” conformations, which is the known conformation of 1,3-cyclohexadiene.232 From 

13C NMR analysis of the same 1,2-dihydropyridazine 157b, Fisher and co-workers suggested 

a symmetrical structure due the presence of only one set of peaks for the ethyl carbamate 

protecting groups.213 Kaftory and co-workers provided further evidence to support Anderson 

and Lehn’s theory through determination that 1,2-dihydropyridazine 157b adopted a twist-boat 

conformation in the solid state.223  
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Figure 2.3 Crystal structure of 157b from Cambridge Crystallographic Data Centre (database ID: 
JAYHIA)223 

2.1.3 Conclusions 
Currently, there is no general methodology to access a variety of unsubstituted and substituted 

1,2-dihydropyridazines. Most 1,2-dihydropyridazine syntheses have utilised 

tetrahydropyridazines 154, which can be easily accessed through Diels-Alder reactions and 

provide easily accessible building blocks. The most efficient method for the synthesis of 1,2-

dihydropyridazines 9 is through allylic bromination-elimination or bromination-elimination 

reactions from the corresponding tetrahydropyridazine 154 (Scheme 2.13). A limitation to these 

methodologies is the atom efficiency of the reactions (addition, followed by removal, of one or 

two bromines) and for the allylic bromination reactions, the environmental and health impact 

associated with the use of carbon tetrachloride. Other routes are possible, however they use 

reagents which are not commercially available or lead only to a specific substitution pattern 

(cyclopentadienones and zirconium diene complexes). 1,2-Dihydropyridazines can be 

accessed directly with 2-pyrones in moderate yields when reacted with cyclic dienophiles, 

whereas when acyclic dienophiles are used, very poor yields are obtained. A major 

characteristic of 1,2-dihydropyridazines is the complicated rate processes in solution that lead 

to complicated NMR spectra and structure determination can be aided through VT-NMR and X-

ray crystallography. 

 

Scheme 2.13 

2.2 Aims 

The main goal was to access 1,2-dihydropyridazines in meaningful quantities from commercially 

available building blocks through existing or newly developed methodologies (Figure 2.4). 

Multigram quantities of 1,2-dihydropyridazines were required for the optimisation of the 4-π 

photocyclisation (Chapter 3), as well as the exploration of other transformations of 1,2-

dihydropyridazines to validate their synthetic potential (Section 2.3.4). Treatment of 1,2-

dihydropyridazines under typical conditions for double bond functionalisation should enable 
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novel and potentially synthetically valuable building blocks to be accessed. The synthesis of 

1,2-dihydropyridazines through literature procedures needed to be evaluated, to determine 

whether these procedures were suitable for this application on multi-gram scale. For example, 

the use of the two-step allylic bromination-elimination reactions developed by Altman and co-

workers was dependent on finding an alternative solvent to replace carbon tetrachloride in the 

allylic bromination reaction. If not, this route would have to be discarded as the use of carbon 

tetrachloride would not be possible on any reasonable scale, due to detrimental environmental 

and health impacts. If none of the literature procedures were successful, a novel synthesis 

would have to be developed, which would require significant route planning and optimisation. 

Ideally, any new methodology would be applicable to the synthesis of substituted 1,2-

dihydropyridazine to enable more substrates to be studied in downstream applications. 

 

Figure 2.4 

2.3 Results and Discussion 

2.3.1 Synthesis of 1,2-Dihydropyridazines Through Literature Procedures 

2.3.1.1 Synthesis of 1,2,3,6-Tetrahydropyridazines 

Stearns and Montellano de Ortiz have reported the synthesis of tetrahydropyridazine 154b from 

butadiene sulfone 200 and DEAD 8b in high yields (Scheme 2.14).36 An unspecified amount of 

butadiene sulfone 200 was heated to form butadiene 78, which was then bubbled into a solution 

of DEAD 8b in benzene for two hours and left for two days.  

 

Scheme 2.14 

Applying these conditions, the reaction of DEAD 8b and butadiene 78 (from butadiene sulfone) 

provided the cycloadduct 154b in 61% yield (Scheme 2.15). The use of di-tert-butyl 

azodicarboxylate (DBAD) 8d resulted in the formation of a complex mixture, however 

cycloadduct 154d was isolated in 11% yield. When a “one-pot” procedure was attempted, in 

which butadiene sulfone 200 and DBAD 8d were heated in high boiling point solvents (toluene 
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or xylene), a complex mixture was formed. None of the isolated samples were ever pure enough 

to consider pursuing this method any further (determined by 1H NMR). At these temperatures, 

degradation of azo compound 8d was likely to occur, which would lead to the formation of 

complex mixtures. In addition, the inconvenience of heating butadiene sulfone further detracted 

from this synthetic approach. 

 

Scheme 2.15 

A commercially available 15% (w/v) butadiene solution in hexane was also investigated, and it 

was expected to provide a more convenient source of butadiene 78 (Table 2.3).The use of 

equimolar amounts of butadiene 78 and DBAD 8d in dichloromethane or methanol at room 

temperature proceeded slowly, though the reactions were cleaner than the reactions with 

butadiene sulfone 200 (entries 1 and 2). When the reaction was run in dichloromethane 

cycloadduct 154d was isolated in 17% yield, however a significant amount of DBAD 8d 

remained (entry 1). In methanol, the yield increased but the reaction was accompanied by the 

formation of unidentified side-products (entry 2). When three equivalents of butadiene were 

used, the product 154d was isolated in 76% yield after stirring for a week at room temperature 

(entry 3). Changing the solvent to hexane was detrimental due to solubility issues with DBAD 

8d and the cycloadduct 154d was isolated in only 7% yield (entry 4). Further modifications were 

to use a sealed flask and to increase the temperature to reflux. After four days, this method 

gave the desired product 154d in a 93% yield, which increased to 97% on gram scale (entry 5). 

When the azo compound was changed to DEAD 8b or diisopropyl azodicarboxylate (DIAD) 8c, 

the reaction proceeded in excellent yields in under 24 hours at room temperature (entry 6) or at 

reflux (entry 7). Cycloadduct 154b was obtained in high yields and of sufficient purity that no 

purification was required.  
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Entry R Equivalents of 78 Temperature Solvent Time (days) Yield 154b-d (%) 

1 tBu 1.0 rt CH2Cl2 1 17 (154d) 

2 tBu 1.0 rt MeOH 4 22 (154d) 

3 tBu 3.0 rt CH2Cl2 7 76 (154d) 

4 tBu 3.0 rt hexane 2 7 (154d) 

5 tBu 3.0 40 °Ca CH2Cl2 4 93-97 (154d) 

6 Et 3.0 rt CH2Cl2 1 96 (154b) 

7 iPr 3.0 40 °Ca CH2Cl2 1 97 (154c) 

Table 2.3 a Reaction carried out in a sealed vessel 

2.3.1.2 Synthesis of 1,2-Dihydropyridazines from Tetrahydropyridazines 

Altman and Ortiz de Montellano’s allylic bromination reactions were successful without an 

initiator and were run in carbon tetrachloride, a solvent well-known for its detrimental 

environmental impact, toxicity and hazards (Scheme 2.16).33,34,36 It was necessary to 

investigate the use of an alternative solvent that would not undergo radical reactions itself under 

the reaction conditions and would be more environmentally acceptable. Allylic bromination 

reactions have been completed without carbon tetrachloride on aromatic systems utilising ionic 

liquids or solvent free conditions and on lipids in cyclohexane.233–235  

 

Scheme 2.16 

Inspired by these reaction conditions, the allylic bromination-elimination reaction was attempted 

on tetrahydropyridazine 154b using different solvents for the allylic bromination reaction (Table 

2.4). When cyclohexane was used, tetrahydropyridazine 154b was converted into 1,2-

dihydropyridazine 9b in 25% yield, however this was lower than the 50% yield reported in the 

literature in carbon tetrachloride (entry 1). When the solvent was changed to acetonitrile, no 

product formation was observed (entry 2). The use of cyclohexane for both the allylic 

bromination and the elimination steps did not give any promising results and showed only trace 

formation of the desired product (entry 3). The addition of a catalytic or stoichiometric amount 

of azobisisobutyronitrile (AIBN) , a radical initiator, also did not significantly improve the yield 

(entries 4 and 5). In all cases, a complex mixture was formed and apart from when 
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stoichiometric quantities of AIBN were used, poor conversions of tetrahydropyridazine 154b 

was observed in the allylic bromination reaction. The 1,2-dihydropyridazine 9b samples isolated 

by this method were of poor purity and degraded upon storage. 

 

Entry Solvent for i) Solvent for ii) Initiator Yield 9b (%)a 

1 Cy PhMe - 25 

2 MeCN PhMe - - 

3 Cy Cy - traces 

4 Cy PhMe AIBN (1 mol%) 7 

5 Cy PhMe AIBN (1.0 eq) 21 

Table 2.4 a Yield over two steps; Cy = cyclohexane 

Alternatively, the conversion of tetrahydropyridazine 154b into 1,2-dihydropyridazine 9b was 

attempted using selenium dioxide or bromination-elimination reactions, which have been 

successful on related systems (Scheme 2.3).164,165,168 When tetrahydropyridazine 154b was 

treated with selenium dioxide in acetic acid (AcOH), 1,2-dihydropyridazine 9b was not formed 

and only degradation was observed by 1H NMR spectroscopy (Scheme 2.17). The literature 

example used the diphenyl substituted system 156a as opposed to cycloadduct 154b, which 

could easily undergo an E1 reaction to eliminate the organoselenium intermediate and form 1,2-

dihydropyridazine 157a, whereas the organoselenium intermediate that would form from 154b 

might be less likely to undergo an E1 elimination reaction. An attempted bromination of 

tetrahydropyridazine 154b resulted in a loss of material after work-up. The 1H NMR spectrum 

of the crude product was clearly different to the starting material, as the double bond signal had 

disappeared, however the peaks observed in the 1H NMR spectrum were not in a similar range 

to those reported.165 The bromination reaction was not pursued any further due to scale-up and 

atom efficiency concerns. 

 

Scheme 2.17 



4- Photocyclisation: A New Route to Functionalised Four-Membered Rings 

48 
Thomas Britten – April 2019 

2.3.1.3 Synthesis of 1,2-Dihydropyridazines from 2-Pyrones 

2-Pyrones 175 were an attractive option to directly access 1,2-dihydropyridazines 9. The Diels-

Alder reaction of 2-pyrones 175 and azo compounds 8 forms intermediate 176, which can then 

undergo a retro-Diels-Alder reaction to eliminate carbon dioxide and form 1,2-dihydropyridazine 

9 (Scheme 2.18). A major limitation of these reactions previously was the low yields using 

acyclic azo compounds and the formation of bis-adducts 177 through the reaction of 1,2-

dihydropyridazines 9 with the starting azo compound 8 present in the reaction mixture (Scheme 

2.9).165,174,213  

 

Scheme 2.18 

Using 2-pyrone (175) and DEAD (8b), the feasibility of using 2-pyrones to access 1,2-

dihydropyridazines 9 was investigated (Table 2.5). Under conditions that were successful with 

PTAD 8h and a 2-pyrone derivative 178,174 the reaction showed no change when stirred at room 

temperature for prolonged reaction times (entry 1). PTAD 8h is a highly reactive dienophile and 

more reactive than DEAD 8b, which likely enabled the reaction to proceed at lower 

temperatures. When the Diels-Alder reaction was heated at 100 ˚C for two days, only trace 

amounts of 1,2-dihydropyridazine 9b was observed by 1H NMR spectroscopy and no product 

was observed when the temperature was increased to 120 ˚C (entries 2 and 3). At these 

temperatures, degradation of the azo compound was likely to be a significant limiting factor to 

the success of these reactions. Attempts to synthesise and use a 2-pyrone derivative 201 with 

silyl protecting groups proved to be difficult, as these compounds were unstable. The use of 2-

pyrones was therefore not continued as a potential route to 1,2-dihydropyridazines, as no 

promising results had been obtained.  

 

Entry Conditions Yield 9b (%) 

1 Acetone, 0 °C → rt, 7 days 0 

2 PhMe, 100 °C, 2 days traces 

3 PhMe, 120 °C, 1 day 0 

Table 2.5 
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2.3.2 Novel Synthesis of 1,2-Dihydropyridazines from O-Substituted Dienes 
With other routes failing to provide an efficient method to produce simple, unsubstituted 1,2-

dihydropyridazines of sufficient purity and in useful quantities, the development of a novel 

synthetic route starting from O-substituted dienes was investigated. A suitable leaving group 

was incorporated into the structure of  diene 202, which after a Diels-Alder reaction would give 

an intermediate 203 that could potentially be treated under acidic, basic or catalytic conditions 

to generate 1,2-dihydropyridazines 9 (Scheme 2.19). The idea was to start from the 

commercially available crotonaldehyde 204, which could be converted into various types of O-

substituted dienes 202. Initially, it would be necessary to isolate cycloadducts to find the 

optimum conditions for the second step. Once these conditions have been determined, it was 

hoped that a one-pot method could be developed.  

 

Scheme 2.19 LG = leaving group; Ac = acetyl; Bz = benzoyl; Piv = pivaloyl; TBS = tert-butyldimethylsilyl; 
Ts = tosyl; Ms = mesyl. 

2.3.2.1 Diene Synthesis 

Initial attempts focused on the conversion of crotonaldehyde 204 into 1-acetoxybutadiene 202a, 

which was known in the literature.236–238 The synthesis of diene 202a was first attempted under 

conditions that used a large excess of acetic anhydride at room temperature (Table 2.6).238 

Under these conditions, diene 202a was isolated in moderate yield, however it was imperative 

to quench any residual acetic anhydride, otherwise the product was contaminated with acetic 

anhydride after purification (entry 1). Attempts to reduce the amount of acetic anhydride resulted 

in a slower conversion of crotonaldehyde 204, but through longer reaction times diene 202a 

was formed in an improved yield, albeit with a slightly reduced E/Z ratio (entry 2). In contrast, 

when a slight excess of acetic anhydride was used diene 202a was formed in a 58% yield after 

two days, albeit with a reduced E:Z selectivity of 5.5:1 (entry 3). In all cases, the yield was lower 

than found in the literature and it was likely influenced by the volatility of the product. The 

synthesis of diene 202a has been successfully scaled-up on a decagram scale using three 

equivalents of acetic anhydride and gave a comparable yield to that obtained on a small scale. 
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Entry Ac2O (eq) Time (days) Yield 202a (%) E:Z or Z:Ea,b 

1 5.0 1 50 10:1.0 

2 3.0 4 62 8.0:1.0 

3 1.5 2 58 5.5:1.0 

Table 2.6 a E/Z ratio calculated by 1H NMR through comparison of diene peaks. No internal standard 
used; b It was not possible to determine the major product; Ac2O = acetic anhydride. 

An alternative method for the synthesis of diene 202a was to run at low temperatures in the 

presence of potassium tert-butoxide and acetyl chloride (Table 2.7).237 Under these conditions, 

diene 202a was formed in 38% yield and with a 50:1 E/Z selectivity (entry 1). There were two 

main issues with this reaction. Firstly, isolation of the diene 202a in high purity was difficult due 

to presence of high boiling point solvents after aqueous work up (tetrahydrofuran and tert-

butanol), which were hard to remove without the loss of product due to its volatility. The second 

issue was the low yield, which stemmed from the loss of product during isolation and a large 

proportion of a degradation products being formed. When 2-methyltetrahydrofuran (2-MeTHF) 

was used, it was harder to isolate pure samples due to the solvent’s higher boiling point, even 

though its water immiscibility made the procedure easier to carry out (entry 2). When alternative 

bases and solvents were investigated, the main difficulty was the deprotonation of 

crotonaldehyde 204 prior to acetylation. The use of lower boiling point solvents, such as diethyl 

ether were successful, however the reaction was not as clean as when carried out in 

tetrahydrofuran (entry 3). Changing the base to sodium ethoxide, triethylamine or sodium 

hydride (entries 4-6), gave no reaction and only starting material was recovered, whereas the 

use of lithium bis(trimethylsilyl)amine (LiHMDS) showed the formation of an unidentified diene 

compound (entry 7).  

 

Entry Base Solvent Yield 202a (%) E:Z or Z:Ea,b 

1 KOtBu THF 38 50:1.0 

2 KOtBu 2-MeTHF 0 - 

3 KOtBu Et2O 0c - 

4 NaOEt Et2O 0 - 

5 NEt3 MTBE 0 - 

6 NaH THF 0 - 

7 LiHMDS THF 0 - 

Table 2.7 a E/Z ratio calculated by 1H NMR through comparison of diene peaks. No internal standard 
used; b It was not possible to determine the major product; c 202a was formed but not isolated; MTBE = 

methyl tert-butyl ether; THF = tetrahydrofuran; LiHMDS = lithium bis(trimethylsilyl)amine. 
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Under similar or modified conditions, the synthesis of other O-substituted dienes 202b-g was 

attempted (Table 2.8). Benzoyl-diene 202b would likely be less volatile than acetoxy-diene 202a 

and reduce the likelihood of losing material during isolation. Adaption of the procedure used for 

the synthesis of acetoxy diene 202a, but using benzoyl chloride instead of acetic anhydride, 

formed a suspension that was difficult to stir. Purification proved to be difficult as the diene was 

not stable on silica gel, but diene 202b was isolated in 22% yield with 3:1 E/Z selectivity (entry 

1). When the synthesis of diene 202b was completed at lower temperatures, the yield was 

improved to 53% with 20:1 E/Z selectivity (entry 2). The low temperature synthesis has since 

been expanded to access the pivalate diene 202c in 54% yield with 50:1 E/Z selectivity and the 

carbonate diene 202d in 34% yield with 30:1 E/Z selectivity (entries 3 and 4). The lower yield 

for the carbonate reaction could be rationalised due to the volatility of the product. Attempts to 

form the tosyl-diene 202e at low temperatures failed, however using the other conditions where 

acetic anhydride was replaced with tosyl chloride showed more promise. The 1H NMR spectrum 

showed signs that the tosyl -diene 202e could have formed, however the reaction showed poor 

conversion of crotonaldehyde and any attempt to isolate the diene resulted in degradation (entry 

5). Formation of dienes equipped with either a trifluoroacetate (202f) or mesyl (202g) group 

gave no reaction and only starting material was observed by 1H NMR spectroscopy (entries 6 

and 7). 

 

Entry R Conditions 
Yield  

202b-g (%) 
E:Z or Z:Ea,b 

1 Bz 
BzCl (1.1 eq), NEt3 (2.1 eq), DMAP (0.2 eq),  

neat, rt, 24 hrs 
22 (202b) 3.0:1.0 

2 Bz 
BzCl (1.2 eq), KOtBu (1.1 eq), 

 THF, −78 °C, 30 mins 
53 (202b) 20:1.0 

3 Piv 
PivCl (1.2 eq), KOtBu (1.1 eq), 

 THF, −78 °C, 30 mins 
54 (202c) 50:1.0 

4 CO2Et 
EtOC(O)Cl (1.2 eq), KOtBu (1.1 eq), 

 THF, −78 °C, 30 mins 
34 (202d) 30:1.0 

5 Ts 
TsCl (5.0 eq), NEt3 (2.1 eq), DMAP (0.2 eq),  

neat, rt, 3 days 
0 (202e) - 

6 C(O)CF3 
TFAA (5.0 eq), NEt3 (2.1 eq), DMAP (0.2 eq),  

neat, rt, 24 hrs 
0 (202f) - 

7 Ms 
MsCl (1.2 eq), NEt3 (2.5 eq),  

CH2Cl2, −78 °C → rt, 21 hrs 
0 (202g) - 

Table 2.8 a E/Z calculated by 1H NMR through comparison of diene peaks. No internal standard used; b 
It was not possible to determine major product; TFAA = trifluoroacetic anhydride 

2.3.2.2 Diels-Alder Optimisation 

Optimisation of the Diels-Alder reaction was carried out using DIAD 8c and dienes 202a-d 

(Scheme 2.20). In most cases, the reaction gave cycloadducts 203,205-207 in excellent yields 
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except with benzoyl-diene 202b. The synthesis of cycloadduct 207 led to the formation of a 

complex mixture of products and cycloadduct 207 was found to be unstable to purification and 

isolation. These initial reactions were completed in methyl tert-butyl ether, however 

dichloromethane could also be used to give identical yields (99% for cycloadduct 203). It should 

be noted that these cycloadducts 203 formed small quantities of the alcohol 208 when purified 

on silica gel, neutral alumina and neutralised silica gel. It had to be accepted that if column 

chromatography was necessary, then it was likely that some material would be lost. All the 

dienes were soluble in hexane, which meant that if the cycloadduct was a solid it could be 

purified by the addition of hexane and filtration. Alternatively, the removal of any excess diene 

by vacuum distillation gave suitably pure material, apart from pivalate 205, which still contained 

minor impurities.  

 

Scheme 2.20 

2.3.2.3 Synthesis of 1,2-Dihydropyridazines 

Elimination of the acetate group of the cycloadduct 203c to give 1,2-dihydropyridazine 9c was 

attempted under acidic or basic conditions and with Lewis acids (Table 2.9). With p-

toluenesulfonic acid or a Lewis acid, 1,2-dihydropyridazine 9c was not formed and produced 

materials very difficult to characterise due to complicated NMR spectra (entries 1-3). The use 

of sodium hydride resulted in degradation of cycloadduct 203c (entry 4), whereas with weaker 

bases no reaction was observed at room temperature and at higher temperatures (entries 5-9) 
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Entry Conditions Yield 9c (%) 

1 TsOH.H2O (10 mol%), CH2Cl2, rt, 24 hrs  0 

2 Sc(OTf)3 (20 mol%), CH2Cl2, rt, 72 hrs 0 

3 FeCl3 (20 mol%), CH2Cl2, rt, 72 hrs 0 

4 NaH (1.2 eq), THF, 0 °C → rt, 1 hr 0 

5 2,6-lutidine (3.0 eq), PhMe, rt or ∆, 24 hrs 0 

6 NEt3 (2.0 eq), PhMe, ∆, 24 hrs 0 

7 NaOAc (3.0 eq), PhMe, ∆, 24 hrs 0 

8 K2CO3 (6.0 eq), PhMe, ∆, 5 hrs 0 

9 CsCO3 (2.0 eq), MeCN, ∆, 6 hrs 0 

Table 2.9 

An alternative strategy was to use palladium chemistry, as cycloadduct 203 is an allylic acetate. 

Palladium catalysis has been utilised in the conversion of allylic compounds with a suitable 

leaving group into 1,3-dienes via an η3 π-allyl complex,239–245 and it was hoped that similar 

conditions could be developed to access heterocyclic 1,3-dienes (Scheme 2.21). These 

reactions were expected to give competition between elimination to form 1,2-dihydropyridazines 

9 and formation of the isomerised starting material 209. 209 may arise from the nucleophilic 

attack of an acetate anion in solution or the reductive elimination of an acetate group back onto 

the palladium η3 π-allyl complex on the opposite side to that of the starting material 

 

Scheme 2.21  

Pleasingly, it was possible to convert cycloadduct 203c into 1,2-dihydropyridazine 9c (Table 

2.10). When cycloadduct 203c was treated with the commercially available 

tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) catalyst - with some base – 1,2-

dihydropyridazine 9c was formed in 58% (entry 1). Small quantities of 2-aminopyrrole 211c 

were also formed, which are usually formed in the 4-π photocyclisation of 1,2-

dihydropyridazines and there have been no reports of this being formed under thermal 
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conditions (vide infra).33,35,36  If the base was switched to potassium tert-butoxide, 1,2-

dihydropyridazine 9c was not formed and degradation of cycloadduct 203c was observed (entry 

2). Comparable yields were observed when other bases were used (entries 3-5), with potassium 

acetate and potassium carbonate giving the highest yields (67% and 72% respectively). 

Surprisingly, when no base was used 1,2-dihydropyridazine 9c was formed in moderate to good 

yields, but a significant amount of another product was formed too (entry 6 and 7). This side 

product resulted from the competing side reaction to give the rearranged starting material 209c 

in varied amounts (entry 6, 40%). When the rearranged starting material 209c was treated under 

the developed palladium conditions, 1,2-dihydropyridazine 9c did form but the rate of reaction 

sharply decreased. Both the allylic pivalate 205 and carbonate 206 reacted to give 1,2-

dihydropyridazine 9c, but it was not possible to separate the product from impurities that were 

not observed in the allylic acetate reactions (entries 8 and 9). In terms of atom economy, the 

use of an acetate group is more favourable than the heavier pivalate and carbonate groups. 

Thus, coupled with the better performance in the palladium-catalysed reactions, allylic acetate 

203c was selected for further studies. Due to the relative cost and sensitivity of 

tetrakis(triphenylphosphine)palladium(0), a palladium(0) precursor was required that would 

improve the practicality of the reaction once scaled up. Three alternative palladium sources 

were investigated in the presence of triphenylphosphine (entries 10-12). Issues during 

purification with another palladium(0) source (tris(dibenzylideneacetone)palladium(0)), caused 

by a difficult separation of 1,2-dihydropyridazine 9c from dibenzylideneacetone, resulted in 1,2-

dihydropyridazine 9c being isolated in 48% yield (entry 10). Starting from a palladium(II) source 

(palladium(II) acetate or trifluoroacetate) gave 1,2-dihydropyridazine 9c in 72% and 67% yield 

and gave yields comparable to when the tetrakis(triphenylphosphine) catalyst was used (entries 

11 and 12). Palladium(II) acetate was selected over palladium(II) trifluoroacetate, which gave 

small amounts of impurities in the isolated product 9c. Next, whether the use of bidentate 

phosphine ligands would help to inhibit the formation of the rearranged starting material 209c 

was investigated (entries 13-15). The best ligand was found to be Xantphos, which showed no 

formation of the isomerised side product 209c, giving 1,2-dihydropyridazine 9c in 75% yield 

(entry 14). The reaction with dppp and SPANphos were slower and resulted in large amounts 

of the by-product 209c being isolated (entries 13 and 15). The best ligand for this reaction was 

Xantphos, but triphenylphosphine could be used if necessary. The use of different solvents 

gave varied results (entries 16-21). At lower temperatures the formation of rearranged starting 

material 209c dominated, but no 2-aminopyrrole 211c formation was observed. Aside from 

toluene, 2-methyltetrahydrofuran gave similar yields, and would be used as an alternative 

solvent if necessary. The deacetylated product 208, formed from degradation during column 

chromatography, only gave a minor amount of 1,2-dihydropyridazine 9c (2% yield) when treated 

under the developed palladium-catalysed elimination conditions (entry 22), though the structure 

of the major product was not determined.  
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Entry R Solvent Catalyst Ligand Base 
Time 

(hrs) 

Yield 

9c 

(%)a 

Yield 

209c 

(%)a 

Yield 

211c 

(%)a 

1 Ac PhMe Pd(PPh3)4 - NEt3 1 58 n.d <5 

2 Ac PhMe Pd(PPh3)4 - KOtBu 1 - - - 

3 Ac PhMe Pd(PPh3)4 - KOAc 1 67 14 traces 

4 Ac PhMe Pd(PPh3)4 - DBU 4 52 15 traces 

5 Ac PhMe Pd(PPh3)4 - K2CO3 1.5 72 6 traces 

6 Ac PhMe Pd(PPh3)4 - - 1 54 40 traces 

7 Ac PhMe Pd(PPh3)4 - - 1 73 n.d traces 

8 Piv PhMe Pd(PPh3)4 - - 2 - - - 

9 CO2Et PhMe Pd(PPh3)4 - - 4 - - - 

10 Ac PhMe Pd2(dba)3 PPh3
b - 1 48 n.d traces 

11 Ac PhMe Pd(OAc)2 PPh3
b - 2 72 n.d 5 

12 Ac PhMe Pd(TFA)2 PPh3
b - 1 67 n.d 7 

13 Ac PhMe Pd(OAc)2 dpppc - 1 42 39 traces 

14 Ac PhMe Pd(OAc)2 Xantphosc - 1 75 - 4 

15 Ac PhMe Pd(OAc)2 SPANphosc - 1 38 35 7 

16 Ac THF Pd(OAc)2 Xantphosc - 4 56 4 - 

17 Ac MeCN Pd(OAc)2 Xantphosc - 1 21 28 - 

18 Ac EtOAc Pd(OAc)2 Xantphosc - 1 55 11 - 

19 Ac 2-MeTHF Pd(OAc)2 Xantphosc - 1 72 - - 

20 Ac 2-MeTHFd Pd(OAc)2 Xantphosc - 48 12 52 - 

21 Ac 
1,4-

dioxane 
Pd(OAc)2 Xantphosc - 1 66 n.d - 

22 H PhMe Pd(OAc)2 Xantphosc - 16 2 - - 

Table 2.10 a Isolated yields b 40 mol% ligand; c 20 mol% ligand; d Reaction run at room temperature; n.d 
= not determined; DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene; Piv = pivalate; Pd2(dba)3 = 

tris(dibenzylideneacetone)dipalladium(0); Pd(OAc)2 = palladium(II) acetate; Pd(TFA)2 = palladium 

trifluoroacetate; dppp =1,3-bis(diphenylphosphino)propane.  
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The next step was to see whether the amount of catalyst could be decreased (Table 2.11). It 

was already known that with 10 mol% palladium(II) acetate and triphenylphosphine or 

Xantphos, 1,2-dihydropyridazine 9c was formed in 72% and 75% yield, respectively. It was 

found that as the catalyst and ligand loading was decreased, the yield of 1,2-dihydropyridazine 

9c decreased, and the yield of the rearranged starting material 209c increased (entries 1-7).  

 

Entry Catalyst Ligand 
Catalyst 
loading 
(mol%) 

Ligand 
(mol%) 

Time 
(hours) 

Yield 
9c (%) 

Yield 
209c 
(%) 

Yield 
211c 
(%) 

1 Pd(OAc)2 PPh3 5 20 1 61 n.d n.d 

2 Pd(OAc)2 PPh3 2 10 1 38 n.d n.d 

3 Pd(OAc)2 Xantphos 5 10 1 65 - 6 

4 Pd(OAc)2 Xantphos 2 4 2 44 21 11 

5 Pd(OAc)2 Xantphos 1 2 4 17 47 9 

6 Pd(OAc)2 Xantphos 10 10 1 23 54 n.d 

7 Pd(OAc)2 Xantphos 10 5 1 4 69 n.d 

Table 2.11 

At this point, the optimal conditions were to use palladium(II) acetate (10 mol%), without any 

base and either triphenylphosphine or Xantphos as the ligand, with the latter giving less 

formation of the rearranged starting material 209c. Under these conditions, if the reaction was 

to be completed on any sort of scale a large amount of palladium catalyst and ligand would be 

required, which would have a financial and environmental impact. Further issues arose when 

four grams of cycloadduct 203c was subjected to these conditions. Using palladium(II) acetate 

and triphenylphosphine, the yield considerably dropped to give 1,2-dihydropyridazine 9c in 32% 

yield, less than half of what was achieved on a small scale. After considerable experimentation, 

the discrepancy between the two was put down to excess water present in the starting material, 

which was found to cause the reaction to lose all selectivity and give poor conversions of 

cycloadduct 9c. Thus, the reactions using palladium(II) acetate needed to be repeated with 

thoroughly dried starting materials (Table 2.12). It was necessary for the starting materials to 

be dried in a desiccator (calcium chloride was the optimal desiccant) for a minimum of two 

weeks to ensure the highest yields possible for 1,2-dihydropyridazine 9c. Initial experiments 

took inspiration from a test reaction in which, in the presence of base, the reaction gave a 

moderate yield (56%) at low catalyst loadings (1 mol%). It seemed plausible that the use of a 

base should enable lower catalyst loadings to be employed. Early results with 

triphenylphosphine as the ligand showed that the bases potassium carbonate and triethylamine 

gave 1,2-dihydropyridazine 9c in good yields (entries 1 and 2), with triethylamine giving the 
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highest yield seen for this reaction so far. Pleasingly, when the catalyst loading was lowered 

the reaction efficiency remained high, even at 1 mol% (entries 3-5). The reaction could now be 

carried out in a variety of solvents and tolerated different temperatures without a noticeable 

decrease in yields (entries 6-10). 1,4-Dioxane was selected as the optimal solvent, giving the 

most reproducible yields, ease of purification and minimal side products.  

 

Entry Catalyst Loading (mol%) Base Ligand (mol%) Solvent Time (hrs) 
Yield 

9c (%)a 

1 10 K2CO3 PPh3 (40 mol%) PhMe 1 67 

2 10 NEt3 PPh3 (40 mol%) PhMe 1 77 

3 5 NEt3 PPh3 (20 mol%) PhMe 1 82 

4 2 NEt3 PPh3 (8 mol%) PhMe 1 79 

5 1 NEt3 PPh3 (4 mol%) PhMe 1 83 

6 1 NEt3 PPh3 (4 mol%) THF 2 87 

7 1 NEt3 PPh3 (4 mol%) EtOAc 2 86 

8 1 NEt3 PPh3 (4 mol%) 2-MeTHF 3 87b 

9 1 NEt3 PPh3 (4 mol%) MeCN 4 81 

10 1 NEt3 PPh3 (4 mol%) 1,4-dioxane 1 84 

Table 2.12  a Highest yields achieved when starting material thoroughly dried (in a desiccator for a 
minimum of two weeks); presence of water in the reaction mixture led to a sharp decrease in efficiency;  b 

Difficulties in purification 

2.3.2.4 Scope 

With a working methodology in hand, the aim was to expand the substrate scope of the 

cycloaddition-palladium-catalysed elimination reaction and to scale up the reaction. Herein, the 

attempted synthesis of some other 1,2-dihydropyridazines 9a-m with different protecting groups 

attached to the nitrogen atoms is reported and was completed starting from a minimum of one 

gram of azo compound of the corresponding hydrazine (Figure 2.5). The scope will be broken 

down into four sections: 

2.3.2.4.1 Synthesis of Hydrazines 

2.3.2.4.2 Synthesis of Azo Compounds 

2.3.2.4.3 Diels-Alder Reactions 

2.3.2.4.4 Palladium-Catalysed Elimination Reactions 
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Figure 2.5 

2.3.2.4.1 Synthesis of Hydrazines 

Due to the commercial availability of DEAD 8b, DIAD 8c and DBAD 8d, it was not necessary to 

synthesise them. Bis(trichloroethyl)azodicarboxylate and dibenzyl azodicarboxylate are also 

commercially available, though due to cost the decision was made to synthesise them. The 

synthesis of these hydrazines has been reported in the literature from the reaction of 

chloroformates with hydrazine 211 in the presence of a base.246,247  Hydrazines 43e,i were 

synthesised in 95% and 82% yields respectively and without the need for further purification 

(Scheme 2.22).  

 

Scheme 2.22 

Starting from commercially available hydrazides, a series of symmetrical and unsymmetrical 

hydrazines 43 have been synthesised (Table 2.13). Attempts to synthesise the dimethyl 

carbamate hydrazine 43a from hydrazine 211 resulted in the loss of the product into the 

aqueous layer during the work-up and any material that was recovered was not of a high purity. 

Starting from methyl carbazate 212a instead proved to be more successful and the desired 

hydrazine 43a was isolated in 58% yield (entry 1), though some material was still lost into the 

aqueous layer. The product 43a is a polar molecule with six hydrogen bond acceptors, two 
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hydrogen bond donors and relatively small protecting groups attached to the nitrogen atoms, 

therefore it was unsurprising that it is water soluble. There are examples in the literature for the 

synthesis of unsymmetrical hydrazines possessing tert-butyl or benzyl carbamates on one side 

of the molecule and tosyl groups attached to the other side.92,248–250 More specifically, the 

methodology reported by Shipman and co-workers would enable the synthesis of other 

unsymmetrical hydrazines starting from tert-butyl carbazate 212b and p-toluenesulfonyl 

hydrazide 212c.92 Through a modified procedure, tert-butyl carbazate 212b was transformed 

into the methyl, benzyl- and trichloroethyl-carbamate hydrazines 43f,g,i in 83%, 83% and 94% 

yield respectively (entries 2-4). For hydrazine 43i, the reaction had to be run at low 

concentration (0.1 M) to reduce by-product formation, however the synthesis of hydrazines 

43f,g could be run at higher concentrations (1 M). A tosyl group could also be installed to form 

hydrazine 43k in 68% yield (entry 5).92 The synthesis of a hydrazine equipped with a 

sulfonamide and a benzyl carbamate proved to be more challenging. p-Toluenesulfonyl 

hydrazide 212c was reacted with benzyl chloroformate to give hydrazine 43l in 52% yield (entry 

6).92 A moderate yield was proposed to have been due to the insolubility of the starting 

hydrazide in water. Starting from the same hydrazide 212c, ditosyl hydrazine 43m was 

synthesised in 64% yield through a known procedure (entry 7).251  

 

Entry R R’ Conditions Yield 43 (%) 

1 
CO2Me 
(212a) 

CO2Me 
MeCO2Cl (1.1 eq), pyridine (3.0 eq),  

2-MeTHF, 0 °C → rt, 1.5 hrs 
58 (43a) 

2 
CO2

tBu 
(212b) 

CO2Me 
MeCO2Cl (1.1 eq), pyridine (6.0 eq),  

2-MeTHF, 0 °C → rt, 1.5 hrs 
83 (43f) 

3 
CO2

tBu 
(212b) 

CO2Bn 
BnCO2Cl (1.1 eq), pyridine (6.0 eq),  

2-MeTHF, 0 °C → rt, 1.5 hrs 
83 (43g) 

4 
CO2

tBu 
(212b) 

Troc 
TrocCl (1.1 eq), pyridine (6.0 eq),  

2-MeTHF, 0 °C → rt, 1.5 hrs 
94 (43j) 

5 
CO2

tBu 
(212b) 

Ts 
TsCl (1.1 eq), pyridine (6.0 eq),  

THF, 0 °C → rt, 4 hrs 
68 (43k) 

6 
Ts 

 (212c) 
CO2Bn 

BnCO2Cl (1.2 eq), NaHCO3 (1.2 eq),  
H2O, 0 °C → 60 °C, 2.5 hrs 

52 (43l) 

7 
Ts 

 (212c) 
Ts 

TsCl (1.5 eq), pyridine (1.5 eq),  
CH2Cl2, rt, 2.5 hrs 

64 (43m) 

Table 2.13 

2.3.2.4.2 Synthesis of Azo Compounds 

With a range of hydrazine intermediates in hand, oxidation of hydrazines 43e,h,i to the 

corresponding azo compounds was investigated (Scheme 2.23). The use of the hypervalent 
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iodine reagent iodobenzene diacetate (IBDA) has been successful for the oxidation of diethyl 

hydrazine-1,2-dicarboxylate and 4-phenyl urazole.252 According to this procedure, PTAD 8h 

was synthesised from 4-phenylurazole 43h in 91% yield. Dibenzyl- and bis(trichloroethyl)-

carbamate hydrazines 43e,i were successfully oxidised using IBDA to give the azo compounds 

8e,i in 78% and 78% yield respectively. A higher yield would have been achieved but both azo 

compounds were partially soluble in hexane, which was used to separate the product from the 

iodobenzene by-product. Purification on silica gel gave the dibenzyl azo 43e in 46% yield, 

however bis(trichloroethyl)-azo 43i degraded on silica gel. Due to the instability and potential 

safety hazard of isolating dimethyl azodicarboxylate, it was reacted straight away in a Diels-

Alder reaction. For ease, all the unsymmetrical dicarbamate azo compounds 8f,g,j were not 

isolated, although the azo compounds do form efficiently.  

 

Scheme 2.23 

For hydrazines 43k-m the introduction of a sulfonamide group seemed to completely change 

the efficiency of the oxidation reaction to the corresponding azo compound (Scheme 2.24). For 

the tert-butyl substrate 43k, no azo formation was observed, and a complex mixture formed 

when the reaction was carried out at room temperature and at 0 ˚C. The benzyl substrate 43l 

showed more promise when shorter reaction times were used at room temperature and at 0 ˚C, 

however over prolonged periods of time the azo compound became less prominent when 

analysed by thin layer chromatography (TLC). No attempt was made to isolate the azo 

compound (8l) and instead it was further reacted with acetoxy-diene 202a (vide infra). For 

hydrazine 43m with two sulfonamide groups, the reaction mixture quickly turned from a 

suspension to a solution, however it was not possible to isolate the suspected azo compound 

8m without degradation. The addition of a diene to the reaction mixture resulted in complete 

degradation, which was backed up by a discovery in the literature that described an 

unsuccessful attempt to oxidise hydrazine 43m and trap the corresponding azo compound with 

cyclopentadiene.253  

 

Scheme 2.24 
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The investigation of other oxidation conditions was carried out using tert-butyl-hydrazine-1,2-

carboxylate 43d, due to DBAD 8d being a known and stable compound (Table 2.14).247 A logical 

alternative to IBDA was the use of polymer supported iodobenzene diacetate (PIBDA), which 

would simplify purification and has been reported in the literature for the oxidation of alcohols,254 

hydrazones,255 phenol, sulfides,255 thioamides,256 thiophenols and triphenylphosphine.255 When 

hydrazine 43d was treated with PIBDA, the reactivity was considerably slower in comparison to 

IBDA and the reaction did not go to completion even after six days (entry 1). The use of another 

hypervalent iodine reagent, 2-iodoxybenzoic acid (IBX), gave only traces of the azo compound 

8d (entry 2). Using conditions developed for the copper-catalysed oxidation of nitroso 

compounds,257 the azo compound 8d was formed in 79% yield (entry 3). Fétizon’s reagent was 

prepared from silver nitrate and Celite,258 and when a large excess of the reagent was used, 

the desired product 8d was formed in 34% yield (entry 4). Wary of azo compound degradation 

at high temperatures, the reaction was repeated at room temperature and 50 ˚C (entries 5 and 

6). No reaction was observed at room temperature, but at 50 ˚C the product 8d was formed in 

88% yield. When the copper-catalysed oxidation reaction was applied to the dimethyl-

carbamate hydrazine 43a, no reaction took place and only starting material was recovered. 

Some recent literature has shown that for the synthesis of DEAD 8b, DIAD 8c and DBAD 8d 

the use of copper salts as an additive did not provide a general procedure to access all three of 

the substrates, which could be a reason as to why no reaction was observed for hydrazine 

43a.259 When unsymmetrical hydrazines 43j,k were combined with Fétizon’s reagent, only 

starting material was recovered for hydrazine 43j. For hydrazine 43k, no starting material 

remained and 1H NMR spectroscopy suggested a new compound had formed, though no 

reaction was observed when this compound was combined with acetoxy-diene 202a. It became 

apparent that none of these alternative oxidation conditions were perfect for all substrates. 

 

Entry Conditions Yield 8d (%) 

1 PIBDA (0.8 mmol/g, 1.1 eq), CH2Cl2, rt, 6 days <5 

2 IBX (1.4 eq), DMSO, rt, 17 hours <5 

3 CuCl (20 mol%), pyridine (5 mol%), 2-MeTHF, rt, 19 hours 79 

4 Ag2CO3/Celite (4 eq), PhMe, 75 ˚C, 15 minutes 34 

5 Ag2CO3/Celite (1.5eq), PhMe, rt, 1 hour 0 

6 Ag2CO3/Celite (1.5 eq), PhMe, 50 ˚C, 25 minutes 88 

Table 2.14 PIBDA = polymer supported iodobenzene diacetate 

Finally, the use of NBS and pyridine was tested (Scheme 2.25).260,261 For hydrazine 43a, the 

reaction went to completion and then started to degrade back to the starting material, which 

was not observed for any of the reactions with IBDA. A similar observation was found with 

hydrazine 43g, and it was possible to isolate the impure azo compound 8g. It should be noted 

that for the trichloroethyl system 43j, the reaction did not go to completion and with prolonged 
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reaction times, the starting material began to reform again. Finally, no reaction was observed 

for the hydrazine 43l.  

 

Scheme 2.25 

From these results, it was clear that the only reagent that provided a general way of accessing 

these azo compounds was IBDA. Though not all the azo compounds have been isolated, it can 

be said with confidence that they have formed and were taken on into the next step (Diels-Alder 

reaction, Section 2.3.2.4.3). The only issue with the use of IBDA is that the azo compound must 

be separated from the by-product, iodobenzene, which is not always straightforward. In a later 

section a negative effect that the presence of iodobenzene caused will be described (Section 

2.3.2.4.4).  

2.3.2.4.3 Diels-Alder Reactions 

Subsequently, the Diels-Alder reaction of commercially available azo compounds 8b-e (diethyl- 

diisopropyl- di-tert-butyl- and dibenzyl azodicarboxylate) or in situ generated azo compounds 

8a,f-l with 1-acetoxy-1,3-butadiene 202a was completed to give cycloadducts 203a-j in mostly 

high yields (Scheme 2.26). The Diels-Alder reactions were  completed in dichloromethane and 

were run either at room temperature or at reflux (dependent on the azo compound) to give the 

desired allylic acetates 203a-j. The cycloadducts were then purified to remove any excess diene 

through a short plug of silica gel or washed with hexane (for 203d,h). An excess of acetoxy-

diene 202a (1.5 eq) was essential to ensure good reactivity and more equivalents can be used 

to increase the rate of the reaction, however larger quantities of the diene would be needed on 

a larger scale and would not be cost-effective. As described in the previous section (Section 

2.3.2.4.3), no attempt was made to isolate dimethyl azodicarboxylate 8a and instead the azo 

compound was trapped with the acetoxy-diene 202a to give the cycloadduct 203a in near 

quantitative yields. The symmetrical azo compounds DEAD 8b, DIAD 8c, DBAD 8d, dibenzyl 

8e and bis(trichloroethyl) azodicarboxylates 8i were smoothly converted into their respective 

cycloadducts 203b-e,i in high yields. To obtain the highest yields possible of cycloadduct 203d, 

the Diels-Alder reaction had to be heated at reflux to ensure full conversion of azo compound 

8d. With cycloadduct 203f, which was a solid, the removal of diene 202a was achieved through 

addition of hexane and without distillation or chromatography, however when purified on silica 

gel the yield decreased to 63%. Similar results were obtained with the method that started from 

their respective hydrazines 43f-h,j, and cycloadducts 203f-h,j were synthesised in good yields. 

For hydrazine 43h, upon addition of acetoxy-diene 202a to the reaction mixture the cycloadduct 

203h formed instantly, which was unsurprising given the high reactivity of PTAD 8h.185,198 A 

different outcome was observed for the carbamate-sulfonamide substrate 43k, where issues 

with azo formation and stability have meant that it has not been possible to synthesise the 

cycloadduct 203k starting from hydrazine 43k. For the benzyl substrate 43l, it was possible to 
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isolate the deacetylated product 208l in 59% yield, but not the acetylated cycloadduct 203l. 1H 

NMR analysis has confirmed that the cycloadduct 203l does form, though on standing in 

deuterated chloroform it degraded to form the deacetylated product 208l. The structure of 208l 

was tentatively proposed through 2-dimensional (2-D) 1H-1H NMR experiment, Nuclear 

Overhauser Effect Spectroscopy (nOesy), that suggested the tosyl group was near to the NCH2 

group and not the acetate group. 

 

Scheme 2.26 a Over two steps from hydrazine with iodobenzene diacetate (1.0 eq); b Only one of two 
possible regioisomers shown; c 1.2 eq acetoxy-diene 202a used and reaction run in MTBE; d 1.2 eq 

acetoxy-diene 202a used; e 1.3 eq of IBDA and 1.8 eq acetoxy-diene 202a used. 

Interestingly, under typical conditions an attempted deacetylation with cycloadduct 203d did not 

give any of the expected alcohol 208d (Scheme 2.27). The product that formed was ether 212d 

in moderate yields, which is proposed to have formed through an initial elimination of the acetate 

group to give iminium ion 213, followed by trapping with methanol. It seemed likely that the 

formation of alcohol 208, the degradation product observed from column chromatography, was 

not actually formed through deacetylation but through elimination of the acetate group and 

addition of water.  

 
Scheme 2.27 



4- Photocyclisation: A New Route to Functionalised Four-Membered Rings 

64 
Thomas Britten – April 2019 

2.3.2.4.4 Palladium-Catalysed Elimination Reactions 

With the cycloadducts 203a-j in hand, all the material from the Diels-Alder reactions was taken 

on into the palladium-catalysed elimination reactions to make a two-step reaction and access 

1,2-dihydropyridazines 9a-h (Scheme 2.28). The allylic acetates 203 directly derived from azo 

compounds (not from hydrazines) could be used in the palladium-catalysed elimination reaction 

without purification, but significant degradation of the diene 202a took place at high 

temperatures, which made separation of the desired products difficult. It was not possible to 

couple the processes when starting from the hydrazine precursors, because the cycloadducts 

203 had to be separated from iodobenzene, a by-product of oxidation reaction with iodobenzene 

diacetate. If not, issues arose in the palladium step, presumably caused by the oxidative 

addition of iodobenzene to the palladium(0) catalyst. In most cases, conversion of allylic 

acetates 203 into 1,2-dihydropyridazines 9 proceeded without any problems. No reactions took 

place for cycloadducts 203i,j that contained trichloroethyl-carbamate protecting groups and the 

starting material was recovered unchanged, though it is not currently understood why these 

compounds did not react. Under the optimised conditions, 1,2-dihydropyridazines 9f,g were 

obtained in low yields due to the formation of the isomerised starting material 209f,g. When the 

catalyst loading was increased, 1,2-dihydropyridazines 9f,g were accessed in higher yields. In 

all cases, the two-step reaction sequence was completed starting from one gram of the azo 

compound or hydrazine. 1,2-Dihydropyridazine 9d has been synthesised on five- and ten-gram 

scales to give the desired product in 72% and 75% yield, respectively. The yields remained 

comparable from one up to ten grams, thus multigram quantities of 1,2-dihydropyridazines 9 

can be accessed efficiently.  

 

Scheme 2.28 a Over three steps from hydrazine with iodobenzene diacetate (1.0 eq); b Over two steps; c  
2 mol% Pd(OAc)2 used; d 34% isomerised starting material 209f; e 22% isomerised starting material 

209g 
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To expand the substrate scope, the synthesis of a methyl-substituted 1,2-dihydropyridazine was 

attempted (Scheme 29). 1-Acetoxy-3-methyl-1,3-butadiene 214 was synthesised in 49% yield 

according to a literature procedure starting from commercially available starting materials.238 

The Diels-Alder reaction of the substituted diene 214 and azo compound 8d formed allylic 

acetate 215 in moderate yield, but it was found to be highly unstable on silica gel. When the 

material was used in the palladium-catalysed elimination reaction without purification, the 

product isolated was not the desired 1,2-dihydropyridazine but diene 216. No other identifiable 

products were isolated from the reaction and potentially allylic acetate 215 was unstable at high 

temperatures. The reaction preferentially formed the exocyclic double bond to give a diene that 

would not undergo the desired 4-π photocyclisation. 

 

Scheme 2.29 

Another potential route to access 1,2-dihydropyridazine derivatives would be to utilise 

Danishefsky’s diene 217 (Scheme 2.30).262 Treatment of azo compound 8d with diene 217, 

without a work-up, gave an inseparable mixture of enone 218 and cycloadduct 219. The addition 

of acid to the reaction mixture was enough to facilitate elimination of the methoxy group to give 

enone 218 in 89% yield, after work-up and purification. The synthesis of enone 218 was a 

preliminary result and the reaction remains unoptimised, but showed that it is possible to access 

these cycloadducts in very high yields. Further work needs to be completed to see if enone 218 

can be converted into O-substituted 1,2-dihydropyridazines. 

 

Scheme 2.30 
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2.3.3 Variable Temperature NMR of 1,2-Dihydropyridazines 
As mentioned in the introduction, it has been well documented that the NMR spectra for 

tetrahydropyridazines and 1,2-dihydropyridazines are non-trivial.187,213,222–228,231 As a result, at 

ambient temperature the 1H and 13C NMR spectra for these systems can appear complex due 

to line broadening and extra peaks present due to the slow interconversion of two conformations 

on the NMR timescale.229 These literature examples have shown that variable-temperature (VT) 

NMR can aid characterisation and simplify the spectrum. In this work, all the 

tetrahydropyridazines and 1,2-dihydropyridazines were affected by these factors and in most 

cases, it was only desirable to run the NMR characterisation at higher temperatures to try 

simplify the spectra and to allow full characterisation. VT-NMR analysis for cycloadduct 203 and 

1,2-dihydropyridazine 9 was completed in d6-DMSO (Figures XX). For these systems, d6-DMSO 

provided a combination of a high boiling point solvent and simplified NMR spectra in comparison 

to deuterated chloroform, benzene and acetone. 

 

Figure 2.6 

Cycloadducts 203b could be characterised without VT-NMR, as the 1H and 13C NMR spectra at 

room temperature were not too complicated (Figure 2.7 and 2.8). In both cases, as the 

temperature was increased the peaks began to sharpen up and multiple peaks began to 

coalesce to give single peaks. The peaks for the CH2 group on the protecting groups are not 

equivalent due to one of the protecting groups being on the same face as the acetate group 

and one not. Fisher and co-workers reported a similar phenomenon for the diphenyl substituted 

system 157b.213 The 1H-VT NMR analysis of 1,2-dihydropyridazine 9b showed very broad 

peaks at room temperature, which all began to resolve as the temperature was increased 

(Figure 2.9 and 2.10). The CH3 groups of the protecting group became a triplet at temperatures 

above 25 °C (298 K), whilst the CH2 groups on the carbamates and hydrogens attached to the 

ring became clearer but did not fully resolve at 75 °C (348 K). The 13C NMR spectrum of 1,2-

dihydropyridazine at room temperature showed broad peaks for the ring carbon atoms and a 

very weak carbonyl peak around 150–160 ppm, though the carbonyl stretch was observed in 

the IR spectra (Figure 2.10). The protecting group carbons remained single peaks throughout 

the VT-NMR study of 1,2-dihydropyridazine 9b. As the temperature increased, the peaks for 

the ring carbons and carbonyl resolved and became sharp peaks. Higher temperatures could 

be used, however 1,2-dihydropyridazines 9 start to form 2-aminopyrroles 210 at temperatures 

above 100 °C. Our data for 1,2-dihydropyridazine 9b supported Anderson and Lehn’s proposal 

that there are two-twisted conformations and interconversion is slow on the NMR timescale at 

room temperature. 
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Figure 2.7 1H VT-NMR in d6-DMSO of cycloadduct 203b 
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Figure 2.8 13C VT-NMR in d6-DMSO of cycloadduct 203b 



Chapter 2: Synthesis and Reactions of 1,2-Dihydropyridazines 

69 
Thomas Britten – April 2019 

 

Figure 2.9 1H VT-NMR in d6-DMSO of 1,2-dihydropyridazine 9b 
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Figure 2.10 13C VT-NMR in d6-DMSO of 1,2-dihydropyridazine 9b 
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2.3.4 Reactions of 1,2-Dihydropyridazines  
It was envisaged that the 1,2-dihydropyridazines 9 could be interesting intermediates 

themselves (i.e. not only as substrates for the 4-π photocyclisation) and could be used to access 

other useful building blocks. 

Pyrrole 210c, the side product from the palladium-catalysed elimination reactions, was selected 

as the initial target building block (Table 2.15). Through control experiments, it was found that 

conversion of 1,2-dihydropyridazine 9c into pyrrole 210c was not a palladium-catalysed 

reaction, but a thermal rearrangement reaction (entry 1). Lautens and co-workers have 

proposed from computational calculations that the 6-π electrocyclic ring opening of 1,2-

dihydropyridazines 9c should be facile at 120 °C.215 The reaction in toluene was slow but the 

use of higher boiling point solvents such as dimethylformamide (DMF) and ortho-xylene gave 

better conversions and yields. From preliminary reactions, DMF and o-xylene gave identical 

yields, but the latter was chosen to pursue further due to an easier method of solvent removal 

(entries 2 and 3). The pyrrole 210c was not stable to silica gel, but if it was quickly passed 

through a short silica gel column it could be isolated in 90% yield (entry 4). The reaction mixture 

could be purified without the removal of the solvent and purified by column chromatography 

directly without a decrease in yields. The reaction has been used to synthesise three other 

pyrroles 210a-c in moderate to excellent yields. Substrates bearing methyl and ethyl carbamate 

protecting groups were tolerated, but for the tert-butyl carbamate substrate 210d a lot of 

degradation was observed (entries 5-7). Pyrrole 210d was isolated in a moderate yield and 

another pyrrole 220d that contained only one tert-butyl carbamate group was also isolated in 

11% yield. Obviously at these temperatures the tert-butyl carbamate protecting groups are labile 

and, combined with the instability of the pyrroles 210a-d anyway, it is likely that this is the cause 

of degradation and lower yields for this substrate.  

 

Entry R Solvent Yield 210a-d (%) 

1 iPr PhMe 46 (210c)a 

2 iPr DMF 52 (210c)b 

3 iPr o-xylene 52 (210c)b 

4 iPr o-xylene 90 (210c) 

5 Me o-xylene 62 (210a) 

6 Et o-xylene 86 (210b) 

7 tBu o-xylene 28 (210d),11 (220d)c 

Table 2.15 a Reaction run for 19 hours; b Reaction run for 2 hours; c Product bearing one carbamate 
protecting group 

From the crystal structure of 9c, the 1,2-dihydropyridazine ring is puckered and potentially the 

p-orbitals are not able to overlap as extensively as found for other 1,3-dienes, such as 1,3-

butadiene, which could prevent any Diels-Alder reactions from happening (Scheme 2.31). In 
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the solid state, the protecting groups are trans to one another, which should mean that in 

solution the thermal 6-π electrocyclic ring opening would give E/Z triene 221. Triene 221 could 

then undergo a 5-exo-trig cyclisation to give zwitterion 222, followed by aromatisation to give 2-

aminopyrrole 210c. The photochemical synthesis of 2-aminopyrroles 210 has been suggested 

to go via a photochemical π4s + π2a cycloaddition based on the extensive study on the 

conversion 1,3,5-hexatrienes into bicyclo[3.1.0]hexane.263–269 Such a transformation is not 

possible under thermal conditions and even the π4s + π2s reaction would not be possible based 

on orbital overlap. As a result, potentially the thermal process is going via a step-wise 

mechanism as proposed here. 

 

Scheme 2.31 X-ray crystal structure for 1,2-dihydropyridazine 9c (top); mechanism (bottom) 

With 1,2-dihydropyridazines 9a-h being dienes, one might expect that they take part in Diels-

Alder reactions, however they were found to be inert to such reactions. When 1,2-

dihydropyridazine 9c and a dienophile were heated at reflux in toluene, it was instead observed 

that the pyrrole 210c took part in Diels-Alder reactions. Thus, when pyrrole 210c was reacted 

with dimethyl acetylenedicarboxylate 223, the expected cycloadduct 225 was not isolated but 

instead the para-phenylenediamine derivative 224 was isolated in 65% yield (Scheme 2.32). It 

is proposed that after the formation of the initial cycloadduct 225, it then undergoes ring opening, 

followed by aromatisation to give the observed product 224. Mackay and Arora obtained a 

similar product to 224 when 1,2-dihydropyridazine 9b was heated at reflux in toluene with alkyne 

223.173 The authors suggested that 224 had formed through a direct Diels-Alder reaction 

between 1,2-dihydropyridazine 9 and alkyne 223, which underwent aromatisation to give the 

product, although a mechanism for this aromatisation was not discussed. Instead, what was 

likely happening was 1,2-dihydropyridazine 9 rearranged to form 2-aminopyrrole 210, which 

then underwent the Diels-Alder reaction. 
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Scheme 2.32 

The Diels-Alder reaction of 2-aminopyrrole 210c with two other alkynes has been investigated 

(Scheme 2.33). In the presence of the weakly electron withdrawing and methyliminodiacetic 

acid (MIDA)-boronate alkynes 28 and 30, no reaction was observed and 2-aminopyrrole 210c 

was recovered unchanged. A combination of solubility issues and the lack of electron 

withdrawing groups were likely a caused for the reaction to fail with the boronate alkyne 30. 2-

Aminopyrrole 210c also reacted with maleic anhydride 231 to give an unknown aromatic 

compound that could not be separated from 1,2-dihydropyridazine 9c. The reaction was a lot 

slower and a significant amount of starting material remained after the reaction was heated at 

reflux in toluene for 24 hours. Padwa and co-workers have reported the Diels-Alder reactions 

of 2-aminofurans with alkenes to give substituted aromatic compounds and this should provide 

some direction for future work.270 

 

Scheme 2.33 MIDA = methyliminodiacetic acid 
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Preliminary results with commercially available aryne precursors 233a-c have shown that it was 

possible to access some interesting aromatic fragments (Scheme 2.34). When 2-

(trimethylsilyl)phenyl trifluoromethanesulfonate 233a was treated with caesium fluoride and an 

excess of 2-aminopyrrole 210c, the naphthalene derivative 234a was formed in good yield. 

Efforts to form quinoline and isoquinoline derivatives 234b,c were less successful and were 

obtained in low yields. With optimisation it is hoped that these yields can be improved. 

 

Scheme 2.34 

When 2-aminopyrrole 210c was reacted with azo compounds, a completely different outcome 

was observed (Scheme 2.35). Once again, none of the cycloadduct 236 was isolated and 

instead it has been tentatively proposed that pyrrole 235 was the product formed. After the initial 

formation of cycloadduct 236, it is hypothesised that cleavage of the newly formed C-N bond 

from the Diels-Alder reaction occurred to give zwitterion 237 and not through the C-N cleavage 

that was observed with alkynes. Zwitterion 237 can then undergo aromatisation and protonation 

to give the pyrrole 235. Further evidence for pyrrole 235 was obtained from 1H-15N 

heteronuclear single quantum coherence (HSQC) NMR analysis, which suggested that there 

were two different NH groups. It has not been possible to confirm the structure of 235 through 

X-ray crystallography, due to pyrrole 235 not being a crystalline solid and any deprotection 

attempts under acidic conditions have only resulted in degradation. In addition, pyrrole 235 did 

not react with dimethyl acetylenedicarboxylate 223 when heated at reflux in toluene and 1H 

NMR analysis showed only the starting materials. 
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Scheme 2.35 

An attempted monoepoxidation of 1,2-dihydropyridazine 9c using m-CPBA (meta-

chloroperoxybenzoic acid) showed no sign of epoxide formation and poor conversions. The 

major product was the trans-diol 238 isolated in 56% yield, and the structure was confirmed by 

X-ray crystallography (Scheme 2.36). Diol 238 is thought to have potentially arisen from an 

initial epoxidation (239), followed by intramolecular ring opening to give an iminium ion (240), 

which could be trapped by water present in the reaction mixture. Aitken and co-workers have 

shown in a similar system the direct involvement of the nitrogen lone pair in a rearrangement 

reaction.271 The remaining mass balance was mostly starting material and an unidentified 

compound. From the crystal structure, all the groups in 238 are positioned away from each 

other, which could mean that the trans-diol 238 is the thermodynamic product.  

 
Scheme 2.36 

It was hoped that it should be possible to carry out a cyclopropanation of the double bonds in 

9c (Scheme 2.37). When treated under conditions that formed dichlorocarbene in situ, tricycle 

241 was isolated in good yield and possessed two cyclopropane rings that were positioned anti 

with respect to one another. To selectively only react one double bond, it should be possible to 

carry out a Simmons-Smith reaction to leave the other double bond to be further functionalised. 

Here, a limited amount of carbene precursor could be used, in contrast to the formation of the 
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dichlorocarbene where an excess of the reagents is required and therefore, selective mono-

cyclopropanation is not feasible. Tricycle 241 showed surprising thermal stability and remained 

unchanged after heating at reflux in xylene for six hours. 

 
Scheme 2.37 

From the outset, it was not known whether dihydroxylation of 1,2-dihydropyridazine 9c would 

result in the reaction of one or both double bonds. Preliminary results have shown that only one 

of the double bonds reacted to give diols 242 and 243 in a combined good yield and one was 

formed in a slight excess (Scheme 2.38). Two compounds were isolated, both of which are 

thought to be diols and 1-dimensional (1-D) and 2-D NMR analysis of these compounds was 

complex. One such 2-D 1H-1H NMR experiment, nOesy, suggested that the major product was 

trans-diol 243. A key difference between the two nOesy spectra was that cis-diol 242 did not 

show any through space interactions between the OH adjacent to the nitrogen and the hydrogen 

on the adjacent carbon (see experimental for details). Even VT-NMR did not fully resolve the 

spectra, though cis-diol 242 started to rearrange to the trans-diol 243 (but not vice versa) after 

heating. Derivatisation attempts (for example, using 4-bromobenzoyl chloride) have not given 

more crystalline compounds to submit for X-ray crystallography. Diols 242 and 243 are thought 

to have been formed through initial formation of osmate ester 244, which could then be ring-

opened either by the adjacent lone pair on the nitrogen atom (Path A) or the lone pair on the 

other nitrogen atom (Path B). Path A would give an iminium ion 245 that could be attacked by 

water on either face of the molecule to eventually give the observed diols. Path B would give 

zwitterion 246 in which water could attack either at the double bond ortho to the osmate ester 

or the iminium ion to give diols 243 and 238 (formed from the epoxidation reaction of 9c). Diol 

238 was not observed in the NMR spectra of the crude products.  

 
Scheme 2.38 
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A series of other reactions have been attempted (iodination, halohydration, hydroboration, Heck 

reactions and treatment with acid), but have either led to the formation of complex mixtures or 

unidentifiable major products. The NMR spectra of all these compounds was very complicated 

and it was essential to obtain crystal structures to confirm the identitites of the products 

obtained. 

2.4 Conclusion 

Attempts to replicate and modify the existing literature procedures for the synthesis of 1,2-

dihydropyridazines did not give promising results. When carbon tetrachloride was changed to 

cyclohexane in the allylic bromination reaction developed by Altman and co-workers, the 

reaction efficiency significantly dropped and the formation of complex mixtures with very poor 

conversions of tetrahydropyridazines 154 was observed. A second approach involved the use 

of 2-pyrones, however this route did not provide a direct route to access 1,2-dihydropyridazines 

and the temperatures that were required resulted in degradation of the azo compounds.  

As a result, a novel route to 1,2-dihydropyridazines 9 has been successfully developed through 

a two-step novel synthesis starting from O-substituted dienes and azo compounds in good 

overall yields. The methodology has been applied to the synthesis of eight other 1,2-

dihydropyridazines from the corresponding azo compounds, each bearing symmetrical or non-

symmetrical carbamate protecting groups. With 1,2-dihydropyridazine 9d, the reaction was 

successfully completed on a ten gram scale without a noticeable decrease in the reaction 

efficiency. It should be noted that it was vital that the cycloadducts 203 were thoroughly dried 

prior to the palladium-catalysed elimination reaction to minimise the formation of side products. 

Attempts to expand the substrate scope to enable the synthesis of substituted 1,2-

dihydropyridazines has led to problems. When a methyl group was added to the starting diene 

214, the cycloadduct 215 formed from the Diels-Alder reaction was not that stable and the major 

product formed in palladium-catalysed elimination was diene 216, with the newly formed double 

bond outside the ring. The successful formation of enone 218, derived from Danishefsky’s 

diene, has potential for accessing a wider range of substrates, though this will require further 

work.  

The reactions of 1,2-dihydropyridazines have shown interesting results. When 1,2-

dihydropyridazines are heated at high temperatures, a clean rearrangement reaction to 2-

aminopyrroles 210 took place in high yields. From the attempted Diels-Alder reactions of 1,2-

dihydropyridazines 9, it was found that 2-aminopyrroles 210 and not 1,2-dihydropyridazines 

reacted with carbon dienophiles. The Diels-Alder reactions of 2-aminopyrrole 210 is currently 

limited to reactive alkynes (such as dimethyl acetylenedicarboxylate and arynes) but has shown 

the potential to access useful aromatic building blocks. Under typical conditions for 

dihydroxylation, cyclopropanation and epoxidation, 1,2-dihydropyrdazine 9c has given 

interesting products that were not always expected. The double bonds underwent 

cyclopropanation, with dichlorocarbene, to form a tricycle 241 with two cyclopropane rings that 
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were trans to each another. With the dihydroxylation and epoxidation reactions, some 

unexpected products were formed, which must have stemmed from the involvement of the 

nitrogen lone pairs. Some other unidentified products were formed when 1,2-dihydropyridazines 

were subjected to other double bond reactions, however this requires further study and the 

acquisition of crystal structures to confirm the structures. In all cases, VT-NMR was essential 

for structure determination but, even at high temperatures, the 1-D and 2-D NMR spectra did 

not always resolve, and characterisation was still difficult. Specifically, compounds that 

contained only one double bond and other groups around the ring gave the most complicated 

NMR spectra.
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Chapter 3: Photochemistry of 1,2-Dihydropyridazines 
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3.1 Introduction 

To date, there are limited literature examples for the synthesis of bicyclic 1,2-diazetidines 10 

(Scheme 3.1).33,35,36,272–275 The current ways to synthesise bicyclic 1,2-diazetidines can be 

divided into: the 4-π photocyclisation of 1,2-dihydropyridazines (Method 1), reaction of metal 

complexes with azo compounds (Method 2) and trapping cyclobutadiene with azo compounds 

(Method 3). Herein, each method shall be discussed in more detail.  

 

Scheme 3.1 

3.1.1 4-π Photocyclisation of 1,2-Dihydropyridazines 
Altman et al. published the first 4-π photocyclisation of 1,2-dihydropyridazines in 1968.33 

Irradiation of 1,2-dihydropyridazine 9a in diethyl ether afforded the bicyclic 1,2-diazetidine 10a 

and 2-aminopyrrole 210a in 61% and 14% yield, respectively (Scheme 3.2). It was proposed 

that 2-aminopyrrole 210a is formed through the 6-π electrocyclic ring opening of 1,2-

dihydropyridazine 2d to give triene 221, which underwent a second photoreaction to give the 

aziridine intermediate 247, followed by aromatization to give 2-aminopyrrole 210a. No 

mechanistic details were described for conversion of triene 221 into aziridine 247, however one 

suggested mechanism is summarised in Scheme 3.2: triene 221 should undergo a radical 5-

exo-trig cyclisation to form pyrroline 248, which could then undergo another cyclisation reaction 

to give aziridine 247. However, a photochemical π4s + π2a cycloaddition has been proposed and 

extensively studied for the photo-transformation of 1,3,5-hexatrienes into bicyclo[3.1.0]hexane, 

the carbocyclic equivalent of aziridine 247.263–269 

 

Scheme 3.2 
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Since this pioneering work, the synthesis of the bicyclic 1,2-diazetidine 10a has been repeated 

and further experimental details have been reported.35 Warrener et al. ran the 4-π 

photocyclisation at 0 ˚C for nine hours to give bicyclic 1,2-diazetidine 10a in a 20% yield 

(Scheme 3.3). The authors attempted to improve the yield through the removal of oxygen but 

were unable to reproduce the yields that Altman et al. found. 

 

Scheme 3.3 

More recently, Stearns and Ortiz de Montellano developed a multigram synthesis to access 

bicyclic 1,2-diazetidine 10b for biological testing.36 Low temperatures were employed for the 4-

π photocyclisation and bicyclic 1,2-diazetidine 10b was isolated in 61% yield and again 2-

aminopyrrole 210b was formed, though no yields were reported (Scheme 3.4). Bicyclic 1,2-

diazetidine 10b is biologically active and inhibited a cytochrome P-450 enzyme in rats and the 

double bond and bicyclic structures were crucial to the biological activity.36 

 

Scheme 3.4 n.d = not determined 

3.1.2 Organometallic Complexes with Azo Compounds 
Feng employed an alternative synthesis to access substituted bicyclic 1,2-diazetidines using 

metal complexes (Scheme 3.5).272 Titanium complexes 249 were treated with a Lewis acid, 

followed by the addition of azo compounds 8a,b in the presence of a nickel catalyst to give 

tetra-substituted bicyclic 1,2-diazetidines 250a,b. The exact conditions and reaction pathway 

were not clear (this research was reported in a patent without full details), but this methodology 

has only been applied to two examples.  

 
Scheme 3.5 
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3.1.3 Cyclobutadiene and Azo Compounds 
Alternatively, bicyclic 1,2-diazetidines have been synthesised through a Diels-Alder reaction 

between azo compounds and cyclobutadiene.35,273–275 Masamune and co-workers first reported 

the use of cyclobutadieneiron tricarbonyl complex 251 to access bicyclic 1,2-diazetidines 10.273 

Cyclobutadiene was generated through oxidation of the cyclobutadieneiron tricarbonyl complex 

251 with lead(IV) tetraacetate, which could then undergo a Diels-Alder reaction with the azo 

compounds 8b and 8s to give the bicyclic 1,2-diazetidines 10b,s in moderate yields (Scheme 

3.6).  

 

Scheme 3.6 

Inspired by these results, Warrener et al. demonstrated a similar reaction between dimethyl 

azodicarboxylate (DMAD) 8a and cyclobutadieneiron tricarbonyl complex 251 in the presence 

of the oxidant cerium ammonium nitrate (CAN) to give the bicyclic 1,2-diazetidine 10a in 31% 

yield (Scheme 3.7).35 

 

Scheme 3.7 

Kobayashi and co-workers have exploited hexa-substituted fluorinated benzvalene 252 as 

another route to make a substituted cyclobutadiene and form substituted bicyclic 1,2-

diazetidines (Scheme 3.8).274 Benzvalene 252 can be accessed through irradiation of 

hexa(trifluoromethyl)benzene in reasonable yields, and was found to be stable in comparison 

to other benzvalenes.276–279 Through ozonolysis, benzvalene 252 was converted into ozonide 

253, which was also found to be stable at room temperature. Irradiation of ozonide 253 resulted 

in the loss of trifluoroacetic anhydride to form diradical 255, which ring-opened to form 

cyclobutadiene 256 and was trapped with DEAD 8b to give the bicyclic 1,2-diazetidine 254 in 

moderate yield.  
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Scheme 3.8 

Eisenbarth and Regitz have explored the photolysis of diazo compound 257 to access 

cyclobutadiene 258, which bares large substituents (Scheme 3.9).275 Cyclobutadiene 258a (but 

not the methyl ester derivative 258b) was isolable and both cyclobutadienes 258 underwent 

Diels-Alder reactions with DEAD 8b and PTAD 8h to give bicyclic 1,2-diazetidines 259a-c in 

good yields (Scheme 3.9a). The authors observed that PTAD 8h reacted with the more electron 

rich double bond to give 259b,c, whereas DEAD 8b reacted with the more electron deficient 

double bond to give 259a (Scheme 3.9b. Interestingly, when PTAD 8h was directly reacted with 

diazo 257 the product isolated was bicyclic 1,2-diazetidine 259d,e and not 259b,c. It was 

proposed that elimination of nitrogen gas formed carbene 260, which could then attack PTAD 

8h and undergo a 1,2-shift to form allylic cation 262, followed by ring closing to form the product 

259d,e. 
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Scheme 3.9 Diels-Alder Conditions with DEAD 8b: 1.0:1.0 258:8b, Et2O, rt, 12 hrs; Diels-Alder 
Conditions with PTAD 8h: 1.0:1.0 258:8h, C6H6, −5 °C, 12 hrs. 

To summarise this section, these literature examples have shown that it is possible to synthesis 

bicyclic 1,2-diazetidines. The 4-π photocyclisation of 1,2-dihydropyridazines 9 is the simplest 

route to access bicyclic 1,2-diazetidines 10 and even though there are very few examples the 

yields are moderate to good, whilst the reaction has been performed on a reasonable scale 

without any issues. The only alternative routes to access bicyclic 1,2-diazetidines employ 

cyclobutadiene or metal complexes but these methodologies have serious practical limitations. 

The patent methodology uses non-commercially available organotitanium dienes and has only 

described two examples for the synthesis of bicyclic 1,2-diazetidines. It is not known whether 

simpler dienes can be used, which leads to uncertainty on whether this route would be suitable 

as a general synthesis for bicyclic 1,2-diazetidines. The use of cyclobutadiene also requires 

non-commercially available starting materials: cyclobutadieneiron tricarbonyl complex 251, 

benzvalene 252 and diazo 257, which must first be synthesised using expensive, hazardous or 

toxic reagents (Scheme 3.10). The cyclobutadieneiron tricarbonyl complex 251 can be 

synthesised in moderate-low yields through treatment of either dichlorocyclobutene 263 or 

bicyclic lactone 265 with diiron nonacarbonyl 264.280,281 Cyclobutene 263 is commercially 

available, although it is very expensive and the synthesis of 263 is not trivial and requires 
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chlorine gas.282 Bicyclic lactone 265 must be first synthesised from 2-pyrone 175 through a 4-

π photocyclisation, though bicycle 265 is not that stable and has been found to be pyrophoric 

in air.283 Benzvalene 252 was synthesised through irradiation of hexa(trifluoromethyl)benzene 

266, which in the process formed two other products 267 and 268.278 Therefore, the 4-π 

photocyclisation of 1,2-dihydropyridazines 9 is the most viable route to access bicyclic 1,2-

diazetidines and while they are currently not commercially available can provide a methodology 

that has less of an environmental impact. 

 

Scheme 3.10 

3.1.4 Photochemistry of Other 1,2-Dihydropyridazines 
As has already been discussed, various research groups have shown that the photochemistry 

of 1,2-dihydropyridazines can go via two pathways, a 4-π photocyclisation to give 10 and an 

initial 6-π electrocyclic ring opening, which eventually forms 2-aminopyrrole 210 (Scheme 

3.11).33,35,36 In this next section the photochemistry of 1,2-dihydropyridazines that do not give 

any products from the 4-π photocyclisation shall be discussed. 

 

Scheme 3.11 

The photochemistry of substituted and bicyclic 1,2-dihydropyridazines has given varied results. 

Rigaudy and Brelière have explored the photochemistry of the diphenyl substituted 1,2-

dihydropyridazine 157b, which exclusively formed triene 271 after irradiation in diethyl ether 

(Scheme 3.12).212 The bicyclic 1,2-diazetidine 272 was not formed, and potentially the 4-π 

photocyclisation pathway is disfavoured due to the formation of additional steric strain caused 

by two adjacent phenyl groups on the same face of the molecule.  
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Scheme 3.12 

Ried and Reiher have investigated the photochemistry of a similar system 171b and also found 

that the 6-π electrocyclic ring opening pathway was favoured (Scheme 3.13).169 Irradiation of 

1,2-dihydropyridazine 171b in diethyl ether gave heterocycle 274 after purification on silica gel. 

The authors proposed a similar mechanism to Altman et al. for the formation of the 2-

aminopyrrole ring (Scheme 3.2), however in their case purification on silica gel converted the 

silyl enol ether 277 to the observed product 274. As with the examples described by Altman et 

al., it cannot be ruled out that this reaction proceeded through a photochemical [4+2] 

cycloaddition. 

 

Scheme 3.13 

The photochemistry of unsubstituted and substituted bicyclic 1,2-dihydropyridazines with 

urazole-derived (9h, 157h and 179h)  and phthalazine-1,4-dione (9o and 157o) have been 

studied (Figure 3.1).165,166,174 In all cases, tricyclic 1,2-diazetidines with the general structure 

10h,o were not formed, and the use of these protecting groups resulted in either preferential 6-

π electrocyclic ring opening and/or other reactions (vide infra). The synthesis of the diphenyl 

substituted 1,2-dihydropyridazine 157h has been reported, however it was found to be light 

sensitive and no details on the photochemistry have been described.163 

 

Figure 3.1 
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When the unsubstituted bicyclic 1,2-dihydropyridazine 9h was irradiated in three different 

solvents (methanol, dichloromethane and diethyl ether), there was no sign of the 4-π 

photocyclisation product (Scheme 3.14).165 The use of dichloromethane or diethyl ether gave 

bicyclic pyrrole 210h and the dimers 278a,b in poor yields. These reactions did not go to 

completion and small quantities of starting material 9h were recovered. When the reaction 

solvent was changed to methanol, the addition products 279 were isolated in 60–80% yield, 

and again, small quantities of  dimers 278a,b were formed. Here, only bicyclic pyrrole 210h was 

thought to have formed from an initial 6-π electrocyclic ring opening. 

 

Scheme 3.14 a Major product not determined 

In comparison, the photochemistry of the phthalazine-1,4-dione-1,2-dihydropyridazines 9o 

gave completely different results (Scheme 3.15).165 Irradiation of 1,2-dihydropyridazine 9o in 

methanol and dichloromethane gave the unexpected cycloadduct 280 in good yields, where the 

hydrogen atoms (highlighted in red) are trans to each other in the new bicycle ring. 280 was 

suggested to have formed through an initial E/Z isomerisation to give a highly strained alkene, 

which undergoes an intermolecular thermally allowed 4s + 2a Diels-Alder reaction with another 

molecule of 1,2-dihydropyridazine 9o.284–286 Alternatively, a direct photochemical 4s + 2a Diels-

Alder reaction between two 1,2-dihydropyridazine compounds would also lead to the expected 

product.287 

 

Scheme 3.15 
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Sheradsky and Moshenberg have also studied the photochemistry of the ester substituted 1,2-

dihydropyridazine 179h, which gave products derived from a triene intermediate 285 (Scheme 

3.16).174 Irradiation of 1,2-dihydropyridazine 179h in alcohols (methanol and tert-butanol) gave 

bicycles 281 and 283 in poor-moderate yields and it was proposed that these products were 

formed by the addition of an alcohol to the acyl imines of triene 285. Bicyclic pyrrole 284 was 

formed in trace amounts and in moderate yield in dichloromethane. The authors proposed that 

pyrrole 284 had formed through an alternative photochemical reaction in which triene 284 was 

converted into aziridine 286, which after aromatisation gave the observed product 284. No 

further mechanistic details were provided for this transformation, but the authors suggested that 

the reaction may go via a photochemical π4s + π2a cycloaddition. 

  

Scheme 3.16 

The modification of 9o through the addition of two phenyl groups had another unexpected effect 

on the photochemistry (Scheme 3.17).166 Thus, irradiation of 1,2-dihydropyridazine 157o quickly 

formed tetracycle 287 in a good yield. The proposed mechanism began with an electrocyclic 

ring opening to give E/Z-triene 288 with the carbonyl positioned to undergo a further 

photochemical reaction, whereas this was not possible if E/E-triene 291 had formed, due to its 

configuration. Irradiation of the conjugated ketone 288 gave the triplet excited state, illustrated 

as diradical 289, which reacted to first form a C-N bond (290) and secondly to form a C-O bond 

to give the product 287. An alternative mechanism would see the C-O bond formed first (to give 
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293) and then the C-N bond. The authors suggested that the first mechanism should prevail, 

likely caused by the added stability from the formation of an allylic and benzylic radical.  

 

Scheme 3.17 ISC = intersystem crossing 

3.1.5 Conclusions 
In summary, it is possible to synthesise bicyclic 1,2-diazetidines 10 but currently there is no 

general route to access them. As mentioned above, the 4-π photocyclisation of 1,2-

dihydropyridazines 9 is currently the most practical route to access bicyclic 1,2-diazetidines 10 

and for the limited examples the yields are useable. Alternative methodology uses 

cyclobutadiene precursors or organotitanium diene complexes, which are not commercially 

available, and the synthesis of these compounds can be costly, requires multiple steps and the 

use of toxic building blocks. 1,2-Dihydropyridazines 9 are also not commercially available but, 

with optimisation, could provide a more effective and sustainable methodology. The reaction 

course for the 4-π photocyclisation of 1,2-dihydropyridazines is highly dependent on structure 

and literature examples have shown that significant care must be taken on the choice of the 

protecting groups on the nitrogen atoms and the substituents that are attached to the 1,2-

dihydropyridazine ring. Multiple examples have shown that the use of cyclic protecting groups 

and the presence of phenyl groups adjacent the nitrogen atoms favoured the 6-π electrocyclic 

ring opening pathway and stopped the 4-π photocyclisation from taking place. The effect that 

other substituents, such as alkyl groups and other functional groups, will have on the 4-π 
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photocyclisation of 1,2-dihydropyridazines is not known and it is vital that future endeavours 

seek to answer this question. 

3.2 Aims  

As described above, the 4-π photocyclisation of 1,2-dihydropyridazines 9 has not been widely 

studied, which meant that there were a variety of objectives that needed to be completed (Figure 

3.2). Firstly, the photophysical properties of 1,2-dihydropyridazines 9 have not been reported, 

therefore ultraviolet-visible (UV-Vis) spectroscopy will be used to study the absorption profile in 

a variety of organic solvents to guide the 4-π photocyclisation optimisation. Optimisation was to 

be carried out using commercially available batch and flow photoreactors: Rayonet RPR-100 

Batch Photochemical Reactor and a Vapourtec E-series Flow System equipped with the UV-

150 Photochemical Reactor. Once optimised, the aim was to complete the 4-π photocyclisation 

on 1,2-dihydropyridazines 9 and to scale-up the reaction to access multigram quantities of 

bicyclic 1,2-diazetidines 10 for downstream applications. 

 

Figure 3.2 

3.3 Results and Discussion 

With multigram quantities of 1,2-dihydropyridazines 9 now available, it was now possible to 

move on to the investigation of the 4-π photocyclisation. It was already known from the literature 

that irradiation of simple 1,2-dihydropyridazines 9 formed bicyclic 1,2-diazetidines 10 and 2-

aminopyrroles 210, with the 10 being the major product (Scheme 3.18).33,35,36 It was hoped that 

the yield of and selectivity for the bicycle 10 could be improved with optimisation. 

 

Scheme 3.18 

3.3.1 Ultraviolet-Visible (UV-Vis) of 1,2-Dihydropyridazine 9b  
The ultraviolet-visible (UV-Vis) spectra of 1,2-dihydropyridazines 9b should show two 

transitions: π→π* and a weak n→π*. 1,2-Dihydropyridazine 9b showed a single absorption 

band with an absorption maximum (λmax) around 300 nm in a variety of solvents except for 

acetone, which was closer to 330 nm (Table 3.1). Potentially, a large π→π* band and a smaller 

n→π* band are both present, but they overlap to give a single absorption peak. A slight 
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bathochromic shift (a shift to a longer wavelength) was observed when more non-polar solvents 

were used, with methyl tert-butyl ether (MTBE) and toluene giving an λmax at longer wavelengths. 

The cut-off wavelength (when the solvent would start to absorb light) for each solvent is included 

for comparison (Table 3.1). Acetone has a cut-off wavelength at longer wavelengths (330 nm) 

compared to the other solvents and it is likely that any experimental work below this wavelength 

would result in the excitation of the solvent and side reactions could occur. The same case can 

be made for toluene, when looking at wavelengths below 300 nm (cut-off wavelength: 285 nm).  

  

Entry Solvent Cut-off Wavelength (nm) max (nm) 

1 MeCN 190 298 

2 MTBE 210 302 

3 EtOAc 255 300 

4 PhMe 285 303 

5 Acetone 330 327 

Table 3.1 

UV-Vis analysis of 1,2-dihydropyridazine 9b at different concentrations was completed to 

investigate whether the peak around 300 nm remained a single peak or split into two peaks 

(Figure 3.3). As the concentration was decreased from 0.2-0.001 mM, the absorption spectrum 

remained a single peak. At concentrations below 0.002 mM, a noticeable increase in signal to 

noise was observed and even though two peaks were observed at 0.0005 mM it could not be 

said with any confidence that this was real, rather than being due to contaminants.   
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Figure 3.3 

The λmax values for the other 1,2-dihydropyridazines 9 in acetonitrile are listed in Table 3.2. For 

systems that possess acyclic protecting groups 9a-g an λmax around 300 nm was observed 

(entries 1-6). For bicyclic 1,2-dihydropyridazine 9h, which has a cyclic protecting group, a broad 

absorption between 200-300 nm that potentially contained three peaks and a weak absorption 

around 377 nm was observed (entry 7). The addition of substituents around the 1,2-

dihydropyridazine ring is likely to affect the absorption characteristics, but the effect on λmax is 

currently unknown as previous studies did not report UV-Vis data.  
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Entry R R’ 1,2-Dihydropyridazine 9 max (nm) 

1 OMe OMe 9a 296 

2 OiPr OiPr 9c 298 

3 OtBu OtBu 9d 303 

4 OBn OBn 9e 296 

5 OtBu OMe 9f 299 

6 OtBu OBn 9g 298 

7 -N(Ph)- 9h 377 

Table 3.2 

3.3.2 Optimisation in a Batch Photoreactor 
Initially, the 4-π photocyclisation was studied in a commercially available batch photoreactor 

(Rayonet RPR-100) and 1,2-dihydropyridazine 9b was chosen for optimisation (Figure 3.4). The 
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batch photoreactor has a chamber in which a mirrored surface has lamps arranged in a circle 

and has a central area to accommodate a carousel, which can house test tubes made from 

either Pyrex (absorbs below 300 nm) or Quartz (for wavelengths below 300 nm). The carousel 

can fit up to 18 x 20 mL tubes or 12 x 60 mL tubes, therefore this reactor is ideal for both small 

and larger scale applications. The lamps are cooled by a fan and the standard operating 

temperature is around 40 °C. 

 

Figure 3.4 Rayonet RPR-100 

In the literature, the irradiation of 1,2-dihydropyridazine 9b was carried out at low temperatures 

and at wavelengths above 285 nm to obtain a 1.5:1.0 mixture of the bicyclic 1,2-diazetidine 10b 

and the 2-aminopyrrole 210b.36 From UV-Vis studies, it was found that 1,2-dihydropyridazine 

9b has an absorption around 300 nm in a variety of solvents, therefore irradiation of 1,2-

dihydropyridazine 9b at 300 nm was studied in a variety of solvents (Table 3.3). From the 

solvents studied, it was found that acetonitrile gave the best selectivity for and yield of 10b 

(entry 1). It should be noted that 2-aminopyrrole 210b was not stable on silica gel, which 

explains the difference between the crude and isolated ratios. As the absorption maximum of 

1,2-dihydropyridazine 9b increased (as the solvent became less polar), the yield and selectivity 

of the 4-π photocyclisation decreased (entries 1-5) and when acetone was used only trace 

amounts of product 10b was observed, most likely caused by the expected absorption of the 

solvent and side reactions. Preliminary results were also obtained for 1,2-dihydropyridazines 

9c and 9d (entries 6 and 7). In both cases, bicyclic 1,2-diazetidines 10c,d were obtained in 

moderate yields, however the product selectivity observed for the ethyl system in acetonitrile 

had been significantly reduced for these systems. These preliminary results showed that as the 

λmax increased, using different solvents and protecting groups, the overall yield of and selectivity 
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for bicyclic 1,2-diazetidine 10 decreased. In these examples (entries 3, 4 and 7), irradiation at 

300 nm targeted a slightly shorter wavelength than the λmax (left hand side of absorption peak) 

and promoted more of the 6-π electrocyclic ring opening, whereas when acetonitrile was used 

a slightly longer wavelength was targeted (right hand side of absorption peak) and less of the 

6-π electrocyclic ring opening was observed.  

 

Entry R Solvent λmax 9 Time (hours) 10:210a Bicycle 10 (%)b Pyrrole 210 (%)b 

1 Et 9b MeCN 298 1.75 2.8:1.0 56 9 

2 Et 9b EtOAc 300 1 1.1:1.0 42 35 

3 Et 9b MTBE 302 2 1.3:1.0 45 24 

4 Et 9b PhMe 303 1 1.2:1.0 39 29 

5 Et 9b Acetone 327 1 - traces - 

6 iPr 9c MeCN 298 1 1.2:1.0 42 21 

7 tBu 9d MeCN 303 1 1.2:1.0 42 30 

Table 3.3 a Calculated from 1H NMR spectra of the crude product through comparison of bicycle 10 and 
pyrrole 210 peaks. No internal standard used; b Isolated yields 

Whilst the formation of bicyclic 1,2-diazetidine 10 was assumed to result from 4-π 

photocyclisation and 2-aminopyrrole 210 from 6-π electrocyclic ring opening, the potential 

interconversion of 2-aminopyrrole 210 and bicycle 10 upon extended irradiation had not been 

ruled out. UV-Vis analysis on the 4-π photocyclisation of 1,2-dihydropyridazine 9b showed the 

gradual disappearance of the starting material and 2-aminopyrrole 210b over the course of the 

study and at the end there was only the absorption peak for bicyclic 1,2-diazetidine 10b (Figure 

3.5). Next, both 10b and 210b were subjected to prolonged irradiation at 300 nm and monitored 

by 1H NMR over a twenty-four hour period (Figure 3.6 and 3.7). Bicyclic 1,2-diazetidine 10b 

showed no signs of degradation, whilst 2-aminopyrrole 210b showed gradual degradation over 

the time period. Importantly, no interconversion of the two products was observed. Bicyclic 1,2-

diazetidine 10b absorbs at shorter wavelengths (broad absorption from 200-250 nm) in 

comparison to 1,2-dihydropyridazines 9b (298 nm) and 2-aminopyrrole 210 (271 nm), thus 10b 

does not absorb any light at 300 nm and remained unchained upon prolonged irradiation. On 

the other hand, 2-aminopyrrole 210b absorbs between 240-320 nm, therefore it is likely to 

undergo further reactions at this wavelength. Another theory that needed to be investigated was 

the potential 2-aminopyrrole 210b catalysed retro-4-π photocyclisation of 10b to re-form 1,2-

dihydropyridazine 9b. To test this hypothesis, bicyclic 1,2-diazetidine 10b was irradiated in the 

presence of a catalytic amount of 2-aminopyrrole 210b (10  mol%) and monitored by 1H NMR 

and UV-Vis (Figure 3.8 and 3.9). 1,2-Dihydropyridazine 9b did not reform and only the 

degradation of 2-aminopyrrole 210b was observed. 
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Figure 3.5 
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Figure 3.6 1H NMR in CDCl3 of bicyclic 1,2-diazetidine 10b, irradiated at 300 nm over a 24 hour period 
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Figure 3.7 1H NMR in CDCl3 of 2-aminopyrrole 210b, irradiated at 300 nm over a 24 hour period 
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Figure 3.8 1H NMR in CDCl3 of bicyclic 1,2-diazetidine 10b with 10 mol% 2-aminopyrrole 210b, 

irradiated at 300 nm over a 6 hour period 
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Figure 3.9 

The batch photoreactor can be used with a variety of lamps with different wavelengths (254, 

300, 350, 419, 575 nm), which has enabled a range of wavelengths to be investigated for the 

4-π photocyclisation (Table 3.4). The 4-π photocyclisation of 1,2-dihydropyridazine 9b at 300 

nm had been already completed (entry 1), but moving to 254 nm (right on the edge of the 

absorption peak in Table 3.1) resulted in a sharp decrease in rate of reaction, yield and 

selectivity for bicyclic 1,2-diazetidine 10b (entry 2). A lot of degradation was observed, and it 

was thought that a combination of moving to the shorter, higher energy wavelength and that 

bicyclic 1,2-diazetidine 10b and 2-aminopyrrole 210b both absorbed light around 254 nm was 

causing the destruction of the starting material and products. 

Irradiation at 350 nm (on the opposite edge of the absorption peak) completely changed the 

bicycle:pyrrole selectivity (entry 3). The reaction was slower compared to 300 nm (20 hours 

compared to 1 hour), but now only trace amounts of pyrrole 210b were formed, and the desired 

bicycle 10b was isolated in a good yield. The drop in the rate of reaction between 350 and 300 

nm was rationalised through calculation of the molar absorption coefficient (ε) (how well light is 

absorbed at a certain wavelength) from the Beer-Lambert Law (A = εcl; A = absorbance, c = 

concentration, l = path length). When this was applied to the UV-Vis data for 1,2-

dihydropyridazine 9b in acetonitrile (Table 3.1, path length = 1.0 cm, concentration = 0.2 mM), 

a twentyfold decrease in ε was observed when the wavelength was changed from 300 and 350 
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nm (300 nm, ε = 2975; 350 nm, ε = 146) and showed that at 350 nm the photoreaction was less 

efficient (since 1,2-dihydropyridazine 9b does not absorb strongly at this wavelength), which in 

turn led to an increase in the reaction times.  The increase in selectivity was proposed to arise 

from irradiation of a smaller n→π* absorption band at the edge of the main π-π* absorption 

peak, which leads to the promotion of the 4-π photocyclisation pathway. In addition, this 

explanation further supports the suggestion that irradiation on the longer wavelength side of the 

λmax resulted in less of the 6-π electrocyclic ring opening. From UV-Vis studies, it has not been 

possible to prove the presence of this smaller absorption band, but currently this rationale 

provides the most plausible explanation for the observed selectivity.  

At 419 nm, no reaction was expected to happen due to the lack of an absorption peak in this 

area for starting material 9bb (entry 4). Experimentally, this was what was observed and only 

starting material 9bb was seen by 1H NMR analysis. The addition of triplet sensitiser 294, a 

ketone that aids the generation of hard to access triplet states through energy transfer (the 

triplet state of the sensitiser converts the substrate from the ground to the excited state and 

concurrently the sensitiser is converted back down to the ground state), showed no sign of the 

bicycle 10b and only degradation of the starting material 9b (entry 5). As a result, 350 nm was 

selected as the chosen wavelength to take forward into future experiments. 

 

Entry Wavelength (nm) Time (hours) 10b (%) 210b (%) 

1 300 1 56 9 

2 254 2.5 15 7 

3 350 20 77 traces 

4 419 1 - - 

5 419 1 -a - 

Table 3.4 a Isopropylthioxanthone 294 used as a photosensitiser 

1H NMR analysis of the crude reaction mixtures from each wavelength showed very different 

spectra (Figure 3.10). The reaction at 350 nm gave the cleanest formation of product 10b 

formation and the amount of pyrrole 210b present decreased moving from 254 up to 350 nm. 

The degradation peaks seen for the reaction in the presence of the photosensitiser (419 nm) 

were similar to the ones at 254 nm, but it has not been possible to identify these products. The 

broad nature of these peaks suggested that may be due to polymeric degradation products, 

which could not be isolated from the reaction mixtures. 
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Figure 3.10 1H NMR for irradiation of 1,2-dihydropyridazine 9b at different wavelengths; a 

Isopropylthioxanthone 294 used as a photosensitiser 
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With the optimal wavelength settled upon, another solvent screen was judged worthwhile (Table 

3.5). In all cases only trace amounts of the pyrrole were observed and good yields for the bicycle 

10b were obtained (entries 1-5). The change in wavelength meant that it was now possible to 

use acetone as the reaction solvent because it should no longer absorb at the chosen 

wavelength. Acetonitrile and MTBE were found to be the optimum solvents and toluene could 

be used as a further back-up if necessary.  

 

Entry Solvent Bicycle 10b (%) Pyrrole 210b (%) 

1 MeCN 77 traces 

2 MTBE 77 traces 

3 EtOAc 65 traces 

4 PhMe 71 traces 

5 Acetone 62 traces 

Table 3.5 

To carry this photoreaction out on a meaningful scale the 4-π photocyclisation of 9b was 

investigated at different concentrations (Table 3.6). At 20 mM, the reaction gave higher yields 

of bicycle 10b than at 10 mM (entry 1) with a slight increase in the reaction times. At 50 mM the 

reaction time doubled, and the yield decreased slightly (entry 2). When the solvent was switched 

to toluene, the reactions at 20 and 50 mM were complete in 24 hours and the yields were 

comparable to those observed at lower concentrations (entries 2 and 3). The use of MTBE at 

higher concentrations showed poor conversions and starting material was still present after 48 

hours. Even though the yield dropped, running the reactions at 50 mM in either acetonitrile or 

toluene was chosen due to the larger amounts of material that could be processed.  

 

Entry Solvent Concentration (mM) Time (hrs) Bicycle 10b (%) Pyrrole 210b (%) 

1 MeCN 20 24 80 traces 

2 MeCN 50 44 69 traces 

3 PhMe 20 24 71 traces 

4 PhMe 50 24 71 traces 

Table 3.6 

The 4-π photocyclisation has now been applied to the other 1,2-dihydropyridazines 9a-g in 

either acetonitrile or toluene to give the bicycles 10a-g in good yields (Scheme 3.19). In most 

cases, the bicycle yields in acetonitrile and toluene were similar and only the best yields are 

shown. The reason for this observed improvement is thought to have been from a slight 
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bathochromic shift in the λmax (as seen for 1,2-dihydropyridazine 9b) when the solvent was 

switched from acetonitrile to toluene, which reduced reaction times and degradation. 1,2-

Dihydropyridazine 9a was not soluble in toluene, whereas the dibenzyl carbamate system 9e 

was not soluble in acetonitrile. The reaction can also be carried out at 100 mM, as exemplified 

with diene 9d, without a decrease in yield, however the reaction time doubled even on a small 

scale in both acetonitrile and toluene. Irradiation of 1,2-dihydropyridazine 9h gave no sign of 

tricyclic diazetidine 10h and 1H NMR analysis only showed the presence of 2-aminopyrrole 

210h, which supported previously reported observations.165 

 

Scheme 3.19 a In MeCN; b Irradiated for 44 hours; c In PhMe; d 100 mM scale for 44 hours 

Attention then turned to the scale-up of this reaction with diene 9d, due to its ease of synthesis 

on a large scale (Scheme 3.20). Starting with nearly one gram of diene 9d, the reaction times 

doubled to that on a smaller scale, though the yield of bicycle 10d was comparable (82% 

compared to 81% in Scheme 3.19). On ten times the scale the yield dropped by 10%, but the 

product 10d was still isolated in a good yield. These results are unusual for most UV 

photoreactions, which on larger scales often require longer reaction times and show a drop off 

in yield caused by inefficient irradiation and product degradation.     

 

Scheme 3.20 
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3.3.2 Optimisation in a Flow Photoreactor 
To aid scale-up, the aim was to optimise and run the 4-π photocyclisation on the commercially 

available E-series Vapourtec flow system equipped with a photoreactor (Figure 3.11). The 

scale-up of photochemistry has long been seen as a major limitation to the field, however the 

development of new flow technologies has helped to circumvent these problems.288–291 The 

penetration of light into a solution is governed by the Beer-Lambert Law (A = εcl; A = 

absorbance, c = concentration, l = path length) and as the distance from the light source 

increases (path length) the absorption efficiency sharply decreases. The scale-up of batch 

photoreactions often requires a larger reactor, which in turn decreases the ability of light to get 

into the reaction mixture, thus leading to longer reaction times and over-irradiation of the 

products. Photoreactions are also concentration dependent and as the concentration of the 

reaction mixture increases, the molecules closest to the light source absorb a greater proportion 

of the light, thus preventing light from penetrating the whole solution and increasing reaction 

times. Therefore, more dilute concentrations often lead to faster reactions. Flow photochemistry 

can solve these issues by exposing smaller volumes of the reaction mixture to the light source 

through microchannels or tubing. As a result, the photoreactions are more efficient due to the 

reaction mixture being in close proximity to the light source (decreasing the path length) and 

often enables higher concentrations to be used. The residence time (time the reaction mixture 

spends in the flow cell) can be optimised using different flow rates to control the exposure time 

and can help to reduce the formation of by-products. In a flow photoreactor, a smaller volume 

of flammable organic solvent is in the reactor at any given time in comparison to a batch 

photoreactor, which helps to drastically improve the safety and fire-risk. For example, the 

photoreactor size is 10 mL for the E-series Vapourtec flow system, which is considerably lower 

than exposing 18 x 20 mL or 12 x 60 mL tubes in the Rayonet batch photoreactor used above. 

It should be noted that even though flow photochemistry provides an easier platform for scale-

up, comparison of the yields and productivity between batch and flow photoreactors have been 

shown to give nearly equal performance.292 

 

Figure 3.11 E-series Vapourtec flow system equipped with a photoreactor (UV-150) 
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The medium pressure mercury lamp can be used in conjunction with various filters to enable 

the use of narrower wavelength bands (Figure 3.12). For this work the type 2 and 4 filters were 

used, as well as a 365 nm LED light source (instead of the mercury lamp). The type 2 filter 

passes wavelengths from 240-400 nm, whereas the type 4 filter passes wavelengths from 310-

390 nm. A 350 nm lamp is not currently available for the Vapourtec flow system, which prevents 

a direct comparison between the batch and flow photoreactors. 

 

Figure 3.12 Images supplied and used with permission from Vapourtec Ltd 

The results from optimisation with 1,2-dihydropyridazine 9b with type 2 and 4 filters is 

summarised below (Table 3.7). In all cases, poor conversions were observed at fast flow rates 

(entries 1, 5, 9 and 17), but at slower flow rates no starting material remained and the selectivity 

for the bicycle 10b increased (entries 2-4, 6-8, 10-12 and 14-16). Given the instability of 2-

aminopyrrole 210b upon prolonged irradiation at 300 nm in the batch photoreactor, there is a 

high possibility that at slower flow rates (in which longer residence (reaction) times were 

required) 2-aminopyrrole 210b reacted further and/or degraded. If so, the observed increase in 

selectivity was influenced by this factor and not from the 4-π photocyclisation pathway being 

somehow favoured. Whilst the conversions and bicycle selectivity looked promising, the major 

limitation from these reactions were the purity of the crude products (Figure 3.13). When 

compared to the results from the batch photoreactor, the crude mixtures from the flow 

photoreactor showed significantly more degradation, which was likely to have an impact on the 

yields. The likely cause of this is that even though a narrower wavelength band was used, the 

type 2 filter still passed wavelengths between 240-300 nm and significant degradation was 

observed in the batch photoreactor at 254 nm. In attempt to minimise this issue, the type 4 filter 

was used that did not pass wavelengths below 300 nm (entries 21-24). At high dilutions (10 

mM) only low conversions were observed, with around 50% conversion at a flow rate of 0.5 

mL/min and there were still signs of degradation. Lower concentrations were not attempted, as 

even if this approach proved successful the concentration would have been ten times lower 

than what could be used in the batch photoreactor, thus the productivity of the reaction would 

be much lower. Finally, the use of a 365 nm LED lamp led to very poor conversions (entries 25-

28), probably caused by the very low absorption of the starting material 9b at this wavelength. 
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Entry Flow rate (mL/min) Concentration (mM) Conversion 9b (%)a Product ratio 
(10b:210b)a 

1 5 20 25 1.7:1.0 

2 2 20 100 3.0:1.0 

3 1 20 100 5.5:1.0 

4 0.5 20 100 19:1.0 

5 5 10 57 2.3:1.0 

6 2 10 100 5.4:1.0 

7 1 10 100 18:1.0 

8 0.5 10 100 No pyrrole 

9 5 5 18 3.4:1.0 

10 2 5 57 15:1.0 

11 1 5 100 No pyrrole 

12 0.5 5 100 14:1.0 

13b 5 10 48 4.0:1.0 

14b 2 10 100 6.9:1.0 

15b 1 10 100 13:1.0 

16b 0.5 10 100 No pyrrole 

17c 5 10 18 1.9:1.0 

18c 2 10 57 2.4:1.0 

19c 1 10 100 8.6:1.0 

20c 0.5 10 100 No pyrrole 

21d 5 10 4 -e 

22d 2 10 9 -e 

23d 1 10 22 -e 

24d 0.5 10 48 -e 

25f 5 5 1 - 

26f 2 5 2 - 

27f 1 5 4 - 

28f 0.5 5 7 - 

Table 3.7 a Calculated by 1H NMR through comparison of starting material 9b, bicycle 10b and pyrrole 
210b peaks. No internal standard used, so does not capture degradation; b Completed at lower 

temperature (ranged between: -4 and 0 °C); c Completed at 50% lamp power; d Type 4 filter used instead 
of Type 2; e Not possible to calculate ratio due to presence of starting material; f 365 nm LED used 

instead of medium pressure mercury lamp 
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Figure 3.13 Batch vs Flow comparison for 4-π photocyclisation of 1,2-dihydropyridazine 9b 
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3.4 Conclusions 

An extensive investigation has been carried out on the properties and 4-π photocyclisation of 

1,2-dihydropyridazines 9. Through UV-Vis analysis, it was possible to gain an understanding of 

the photophysical properties of 1,2-dihydropyridazine 9 in a variety of solvents and the data was 

used to help guide and quantify the results observed experimentally. As a result, the 4-π 

photocyclisation of 1,2-dihydropyridazines 9 has been successfully optimised in a batch 

photoreactor to give good yields of bicyclic 1,2-diazetidines 10 and implemented to synthesise 

seven bicycles, five of which were novel. Subsequently, the 4-π photocyclisation has been 

scaled-up using 1,2-dihydropyridazine 9d and was successfully completed on multigram scales 

without a significant drop in yield. Currently, it is possible to process more material for the 4-π 

photocyclisation of 1,2-dihydropyridazines in the batch photoreactor and not the flow 

photoreactor. The major limitation with the flow photoreactor is the amount of degradation that 

is caused by shorter wavelengths (type 2 filter), the poor conversions (type 4 filter and 365 nm 

LED) and the need for dilute concentrations (both filters). In addition, it has not been possible 

to investigate the 4-π photocyclisation in flow at 350 nm due to the light source not being 

available from Vapourtec. If the highest yields of bicyclic 1,2-diazetidines 10 in the batch 

photoreactor had been achieved at 300 nm, where 1,2-dihydropyridazines 9 have the highest ε 

values, the flow photoreactor optimisation may have been better. The slow conversion of 1,2-

dihydropyridazines 10 at 350 nm can be solved in the batch photoreactor through longer 

reaction times, but in the flow photoreactor slower flow rates (longer residence times) have 

given poor conversions and more degradation products in comparison to the batch 

photoreactor. If these issues can be addressed, then this could be a viable alternative for scale-

up in the future. In combination with the new synthesis for 1,2-dihydropyridazines 10, bicyclic 

1,2-diazetidines 9 can now be easily accessed in meaningful quantities in two or three steps 

from simple building blocks.
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Chapter 4: Reactions of Bicyclic 1,2-Diazetidines 
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4.1 Introduction 

4.1.1 Derivatisation of Bicyclic 1,2-Diazetidines 
The synthetic potential of bicyclic 1,2-diazetidines 10 has not been extensively explored but 

have the potential to be transformed into a variety of synthetically valuable building blocks 

(Figure 4.1). Cleavage of the N-N bond would give cis-1,2-diamino-cyclobutenes, which could 

be further derivatised to access cyclobutane scaffolds. On the other hand, the double bond 

should undergo classical reactions to enable functionalised monocyclic 1,2-diazetidines to be 

accessed.  

 

Figure 4.1 

Most of the current literature has focused on the deprotection of the carbamate protecting 

groups attached to the nitrogen atoms under basic conditions and oxidation of the diamine to 

access cyclobutadiene.162,273 The successful removal of the ethyl carbamate protecting groups 

from bicyclic 1,2-diazetidine 10b and similar bicyclic systems has been reported, albeit under 

forcing conditions (potassium hydroxide in ethylene glycol at 130 °C).36,273,293 Masamune and 

co-workers reported the seminal example, in which milder deprotection conditions were 

employed to deprotect bicyclic 1,2-diazetidines 10b and 10r, which after neutralisation with 

trifluoroacetic acid gave the air-sensitive diamine 295 (Scheme 4.1).273  

 

Scheme 4.1 

Oxidation of diamine 295 with a range of benzoquinones (benzoquinone, 2,6-

dimethylbenzoquinone and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone/DDQ) or aqueous 

sodium hypochlorite was assumed to form azo compound 300, which spontaneously underwent 

a retro-[2+2] reaction to eliminate nitrogen gas and to form cyclobutadiene 301 (Scheme 4.2). 

Benzoquinones served not only as an oxidant but also as trapping agents for cyclobutadiene 

301, to give bicycles 296 (the relative configuration was not described). Oxidation of diamine 

295 with sodium hypochlorite resulted in dimerization of cyclobutadiene 301 to give dimer 298 

but a 1.0:1.0 mixture of dimer 298 and bicycle 299 was formed when cyclopentadiene 297 was 

present. Currently, other synthetic routes to access cyclobutadiene 301 are not trivial and often 

require expensive and toxic reagents (see Scheme 3.10 in Section 3.1.3).280,281 The further 

development of this methodology could establish bicyclic diazetidines 10 as simple precursors 

to cyclobutadiene. 
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Scheme 4.2 

These findings formed the basis of another publication by Whitman and Carpenter, in which a 

different set of reaction conditions were employed for the basic hydrolysis and oxidation of a 

deuterated bicyclic 1,2-diazetidine 302 to access deuterated cyclobutadienes 304 and 305 

(Scheme 4.3).162  Here, potassium tert-butoxide successfully removed the methyl carbamate 

protecting groups of 302 and the resulting amine was oxidised in the presence of lead(IV) 

tetraacetate to form azo compound 303, which immediately formed cyclobutadiene 304. The 

authors found similar Gibbs free energy (∆G‡) values for the interconversion between 

cyclobutadienes 304 and 305 and for trapping with a dienophile. When a reactive dienophile 

such as 3-cyanoacrylate 306 was used, cycloadducts possessed an isotope distribution that 

matched cyclobutadiene 304, which suggested no interconversion had taken place. Whereas, 

for less reactive dienophiles (e.g. 307) a mixture of isotope distributions 304 and 305 were 

observed.   

 
Scheme 4.3 

It has been previously reported that the double bond in bicyclic 1,2-diazetidines 10b can be 

reduced through hydrogenation to give saturated bicycle 308b (Scheme 4.4).33,36,294 Removal 

of the ethyl carbamate protecting groups from saturated bicycle 308b was then achieved under 

modified conditions developed for the deprotection of amides.295  Diamine 309 was oxidised 

with copper(II) salts to give azo compound 310, which could be isolated as the copper complex 

311.  
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Scheme 4.4 

To date, there has been only one example where the double bond in bicyclic 1,2-diazetidine 

10a has been the focus for derivatisation (Scheme 4.5).35,80 Bicyclic 1,2-diazetidine 10a 

underwent a Diels-Alder reaction with cyclopentadienone 61 to give the cycloadduct 32 

(structure confirmed by X-ray crystallography). Interestingly, it appeared that bicyclic 1,2-

diazetidine 10a was stable enough to be heated in benzene, but the moderate yield could be a 

sign that some degradation had taken place. Irradiation of cycloadduct 32 resulted in extrusion 

of carbon monoxide to give intermediate 35, which immediately further reacted to give the 

unstable 1,2-diazete 33 in a good yield.  

 
Scheme 4.5 

The authors confirmed the structure of 1,2-diazete 33 through hydrogenation of the double bond 

to give 1,2-diazetidine 34a (Scheme 4.6). 1,2-Diazete 33 was thermally unstable and over time 

started to ring open to give imine 36. The authors reported that it was not possible to isolate 

imine 36 because the compound readily polymerised and attempts to trap 1,2-diazete 33 with 

electron-rich olefin 18a, electron-deficient tetrazine 313 or cyclopentadiene 297 all gave no 

reaction. 

 
Scheme 4.6 
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4.1.2 Conclusions 
In summary, a variety of mild conditions are available for the deprotection of the carbamate 

protecting groups in bicyclic 1,2-diazetidines 10 and it is possible to access cyclobutadiene 301 

through oxidation of diamine 295. The double bond in 10 can either be reduced, or it can 

undergo a Diels-Alder reaction with a reactive electron deficient diene, but no other 

transformations on the double bond have been reported. 

4.2 Aims 

The main objective was to carry out a full investigation on the synthetic potential of bicyclic 1,2-

diazetidines 10 (Scheme 4.7). Based on the current literature, there is a significant amount of 

transformations that have not yet been reported that should give novel scaffolds, which meant 

that any discoveries would be new intellectual property and enable new areas of chemical space 

to be accessed. At the outset of these studies, the stability of bicyclic 1,2-diazetidines 10 had 

not been determined and it was vital to gain an understanding of any potential hazards to ensure 

that they were safe to handle. Bicyclic 1,2-diazetidines 10 possess an N-N bond that should be 

reduced with single electron donors (e.g. Na/NH3 or SmI2) and a double bond that should 

undergo “classical” double bond reactions, such as halogenation, hydroboration, epoxidation, 

etc. For any new reactions, the conditions needed to be developed and optimised or modified 

from existing literature procedures to enable potential scaffolds to be accessed in the highest 

yields possible. From the literature focusing on similar bicycles, there is precedent for the 

conversion of bicyclic lactones 265 into functionalised cyclobutenes through palladium catalysis 

and the conversion of bicyclic azetidines 314 (through double bond transformations) into 

functionalised azetidines and other interesting scaffolds.296–304 

 

Scheme 4.7 
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4.3 Results and Discussion 

4.3.1 Thermal Stability of Bicyclic 1,2-Diazetidines 

From the knowledge of the thermal rearrangement reactions of 1,2-dihydropyridazine 9 

combined with the newly formed strained rings in the bicyclic-1,2-diazetidines 10, the first step 

was to investigate their thermal stabilities. It should be not possible under thermal conditions 

for bicyclic-1,2-diazetidines 10 to ring open to give 1,2-dihydropyridazines 9 because thermal 

4-π electrocyclic reactions are conrotatory, which would form the highly strained 1,2-

dihydropyridazine 315 containing a trans-alkene (Scheme 4.8). Only through a photochemical 

4-π electrocyclic reaction, which are disrotatory, would 1,2-dihydropyridazines 9 form.  

 

Scheme 4.8 

It was found that bicyclic 1,2-diazetidine 10d was stable when stored at room temperature under 

ambient conditions, but when heated at temperatures above 60 °C bicyclic 1,2-diazetidines 10 

started to undergo a ring expansion reaction to give the rearranged bicycles 316 in good to 

excellent yields (Scheme 4.9). The N-N linkage to the cyclobutene has been replaced by an N-

O linkage and was confirmed by 13C and 2-D NMR spectroscopy. The carbons adjacent to 

nitrogen in 10 appear as a single peak at 66.7 ppm in the 13C NMR, whereas for the rearranged 

bicycle 316 there are two peaks with a difference in chemical shift of around 20 ppm (carbon 

adjacent heteroatom in 316: 79.0 and 55.4 ppm). In addition, when bicyclic 1,2-diazetidines 10 

were heated above 100 °C small amounts of another bicycle 317 were formed. The structures 

of 316 and 317 were confirmed by X-ray crystallography and proved that the N-N linkage to the 

cyclobutene ring had been replaced with the N-O linkage. In collaboration with AstraZeneca, all 

three bicycles 10d, 316d, 317d were submitted for differential scanning calorimetry (DSC) 

analysis to gain a better understanding of their stabilities (see Appendix). The DSC trace of 10d 

showed an initial endotherm (associated with the sample melting), then a complex non-stop 

exotherm that was associated with rearrangement reaction to 316d, followed by decomposition 

of the tert-butyloxycarbonyl (Boc) groups at higher temperatures. Similar DSC traces were 

obtained for the rearranged bicycles 316d and 317d. In all cases, the analysis showed that 

none of the bicycles possessed explosive properties and any changes were caused by the 

rearrangement of the compounds or the loss of Boc groups. These findings are very different 

to the bicyclic lactone system 265, which has been reported to have flammable and explosive 

properties at room temperature and when heated.283 The tendency for bicyclic-1,2-diazetidines 

10 to thermally rearrange provides an in-built safety measure that prevents the potential 

formation of cyclobutadiene and an azo compound. 
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Scheme 4.9 

Attempts to drive the conversion of 316d into 317d at high temperatures and prolonged reaction 

times only resulted in degradation. Instead, inspiration was taken from the acidic conditions 

required to access enone 218 (from the Diels-Alder reaction with Danishefsky’s diene). It was 

postulated whether similar conditions could be employed to remove the thermally labile tert-

butyl group under milder conditions (Scheme 4.10). Thus, in a one-pot procedure bicycle 10d 

was heated at reflux for six hours to give a mixture of the bicycle 316d and trace amounts of 

the bicycle 317d and starting material 10b. The reaction mixture was then stirred with aqueous 

acid and showed complete conversion to bicycle 317d only, which after work-up and purification 

gave the product 317d in good yield.  

 

Scheme 4.10 

It was noticed above that the trace amount of starting bicycle 10d was also converted to the 

new bicycle 317d under acidic conditions (Scheme 4.10), which suggested that treatment of the 

bicycle 10d with an acid could form 317d exclusively and negate the need for the heating step 

(Table 4.1). The reaction proceeded in moderate yields with a variety of acids (entries 1-8), with 

1M aqueous hydrochloric acid and p-toluenesulfonic acid giving the highest yields (entries 1 

and 7). In all these cases, several side products were formed and after purification the product 

317d was isolated in poor purity in comparison to the previous reaction (Scheme 4.9). The 
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successful reaction with trifluoroacetic acid to form 317d meant that it is not possible remove 

the protecting groups on bicycle 10d under acidic conditions without inducing rearrangement. 

The reaction did not go to completion in the presence of a catalytic amount of acid (entry 9) and 

no sign of 317d was observed when the bicycle 10d was stirred in silica gel for three days (entry 

10). Surprisingly, an attempted iodination of the double bond in bicycle 10d only gave bicycle 

317d in moderate yield and no sign of the iodinated product (entry 11). Under mild basic 

conditions, the bicycle 10d seemed to be stable and only starting material was recovered (entry 

12). The discovery of bicycle 317d has provided another interesting building block that could be 

used to access further functionalised cyclobutenes (vide infra). 

 

Entry Conditions Time (hours) Yield 317d (%) 

1 1M aqueous HCl, 1,4-dioxane:HCl (1:1) 1 50 

2 0.1M aqueous HCl, MeOH:HCl (1:1) 2 47 

3 0.1M aqueous HCl, MeOH:HCl (2:1) 2 53 

4 0.1M aqueous HCl, MeOH:HCl (4:1) 2 51 

5 0.1M aqueous HCl, MeOH:HCl (8:1) 2 41 

6 Dowex H+ resin, MeOH 2 45 

7 p-TsOH (1.1 eq), CH2Cl2 0.2 50  

8 TFA (10 eq), CH2Cl2 2 n.ia 

9 p-TsOH (0.1 eq), CH2Cl2 5 0 

10 Silica gel, CH2Cl2 72 0 

11 I2 (1.1 eq), CH2Cl2 0.2 38 

12 1,4-dioxane:1M aqueous NaOH (1:1) 7 0 

Table 4.1 a Not isolated 

The major side product from the reaction of bicyclic-1,2-diazetidine 10d with p-toluenesulfonic 

acid was diene 320, which was obtained in 35% yield (Scheme 4.11). From 1H NMR analysis, 

a trans-configuration was determined for the double bond attached to the hydrazine from the 

coupling constant of the hydrogen attached to the same carbon as the hydrazine fragment (13.6 

Hz, H1 in Scheme 4.10). It was not possible to determine the double bond configuration for the 

other end of the molecule because the coupling constant did not give a clear indication as to 

whether the hydrogen was cis or trans (11.7 Hz, H2 in Scheme 4.10). A similar product was 

thought to have formed in the reactions with aqueous hydrochloric acid, though this has not 

been fully characterised. A tentative mechanism for the formation of diene 320 is described 

below under the assumption that the rearranged bicycle 316d was formed first (Scheme 4.10). 

The first pathway begins with an SN2ʹ reaction in which a molecule of p-toluenesulfonic acid or 

a tosylate anion attacks the carbon diagonally opposite the C-O bond in rearranged bicycle 

316d to give cyclobutene 319, which can undergo a thermal 4-π electrocyclic ring opening 
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reaction to form the diene (Scheme 4.11, path A). Alternatively, protonation of the oxygen atom 

attached to the cyclobutene, followed by an SN1 cleavage of the C-O bond, to give an allylic 

cation 318, that could then be trapped by p-toluenesulfonic acid or a tosylate anion (Scheme 

4.11, path B). Based on the findings reported by various research groups that heteroatom 

substituents lower the activation energy of the 4-π electrocyclic ring opening (see Section 

1.4),112,115,118,151 it was no surprise that cyclobutene 319 could not be isolated and only diene 

320 was observed. As the geometry of the diene could not be fully determined and the proposed 

product may be sensitive to E-Z isomerisation, it is not possible to reach any further conclusions 

about the mechanism. Attempts grow a crystal for X-ray crystallography resulted in degradation 

of the diene 320, but if 320 was trapped with a dienophile it should be possible to get a better 

understanding of the stereochemistry. It cannot be ruled out that the formation of diene 320 

could also stem from bicyclic 1,2-diazetidine 10d, through protonation of the nitrogen atom and 

an SN2ʹ reaction. 

 

Scheme 4.11 

Derivatisation of bicycle 317d was attempted under basic conditions to try and access 

cyclobutene 321 (Scheme 4.12). Initial experiments with sodium hydroxide in methanol had 

shown the formation of a new product, but this was not reproducible and only starting material 

was recovered when repeated. When sodium methoxide was used, 317d was recovered 

unchanged.  

 

Scheme 4.12 

Attention then turned to the use of a reducing agent to access cyclobutene 322 (Scheme 4.13). 

Disappointingly, when bicycle 317d was treated with lithium aluminium hydride no reaction took 

place and only the starting material was observed in the 1H NMR spectrum of the crude product.  
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Scheme 4.13 

Attempts to carry out a palladium(0)-catalysed decarboxylation - via a palladium π-allyl 

intermediate - and subsequent trapping with a nucleophile to give cyclobutene 323 did not show 

any promise and once again only the starting material was recovered (Scheme 4.14). 

 

Scheme 4.14 

Treatment of bicycle 317d with freshly prepared and titrated samarium(II) iodide, which was 

prepared according to a previously published procedure,305 resulted in a large loss in material 

and the isolation of the starting material in 14% yield (Scheme 4.15).  

 

Scheme 4.15 

The outcome from these reactions suggested that the bicycle 317d was more stable than first 

imagined and that more forcing conditions are required. Bicycle 317d was already found to be 

stable in acid at room temperature (Table 4.1 from above), but it is not known how stable it 

would be if heat was applied under acidic conditions. 

Given the computational results reported by Sheikh,112 the cis-3,4-disubstituted cyclobutenes 

described above all contain an oxygen and a nitrogen connected to a cyclobutene ring, which 

should have a low activation energy for 4-π electrocyclic ring opening (Scheme 4.16). As a 

result, cyclobutenes 322/323 should not be isolable and immediately form either aldehyde 325 

or diene 326 (in the case where an alcohol is attached to the ring). From the torquoselectivity 

theories developed by Houk and various co-workers,113–115 it is not known whether the oxygen 

or the nitrogen substituent will preferentially favour outward rotation.  
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Scheme 4.16 

Taking inspiration from successful palladium-catalysed π-allyl reactions reported for the bicyclic 

lactones 265,296–299  some preliminary investigations on the treatment of bicycle 10d with a 

palladium(0) catalyst have been completed (Table 4.2). The reaction took place at room 

temperature to give the rearranged bicycle 316d exclusively in good yields (entries 1 and 2). It 

was hoped that if the reaction went via π-allyl intermediate 327 that an external nucleophile 

could compete with the ring closing reaction. However, when the reaction was run in methanol 

no sign of trapping was observed (entry 2). 

 

Entry Solvent Time (hours) Yield 316d (%) 

1 THF 29 72 

2 MeOH 2 60 

Table 4.2 

When bicyclic 1,2-diazetidine 10d was treated with a Lewis acid, an unexpected diamine 330 

was formed (Scheme 4.17). This reaction was only observed with zinc chloride and no reaction 

was observed when magnesium chloride was used. It was not possible to isolate any pure 

samples of the diamine 330, but full characterisation was nevertheless possible. Diamine 330 

was postulated to be a precursor to cyclobutadiene, through oxidation to azo compound 331, 

followed by elimination of carbon dioxide and nitrogen to give cyclobutadiene. To this end, very 

preliminary experiments with iodobenzene diacetate and DIAD 8c have shown complete 

conversion of diamine 330 to a new compound. This new compound was not the bicyclic 1,2-

diazetidine 10c or the cyclobutadiene dimer 298, but it did have similar 1H NMR peaks to those 
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found for bicyclic 1,2-diazetidine 10. Due to the very small scale and time constraints, it was 

unfortunately not possible to identify this new product. 

 

Scheme 4.17 

4.3.2 Synthesis of Functionalised 1,2-Diazetidines 

Oxidative cleavage of the double bond in bicyclic 1,2-diazetidine 10d was expected to enable 

functionalised 1,2-diazetidines scaffolds to be accessed (Table 4.3). Under a variety of oxidative 

conditions, one major product was isolated that gave no further reaction when reacted with 

sodium periodate (entries 1-3). The structure was determined through X-ray crystallography 

and was found to be bicycle 333. The desired diacid 332 could be isolated in good yield with 

longer reaction times, which ensured that bicycle 332 was converted into the desired product 

(entry 4).  

 

Entry Conditions Yield 332 (%) Yield 333 (%) 

1 
RuO2.xH2O (5 mol%), 10% aqueous NaIO4, 

EtOAc, rt, 20 mins 
0 85 

2 
OsO4 (5 mol%), NaIO4 (4.0 eq), 2,6-lutidine 

(2.0 eq) 1,4-dioxane:H2O (3:1), rt, 24 hrs 
0 80 

3 
OsO4 (5 mol%), NMO (3.0 eq), 

acetone:H2O (8:1), rt, 50 hrs 
0 68 

4 
RuO2.xH2O (5 mol%), 10% aqueous NaIO4, 

EtOAc, rt, 41 hrs 
76 0 

Table 4.3 NMO: N-methylmorpholine N-oxide 

Formation of bicycle 333 was thought to have started with formation of dialdehyde 334, which 

in the presence of water (from the reaction mixture) resulted in the hydration of one of the 

aldehydes 335, followed by cyclisation to give bicycle 333 (Scheme 4.18). The bicyclic 1,2-

diazetidine 10d was quickly converted into bicycle 333, which then slowly underwent oxidation 

to diacid 332. It is proposed that this takes place through oxidation of bicycle 333 to an 

anhydride 336 and ring opening with water or ring opening of bicycle 333 to hydrate 335, 
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followed by oxidation to diacid 332. An attempted oxidation reaction to convert the bicycle 333 

into an anhydride 336 with pyridinium chlorochromate (PCC) showed no signs of the anhydride 

or diacid 332. Currently, it has not been possible to convert diacid 332 into anhydride 336 

through heating or the use of a coupling agent. 

 

Scheme 4.18 

Derivatisation of diacid 332 was expected to give an easier to handle product for further 

reactions. Esterification was chosen as an easy way to access another 1,2-diazetidine scaffold, 

however it was not known how stable diacid 332 would be when heated and under acidic 

conditions. Thus, a milder esterification method was chosen: treatment with an excess 

(trimethylsilyl)diazomethane (a safer alternative to diazomethane) converted diacid 332 into 

diester 337 in a good yield (Scheme 4.19). It was not possible to carry out a monodeprotection 

on diester 337 to access 1,2-diazetidine 338, and only diacid 332 was recovered under these 

conditions.  

 

Scheme 4.19 

It was thought that 1,2-diazetidines 332 and 337 would be ideal precursors to the alcohol 339 

(Table 4.4). The attempted reduction of diacid 332 led to the formation of complex mixtures 

(entries 1 and 2), likely caused by competition reactions between the reduction of the acid and 

the carbamate protecting groups. To try and overcome this issue, lithium borohydride was 

employed instead of lithium aluminium hydride for the reduction of diester 337 to (entry 3). 

Under these conditions, a less complicated mixture was formed, and one product could be 

isolated, though purification was difficult. The 1H NMR spectrum of this product was complex, 

and did not provide comprehensive evidence that alcohol 339 had been formed, however mass 

spectrometry provided the target mass for the product.  
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Entry R Conditions Yield 339 (%) 

1 H LiAlH4 (3.0 eq), THF, 0 °C → rt, 30 mins 0 

2 H BH3•THF (3.0 eq), THF, 0 °C → rt, 24 hrs 0 

3 Me LiBH4 (2.5 eq), THF, 0 °C → rt, 4 hrs 0 

Table 4.4 

The double bond in bicyclic 1,2-diazetidines 10d was expected to undergo a ring opening cross 

metathesis sequence in the presence of a suitable alkene (Table 4.5). Styrene 15c was chosen 

as the alkene for optimisation and both catalysts 75 and 76 were investigated (See Scheme 

1.21 for structures of 75 and 76). With both catalysts, preliminary experiments showed that 

when the reaction was heated at low concentrations the ring-opened 1,2-diazetidine 340 was 

formed in moderate yield, with some E/Z selectivity (entries 1 and 5). The other products formed 

in the reaction were polystyrene and some oligomeric derivatives of the 340. From 2-D NMR 

analysis, it was possible to determine that the major product had a Z-configuration around the 

disubstituted double bond, in which the phenyl group was cis to the 1,2-diazetidine ring. For 

both catalysts, the highest yields of the ring-opened 1,2-diazetidine 340 and similar E/Z ratios 

were achieved when the concentration of the reaction mixture was increased, with the Hoveyda-

Grubbs 2nd generation catalyst giving the best yield (entries 2 and 6). In all cases, when the 

amount of styrene 15c was decreased or the reaction was run at room temperature, similar E/Z 

ratios and a drop in the yield of the product 340 were observed (entries 3, 4, 7 and 8). 

Importantly, no reaction took place when no catalyst was present (entry 9).  

  

Entry Catalyst 
Styrene 

(eq) 
Concentration 

(M) 
Temperature  

Time 
(hrs) 

Yield 
340a,b (%) 

E/Z 
ratioa 

1 75 5.0 0.05 40 °C 1.0 63 1.0:1.6 

2 75 5.0 0.1 40 °C 1.0 66 1.0:1.6 

3 75 3.0 0.1 40 °C 1.0 51 1.0:1.7 

4 75 5.0 0.1 rt 6.0 63 1.0:1.7 

5 76 5.0 0.05 40 °C 1.5 61 1.0:1.5 

6 76 5.0 0.1 40 °C 0.5 73 1.0:1.5 

7 76 3.0 0.1 40 °C 1.0 49 1.0:1.7 

8 76 5.0 0.1 rt 3.0 63 1.0:1.6 

9 - 5.0 0.1 40 °C 1.0 0 - 

Table 4.5 a Calculated from 1H NMR spectra in d6-DMSO through comparison of Z-isomer 340a and E-
isomer 340b peaks. No internal standard used 
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With optimisation complete, the alkene was changed from styrene 15c to tert-butyl acrylate 341 

and treated with both Grubbs catalysts 75 and 76 (Scheme 4.20). Interestingly, no reaction took 

place in both cases, and only the starting materials were observed from 1H NMR spectroscopic 

analysis of the crude product.  

 

Scheme 4.20 

Aziridination, cyclopropanation or epoxidation of the double bond in bicyclic 1,2-diazetidine 10d 

was predicted to enable access to tricycles 343 (Table 4.6). However, disappointingly, it was 

not possible to form any of the desired tricycles 343 under typical reaction conditions for each 

reaction (entries 1-3). The starting material was recovered unchanged from the aziridination 

and epoxidation reactions, and when the aziridination reaction was heated at reflux, it was no 

surprise that only the rearranged bicycle 316d was observed in the 1H NMR of the crude 

product. On the other hand, the cyclopropanation reaction gave complete conversion of the 

starting material to give a product that was not tricycle 343. 

 

Entry Conditions X Yield 343 (%) 

1 
PhMe3NBr3 (0.1 eq), TsNClNa.3H2O (1.2 eq), MeCN, rt or 

40 °C, 24 hrs 
NTs 0 

2 Bu4NCl (10 mol%), aq. NaOH (50% w/v), CHCl3, rt, 6 hrs CCl2 0 

3 m-CPBA (1.2 eq), CH2Cl2, rt or 40 °C, 24 hrs  O 0 

Table 4.6 

The major product from the cyclopropanation reaction contained no chlorine atoms (from mass 

spectrometry analysis) and relatively simple 1H and 13C NMR spectra, which suggested the 

presence of a symmetrical diene. From this information it has been tentatively suggested the 

product formed is diazepine 344, which is derived from insertion of dichlorocarbene into the N-

N bond (Scheme 4.21). A recent publication from Shipman and co-workers showed that 

dichlorocarbene can insert into the N-N bond and is hydrolysed under the reaction conditions 

to give a urea.91 The insertion of dichlorocarbene into the N-N bond in bicycle 1,2-diazetidine 

10d would form bicycle 345, which could be hydrolysed to urea 345. A thermal 4-π electrocyclic 
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ring opening would give a highly strained diene 347 that could undergo E/Z isomerisation to 

give diazepine 344.  

 

Scheme 4.21 

The hydroboration of 10d was also attempted, which was expected to form alcohol 348 

(Scheme 4.22). Reactions with a borane tetrahydrofuran complex and 9-

borabicyclo[3.3.1]nonane (9-BBN) gave a complex mixture in both cases and this reaction was 

not pursued any further due to time constraints.  

 

Scheme 4.22 

The final reaction attempted on the double bond of bicyclic 1,2-diazetidine 10d was a Paternò–

Büchi reaction with acetone, to try and form tricycle 349 (Scheme 4.23). Complete degradation 

of the starting material was observed with no identifiable products, a similar result to that seen 

for the 4-π photocyclisation of 1,2-dihydropyridazine 9b in acetone at 300 nm (Table 3.3, 

Section 3.3.2). 

 

Scheme 4.23 
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4.3.3 Synthesis of Functionalised Cyclobutenes 

The efficient cleavage of the N-N bond in bicycle 10d would enable access to cis-

diaminocyclobutenes 351, which were expected to undergo a spontaneous electrocyclic ring 

opening to give functionalised dienes (Scheme 4.24).  

Samarium(II) iodide was freshly prepared, titrated and used according to a literature 

procedure.305 Under these conditions, cyclobutene 351 was not isolated, but two other 

compounds were formed and it was only possible to isolate one of the two compounds in 

meaningful quantities. 13C NMR analysis of this new compound suggested that cyclobutene 

was no longer present, due to the appearance of two new peaks at 122.3 and 100.2 ppm and 

no peak around 140 ppm as seen for bicyclic 1,2-diazetidine 10d. Cyclobutene 351 should 

readily undergo a 4-π electrocyclic ring opening to form E/Z-diene 352, given the small 

calculated energy barrier for the ring-opening of cis-3,4-diaminocyclobutenes reported by 

Sheikh.112 The structure was proven by X-ray crystallography to be Z/Z-diene 350 (see 

appendix), which was formed in 24% yield and not the expected E/Z-diene 352. The other 

compound formed in the reaction could not be isolated in meaningful quantities and it became 

less prominent in the crude samples over time. Mass spectrometry analysis has suggested it 

could be E/Z-diene 352, because it has the same molecular weight as Z/Z-diene 350. The 

formation of 350 was tentatively proposed to have started from the 4-π electrocyclic ring 

opening of cyclobutene 351 to form E/Z-diene 352, an enamine, which could undergo E/Z 

isomerisation to give the observed Z/Z-diene 350, though it is not fully understood why this 

configuration would be favoured. It was difficult to separate the crude products from the large 

amount of inorganic salts that formed when the reaction mixture was exposed to air. Attempts 

to separate the mixture of products from the inorganic material by aqueous workup resulted in 

a loss of material into the aqueous phase and a significant amount of inorganic salts remained 

in the organic layer. The most straightforward method of purification was to solid load the crude 

product onto silica gel and purify by column chromatography, however this still resulted in loss 

of material. Another suggestion for the poor yield could be the presence of any Lewis acidic 

samarium salts that would lead to the loss of the Boc protecting groups and subsequent 

degradation of any of the products from this reaction.  

 

Scheme 4.24 
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There have been a variety of other methods described for the cleavage of N-N bonds published 

in the literature,90,104  however when these conditions were applied to bicyclic 1,2-diazetidine 

10d, an unexpected result was observed (Table 4.7). Instead of N-N bond cleavage the C-N 

bond was broken to form cyclobutene 353, which then underwent a thermal 4-π electrocyclic 

reaction to give diene 354 when heated or even stored at room temperature. Heat and 

prolonged storage at room temperature seemed to influence the ratio in which cyclobutene 353 

and diene 354 were formed. Lithium 4,4’-di-tert-butylbiphenyl (LiDBB) was freshly prepared 

according to a previously published procedure.306 Using LiDBB, a complex mixture was formed, 

but a mixture of cyclobutene 353 and diene 354 was isolated in moderate yield (entry 1). The 

use of dissolving metal conditions (specifically, sodium in ammonia), formed 353 and 354 in 

excellent yield, with cyclobutene 353 as the major product (entry 2). At the end of the reaction, 

only the cyclobutene 353 was present in the reaction mixture and there is potential to further 

react the double bond before isolation to access functionalised cyclobutanes. Due to the 

bicycle’s instability under acid conditions, zinc powder in acetic acid could not be used for the 

reduction of the N-N bond, though the combination of zinc powder and ammonium salts has 

been used to reduce azo compounds to the corresponding amines (via the hydrazine).307 When 

bicyclic 1,2-diazetidine 10d was reacted with an excess of zinc powder in the presence of either 

ammonium acetate or ammonium chloride, a mixture of cyclobutene 353 and diene 354 was 

formed in good yield (entry 3 and 4). The reaction times were longer for these reactions and 

this probably influenced the amount of diene 354 formed.  

  

Entry Conditions Yield 353 and 354 (%) Ratio 353:354a 

1 LiDBB (2.5 eq), THF, −78 °C, 10 mins 35 n.d 

2 Na/NH3, THF, −78 °C → rt 87 2.4:1.0 

3 Zn (10 eq), NH4OAc (1.1 eq), MeOH, rt, 22 hrs 69 1.3:1.0 

4 Zn (10 eq), NH4Cl (1.1 eq), MeOH, rt, 22 hrs 79 1.0:1.4 

Table 4.7 a Calculated by 1H NMR in d6-DMSO through comparison of cyclobutene 353 and diene 354 

peaks. No internal standard used 

The formation of cyclobutene 353 is thought to have stemmed from the addition of an electron 

to the double bond in bicyclic 1,2-diazetidine 10d to give radical anion 355, which can be 

protonated (Scheme 4.25). The addition of another electron followed by protonation and 

tautomerization forms cyclobutene 353. It is tentatively proposed that the difference in selectivity 

between samarium iodide (N-N bond cleavage) and other single electron donors (C-N bond 

cleavage) can be described by samarium iodide being a “hard” electron donor, thus favouring 

attack of the nitrogen atom, whereas the other single electron donors are soft and favour 

addition at the double bond. Currently, it is not known what the active form of zinc is in this 

reduction, but potentially zinc is able to act as a single electron donor, which enables it to react 
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as observed with other single electron donors (e.g. sodium in ammonia). In addition, it is not 

known why samarium(II) iodide cleaved the N-N bond and other electron donors cleaved the 

C-N bond of bicyclic 1,2-diazetidines 10. 

 

Scheme 4.25 

Variable temperature 1H NMR studies have shown the temperature sensitivity of cyclobutene 

353 (Figure 4.2). When a 1.0:1.8 mixture of cyclobutene 353 and diene 354 was gradually 

heated from 298-348 K (25-75 °C), the intensity of the peaks for cyclobutene 353 started to 

decrease and the intensity of the peaks for diene 354 started to increase at temperatures above 

308 K (35 °C). At 338 K (65 °C) only trace amounts of cyclobutene 353 was present, whilst 

when the temperature reached 348 K (75 °C) only diene 354 was observed. 

Another potential method for cleaving the N-N bond was through hydrogenation, although the 

double bond would also be reduced in the process. It had been reported previously that it was 

not possible to cleave the N-N bond in 1,2-diazetidines for tert-butyl carbamate systems, but it 

was successful for the benzyl carbamate systems.90,308 To this end, hydrogenation was 

attempted on both these bicycles 10d,e (Scheme 4.26). As expected, no N-N bond cleavage 

was observed for bicycle 10d and the saturated bicycle 308d was isolated in very poor yields. 

The major product was the diazinane 356, which was not expected to form, and was proposed 

to have formed from via reduction to form saturated bicycle 308d, followed by the addition of 

hydrogen across the C-C bond. 1H NMR analysis of the crude reaction mixture gave clear 

evidence for 356 due to the characteristic broad peaks seen for similar compounds. With shorter 

reaction times, it may be possible to isolate bicycle 308d in higher yields. The hydrogenation of 

the dibenzyl carbamate bicycle 10e furnished a complex mixture and no sign of the expected 

1,2-diamino-cyclobutane.   

 

Scheme 4.26 

 



Chapter 4: Reactions of Bicyclic 1,2-Diazetidines 

129 
Thomas Britten – April 2019 

 

Figure 4.2 Variable Temperature 1H NMR in d6-DMSO of cyclobutene 353 and diene 354 
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Preliminary experiments on the use of diene 354 in Diels-Alder reactions have given some 

promising results (Scheme 4.27). The reaction of diene 354 and dimethyl 

acetylenedicarboxylate 223 gave cycloadduct 357 in good yield with no sign of the aromatised 

product. It was difficult to characterise cycloadduct 357 due to complex NMR spectra and even 

VT-NMR was of limited use due to signs of degradation of 357 upon heating. At temperatures 

above 75 °C, cycloadduct 357 started to form dimethyl benzene-1,2-dicarboxylate 358 and 

hydrazine 43d (Figure 4.3). Complete conversion of cycloadduct 357 to the degradation 

products 358 and 43d was observed by 1H NMR when heated at 130 °C for 4 hours. 

 

Scheme 4.27 
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Figure 4.3 1H NMR of cycloadduct 357 after heating at 130 °C 



4- Photocyclisation: A New Route to Functionalised Four-Membered Rings 

132 
Thomas Britten – April 2019 

4.4 Conclusions 

In summary, bicyclic 1,2-diazetidine 10 has been successfully converted into a variety of 

different building blocks, which in some cases were unexpected. Initially, it had been hoped to 

convert bicyclic 1,2-diazetidines 10 into functionalised 1,2-diazetidines and cyclobutenes, 

however these results have shown that it is not possible to efficiently make cyclobutenes due 

to facile 4-π electrocyclic ring opening. Nevertheless, bicyclic 1,2-diazetidines 10 are a great 

way to access monocyclic functionalised 1,2-diazetidines (a conceptually new approach). A 

series of novel 1,2-diazetidine scaffolds equipped with acid, ester and alkene synthetic handles 

has been synthesised in good yields and further work needs to be completed on the use of 

these building blocks to access other new compounds. In addition, bicyclic 1,2-diazetidines 10 

were found to readily undergo rearrangement reactions to form ring-expanded bicycles (316 

and 317) under a variety of conditions (thermal, palladium-catalysed or acidic conditions), which 

was not anticipated at the outset of this work. It is thought that the tendency for 10 to rearrange 

complicated some double bond transformations (halogenation and hydroboration), whilst the 

double bond seemed remarkably unreactive towards other classical reactions (epoxidation, 

aziridination and cyclopropanation).  

It should be noted that even though formation of cyclobutenes has proven difficult, it has been 

possible to access some interesting new diene moieties. Attempted N-N cleavage of bicyclic 1,-

2-diazetidines has given some surprising results, with samarium(II) iodide giving the desired 

reduction of the N-N bond and other single electron donors giving cleavage of the C-N bond. In 

all cases, ring opening of the cyclobutene ring took place to give N-functionalised dienes, albeit 

in differing quantities. The isolable product from the samarium(II) reaction was proven to be 

Z/Z-diene 350, which had the opposite configuration to that of the expected E/Z-diene 352 from 

the ring opening of cis-diamino cyclobutene 351. Cyclobutene 351 was not observed and the 

other product from the reaction needs to be isolated and characterised, but it is likely that this 

should be the expected E/Z-diene product 352 from the ring opening of cyclobutene 351. The 

yields of the diene(s) for the samarium(II) reaction were low, but this may have been caused by 

combination of purification issues caused by the presence of large quantities of inorganic 

material and potential degradation of any products formed by Lewis acidic inorganic salts. The 

cyclobutene product 353 from C-N cleavage was stable at low temperatures and showed no 

sign of diene 354 formation, however when cyclobutene 353 was heated or stored at room 

temperature for prolonged periods of time the amount of diene 354 present started to increase. 

It is hoped that through immediate functionalisation of the double bond, cyclobutene 353 could 

be converted into a cyclobutane derivative to prevent ring opening to the diene 354 happening 

(e.g. cyclopropanation or epoxidation). Nonetheless, diene 354 is useful compound, which can 

be formed at higher temperatures and has been shown to undergo a Diels-Alder reaction to 

give an interesting cycloadduct 357. Finally, bicyclic 1,2-diazetidine 10 and the rearrangements 

products 316 and 317 all showed high levels of stability and could be handled without the need 

for significant safety precautions. 
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4- Photocyclisation: A New Route to Functionalised Four-Membered Rings 

134 
Thomas Britten – April 2019 

5.1 Conclusions 

The project set out to develop a scalable and efficient methodology for the 4-π photocyclisation 

of 1,2-dihydropyridazines 9 to access bicyclic 1,2-diazetidines 10, in which a variety of 

functionalised 1,2-diazetidines and cyclobutenes could be accessed.  

5.1.1 Synthesis and Reactions of 1,2-Dihydropyridazines 
The synthesis of 1,2-dihydropyridazines 9 proved to be non-trivial, and attempts to repeat or 

modify existing literature procedures (allylic bromination-elimination, bromination-elimination or 

allylic oxidation reactions of tetrahydropyridazines 154 and the reaction of azo compounds with 

pyrones 175) were unsuccessful.  More specifically, the replacement of carbon tetrachloride in 

the allylic bromination reactions did not work well, and resulted in poor conversions of 

tetrahydropyridazines, low yields of 1,2-dihydropyridazines 9 (after the elimination step) and the 

formation of complex mixtures. As a result, a novel synthesis of 1,2-dihydropyridazines 9 was 

developed and executed on multigram scales through a two-step Diels-Alder and palladium-

catalysed elimination reaction sequence in high yields (8 examples, up to 90%) starting from 

acetoxy-diene 202a and either the commercially available or in situ formed azo compounds 8. 

The palladium-catalysed elimination reaction was completed using low catalyst loadings (1 

mol%) of a palladium(0) precursor, which lowered the financial and environmental impacts of 

the process. It should be noted that the attempted synthesis of a methyl substituted-1,2-

dihydropyridazines through the current palladium reaction exclusively formed an exocyclic 

double bond (216) and therefore, this method may not be suitable for the synthesis of 

substituted 1,2-dihydropyridazines. Instead, it is hoped that the use of enone 218 (derived from 

a Diels-Alder reaction between an azo compound and Danishefsky’s diene) could enable the 

synthesis of a range of substituted 1,2-dihydropyridazines (vide infra).  

Attempts to validate 1,2-dihydropyridazines 9 as useful synthetic intermediates has proven 

more difficult that was initially expected. To this end, 1,2-dihydropyridazines undergo 

cyclopropanation reactions to form a tricycle 241 in which two cyclopropane rings were installed 

trans to one another. Treatment of 1,2-dihydropyridazines 9 under typical dihydroxylation (with 

osmium tetroxide) or epoxidation conditions (m-CPBA) has given unexpected diol products 

(238, 242 and 243), however these results have provided evidence that the lone pair of 

electrons on the nitrogen atoms can be involved in reactions and influence the products that 

are formed. Therefore, there is a high possibility that the involvement of the nitrogen lone pair 

of electrons can lead to degradation pathways and the formation of complex mixtures (as seen 

with hydroboration, halogenation and halohydration reactions). The characterisation of 1,2-

dihydropyridazines 9 and related products by NMR spectroscopy was not trivial, due to the slow 

interconversion (on the NMR timescale) of two main conformations, therefore it was crucial to 

utilise VT-NMR and obtain X-ray crystal structures. 1,2-Dihydropyridazines 9 have also been 

shown to undergo a thermal rearrangement reaction to give 2-aminopyrroles 210 in low-

excellent yields (28-90%), though these pyrroles are relatively unstable, and must either be 

used immediately or stored under inert atmosphere in the freezer. The formation of 2-
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aminopyrroles 210 is tentatively proposed to go via an initial 6-π electrocyclic ring opening of 

1,2-dihydropyridazines 9, followed by a stepwise mechanism. Investigation into the use of 1,2-

dihydropyridazines 9 in Diels-Alder reactions were unsuccessful, but resulted in the discovery 

that 2-aminopyrroles undergo Diels-Alder reactions with alkynes and benzyne derivatives to 

give a series of para-substituted phenylenediamine derivatives.  

1,2-Dihydropyridazines 9 and related compounds (21 compounds) have been analysed using 

the lead-likeness and molecular analysis (LLAMA) software developed by Marsden, Nelson and 

co-workers (Figure 5.1).27 All of the compounds fell within Lipinski’s “rule of five”, however 

systems that contained larger protecting groups (Boc or carboxybenzyl) or multiple aromatic 

rings were often more lipophilic (larger logP value) and did not fall within the smaller lead-like 

space guidelines outlined by the software (Figure 1.3). A couple of 1,2-dihydropyridazines 9a,c 

were borderline lead-like (systems with methyl or isopropyl carbamate groups), whereas three 

other 1,2-dihydropyrdazines 9b,f,h and the diols (from dihydroxylation and epoxidations 

reactions) fell nicely within lead-like space. Shape analysis of these compounds put a large 

proportion as either flat or in-between flat and rod-like. However, it is highly likely that the 

software did not factor in the twisted conformation of 1,2-dihydropyridazines 9, thus making it 

seem as if they resemble more disc-like structures. Interestingly, diol 238 (from the treatment 

of 1,2-dihydropyridazines 9c with m-CPBA) and pyrrole 235 (from the reaction of 2-

aminopyrrole 210c with azo compound 8d) were judged to be the most spherical in this analysis.   

 

Figure 5.1 Like-likeness (top left) and shape analysis (top right) of 1,2-dihydropyridazines and products 
from derivatisation reactions; Like-likeness penalty = -1≤ logP≤3, 14≤ heavy atoms ≤26 e.g. molecular 

weight 200-350, remove reactive functional groups, decrease the amount sp2 character e.g. 1 or 2 
aromatic rings 
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5.1.2 Synthesis and Reactions of Bicyclic 1,2-Diazetidines  
The key 4-π photocyclisation step was investigated using commercially available batch 

(Rayonet-RPR-100) and flow photoreactors (Vapourtec E-series flow system with UV-150 

photoreactor). In the batch photoreactor, irradiation of 1,2-dihydropyridazines 9 near the 

absorption maximum, λmax (300 nm) formed bicyclic 1,2-diazetidines 10 in moderate yields (42-

56%), however significant quantities of 2-aminopyrrole 210 were also formed (9-30%). 

Irradiation of 1,2-dihydropyridazines 9 at shorter wavelengths or in the presence of a 

photosensitiser (at 419 nm) resulted in low yields or significant degradation. Irradiation at 350 

nm (near the longer wavelength edge of the 1,2-dihydropyridazine absorption peak) has 

resulted in a significantly improved yield of and selectivity for bicyclic 1,2-diazetidines 10 (seven 

examples, up to 83% yield). The selectivity increase is thought to have stemmed from the 

selective irradiation of a weak n-π* band amongst the larger π-π* band, which led to the greater 

preference for the 4-π photocyclisation pathway over the 6-π electrocyclic ring opening. 

Currently, attempts to prove the presence of a weaker n-π* band through UV-Vis studies have 

not provided conclusive evidence. The 4-π photocyclisation was successfully scaled-up for one 

example starting from nearly nine grams of 1,2-dihydropyridazine 9 and gave only a marginal 

decrease in yield (72%) in comparison to small scale reactions. Investigation of the 4-π 

photocyclisation using the flow photoreactor has not provided the scale-up solutions that were 

anticipated. Significant degradation of both starting materials and products was observed, likely 

caused by the chosen filter letting through light below 300 nm. Attempts to use a filter with a 

narrower wavelength band (310-390 nm) still gave degradation and poor conversions of 1,2-

dihydropyridazines 9 (4-48%), whilst the use of a 365 nm LED light source gave even poorer 

conversions (1-7%). At present, there is no commercially available 350 nm lamp for the 

Vapourtec flow system, therefore it was not possible to directly compare between the batch and 

flow photoreactors. 

At the outset of the project, the aim was to convert bicyclic 1,2-diazetidines 10 into functionalised 

1,2-diazetidines and cyclobutenes, however in the process some other interesting scaffolds 

have been accessed. To this end, bicyclic 1,2-diazetidines 10 have been successfully converted 

into monocyclic functionalised 1,2-diazetidines in good yields (up to 85%), which have functional 

handles such as acid, ester or alkene groups (through oxidative cleavage with ruthenium 

tetroxide or metathesis sequences). In addition, bicyclic 1,2-diazetidines 10 readily underwent 

rearrangement reactions under thermal, acidic or palladium-catalysed conditions to give two 

new bicycles in moderate to good yields (up to 92%), in which the N-N junction to the 

cyclobutene has been replaced with an N-O linkage. Degraded bicycle 317d turned out to be a 

lot more stable than was first expected, and did not react under basic, reductive conditions or 

in the presence of a palladium(0) catalyst. The rearrangement reactions of bicyclic 1,2-

diazetidines 10 were an issue with some double bond transformations (halogenation), whereas 

the double bond was surprisingly inert under typical cyclopropanation, epoxidation or 

aziridination conditions. In the case of dichlorocarbene, insertion of dichlorocarbene into the N-

N bond was exclusively observed instead of cyclopropanation. Bicyclic 1,2-diazetidines 10 are 
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good precursors to access N-functionalised dienes, but not cyclobutenes, due to the tendency 

to undergo a 4-π electrocyclic ring opening once the bicyclic array has been disrupted. Attempts 

to cleave the N-N bond with samarium iodide were successful, however the cyclobutene was 

not observed and only Z/Z-diene 350 was isolated in low yields (24%), presumably from 4-π 

electrocyclic ring opening to give E/Z-diene 352, followed by E/Z isomerisation. In contrast, 

other single electron donors unexpectedly gave cleavage of the C-N bond to give a hydrazine-

cyclobutene 353 that could be isolated as a mixture with E-diene 354 in good yields.  

The bicyclic 1,2-diazetidines 10 and the products formed from the subsequent transformation 

reactions (20 compounds) have also been analysed using the LLAMA software (Figure 5.2). All 

apart from five scaffolds fell within lead-like space, which were either small, polar molecules 

(bicyclic 1,2-diazetidine with methyl carbamate groups and rearranged bicycle with no 

protecting groups) or larger lipophilic molecules (diester 337, 1,5-diene 340, cycloadduct 357). 

Disappointingly, the scaffolds were mostly situated closest to the disc (flat) area of the graph. 

The crystal structure of bicyclic 1,2-diazetidines suggests that they have a more 3-D shape, 

therefore it is not known whether the software has taken into account an accurate representation 

of the structure. Nevertheless, this data (in combination with Figure 1) gives a good idea of the 

properties of the synthesised compounds and can help to guide future endeavours.  

 

Figure 5.2 Like-likeness (top left) and shape analysis (top right) of bicyclic 1,2-diazetidines and products 
from derivatisation reactions 
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5.2 Future Work 

The investigation of the 4-π photocyclisation of substituted 1,2-dihydropyridazines 359 is crucial 

in order to determine whether the improved yields of and selectivity for bicyclic 1,2-diazetidines 

is still observed (Figure 5.3). A variety of different substituents (electron donating, withdrawing, 

neutral, aromatic) need to be studied to build up a solid understanding of what effect each 

functional group has. Furthermore, it needs to be investigated whether the preference for 4-π 

photocyclisation pathway can be applied to the substituted 1,2-dihydropyridazines that favoured 

the 6-π electrocyclic ring opening pathway, through irradiation at a wavelength situated on the 

longer wavelength edge of the absorption peak of 1,2-dihydropyridazines (compounds in Figure 

5.3). 

 

Figure 5.3 

Starting from enone 218, it should be possible to access a variety of substituted 1,2-

dihydropyridazines (Scheme 5.1). Firstly, deprotonation of the acidic hydrogen in the α-position 

and trapping of the enolate with an electrophile would provide access to O-substituted 1,2-

dihydropyridazines 360. A similar strategy has been successful on a similar enone to 170 for 

the installation of a silyl group using triethylamine and tert-butyldimethylsilyl 

trifluoromethanesulfonate (TBSOTf).309 Formation of a triflate would provide a handle for 

palladium-catalysed cross coupling reactions to install a variety of aromatic, heteroaromatic, 

alkene or alkyne groups. Under basic conditions and in the presence of a suitable electrophile, 

it should be possible to form a new C-C bond through addition of the electrophile to the carbon 

in-between the ketone and the nitrogen to form 361. Enone 218 should also react with Grignard 

reagents to form tertiary alcohol 362, which could then be dehydrated to form substituted 1,2-

dihydropyridazines 359. Careful choice of Grignard reagent is essential to prevent competition 

between endo- and exocyclic double bond formation (e.g. if R = Me or Et). Formation of bromide 
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363 could be used in either of three reactions described above and provide another handle for 

palladium cross coupling reactions. Bovonsombat and co-workers have utilised N-

bromosuccinimide and pyridine-N-oxide for the α-bromination of enones.310 

 

Scheme 5.1 

The successful synthesis of substituted 1,2-dihydropyridazines would make them suitable 

precursors to pyridazines with novel substitution patterns (Scheme 5.2). In addition, the diols 

238 and 243 (from the reactions of 1,2-dihydropyridazines under dihydroxylation and 

epoxidation conditions) could also be used to access pyridazines bearing two alcohol groups. 

 

Scheme 5.2 

With regards to the bicyclic 1,2-diazetidine transformation reactions, a simple next step would 

be to repeat the oxidative cleavage (to make diacid 332f,g) and ring opening cross metathesis 

(to make diene 364) on the orthogonally protected bicyclic 1,2-diazetidines 10f,g (Scheme 5.3). 

If successful, this would provide unsymmetrical fragments that could be selectivity deprotected 

to give further building blocks. Moreover, the samarium iodide N-N cleavage of 10d needs to 

be repeated to isolate and characterise the second product. Also, it would be useful to repeat 

the samarium iodide N-N reduction reaction on a different substrate (without Boc groups) to 

determine whether any degradation is occurring from Lewis acidic by-products from the 

reaction.  

 

Scheme 5.3 
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If diacid 332 can be converted into anhydride 336, a wide range of novel 1,2-diazetidines 

fragments could be accessed (Scheme 5.4). Baran and co-workers have reported the synthesis 

of anhydrides under anhydrous conditions using trifluoroacetic anhydride (TFAA).311 Thus, 

treatment with methanol, an amine or organometallic reagents would form unsymmetrical 1,2-

diazetidines (338, 365 and 366), which possess functional handles for further derivatisation. It 

should also be possible to carry out an esterification or reduction to access 1,2-diazetidines 

bearing ester and alcohol functional groups (337 and 339).  

 

Scheme 5.4 

The treatment of bicyclic 1,2-diazetidines 10d with p-toluenesulfonic acid resulted in the 

formation of an unexpected diene product 320 in small quantities (Section 4.3, Scheme 4.10). 

Currently, it is not known whether bicyclic 1,2-diazetidines 10d or rearranged bicycles 316d are 

the precursor to diene 320 and it is hoped that through optimisation the selectivity for 320 could 

be improved. Inspired by the formation of this diene, treatment of rearranged bicycle 316d with 

hard and soft nucleophiles is essential to see which electrophilic site is attacked: the imine or 

the double bond (Scheme 5.5). If the use of a soft nucleophile results in the preferential attack 

at the double bond, it should enable the formation of hydrazine substituted cyclobutenes (and 

dienes) and allow the effect that different groups would have on the stability of the hydrazine 

cyclobutenes to be studied (R = alkyl, aryl, vinyl or ethynyl). 
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Scheme 5.5 

Finally, the use bicyclic 1,2-diazetidines as precursors to cyclobutadiene needs to be fully 

investigated (Scheme 5.6). Literature examples have shown that it is possible to deprotect 

bicyclic 1,2-diazetidines 10a,b under mild basic conditions, followed by subsequent oxidation 

to form an azo compound that undergoes a retro-Diels Alder reaction to form cyclobutadiene 

301.162,294 It would provide a powerful new route to form cyclobutadiene, which could be used 

to access other bicyclic systems 369 through trapping with dienophiles such as imines, nitroso 

or isocyanates. As a result, this would enable the synthesis of a wide variety of functionalised 

four membered rings.  

 

Scheme 5.6 
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Chapter 6: Experimental  
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6.1 General Information 

Reagents were purchased in the highest purity available from Acros Organics, Alfa Aesar, 

Fluorochem, Sigma Aldrich and TCI. Anhydrous solvents used in reactions were purchased 

from Acros Organics equipped with AcroSealTM and all other solvents used were of reagent 

grade. Triphenylphosphine was recrystallized from hexane prior to use. Brine refers to a 

saturated aqueous solution of sodium chloride, and water is distilled water.  Reaction vessels 

were oven dried and cooled under an argon atmosphere prior to use and experiments were 

performed under argon gas. Palladium reactions were performed in Biotage 5 or 20 mL 

microwave vials and sealed with a cap. Reactions were monitored by thin-layer chromatography 

(TLC) and/or 1H NMR spectroscopic analysis. Photochemical reactions were performed using 

a Rayonet RPR-100 Photochemical batch reactor or a Vapourtec E-series flow system 

equipped with the UV-150 photochemical reactor. Analytical TLC was carried out using Merck 

pre-coated aluminum-backed TLC silica gel plates (silica gel 60 F254) and the plates were 

visualised by UV light (254 nm) and by staining with either potassium permanganate or aqueous 

acidic ammonium molybdate(IV). Normal phase flash column chromatography on silica gel was 

carried out using silica gel from VWR (40-63 microns).  

1H NMR spectroscopic data were obtained on either 300 or 400 MHz instruments and 13C{1H} 

NMR data were obtained at 100 MHz (Bruker Ultrashield 400 Plus) at 298 K unless otherwise 

specified. The chemical shifts are reported in parts per million () relative to residual CHCl3 (H 

= 7.26 ppm) and CDCl3 (C = 77.16 ppm, central line), residual d5-DMSO (H = 2.50ppm) and 

d6-DMSO (C = 39.52 ppm, central line). The assignment of the signals in the 1H and 13C NMR 

spectra was achieved through 2D-NMR techniques: COSY, HSQC and HMBC. Coupling 

constants (J) are quoted in Hertz. Infrared spectra were recorded on an Agilent Technologies 

Cary 630 FTIR spectrometer. Melting points were performed on a Sanyo Gallenkamp capillary 

melting point apparatus and are uncorrected. High resolution mass spectrometry data were 

recorded using electron spray ionization (ESI) or atmospheric pressure chemical ionization 

(APCI) on a Shimadzu LCMS-IT-TOF mass spectrometer. UV-Vis spectra were recorded using 

an Agilent Cary 60 UV-Vis spec spectrophotometer. For X-ray crystallography a suitable crystal 

was selected and mounted on a Mitegen loop using Paratone-N oil on a SuperNova, Dual, Cu 

at zero, AtlasS2 diffractometer. The crystal was kept at 100.2(5) K during data collection. Using 

Olex2,312 the structure was solved with the ShelXT structure solution program using direct 

methods and refined with the ShelXL refinement package using least squares 

minimisation.313,314 Figures and tables were prepared using Olex2 software.312 

Bicycles 10d, 316d and 317d were analysed by AstraZeneca (Macclesfield, UK) for thermal 

stability analysis using a Mettler differential scanning calorimeter (DSC). The sample crucible 

together with a reference crucible was heated to 500°C at 5K /minute. Any heat generation 

(exotherm) or heat absorption (endotherm) was observed as a deviation from the baseline. Any 

exothermic event(s) that exceeded 800 J/g indicated potential explosive properties. 
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6.2 General Procedures 

General Procedure A: Synthesis of 1,2,3,6-tetrahydropyridazines from azo compounds and 

butadiene 

 

A 15% (w/v) solution of butadiene in hexane (1.0-3.0 eq) was added in one portion to a stirred 

solution of the desired azo compound (1.0 eq) in CH2Cl2 (0.2-0.6 M) in a sealed flask at room 

temperature. The resulting mixture was stirred either at room temperature or 40 °C for a specific 

length of time depending on the azo compound, then evaporated under reduced pressure to 

give the crude product. The crude product was purified by flash column chromatography using 

an appropriate solvent system, as described for each individual procedure. 

 

General procedure B: Synthesis of O-substituted dienes at low temperature 

 

Crotonaldehyde (1.0 eq) was added dropwise to a stirred solution of potassium tert-butoxide 

(1.1 eq) in THF (1.2-1.3 M) at –78 ˚C under argon and stirred for 10 minutes. Acid chloride (1.1 

eq) was added dropwise over 10 minutes and stirred at –78 ˚C for 30 minutes. The reaction 

was quenched with a saturated aqueous solution of NaHCO3 (25 mL) and extracted with Et2O 

(4 x 30 mL). The combined organic layers were washed with a saturated aqueous solution of 

NaHCO3 (3 x 50 mL), brine (3 x 10 mL), dried (MgSO4) and evaporated under reduced pressure 

to give the crude product. The crude product was purified by vacuum distillation. 

 

General Procedure C: Diels-Alder reaction of azo compounds with O-substituted dienes 

 

The desired O-substituted diene (1.2-1.6 eq) was added in one portion to a stirred solution of 

the desired azo compound in methyl tert-butyl ether (1-3 M) at room temperature under argon. 

The resulting mixture was stirred either at room temperature or heated at reflux for a specific 

length of time depending on the azo compound, then evaporated under reduced pressure to 

give the crude product. The crude product was purified by flash column chromatography using 

an appropriate solvent system or by vacuum distillation, as described for each individual 

procedure. 
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General procedure D: Synthesis of hydrazine-1,2-dicarboxylates from carbazates 

 

Pyridine (3.0-6.0 eq) was added dropwise to a stirred solution of carbazate (1.0 eq) and the 

desired chloroformate (1.1-1.2 eq) in THF or 2-MeTHF (0.1-1M) at 0 ˚C under argon. The 

resulting suspension was stirred at 0 ˚C for 15 minutes and then at room temperature for 1.5 

hours. A 10% (v/v) aqueous solution of HCl (10 mL) was added and the mixture was extracted 

with CH2Cl2 (5 x 20 mL). The combined organic layers were washed with brine (10 mL), dried 

(MgSO4) and evaporated under reduced pressure to give the crude product. If purification was 

required, the crude product was purified by flash column chromatography using an appropriate 

solvent system, as described for each individual procedure. 

 

General Procedure E: Preparation of Fétizon's reagent [AgCO3/Celite]258  

Celite (5.00 g) was washed with MeOH (50 mL), containing 10% concentrated HCl, water (100 

mL) and dried under vacuum. Celite (1.50 g) was added to a stirred solution of AgNO3 (1.70 g, 

10 mmol, 1.0 eq), in water (10 mL) at room temperature. A solution of sodium carbonate (0.57 

g, 5.38 mmol, 0.5 eq) in water (5.5 mL) was added dropwise, then stirred for 25 minutes. The 

suspension was filtered and dried under vacuum to give Fétizon's reagent [AgCO3/Celite] (2.82 

g, the amount of Ag2CO3 per mass of Ag2CO3/Celite was not calculated, reported as 1 mmol 

per 0.57 g). 

 

General procedure F: Synthesis of 1,2-dihydropyridazines starting from commercially 

available azo compounds 

 

1-Acetoxy-1,3-butadiene (1.5 eq) was added in one portion to a solution of the azo compound 

(1.0 eq) in CH2Cl2 (2.5-5 M) and stirred at either room temperature or 40 °C for a specific length 

of time depending on the azo compound. The reaction mixture was evaporated under reduced 

pressure and the crude product was passed through a short silica gel column using an 

appropriate solvent system, as described for each individual procedure, to give the 

cycloadducts that contained minor impurities.  

The cycloadducts were dried in a desiccator, dissolved in 1,4-dioxane (0.5 M) and added to an 

oven-dried vial under argon that contained Pd(OAc)2 (1.0 mol%), PPh3 (4.0 mol%) and 

triethylamine (2.0 eq)  The vial was sealed, then heated at reflux for 1 hour. The reaction mixture 

was cooled to room temperature and evaporated under reduced pressure to give the crude 

product. The crude product was purified by flash column chromatography using an appropriate 

solvent system, as described for each individual procedure.  
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General procedure G: Synthesis of 1,2-dihydropyridazines starting from hydrazine-1,2-

dicarboxylates  

 

1-Acetoxy-1,3-butadiene (1.5 eq) was added in one portion to a suspension of hydrazine-1,2-

dicarboxylates (1.0 eq) and iodobenzene diacetate (1.0 eq) in CH2Cl2 (0.6, 1.0 or 2.5  M) and 

stirred at either room temperature or 40 °C for a specific length of time depending on the azo 

compound. The reaction mixture was evaporated under reduced pressure and the crude 

product was passed through a short silica gel column using an appropriate solvent system, as 

described for each individual procedure, to give the cycloadducts that contained minor 

impurities.  

The cycloadducts were dried in a desiccator, dissolved in 1,4-dioxane (0.5 M) and added to an 

oven-dried vial under argon that contained Pd(OAc)2 (1.0 mol%), PPh3 (4.0 mol%) and 

triethylamine (2.0 eq)  The vial was sealed, then heated at reflux for 1 hour. The reaction mixture 

was cooled to room temperature and evaporated under reduced pressure to give the crude 

product. The crude product was purified by flash column chromatography using an appropriate 

solvent system, as described for each individual procedure.  

 

General Procedure H: Diels-Alder reaction of azo compounds with Danishefsky’s diene 

 

Danishefsky’s diene (2.4 eq) was added in one portion to a stirred solution of the desired azo 

compound (1.0 eq) in CH2Cl2 (0.4 M) and heated at reflux for 20 hours. The reaction was cooled 

to room temperature, then a 1M aqueous solution of HCl (1 mL) was added and the mixture 

stirred for at room temperature for 1 hour. The reaction mixture was quenched with a saturated 

aqueous solution of NaHCO3 (1 mL), the organic layer was separated and the aqueous phase 

was extracted with CH2Cl2 (5 x 5 mL). The combined organic layers were dried (MgSO4) and 

the solvent was evaporated under reduced pressure to give the crude product. The crude 

product was purified by flash column chromatography using an appropriate solvent system, as 

described for each individual procedure.  

 

General Procedure I: Synthesis of 2-aminopyrrole from 1,2-dihydropyridazines 

 

A solution of 1,2-dihydropyridazine  (1.0 eq) in o-xylene (0.4-0.5 M) was heated at reflux for 5 

hours. The reaction mixture was purified directly by flash column chromatography using an 

appropriate solvent system, as described for each individual procedure.  
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Note: 2-Aminopyrroles must be stored in the freezer under an inert atmosphere in order to 

prevent degradation. 

 

General Procedure J: Diels-Alder reaction of 2-aminopyrroles with aryne precursors 

 

CsF (3.0 eq) was added in one portion to a stirred solution of 2-aminopyrrole  (2.0 eq) and aryne 

precursor (1.0 eq) in MeCN (0.1 M) at room temperature under argon, then heated at 40 °C for 

1.5-2.5 hours. The reaction mixture was cooled to room temperature, filtered through Celite and 

the solvent removed under reduced pressure to give the crude product. The crude product was 

purified by flash column chromatography using an appropriate solvent system, as described for 

each individual procedure. 

 

General Procedure K: 4π-Photocyclisation of 1,2-dihydropyridazines 

 

A solution of 1,2-dihydropyridazine in either MeCN or PhMe (0.05 M/ 50 mM) was purged with 

argon for 15 minutes, then irradiated at room temperature (λ = 350 nm) until complete 

consumption of starting material (24-44 hours). The solvent was evaporated under reduced 

pressure to give the crude product. The crude product was purified by flash column 

chromatography using an appropriate solvent system, as described for each individual 

procedure. 

 

General Procedure L: Thermal rearrangement of bicyclic 1,2-diazetidines 

 

A solution of bicyclic 1,2-diazetidine in PhMe (0.1 M) was heated at reflux until complete 

consumption of starting material (4-24 hours). The solvent was evaporated under reduced 

pressure to give the crude product. The crude product was purified by flash column 

chromatography using an appropriate solvent system, as described for each individual 

procedure. 
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6.3 Synthetic Procedures 

 

Diethyl-1,2,3,6-tetrahydropyridazine-1,2-dicarboxylate 154b36 

 

Using general procedure A, a 15% (w/v) solution of butadiene in hexane (7 mL, 19.1 mmol, 3.0 

eq) and diethyl azodicarboxylate 8b (1 mL, 6.35 mmol, 1.0 eq) in CH2Cl2 (10 mL) was heated 

at reflux for 19 hours. This gave the cycloadduct 154b (1.38 g, 6.08 mmol, 96%) as a colourless 

liquid, without further purification.  

Rf (petroleum ether-EtOAc, 2:1) = 0.33 

1H NMR (400 MHz, CDCl3);  5.83-5.74 (br m, 2H, H2 and H2'), 4.46–4.42 (br m, 2H, H1A and 

H1’A), 4.21-4.20 (br m, 4H, H4 and H4’), 3.80 (br s, 2H, H1B and H1’B), 1.26 (t, J = 7.0 Hz, 6H, 

H5 and H5’). 

13C NMR (100 MHz, CDCl3);  155.6 (C3), 123.7 (C2), 62.4 (C4), 43.7 (C1), 14.6 (C5). 

FTIR (ATR)  (cm-1): 2982, 1705 (C=O). 

HRMS (ESI): m/z calculated for: C10H16N2O4 [M+Na]+ 251.1002, found 251.0991. 

 

Diisopropyl-1,2,3,6-tetrahydropyridazine-1,2-dicarboxylate 154c 

 

Using general procedure A, a 15% (w/v) solution of butadiene in hexane (8 mL, 15.2 mmol, 3.0 

eq) and diisopropyl azodicarboxylate 8c (1.0 mL, 5.08 mmol, 1.0 eq) in CH2Cl2 (2 mL) was 

heated at reflux for 24 hours. Purification by flash column chromatography on silica gel (eluent: 

hexane-EtOAc, 7:1→4:1) gave the cycloadduct 154c (1.26 g, 4.93 mmol, 97%) as a colourless 

oil. 

Rf (hexane-EtOAc, 4:1) = 0.25 

1H NMR (400 MHz, CDCl3);  5.79-5.72 (br m, 2H, H2 and H2'), 4.93 (sept, J = 6.2 Hz, 2H, H4 

and H4’) 4.43–4.25 (br m, 2H, H1A and H1’A), 3.92–3.69 (br m, 2H, H1B and H1’B), 1.22 (d, J = 

6.2 Hz, 12H, H5 and H5’). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes annotated by an 

asterisk);  155.3 (C3), 123.8 (C2), 69.9 (C4), 44.6* (C1), 43.7 (C1), 22.2 (C5), 22.1 (C5). 
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1H NMR (400 MHz, 328 K, CDCl3);  5.79-5.72 (m, 2H, H2 and H2'), 4.94 (sept, J = 6.2 Hz, 2H, 

H4 and H4’) 4.47–4.26 (br m, 2H, H1A and H1’A), 3.88–3.64 (br m, 2H, H1B and H1’B), 1.24-

1.22 (m, 12H, H5 and H5’). 

13C NMR (100 MHz, 328 K, CDCl3);  155.3 (C3), 124.0 (C2), 70.0 (C4), 43.9 (C1), 22.2 (C5), 

22.1 (C5). 

FTIR (ATR)  (cm-1): 2980, 1703 (C=O). 

HRMS (ESI): m/z calculated for: C12H20N2O4 [M+H]+ 257.1496 and [M+Na]+ 279.1315, found 

257.1495 and 279.1318 respectively. 

Di-tert-butyl-1,2,3,6-tetrahydropyridazine-1,2-dicarboxylate 154d 

 

Using general procedure A, a 15% (w/v) solution of butadiene in hexane (5 mL, 13.9 mmol, 3.0 

eq) and di-tert-butyl azodicarboxylate 8d (1.07 g, 4.64 mmol, 1.0 eq) in CH2Cl2 (10 mL) was 

heated at reflux for three days. Purification by flash column chromatography on silica gel (eluent: 

petroleum ether-EtOAc, 20:1→10:1) gave the cycloadduct 154d (1.27 g, 4.48 mmol, 97%) as a 

white powder. 

Rf (petroleum ether-EtOAc, 5:1) = 0.33 

mp = 66-68 ˚C 

1H NMR (400 MHz, CDCl3);  5.81-5.71 (br m, 2H, H2 and H2'), 4.40–4.20 (m, 2H, H1A and 

H1’A), 3.77–3.66 (m, 2H, H1B and H1’B), 1.46 (s, 18H, H5 and H5’). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  154.7 (C3), 124.1 (C2), 123.5* (C2), 81.1 (C4), 44.9* (C1), 43.3 (C1), 28.4 (C5). 

FTIR (ATR)  (cm-1): 2981, 2894, 1693 (C=O). 

HRMS (ESI): m/z calculated for: C14H24N2O4 [M + K]+ 323.1368 and [M + Na]+ 307.1628, found 

323.1349 and 307.1624 respectively.  

 

(E/Z)- 1-Acetoxy-1,3-butadiene 202a237,238 

 

Method A 

Using general procedure B, crotonaldehyde 204 (5.0 mL, 60.4 mmol, 1.0 eq) was added to 

potassium tert-butoxide (7.54 g, 67.2 mmol, 1.1 eq) in THF (50 mL). Acetyl chloride (4.7 mL, 

66.4 mmol, 1.1 eq) was added and stirred at –78 ˚C for 20 minutes. The crude product was 

purified by vacuum distillation (30 mbar, 80 ˚C) to give the diene 202a (2.58 g, 23.0 mmol, 38%, 

E/Z or Z/E 50:1.0) as a colourless liquid. 
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Method B 

4-Dimethylaminopyridine (4.43 g, 0.04 mol, 0.1 eq), triethylamine (106 mL, 0.76 mol, 2.1 eq) 

and acetic anhydride (103 mL, 1.09 mol, 3.0 eq) were added to crotonaldehyde 204 (30 mL, 

0.36 mol, 1.0 eq) at room temperature under argon. The solution was stirred for 4 days at room 

temperature, then diluted with Et2O (200 mL), poured onto ice water (1.0 L) and stirred for 2 

hours. The organic layer was separated and washed with a saturated aqueous solution of 

NaHCO3 (5 x 200 mL), dried (MgSO4) and evaporated under reduced pressure to give the crude 

product. Purification by flash column chromatography on silica gel (eluent: pentane-Et2O, 98:2) 

gave the diene 202a (25.0 g, 0.22 mol, 62 %, E/Z or Z/E  8.0:1.0) as a colourless liquid.  

The spectroscopic data are consistent with those reported previously.237,238  

Major Isomer: 

Rf (hexane-EtOAc, 2:1) = 0.58 

1H NMR (400 MHz, CDCl3);  7.39 (dd, J = 12.4, 0.6 Hz, 1H, H1), 6.31–6.22 (m, 1H, H3), 6.06–

6.00 (m, 1H, H2), 5.23–5.18 (m, 1H, H4A), 5.10–5.07 (m, 1H, H4B), 2.14 (s, 3H, H6). 

13C NMR (100 MHz, CDCl3);  167.9 (C5), 138.8 (C1), 131.8 (C3), 117.4 (C4), 116.2 (C2), 20.8 

(C6). 

 

(E/Z)-Buta-1,3-dien-1-yl benzoate 202b315 

 

Method A 

Using general procedure B, crotonaldehyde 204 (5.0 mL, 60.4 mmol, 1.0 eq) was added to 

potassium tert-butoxide (7.47 g, 66.5 mmol, 1.1 eq) in THF (40 mL). A solution of benzoyl 

chloride (8.4 mL, 72.4 mmol, 1.2 eq) in THF (10 mL) was added and stirred at –78 ˚C for 30 

minutes. The crude product was purified by vacuum distillation (0.1 mbar, 90-110 ˚C) to give 

diene 202b (7.07 g, 40.6 mmol, 67%, E/Z or Z/E 20:1.0) as a colourless liquid. 

Method B 

4-Dimethylaminopyridine (600 mg, 4.91 mmol, 0.2 eq), triethylamine (7 mL, 50.2 mmol, 2.0 eq) 

and benzoyl chloride (3.1 mL, 26.5 mmol, 1.1 eq) were added to crotonaldehyde 204 (2.1 mL, 

25.4 mmol, 1.0 eq) at room temperature under argon. The solution was stirred for 24 hours at 

room temperature, then diluted with Et2O (100 mL) and washed with saturated aqueous solution 

of NaHCO3 (3 x 30 mL), dried (MgSO4) and evaporated under reduced pressure to give the 

crude product. Purification by flash column chromatography on silica gel (eluent: petroleum 

ether-Et2O, 60:1 → 40:1) gave diene 202b (992 mg, 5.69 mmol, 22%, E/Z or Z/E 3.0:1.0) as a 

colourless liquid. 

Rf (petroleum ether- EtOAc, 5:1) = 0.53  
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1H NMR (400 MHz, CDCl3);  8.15–8.09 (m, 2H, H7), 7.66 (dd, J = 12.2, 0.5 Hz, 1H, H1), 7.64–

7.58 (m, 1H, H9), 7.51–7.45 (m, 2H, H8), 6.42–6.32 (m, 1H, H3), 6.27–6.21 (m, 1H, H2), 5.30–

5.25 (m, 1H, H4A), 5.15–5.12 (m, 1H, H4B). 

13C NMR (100 MHz, CDCl3);  163.6 (C5), 139.1 (C1), 133.8 (C9), 131.9 (C3), 130.1 (C7), 128.9 

(C6), 128.7 (C8), 117.5 (C4), 116.8 (C2). 

FTIR (ATR)  (cm-1): 3087, 1731 (C=O), 1656, 1601. 

HRMS (ESI): m/z calculated for: C11H10O2 [M-H]- 173.0608, found 173.0606. 

 

(E/Z)-Buta-1,3-dien-1-yl pivalate 202c316 

 

Using general procedure B, crotonaldehyde 204 (2.5 mL, 30.2 mmol, 1.0 eq) was added to 

potassium tert-butoxide (3.72 g, 33.2 mmol, 1.1 eq) in THF (18 mL). A solution of pivaloyl 

chloride (4.5 mL, 36.5 mmol, 1.2 eq) in THF (7 mL) was added and the resulting mixture was 

stirred at –78 ˚C for 30 minutes. The crude product was purified by vacuum distillation (0.1 

mbar, 40 ˚C) to give the diene 202c (2.53 g, 16.4 mmol, 54%, E/Z or Z/E 50:1.0) as a colourless 

liquid. 

Rf (hexane-EtOAc, 2:1) = 0.71 

1H NMR (400 MHz, CDCl3);  7.39 (d, J = 12.3 Hz, 1H, H1), 6.33-6.24 (m, 1H, H3), 6.09-6.03 

(m, 1H, H2), 5.22-5.18 (m, 1H, H4A), 5.09-5.06 (m, 1H, H4B), 1.24 (s, 9H, H7).  

13C NMR (100 MHz, CDCl3)  175.5 (C5), 139.3 (C1), 132.0 (C3), 117.0 (C4), 116.0 (C2), 38.9 

(C6), 27.1 (C7). 

FTIR (ATR)  (cm-1): 2976, 1743 (C=O). 

HRMS (ESI): No mass peak found.  

 

(E/Z)-Buta-1,3-dien-1-yl ethyl carbonate 202d317 

 

Using general procedure B, crotonaldehyde 204 (5.2 mL, 62.8 mmol, 1.0 eq) was added to 

potassium tert-butoxide (7.75 g, 69.0 mmol, 1.1 eq) in THF (40 mL). A solution of ethyl 

chloroformate (7.2 mL, 75.0 mmol, 1.2 eq) in THF (10 mL) was added and the resulting mixture 

was stirred at –78 ˚C for 30 minutes. The crude product was purified by vacuum distillation (0.1 

mbar, 40 ˚C) to give the diene 202d (3.05 g, 21.5 mmol, 34%, E/Z or Z/E 33:1.0) as a colourless 

liquid. 

Rf (Hexane-EtOAc, 2:1) = 0.62  
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1H NMR (400 MHz, CDCl3);  7.20 (d, J = 12.2 Hz, 1H, H1), 6.31-6.21 (m, 1H, H3), 6.08-6.02 

(m, 1H, H2), 5.24-5.19 (m, 1H, H4A), 5.11-5.08 (m, 1H, H4B), 4.27 (q, J = 7.2 Hz, 2H, H6), 1.34 

(t, J = 7.2 Hz, 3H, H7). 

13C NMR (100 MHz, CDCl3);  152.7 (C5), 140.3 (C1), 131.4 (C3), 117.5 (C4), 116.2 (C2), 65.0 

(C6), 14.3 (C7). 

FTIR (ATR)  (cm-1): 2984, 1754 (C=O). 

HRMS (ESI): No mass peak found.  

 

1-Acetoxy-3-methyl-1,3-butadiene 214238 

 

4-Dimethylaminopyridine (0.64 g, 5.24 mmol, 0.2 eq), triethylamine (25 mL, 181 mmol, 2.1 eq) 

and acetic anhydride (12 mL, 130 mmol, 5.0 eq) were added to 3-methyl-2-butenal (2.5 mL, 

25.9 mmol, 1.0 eq) at room temperature under argon. The solution was stirred for 5 days at 

room temperature, then diluted with Et2O (50 mL), poured onto ice water (250 mL) and stirred 

for 2 hours. The organic layer was separated and washed with a saturated aqueous solution of 

NaHCO3 (5 x 20 mL), dried (MgSO4) and evaporated under reduced pressure to give the crude 

product. Purification by flash column chromatography on silica gel (eluent: pentane-Et2O, 

100:0→96:4) gave the diene 214 (1.46 g, 11.6 mmol, 45%, E/Z or Z/E  5.9:1.0) as a colourless 

liquid.  

The spectroscopic data are consistent with those reported previously.238  

1H NMR (400 MHz, CDCl3);  7.35 (d, J = 12.6 Hz, 1H, H), 6.13 (dd, J = 12.6, 0.3 Hz, 1H, H2), 

4.95-4.91 (m, 2H, H4A and H4B), 2.14 (s, 3H, H7), 1.85-1.84 (m, 3H, H5). 

13C NMR (100 MHz, CDCl3);  168.2 (C6), 138.6 (C3), 136.5 (C1), 118.3 (C2), 116.6 (C4), 20.8 

(C7), 18.8 (C5). 

 

Diisopropyl 3-(pivaloyloxy)-3,6-dihydropyridazine-1,2-dicarboxylate 205 

 

Using general procedure C, 1-pivaloyloxy-1,3-butadiene 202c (2.03 g, 13.2 mmol, 1.6 eq) and 

diisopropyl azodicarboxylate 8c (1.6 mL, 8.23 mmol, 1.0 eq) in methyl tert-butyl ether (3 mL) 

were heated at reflux for 27 hours. The excess diene was removed by vacuum distillation (0.1 

mbar, 60 ˚C) to give the impure cycloadduct 205 (3.02 g) as a pale-yellow oil. 

Rf (Hexane-EtOAc, 2:1) = 0.40. 
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1H NMR (400 MHz, CDCl3);  6.87-6.79 (br m, 1H, H1), 6.09-6.04 (br m, 1H, H3), 5.87-5.82 (br 

m, 1H, H2), 5.03-4.90 (br m, 2H, H6 and H9), 4.60-4.43 (br m, 1H, H4A), 3.87-3.68 (br m, 1H, 

H4B), 1.27-1.22 (br m, 12H, H7 and H10), 1.19 (br s, 9H, H13). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  177.2 (C11), 155.0 (C5 and C8), 128.2 (C3), 122.5 (C2), 74.6 (C1), 71.0 (C6 or 

C10), 70.4 (C6 or C10), 42.4 (C4), 38.9 (C12), 27.2 (C13), 22.3* (C7 or C10), 22.2* (C7 or C10), 

22.1* (C7 or C10), 22.0 (C7 or C10). 

FTIR (ATR)  (cm-1): 2980, 1709 (C=O), 1654 (C=O). 

HRMS (APCI): m/z calculated for: C17H28N2O6 [M+Na]+ 379.1840, found 379.1837.  

 

Diisopropyl 3-((ethoxycarbonyl)oxy)-3,6-dihydropyridazine-1,2-dicarboxylate 206 

 

Using general procedure C, 1-(ethoxycarbonyl)oxy-1,3-butadiene 202d (2.08 g, 14.6 mmol, 1.4 

eq) and diisopropyl azodicarboxylate 8c (2.0 mL, 10.3 mmol, 1.0 eq) in methyl tert-butyl ether 

(3 mL) were stirred at room temperature 3 days. The excess diene was removed by vacuum 

distillation (0.1 mbar, 80 ˚C) to give the cycloadduct 206 (3.41 g, 9.90 mmol, 96%) as a pale 

yellow oil. 

Rf – Not stable on silica gel (streaks).  

1H NMR (400 MHz, CDCl3);  6.80-6.71 (br m, 1H, H1), 6.13-6.05 (br m, 1H, H3), 5.91-5.85 (br 

d, 1H, H2), 5.07-4.91 (m, 2H, H6 and H9), 4.64-4.39 (br m, 1H, H4A), 4.27-4.14 (m, 2H, H12), 

3.86-3.67 (br m, 1H, H4B), 1.31-1.21 (m, 15H, H7, H10 and H13). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  155.2 (C5, C8 or C11), 153.8 (C5, C8 or C11), 129.8 (C3), 121.7 (C2), 76.5 (C1), 

71.0* (C6 or C9), 70.2 (C6 or C9), 64.3 (C12), 42.4 (C4) , 22.2* (C7 or C10), 22.1 (C7 or C10), 

21.8* (C7 or C10), 14.3 (C13). 

FTIR (ATR)  (cm-1): 2984, 1737 (C=O), 1707 (C=O). 

HRMS (ESI): m/z calculated for: C12H19N2O4 [M-OCO2Et]+ 255.1339, found 255.1342.  

 

Dimethyl hydrazine-1,2-dicarboxylate 43a 

 

Using general procedure D, pyridine (2.7 mL, 33.3 mmol, 3.0 eq), methyl carbazate (1.00 g, 

11.1 mmol, 1.0 eq) and methyl chloroformate (1.0 mL, 12.9 mmol, 1.2 eq) in 2-MeTHF (22 mL) 

gave hydrazine 43e (0.95 g, 6.41 mmol, 58%) as a colourless solid, without further purification.  
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Rf (CH2Cl2-EtOAc, 1:1) = 0.32 

mp = 123-124 ˚C 

1H NMR (400 MHz, d6-DMSO);  9.12-8.72 (br m, 2H, NH), 3.58 (s, 6H, H2). 

13C NMR (100 MHz, d6-DMSO);  157.1 (C1), 51.9 (C2). 

FTIR (ATR)  (cm-1): 3278 (NH), 3047, 2958, 1743 (C=O), 1702 (C=O). 

 

Dibenzyl hydrazine-1,2-dicarboxylate 43e247 

 

Benzyl chloroformate (2.9 mL, 20.3 mmol, 2.0 eq) and a solution of sodium carbonate (1.10 g, 

10.4 mmol, 1.0 eq) in water (5 mL) were added dropwise to a stirred solution of hydrazine 

monohydrate (0.5 mL, 10.3 mmol, 1.0 eq) in ethanol (5 mL) at 0 ˚C, then stirred at room 

temperature for 30 minutes. The resulting solid was filtered, washed with water (8 mL) and dried 

to give hydrazine 43e (2.93 g, 9.74 mmol, 95%) as a colourless solid. 

Rf (Hexane-EtOAc, 1:1) = 0.41 

mp = 102-103 ˚C 

1H NMR (400 MHz, CDCl3);  7.38-7.30 (br m, 10H, H4, H5, H6), 6.67 (br s, 2H, NH), 5.16 (s, 

4H, H2). 

13C NMR (100 MH, CDCl3);  156.6 (C1), 135.6 (C3), 128.7 (C4, C5 or C6), 128.6 (C4, C5 or 

C6), 128.4 (C4, C5 or C6), 68.0 (C2). 

1H NMR (400 MHz, d6-DMSO);  9.33-8.88 (br m, 2H, NH), 7.40-7.33 (br m, 10H, H4, H5, H6), 

5.09 (s, 4H, H2). 

13C NMR (100 MHz, d6-DMSO);  156.5 (C1), 136.6 (C3), 128.4 (C4, C5 or C6), 128.0 (C4, C5 

or C6), 127.9 (C4, C5 or C6), 66.0 (C2). 

FTIR (ATR)  (cm-1): 3379 (NH), 3308 (NH), 1763 (C=O), 1702 (C=O). 

HRMS (APCI): m/z calculated for: C16H16N2O4 [M-H]- 299.1037, found 299.1040. 

 

1-tert-Butyl 2-methyl hydrazine-1,2-dicarboxylate 43f 

 

Using general procedure D, pyridine (1.8 mL, 22.7 mmol, 3.0 eq), tert-butyl carbazate (1.00 g, 

7.57 mmol, 1.0 eq) and methyl chloroformate (0.65 mL, 8.41 mmol, 1.1 eq) in 2-MeTHF (7.5 

mL) gave hydrazine 43f (1.19 g, 6.26 mmol, 83%) as a colourless solid, without further 

purification.  

Rf (Hexane-EtOAc, 1:1) = 0.25 

mp = 103-105 ˚C 
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1H NMR (400 MHz, CDCl3);  6.59 (br s, 1H, H4 or H5), 6.40 (br s, 1H, H4 or H5), 3.75 (s, 3H, 

H7), 1.46 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3);  157.5 (C3 or C6), 155.9 (C3 or C6), 82.0 (C2), 53.2 (C7), 28.3 

(C1). 

FTIR (ATR)  (cm-1): 3256 (NH), 3014, 2984, 1746 (C=O), 1690 (C=O). 

HRMS (APCI): m/z calculated for: C7H14N2O4 [M-H]- 189.0881, found 189.0885.  

 

 

1-Benzyl 2-tert-butyl hydrazine-1,2-dicarboxylate 43g 

 

Using general procedure D, pyridine (3.8 mL, 47.0 mmol, 6.0 eq), tert-butyl carbazate (502 mg, 

3.80 mmol, 1.0 eq) and benzyl chloroformate (0.6 mL, 4.20 mmol, 1.1 eq) in 2-MeTHF (4 mL) 

gave the crude product. Purification by flash column chromatography on silica gel (eluent: 

hexane-EtOAc, 4:1→2:1) gave the hydrazine 43g (835 mg, 3.14 mmol, 83%) as a colourless 

solid.  

Rf (Hexane-EtOAc, 2:1) = 0.27 

mp = 75-76 ˚C 

1H NMR (400 MHz, CDCl3);  7.37-7.29 (m, 5H, H9, H10, H11), 6.64 (br s, 1H, H4 or H5), 6.39 

(br s, 1H, H4 or H5), 5.16 (s, 2H, H7), 1.46 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3);  156.8 (C3 or C6), 155.8 (C3 or C6),135.8 (C8), 128.7 (C9, C10, 

or C11), 128.5 (C9, C10, or C11), 128.4 (C9, C10, or C11), 82.0 (C2), 67.9 (C7), 28.2 (C1). 

1H NMR (400 MHz, d6-DMSO);  9.04 (br s, 1H, H4 or H5), 8.77 (br s, 1H, H4 or H5), 7.38-7.34 

(m, 5H, H9, H10, H11), 5.06 (br s, 2H, H7), 1.40-1.33 (m, 9H, H1). 

13C NMR (100 MHz, d6-DMSO);  156.5 (C3 or C6), 155.6 (C3 or C6), 136.3 (C8), 128.4 (C9, 

C10, or C11), 128.0 (C9, C10, or C11), 127.9 (C9, C10, or C11), 79.2 (C2), 65.8 (C7), 28.1 

(C1). 

FTIR (ATR)  (cm-1): 3260 (NH), 2976, 1748 (C=O), 1687 (C=O). 

HRMS (ESI): m/z calculated for: C13H18N2O4 [M+Na]+ 289.1159, found 289.1148. 

 

Bis(2,2,2-trichloroethyl) hydrazine-1,2-dicarboxylate 43i246 

 

2,2,2-Trichloroethyl chloroformate (3.0 mL, 21.8 mmol, 2.1 eq) and a solution of sodium 

carbonate (1.10 g, 10.4 mmol, 1.0 eq) in water (5 mL) were added dropwise to a stirred solution 

of hydrazine monohydrate (0.5 mL, 10.3 mmol, 1 eq) in ethanol (5 mL) at 0 ˚C, then stirred at 

room temperature for 30 minutes. The organic layer was separated and the aqueous layer was 
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extracted with Et2O (2 x 5 mL). The combined organic layers were dried (MgSO4) and 

evaporated under reduced pressure to give hydrazine 43i (3.04 g, 8.47 mmol, 82%) as a 

colourless solid. 

Rf (Hexane-EtOAc, 1:1) = 0.55 

mp = 83-84 ˚C 

1H NMR (400 MHz, CDCl3);  6.99-6.81 (br m, 2H, NH), 4.80 (s, 4H, H2). 

13C NMR (100 MHz, CDCl3);  154.8 (C1), 94.7 (C3), 75.4 (C2). 

FTIR (ATR)  (cm-1): 3261 (NH), 1765 (C=O), 1702 (C=O). 

HRMS (APCI): m/z calculated for: C6H6N2O4Cl6 [M-H]- 378.8386, found 378.8376.  

 

1-tert-Butyl 2-(2,2,2-trichloroethyl)-hydrazine-1,2-dicarboxylate 43j 

 

Using general procedure D, pyridine (1.8 mL, 22.7 mmol, 3.0 eq), tert-butyl carbazate (1.00 g, 

7.57 mmol, 1.0 eq) and 2,2,2-trichloroethyl chloroformate (1.1 mL, 8.33 mmol, 1.1 eq) in THF 

(75 mL) gave the crude product. Purification by flash column chromatography on silica gel 

(eluent: hexane-EtOAc, 7:1 → 4:1) gave the hydrazine 43j (2.20 g, 7.15 mmol, 94%) as a 

colourless solid.  

Rf (Hexane-EtOAc, 1:1) = 0.57 

mp = 64-66 ˚C 

1H NMR (400 MHz, CDCl3);  6.80 (br s, 1H, H4 or H5), 6.39 (br s, 1H, H4 or H5), 4.78 (s, 2H, 

H7), 1.48 (s, 9H, H1). 

13C NMR (100 MHz, CDCl3);  155.4, (C3 or C6),155.2 (C3 or C6), 95.0 (C8), 82.4 (C2), 75.4 

(C7), 28.3 (C1).  

1H NMR (400 MHz, d6-DMSO);  9.49 (br s, 1H, H4 or H5), 8.93 (br s, 1H, H4 or H5), 4.84-4.80 

(br m, 2H, H7), 1.40 (br s, 9H, H1). 

13C NMR (100 MHz, d6-DMSO);  155.4 (C3 or C6), 155.1 (C3 or C6), 95.8 (C8), 79.4 (C2), 

73.7 (C7), 28.1 (C1).  

FTIR (ATR)  (cm-1): 3293 (NH), 2980, 1741 (C=O), 1715 (C=O). 

HRMS (ESI): m/z calculated for: C6H13N2O4Cl3 [M+Na]+ 328.9833, found 328.9827.  

 

1-tert-Butyl 2-tosyl hydrazine-1-carboxylate 43k92 

 

Using general procedure D, pyridine (3.8 mL, 47.0 mmol, 6.0 eq), tert-butyl carbazate (1.00 g, 

7.57 mmol, 1.0 eq) and p-toluenesulfonyl chloride (1.58 g, 8.29 mmol, 1.1 eq) in THF (75 mL) 
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gave the crude product. Purification by flash column chromatography on silica gel (eluent: 

hexane-EtOAc, 9:1 → 4:1) gave the hydrazine 43k (1.47, 5.13 mmol, 68%) as a colourless 

solid.  

Rf (Hexane-EtOAc, 1:1) = 0.38 

mp = 99-101 ˚C 

1H NMR (400 MHz, CDCl3);  7.80 (d, J = 8.1 Hz, 2H, H4), 7.29 (d, J = 8.1 Hz, 2H, H3), 6.78 (br 

s, 2H, H6 and H7), 2.40 (s, 3H, H1), 1.22 (s, 9H, H10). 

13C NMR (100 MHz, CDCl3);  154.3 (C8), 144.7 (C2), 133.7 (C5), 129.6 (C3), 128.9 (C4), 82.4 

(C9), 27.9 (C10), 21.7 (C1). 

FTIR (ATR)  (cm-1): 3308 (NH), 3232 (NH), 2976, 1716 (C=O), 1331 (SO2), 1150 (SO2). 

HRMS (ESI): m/z calculated for: C12H18N2O4S [M-H]- 285.0915, found 285.0916.  

 

1-Benzyl 2-tosyl hydrazine-1-carboxylate 43l92 

 

Sodium bicarbonate (275 mg, 3.27 mmol, 1.2 eq) was added to a stirred suspension of p-

toluenesulfonyl hydrazide (503 mg, 2.70 mmol, 1.0 eq) in water (27 mL) at room temperature 

under argon. Benzyl chloroformate (0.5 mL, 3.50 mmol, 1.3 eq) was added dropwise at 0 ˚C 

and the resulting mixture was stirred for a further 15 minutes, then heated at 60 ˚C for 2 hours. 

The reaction mixture was allowed to cool, then was extracted with CH2Cl2 (3 x 5 mL). The 

combined organic layers were washed with brine (10 mL), dried (MgSO4) and evaporated under 

reduced pressure to give the crude product. Purification by flash column chromatography on 

silica gel (eluent: hexane-EtOAc, 4:1 → 2:1) gave the hydrazine 43l (453 mg, 1.41 mmol, 52%) 

as a colourless solid.  

Rf (Hexane-EtOAc, 1:1) = 0.23 

mp = 141-142 ˚C  

1H NMR (400 MHz, d6-DMSO);  9.69 (br s, 1H, H6 or H7), 9.52 (br s, 1H, H6 or H7), 7.66 (d, J 

= 8.1 Hz, 2H, H4), 7.37-7.29 (br m, 5H, H3, H12, H13), 7.22 (br d, J = 6.5 Hz, 2H, H11), 4.93 

(br s, 2H, H9), 2.37 (s, 3H, H1). 

13C NMR (100 MHz, d6-DMSO);  155.7 (C8), 143.2 (C2), 136.4 (C5 or C10), 136.1 (C5 or C10), 

129.4 (C3), 128.3 (C4, C11, C12 or C13), 127.9 (C4, C11, C12 or C13), 127.6 (C4, C11, C12 

or C13), 65.9 (C9), 21.1 (C1). 

FTIR (ATR)  (cm-1): 3338 (NH), 3181 (NH), 1722 (C=O), 1340 (SO2), 1163 (SO2). 

HRMS (APCI): m/z calculated for: C15H16N2O4S [M-H]- 319.0758, found 319.0770.  
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N,N’-Ditosylhydrazine 43m251 

 

Pyridine (1.2 mL, 14.8 mmol, 1.5 eq) was added dropwise over 1 minute to a stirred suspension 

of tosylhydrazide (1.87 g, 10.0 mmol, 1.0 eq) and tosyl chloride (2.95 g, 15.5 mmol, 1.5 eq) in 

CH2Cl2 (10 mL) at room temperature under argon. The resulting solution was stirred at room 

temperature for 2.5 hours, then Et2O (40 mL) and water (20 mL) were added and the resulting 

mixture was stirred at 0 ˚C for 15 minutes. The solid was filtered and washed with cold Et2O (20 

mL) to give the crude product and then dissolved in hot MeOH (80 mL). Half of the solvent was 

evaporated under reduced pressure (c.a. 40 mL), followed by cooling to 0 ˚C. The resulting 

crystals were filtered, washed with cold MeOH (5 mL), Et2O (20 mL) and dried to give the 

hydrazine 43m (2.17 g, 6.39 mmol, 64 %) as a colourless solid. 

Rf (petroleum ether- EtOAc, 1:1) = 0.44, slightly streaky. 

mp = 210-212 ˚C (decomposition) 

1H NMR (400 MHz, d6-DMSO);  9.58 (s, 2H, NH), 7.64 (d, J = 8.0 Hz, 4H, H2), 7.38 (d, J = 8.0 

Hz, 4H, H3), 2.39 (s, 6H, H5) 

13C NMR (100 MHz, d6-DMSO);  143.6 (C4), 135.5 (C1), 129.6 (C3), 127.9 (C2), 21.1 (C5). 

FTIR (ATR)  (cm-1): 3230 (NH), 3204 (NH), 1331 (SO2), 1164 (SO2). 

HRMS (ESI): No mass peak found.  

 

Di-tert-butyl azodicarboxylate 8d 

 

Fétizon's Reagent Oxidation: Fétizon's reagent (147 mg, 0.26 mmol, 1.5 eq, c.a 1 mmol per 

0.57 g) was added in one portion to a stirred solution of hydrazine 43d (40 mg, 0.17 mmol, 1.0 

eq) in PhMe (1.7 mL), then heated at 50 ˚C for 25 minutes. The reaction mixture was cooled, 

filtered and the filtrate evaporated under reduced pressure to give the azo compound 8d (35 

mg, 0.15 mmol, 88%) as a yellow solid, with no further purification required. 

Copper Oxidation: Copper(I) chloride (4 mg, 0.04 mmol, 0.2 eq) and pyridine (0.9 µl, 0.01 mmol, 

0.05 eq) were added to a stirred solution of hydrazine 43d (49 mg, 0.21 mmol, 1.0 eq) in MeTHF 

(2.2 mL) at room temperature under aerobic conditions. The reaction mixture was stirred for 19 

hours, then quenched with an aqueous EDTA solution (3 mL, 0.5 M, pH = 7), dried (MgSO4) 
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and evaporated under reduced pressure to give azo compound 8d (39 mg, 0.17 mmol, 81%) 

as a yellow solid.  

The spectroscopic data was consistent with those reported previously.247 

Rf (Hexane-EtOAc, 1:1) = 0.67. 

1H NMR (400 MHz, CDCl3);  1.61 (s, 18H, H3). 

13C NMR (75 MHz, CDCl3);  159.4 (C1), 86.9 (C2), 27.8 (C3). 

FTIR (ATR)  (cm-1): 2986, 2943, 1761 (C=O). 

 

Dibenzyl azodicarboxylate 8e 

 

Iodobenzene diacetate (537 mg, 1.67 mmol, 1.0 eq) was added in one portion to a stirred 

suspension of hydrazine 43e (495 mg, 1.65 mmol, 1.0 eq) in CH2Cl2 (5 mL) at room temperature 

under argon. The reaction mixture was stirred at room temperature for 50 minutes, then 

evaporated under reduced pressure. Addition of hexane (5 mL) to the residue and filtration gave 

the azo compound 8e (388 mg, 1.30 mmol, 78 %) as a pale yellow solid. 

Rf (Hexane-EtOAc, 1:1) = 0.65 

mp = 43-45 ˚C 

1H NMR (400 MHz, CDCl3);  7.44-7.37 (m, 10H, H4, H5, H6), 5.43 (s, 4H, H2). 

13C NMR (100 MHz, CDCl3);  160.2 (C1), 133.7 (C3), 129.4 (C6), 129.0 (C4 or C5), 129.0 (C4 

or C5), 71.0 (C2). 

FTIR (ATR)  (cm-1): 3060, 3029, 1757 (C=O). 

HRMS (ESI): No mass peak found.  

 

4-Phenyl-1,2,4-triazoline-3,5-dione 8h318 

 

Iodobenzene diacetate (2.82 g, 8.76 mmol, 1.3 eq) was added in one portion to a stirred 

suspension of 4-phenylurazole 43h (1.15 g, 6.49 mmol, 1.0 eq) in CH2Cl2 (20 mL) at room 

temperature under argon. The reaction mixture was stirred at room temperature for 15 minutes, 

then evaporated under reduced pressure. Addition of petroleum ether (20 mL) to the residue 

and filtration gave 8h (1.03 g, 5.88 mmol, 91%) as a brick red solid. 

mp = 130-140 ˚C (decomposed) 

1H NMR (400 MHz, CDCl3);  7.57-7.54 (m, 2H, H5 or H6), 7.51-7.45 (m, 3H, H5 or H6 and H7) 
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13C NMR (100 MHz, CDCl3, C4 not visible);  157.9 (C3), 130.0 (C5 or C6), 129.6 (C7), 124.1 

(C5 or C6). 

FTIR (ATR)  (cm-1): 1737 (C=O). 

HRMS (ESI): m/z calculated for: C8H5N3O2 M-
 175.0387, found 175.0395. 

 

Bis(2,2,2-trichloroethyl) azodicarboxylate 8i 

 

Iodobenzene diacetate (432 mg, 1.34 mmol, 1.0 eq) was added in one portion to a stirred 

suspension of hydrazine 43i (511 mg, 1.34 mmol, 1.0 eq) in CH2Cl2 (5 mL) at room temperature 

under argon. The reaction mixture was stirred at room temperature for 40 minutes, then 

evaporated under reduced pressure. Addition of hexane (5 mL) to the residue and filtration gave 

the azo compound 8i (398 mg, 1.05 mmol, 78 %) as a pale yellow solid. 

Rf  - Not stable on silica gel 

mp = 98-100 ˚C 

1H NMR (400 MHz, CDCl3);  5.06 (s, 4H, H2). 

13C NMR (100 MHz, CDCl3);  158.6 (C1), 93.3 (C3), 77.1 (C2). 

FTIR (ATR)  (cm-1): 3017, 2969, 1780 (C=O). 

HRMS (ESI): No mass peak found.  

 

Bis(trichloroethyl)-3-acetoxy-3,6-dihydropyridazine-1,2-dicarboxylate 203i 

 

Using general procedure C, a mixture of 1-acetoxy-1,3-butadiene 202a (74 µL, 0.63 mmol, 1.2 

eq) and bis(trichloroethyl) azodicarboxylate 8i (200 mg, 0.53 mmol, 1.0 eq)  in methyl tert-butyl 

ether (0.5 mL) were stirred at room temperature for 10 hours. Purification by flash column 

chromatography on silica gel (eluent: hexane-EtOAc, 4:1→2:1) gave the cycloadduct 203i (227 

mg, 0.46 mmol, 87%) as a colourless oil.  

Rf (Hexane-EtOAc, 2:1) = 0.29 

1H NMR (400 MHz, CDCl3);  6.96-6.91 (br m, 1H, H1), 6.16-6.09 (br m, 1H, H3), 5.98-5.89 (br 

m, 1H, H2), 4.99-4.57 (br m, 5H, H4A, H6 and H9), 4.08-3.88 (m, 1H, H4B), 2.07-2.04 (br m, 3H, 

H12). 
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13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  169.5* (C11), 169.3 (C11), 153.3 (C5 or C8), 152.8* (C5 or C8), 152.0* (C5 or C8), 

128.4 (C3), 128.2* (C3), 122.6* (C2), 122.3 (C2), 95.0* (C7 or C10), 94.9* (C7 or C10), 94.7 

(C7 or C10) 75.7 (C6 or C9), 75.6* (C6 or C9), 73.7 (C1), 73.3* (C1), 44.4* (C4), 43.1 (C4), 21.1 

(C9), 20.9* (C12). 

FTIR (ATR)  (cm-1): 2958, 1724 (C=O). 

HRMS (ESI): m/z calculated for: C12H12N2O6Cl6 [M+Na]+ 512.8719, found 512.8713.  

 

1-tert-Butyl 2-(2,2,2-trichloroethyl)-3-acetoxy-3,6-dihydropyridazine-1,2-dicarboxylate/2-

tert-butyl 1-(2,2,2-trichloroethyl)-3-acetoxy-3,6-dihydropyridazine-1,2-dicarboxylate 203j 

 

Iodobenzene diacetate (487 mg, 1.51 mmol, 1.0 eq) and 1-acetoxy-1,3-butadiene 202a (215 

µL, 1.81 mmol, 1.2 eq) were added to a stirred solution of hydrazine 43j (464 mg, 1.51 mmol, 

1.0 eq) in CH2Cl2 (4.5 mL) at room temperature under argon. The reaction mixture was stirred 

for 20 hours, then the solvent was evaporated under reduced pressure to give the crude 

product. Purification by flash column chromatography on silica gel (eluent: hexane-EtOAc, 

4:1→3:1) gave the cycloadduct 203j (607 mg, 1.45 mmol, 96%, unable to determine major 

regioisomer) as a colourless oil. 

Rf (Hexane-EtOAc, 2:1) = 0.38 

1H NMR (400 MHz, CDCl3);  6.92-6.85 (br m, 1H, H1), 6.14-6.07 (br m, 1H, H3), 5.94-5.84 (br 

m, 1H, H2), 4.92-4.4.45 (br m, 3H, H9 and H4A), 3.93-3.88 (br m, 1H, H4B), 2.09-2.04 (br m, 

3H, H12), 1.50-1.43 (br m, 9H, H7). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  169.8* (C10), 169.5* (C10), 169.2 (C10), 154.1 (C5 or C8), 153.8 (C5 or C8), 153.0* 

(C5 or C8), 152.7* (C5 or C8), 151.6* (C5 or C8), 129.6 (C3), 129.0* (C3), 128.9* (C3), 128.4* 

(C3), 122.5 (C2), 121.9 (C2), 95.2* (C10), 94.9* (C10), 94.8 (C10), 83.4* (C6), 82.2* (C6), 81.9 

(C6), 75.7 (C9), 75.6* (C9), 73.7 (C1), 73.3* (C1), 44.4* (C4), 43.9* (C4), 42.7* (C4), 42.4 (C4), 

28.3 (C7), 28.2* (C7), 21.1* (C12), 21.0* (C12), 21.0 (C12) . 

FTIR (ATR)  (cm-1): 2980, 1713 (C=O). 

HRMS (ESI): m/z calculated for: C14H16N2O6Cl3 [M+Na]+ 439.0201, found 439.0194.  

 

1-Benzyl 2-(p-tolylsulfonyl)-3-hydroxy-3,6-dihydropyridazine-1-carboxylate/2-benzyl 1-

(p-tolylsulfonyl)-3-hydroxy-3,6-dihydropyridazine-1-carboxylate 208l 
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Iodobenzene diacetate (52 mg, 0.16 mmol, 1.3 eq) was added in one portion to a stirred 

suspension of hydrazine 43l (42 mg, 0.13 mmol, 1.0 eq) in CH2Cl2 (0.4 mL) at room temperature 

under argon. The reaction mixture was stirred at room temperature for 10 minutes, then 

evaporated under reduced pressure. 1-Acetoxy-1,3-butadiene 202a (27 µL, 0.23 mmol, 1.8 eq) 

was then added in one portion to a stirred solution of the residue in methyl tert-butyl ether (0.4 

mL) at room temperature under argon. The reaction was stirred for a further 21 hours, then the 

solvent was removed under reduced pressure to give the crude product. Purification by flash 

column chromatography on silica gel (eluent: hexane-EtOAc, 4:1 → 2:1) gave the deacetylated 

product 208l (22 mg, 0.05 mmol, 39%, unable to determine major regioisomer) as a colourless 

oil. 

Rf (Hexane-EtOAc, 2:1) = 0.17  

1H NMR (400 MHz, CDCl3);  7.80-7.73 (br m, 2H, H12), 7.39-7.33 (br m, 3H, H9, H10), 7.24-

7.21 (br m, 2H, H8), 7.19-7.13 (br m, 2H, H13), 6.07-6.03 (br m, 1H, H3), 5.93-5.87 (br m, 1H, 

H2), 5.83-5.78 (br m, 1H, H1), 5.05-4.81 (br m, 2H, H6), 4.43-4.37 (m, 1H, H4A), 4.16-4.09 (m, 

1H, OH), 3.73-3.66 (br m, 1H, H4B), 2.40-2.38 (br m, 3H, H15). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  154.7 (C5), 145.0 (C14), 135.4 (C7), 133.4 (C11), 129.5 (C12 or C13), 129.5 (C12 

or C13), 128.6 (C9), 128.5 (C10), 128.3 (C8), 126.2 (C2 or C3), 126.1 (C2 or C3), 73.4 (C1), 

68.5 (C6), 43.4 (C4), 21.8 (C15), 21.8* (C15). 

FTIR (ATR)  (cm-1): 3485 (OH), 3032, 1711 (C=O), 1340 (SO2), 1157 (SO2). 

HRMS (ESI): m/z calculated for: C19H20N2O5S [M+Na]+ 411.0985, found 411.0977.  

 

Di-tert-butyl 3-methoxy-3,6-dihydropyridazine-1,2-dicarboxylate 212d 
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K2CO3 (89 mg, 0.64 mmol, 1.1 eq) was added in one portion to a stirred solution of cycloadduct 

203d (201 mg, 0.59 mmol, 1.0 eq) in MeOH (1.0 mL) at room temperature under argon. The 

reaction mixture was stirred at room temperature for 20 minutes, filtered through Celite and 

evaporated under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica gel (eluent: hexane-EtOAc, 4:1 → 1:1) gave the substituted product 

212d (87 mg, 0.28 mmol, 47%) as a colourless oil. 

Rf (Hexane-EtOAc, 2:1) = 0.40 

1H NMR (400 MHz, CDCl3);  5.95-5.86 (br m, 1H, H3), 5.84-5.77 (br m, 1H, H2), 5.46-5.25 (br 

m, 1H, H1), 4.48-4.24 (br m, 1H, H4A), 3.73-3.56 (br m, 1H, H4B), 3.48-3.45 (br m, 3H, H8), 

1.48-1.43 (br m, 18H, H7). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  154.5* (C5), 154.2 (C5), 127.8 (C3), 127.2* (C3), 124.4* (C2), 123.9 (C2), 81.7* 

(C6), 81.1* (C6), 80.9 (C6), 80.3 (C1), 56.3 (C8), 43.7* (C4), 41.7 (C4), 28.4 (C7), 28.3* (C7), 

28.3 (C7). 

FTIR (ATR)  (cm-1): 2976, 2932, 1702 (C=O). 

HRMS (APCI): m/z calculated for: C15H26N2O5 [M+Na]+ 337.1734, found 337.1719.  

 

Dimethyl-1,2-dihydropyridazine-1,2-dicarboxylate 9a33–35  

 

Using general procedure G, a mixture of hydrazine 43a (1.00 g, 6.74 mmol), iodobenzene 

diacetate (2.20 g, 6.75 mmol) and 1-acetoxy-1,3-butadiene 202a (1.2 mL, 10.1 mmol) in CH2Cl2 

(2.7 mL) was stirred at room temperature for 17 hours. After being passed through a short silica 

gel column (eluent: hexane-EtOAc, 2:1→1:1), cycloadduct (1.72 g, 6.66 mmol), Pd(OAc)2 (15 

mg, 0.07 mmol), triphenylphosphine (70 mg, 0.27 mmol) and triethylamine (1.9 mL, 13.3 mmol) 

in 1,4-dioxane (13 mL) gave the crude product. Purification by flash column chromatography on 

silica gel (eluent: hexane-EtOAc, 4:1) gave 1,2-dihydropyridazine 9a (923 mg, 4.66 mmol, 69%) 

as a yellow oil, which solidified to a colourless solid on standing. 

Cycloadduct 203a 

 

Rf (Hexane-EtOAc, 1:1) = 0.21 
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1H NMR (400 MHz, CDCl3);  6.88-6.76 (br m, 1H, H1), 6.08-6.05 (br m, 1H, H3), 5.90-5.79 (br 

m, 1H, H2), 4.61-4.41 (br m, 1H, H4A), 3.89-3.71 (br m, 7H, H6, H8 and H4B), 2.01 (br s, 3H, 

H10). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  169.5 (C9), 156.1 (C5 or C7), 154.8* (C5 or C7), 154.1 (C5 or C7) 129.1 (C3), 128.6* 

(C3), 122.5* (C2), 122.0 (C2), 73.8 (C1), 54.0 (C6 or C8), 53.5 (C6 or C8), 43.8* (C4), 42.6 

(C4), 21.0* (C10), 20.8 (C10). 

FTIR (ATR)  (cm-1): 2957, 1711 (C=O), 1655 (C=O). 

HRMS (ESI): m/z calculated for: C10H14N2O6 [M+Na]+ 281.0744, found 281.0730.  

1,2-Dihydropyridazine 9a 

 

Rf (Hexane-EtOAc, 2:1) = 0.26 

mp = 62-64 ˚C 

1H NMR (400 MHz, 298 K, d6-DMSO);  6.92-6.66 (br m, 2H, H1), 5.92-5.70 (br m, 2H, H2), 

3.74 (s, 6H, H4). 

1H NMR (400 MHz, 348 K, d6-DMSO);  6.76 (dd, J = 5.2, 2.5 Hz, 2H, H1), 5.81 (dd, J = 5.2, 

2.5 Hz, 2H, H), 3.76 (s, 6H, H4). 

13C NMR (100 MHz, 298 K, d6-DMSO, additional peaks due to complex rate processes denoted 

by an asterisk);  153.8 (C3), 127.3 (C1), 113.4* (C2), 112.1 (C2), 53.7 (C4). 

13C NMR (100 MHz, 348 K, d6-DMSO);  153.2 (C3), 127.0 (C1), 112.2 (C2), 53.2 (C4). 

FTIR (ATR)  (cm-1): 2958, 1715 (C=O). 

HRMS (APCI): m/z calculated for: C8H10N2O4 [M+H]+ 199.0713, found 199.0719.  

 

Diethyl 1,2-dihydropyridazine-1,2-dicarboxylate 9b36 

 

Using general procedure F, diethyl azodicarboxylate 8b (1.0 mL, 6.35 mmol) and 1-acetoxy-

1,3-butadiene 202a (1.1 mL, 9.53 mmol) in CH2Cl2 (1.3 mL) was stirred at room temperature 

for 9 hours. After being passed through a short silica gel column (eluent: hexane-EtOAc, 

5:1→2:1), cycloadduct (1.85 g, 6.44 mmol), Pd(OAc)2 (14 mg, 0.06 mmol), triphenylphosphine 

(67 mg, 0.26 mmol) and triethylamine (1.8 mL, 12.7 mmol) in 1,4-dioxane (13 mL) gave the 

crude product. Purification by flash column chromatography on silica gel (eluent: hexane-

EtOAc, 9:1→4:1) gave 1,2-dihydropyridazine 9b (1.29 g, 5.72 mmol, 90%) as a colourless solid. 

Cycloadduct 203b 
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Rf (hexane-EtOAc, 1:1) = 0.24  

1H NMR (400 MHz, CDCl3);  6.90-6.82 (br m, 1H, H1), 6.09 (br dd, J = 9.5, 3.8 Hz, 1H, H3) 

5.92-5.83 (br m, 1H, H2), 4.64-4.44 (m, 1H, H4A), 4.29-4.17 (m, 4H, H6 and H9), 3.89-3.73 (m, 

1H, H4B), 2.04 (br s, 3H, H12), 1.29-1.23 (m, 6H, H7 and H10). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  169.5 (C11), 155.6 (C5 or C8), 155.4 (C5 or C8), 129.2 (C3), 122.2 (C2), 73.9 (C1), 

62.5 (C6 and C9), 42.6 (C4), 20.9 (C12), 14.5 (C7 and C10).  

FTIR (ATR)  (cm-1): 2984, 2937, 1733 (C=O), 1709 (C=O). 

HRMS (ESI): m/z calculated for: C12H18N2O6 [M+Na]+ 309.1057, found 309.1051. 

 

1,2-Dihydropyridazine 9b 

 

Rf (hexane-EtOAc, 1:1) = 0.51  

mp = 56-58 ˚C 

1H NMR (400 MHz, 298 K, d6-DMSO);  6.89-6.65 (br m, 2H, H1), 5.89-5.72 (br m, 2H, H2), 

4.24-4.09 (br m, 4H, H4), 1.21 (br t, J = 7.0 Hz, 6H, H5). 

1H NMR (400 MHz, 348 K, d6-DMSO);  6.75 (br dd, J = 5.2, 2.5 Hz, 2H, H1), 5.79 (br dd, J = 

5.2, 2.5 Hz, 2H, H2), 4.26-4.14 (m, 4H, H4), 1.24 (t, J = 7.1 Hz, 6H, H5). 

13C NMR (100 MHz, 298 K, d6-DMSO, additional peaks due to complex rate processes denoted 

by an asterisk);  153.2 (C3), 127.3 (C1), 113.2* (C2), 111.9 (C2), 62.6 (C4), 14.2 (C5). 

13C NMR (100 MHz, 348 K, d6-DMSO);  152.6 (C3), 127.0 (C1), 112.0 (C2), 62.2 (C4), 13.8 

(C5). 

FTIR (ATR)  (cm-1): 3088, 2989, 1754 (C=O), 1715 (C=O). 

HRMS (ESI): m/z calculated for: C10H14N2O4 [M+Na]+ 249.0846, found 249.0847. 

 

Diisopropyl 1,2-dihydropyridazine-1,2-dicarboxylate 9c 

 



4- Photocyclisation: A New Route to Functionalised Four-Membered Rings 

166 
Thomas Britten – April 2019 

Using general procedure F, diisopropyl azodicarboxylate 8c (1.0 mL, 5.08 mmol) and 1-acetoxy-

1,3-butadiene 202a (0.9 mL, 7.62 mmol) in CH2Cl2 (1.0 mL) was stirred at room temperature 

for 18 hours. After being passed through a short silica gel column (eluent: hexane-EtOAc, 

7:1→3:1), cycloadduct (1.59 g, 5.05 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), triphenylphosphine 

(54 mg, 0.21 mmol) and triethylamine (1.4 mL, 10.1 mmol) in 1,4-dioxane (10 mL) gave the 

crude product. Purification by flash column chromatography on silica gel (eluent: hexane-

EtOAc, 14:1→7:1) gave 1,2-dihydropyridazine 9c (1.06 g, 4.17 mmol, 82%) as a colourless 

solid. 

Cycloadduct 203c 

 

Rf (Hexane-EtOAc, 1:1) = 0.40 

mp = 54-58 ˚C 

1H NMR (400 MHz, CDCl3);  6.90-6.83 (br m, 1H, H1), 6.09-6.05 (br m, 1H, H3), 5.89-5.82 (br 

m, 1H, H2), 4.99-4.94 (m, 2H, H6 and H9), 4.62-4.39 (br m, 1H, H4A), 3.85-3.67 (br m, 1H, H4B), 

2.02 (br s, 3H, H12), 1.25-1.21 (br m, 12H, H7 and H10). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  169.5 (C11), 155.1 (C5 and C8), 129.1 (C3), 122.3 (C2), 73.9 (C1), 70.9 (C6 or C9), 

70.0 (C6 or C9), 43.7* (C4), 42.5 (C4), 22.2* (C7 or C10), 22.1 (C7 or C10), 21.0 (C12). 

FTIR (ATR)  (cm-1): 2984, 1731 (C=O), 1698 (C=O). 

HRMS (APCI): m/z calculated for:C14H22N2O6 [M+Na]+ 337.1370, found 337.1370; C12H19N2O4 

[M-OAc]+ 255.1339, found 255.1337; C12H19N2O5 [M-CH3CO]- 271.1299, found 271.1295.  

Alcohol 208c 

 

Rf (Hexane-EtOAc, 1:1) = 0.25. 

mp = 73-76 ˚C 

1H NMR (400 MHz, d6-DMSO);  6.31-6.26 (m, 1H, OH), 5.94-5.88 (br m, 1H, H3), 5.84-5.79 

(br m, 1H, H2), 5.68-5.63 (br m, 1H, H1), 4.88-4.76 (m, 2H, H6 and H9), 4.37-4.20 (br m, 1H, 

H4A), 3.72-3.55 (br m, 1H, H4B), 1.23-1.12 (br m, 12H, H7 and H10). 

13C NMR (100 MHz, d6-DMSO, additional peaks due to complex rate processes denoted by an 

asterisk);  154.8 (C5 or C8), 153.6* (C5 or C8), 153.2* (C5 or C8), 126.2* (C2), 126.1 (C2), 
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125.8 (C3) 125.5* (C3), 72.8 (C1), 69.2* (C6 or C9), 68.9* (C6 or C9), 68.8 (C6 or C9), 42.1 

(C4), 22.0* (C7 or C10), 21.8 (C7 or C10), 21.7 (C7 or C10), 21.6* (C7 or C10). 

FTIR (ATR)  (cm-1): 3383 (OH), 2984, 2928, 1675 (C=O). 

HRMS (APCI): m/z calculated for: C12H20N2O5 [M+Na]+ 295.1264, found 295.1247.  

1,2-Dihydropyridazine 9c (see appendix for crystal structure) 

 

Rf (Hexane-EtOAc, 2:1) = 0.45 

mp = 93-94 ˚C 

1H NMR (400 MHz, 298 K, d6-DMSO);  6.86-6.64 (br m, 2H, H1), 5.90-5.67 (br m, 2H, H2), 

4.89 (br sept, J = 6.1 Hz, 2H, H4), 1.22 (br d, J = 6.1 Hz, 12H, H5). 

1H NMR (400 MHz, 348 K, d6-DMSO);  6.74 (br dd, J = 5.2, 2.4 Hz, 2H, H1), 5.77 (br dd, J = 

5.2, 2.4 Hz, 2H, H2), 4.91 (sept, J = 6.2 Hz, 2H, H4), 1.25 (d, J = 6.2 Hz, 12H, H5). 

13C NMR (100 MHz, 298 K, d6 -DMSO, additional peaks due to complex rate processes denoted 

by an asterisk);  152.6* (C3), 151.9 (C3), 127.4 (C1), 113.0* (C2), 111.7 (C2), 70.5 (C4), 21.6 

(C5). 

13C NMR (100 MHz, 348 K, d6-DMSO);  152.1 (C3), 127.0 (C1), 111.8 (C2), 70.1 (C4), 21.2 

(C5). 

FTIR (ATR)  (cm-1): 3090, 2986, 1748 (C=O), 1711 (C=O). 

HRMS (APCI): m/z calculated for: C12H18N2O4 [M+H]+ 255.1339, found 255.1329.  

Rearranged Allylic Acetate 209c 

 

Rf (Hexane-EtOAc, 2:1) = 0.34 

1H NMR (400 MHz, d6-DMSO);  7.23-7.19 (br m, 1H, H1), 5.22-5.15 (br m, 1H, H2), 5.02-4.99 

(br m, 1H, H3), 4.93-4.78 (m, 2H, H6), 4.45-4.29 (br m, 1H, H4A), 3.47-3.26 (br m, 1H, H4B), 

2.03-1.91 (m, 3H, H9), 1.24-1.17 (br m, 12H, H7). 

13C NMR (100 MHz, d6-DMSO, additional peaks due to complex rate processes denoted by an 

asterisk);  169.8* (C8), 169.7 (C8), 155.0 (C5), 154.4 (C5), 128.7 (C1), 102.7 (C2), 70.7 (C6), 

70.5* (C6), 70.2 (C6), 70.1* (C6), 63.4 (C3), 48.5 (C4), 47.0* (C4), 21.6 (C7), 21.5* (C7), 21.4* 

(C7), 20.7 (C9), 20.6* (C9). 

FTIR (ATR)  (cm-1): 2984, 1715 (C=O), 1646 (C=O). 

HRMS (ESI): m/z calculated for: C14H22N2O6 [M+Na]+ 337.1357, found 337.1370. 
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Di-tert-butyl 1,2-dihydropyridazine-1,2-dicarboxylate 9d 

 

Using general procedure F, di-tert-butyl azodicarboxylate 8d (1.00 g, 4.35 mmol) and 1-acetoxy-

1,3-butadiene 202a (0.8 mL, 6.53 mmol) in CH2Cl2 (1.7 mL) was stirred at 40 °C for 2 days. 

After the addition of hexane (20 mL), filtration and drying, cycloadduct (1.45 g, 4.23 mmol), 

Pd(OAc)2 (10 mg, 0.04 mmol), triphenylphosphine (44 mg, 0.17 mmol) and triethylamine (1.2 

mL, 8.5 mmol) in 1,4-dioxane (8.5 mL) gave the crude product. Purification by flash column 

chromatography on silica gel (eluent: hexane-EtOAc, 19:1→9:1) gave 1,2-dihydropyridazine 9d 

(912 mg, 3.23 mmol, 74%) as a colourless solid. 

 

5 gram scale: Using general procedure F, di-tert-butyl azodicarboxylate 8d (5.01 g, 21.7 mmol) 

and 1-acetoxy-1,3-butadiene 202a (3.9 mL, 32.6 mmol) in CH2Cl2 (4.4 mL) was stirred at 40 °C 

for 2 days. After the addition of hexane (40 mL), filtration and drying, cycloadduct (6.90 g, 20.2 

mmol), Pd(OAc)2 (44 mg, 0.20 mmol), triphenylphosphine (216 mg, 0.82 mmol) and 

triethylamine (5.6 mL, 40.2 mmol) in 1,4-dioxane (40 mL) gave the crude product. Purification 

by flash column chromatography on silica gel (eluent: hexane-EtOAc, 19:1→14:1→9:1) gave 

1,2-dihydropyridazine 9d (4.40 g, 15.6 mmol, 72%) as a colourless solid. 

 

10 gram scale: Using general procedure F, di-tert-butyl azodicarboxylate 8d (9.75 g, 42.3 

mmol) and 1-acetoxy-1,3-butadiene 202a (7.5 mL, 63.5 mmol) in CH2Cl2 (8.5 mL) was stirred 

at 40 °C for 2 days. After the addition of hexane (80 mL), filtration and drying, cycloadduct (14.1 

g, 41.2 mmol), Pd(OAc)2 (93 mg, 0.41 mmol), triphenylphosphine (432 mg, 1.65 mmol) and 

triethylamine (11 mL, 82.4 mmol) in 1,4-dioxane (82 mL) gave the crude product. Purification 

by flash column chromatography on silica gel (eluent: hexane-EtOAc, 19:1→14:1→9:1) gave 

1,2-dihydropyridazine 9d (8.97 g, 31.8 mmol, 75%) as a colourless solid. 

Cycloadduct 203d 

 

Rf (Hexane-EtOAc, 2:1) = 0.36 

mp = 119-121 ˚C 

1H NMR (400 MHz, CDCl3);  6.87-6.72 (br m, 1H, H1), 6.08-6.00 (br m, 1H, H3), 5.89-5.75 (br 

m, 1H, H2), 4.57-4.34 (br m, 1H, H4A), 3.85-3.60 (br m, 1H, H4B), 2.04 (br s, 3H, H12), 1.46-

1.43 (br m, 18H, H7 and H10). 
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13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  169.9* (C11), 169.4 (C11), 154.4 (C5 or C8), 152.5 (C5 or C8), 129.8* (C3), 129.3 

(C3), 122.4 (C2), 82.1* (C6 or C9), 81.4 (C6 or C9), 81.0 (C6 or C9), 74.2* (C1), 73.5 (C1), 

43.9* (C4), 42.1 (C4), 28.3 (C7 or C10), 28.2 (C7 or C10), 21.0 (C12). 

FTIR (ATR)  (cm-1): 2980, 1733 (C=O), 1698 (C=O). 

HRMS (ESI): m/z calculated for: C16H26N2O6 [M+Na]+ 365.1683, found 365.1681.  

1,2-Dihydropyridazine 9d 

 

Rf (Hexane-EtOAc, 1:1) = 0.64 

mp = 94-95 ˚C 

1H NMR (400 MHz, 298 K, d6-DMSO);  6.81-6.60 (br m, 2H, H1), 5.84-5.62 (br m, 2H, H2), 

1.44 (s, 18H, H5). 

1H NMR (400 MHz, 348 K, d6-DMSO);  6.69 (br dd, J = 5.3, 2.3 Hz, 2H, H1), 5.71 (br dd, J = 

5.3, 2.3 Hz, 2H, H2), 1.46 (s, 18H, H5). 

13C NMR (100 MHz, 298 K, d6 -DMSO, additional peaks due to complex rate processes denoted 

by an asterisk);  151.8* (C3), 150.8 (C3), 127.6 (C1), 111.9* (C2), 111.6 (C2), 111.1* (C2), 

81.9 (C4), 27.6 (C5). 

13C NMR (100 MHz, 348 K, d6-DMSO);  151.1 (C3), 127.2 (C1), 111.3 (C2), 81.5 (C4), 27.4 

(C5). 

FTIR (ATR)  (cm-1): 2974, 1733 (C=O), 1718 (C=O). 

HRMS (ESI): m/z calculated for: C14H22N2O4 [M+Na]+ 305.1472, found 305.1469.  

 

Dibenzyl-1,2-dihydropyridazine-1,2-dicarboxylate 9e 

 

Using general procedure F, dibenzyl azodicarboxylate 8e (1.24 g, 4.00 mmol) and 1-acetoxy-

1,3-butadiene 202a (0.7 mL, 6.00 mmol) in CH2Cl2 (0.8 mL) was stirred at room temperature 

for 2 hours. After being passed through a short silica gel column (eluent: hexane-EtOAc, 

7:1→3:1), cycloadduct (1.53 g, 3.72 mmol), Pd(OAc)2 (9 mg, 0.04 mmol), triphenylphosphine 

(42 mg, 0.16 mmol) and triethylamine (1.1 mL, 7.89 mmol) in 1,4-dioxane (8 mL) gave the crude 

product. Purification by flash column chromatography on silica gel (eluent: hexane-EtOAc, 
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9:1→6:1) gave 1,2-dihydropyridazine 9e (1.06 g, 3.02 mmol, 75%) as a highly viscous orange 

oil. 

Cycloadduct 203e 

 

Rf (Hexane-EtOAc, 2:1) = 0.22 

1H NMR (400 MHz, CDCl3);  7.34-7.29 (br m, 10H, H8, H9, H10, H14, H15 and H16), 6.94-

6.87 (br m, 1H, H1), 6.10 (br dd, J = 9.9, 4.1 Hz, 1H, H3), 5.92-5.84 (br m, 1H, H2), 5.25-5.01 

(br m, 4H, H6 and H12), 4.68-4.48 (m, 1H, H4A), 3.98-3.69 (br m, 1H, H4B), 2.06-1.76 (br m, 

3H, H18). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes denoted by an 

asterisk);  169.6 (C17), 155.4 (C5 or C11), 154.4 (C5 or C11), 153.6* (C5 or C11), 136.0 (C7 

or C13), 135.6 (C7 or C13), 129.1 (C3), 128.7 (C8, C9, C10, C14, C15 or C16), 128.6 (C8, C9, 

C10, C14, C15 or C16), 128.5 (C8, C9, C10, C14, C15 or C16), 128.2 (C8, C9, C10, C14, C15 

or C16), 128.1 (C8, C9, C10, C14, C15 or C16), 127.7 (C8, C9, C10, C14, C15 or C16), 122.2 

(C2), 73.8 (C1), 68.6* (C6 or C12), 68.4* (C6 or C12), 68.0 (C6 or C12), 44.1* (C4), 42.9 (C4), 

21.0* (C18),  20.6 (C18).  

FTIR (ATR)  (cm-1): 3032, 1709 (C=O). 

HRMS (ESI): m/z calculated for: C22H22N2O6 [M+Na]+ 433.1370, found 433.1349.  

1,2-Dihydropyridazine 9e 

 

Rf (Hexane-EtOAc, 2:1) = 0.37 

1H NMR (400 MHz, 298 K, d6-DMSO);  7.43-7.29 (br m, 10H, H6, H7, H8), 6.90-6.75 (br m, 

2H, H1), 5.92-5.74 (br m, 2H, H2), 5.31-5.16 (br m, 4H, H4). 

1H NMR (400 MHz, 348 K, d6-DMSO);  7.39-7.06 (br m, 10H, H6, H7, H8), 6.82 (dd, J = 5.2, 

2.4 Hz, 2H, H1), 5.83 (dd, J = 5.2, 2.4 Hz, 2H, H2), 5.26-5.19 (br m, 4H, H4). 
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13C NMR (100 MHz, 298 K, d6 -DMSO, additional peaks due to complex rate processes denoted 

by an asterisk);  153.2 (C3), 152.4* (C3), 135.6 (C5), 128.5 (C6, C7 or C8), 128.2 (C6, C7 or 

C8), 127.7 (C6, C7, C8 or C1), 127.2 (C6, C7, C8 or C1), 113.4* (C2), 112.2 (C2), 67.8 (C4). 

13C NMR (100 MHz, 348 K, d6-DMSO);  152.6 (C3), 135.3 (C5), 128.0 (C6, C7 or C8), 127.7 

(C6, C7 or C8), 127.2 (C6, C7, C8), 127.0 (C1), 112.3 (C2), 67.4 (C4). 

FTIR (ATR)  (cm-1): 3032, 2954, 1716 (C=O). 

HRMS (ESI): m/z calculated for: C20H18N2O4 [M+Na]+ 373.1159, found 373.1148. 

 

1-tert-Butyl-2-methyl-1,2-dihydropyridazine-1,2-dicarboxylate 9f 

 

Using general procedure G, a mixture of hydrazine 43f (1.02 g, 5.27 mmol), iodobenzene 

diacetate (1.78 g, 5.54 mmol) and 1-acetoxy-1,3-butadiene 202a (0.9 mL, 7.89 mmol) in CH2Cl2 

(5.3 mL) was stirred at 40 °C for 24 hours. After being passed through a short silica gel column 

(eluent: hexane-EtOAc, 7:1→2:1), cycloadduct (1.47 g, 4.90 mmol), Pd(OAc)2 (24 mg, 0.11 

mmol), triphenylphosphine (110 mg, 0.42 mmol) and triethylamine (1.5 mL, 10.5 mmol) in 1,4-

dioxane (10.5 mL) gave the crude product. Purification by flash column chromatography on 

silica gel (eluent: hexane-EtOAc, 7:1→5:1) gave 1,2-dihydropyridazine 9f (577 mg, 2.40 mmol, 

46%) as an off-white solid. 

Cycloadduct 203f 

 

Note: Likely a mixture of both compounds in addition to the already complex NMR spectra for 

these compounds 

Rf (Hexane-EtOAc, 2:1) = 0.24 

1H NMR (400 MHz, CDCl3);  6.88-6.75 (br m, 1H, H1), 6.11-6.02 (br m, 1H, H3), 5.92-5.81 (br 

m, 1H, H2), 4.61-4.38 (br m, 1H, H4A), 3.81-3.66 (m, 4H, H4B, H9), 2.08-2.00 (m, 3H, H11), 

1.48-1.44 (br m, 9H, H7). 

13C NMR (100 MHz, CDCl3, additional peaks due to regioisomers and complex rate processes 

denoted by an asterisk);  169.6* (C10), 169.6 (C10), 154.3 (C5, C8), 129.4 (C3), 122.1 (C2), 

81.9* (C6), 81.4 (C6), 73.7 (C1), 53.8 (C8), 53.4* (C8), 42.6* (C4), 42.2 (C4), 28.3 (C7), 28.2* 

(C7), 21.0 (C11), 21.0* (C11), 20.6* (C11). 
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FTIR (ATR)  (cm-1): 2980, 1709 (C=O). 

HRMS (ESI): m/z calculated for: C13H20N2O6 [M+Na]+ 323.1214, found 323.1203.  

1,2-Dihydropyridazine 9f 

 

Rf (Hexane-EtOAc, 2:1) = 0.37 

mp = 70-72 ˚C 

1H NMR (400 MHz, 298 K, d6-DMSO);  6.84-6.60 (br m, 2H, H1, H4), 5.87-5.64 (br m, 2H, H2, 

H3), 3.73 (br s, 3H, H9), 1.43 (br s, 9H, H7). 

1H NMR (400 MHz, 348 K, d6-DMSO);  6.74-6.70 (br m, 2H, H1, H4), 5.78-5.72 (br m, 2H, H), 

3.75 (s, 3H, H9), 1.45 (s, 9H, H7). 

13C NMR (100 MHz, 298 K, d6 -DMSO, additional peaks due to complex rate processes denoted 

by an asterisk);  153.7 (C5 or C8), 152.8* (C5 or C8), 151.8 (C5 or C8), 127.8 (C1 or C4), 

127.0 (C1 or C4), 113.0* (C2 or C3), 112.1 (C2 or C3), 111.1 (C2 or C3), 82.3 (C6), 53.5 (C9), 

27.6 (C7). 

13C NMR (100 MHz, 348 K, d6-DMSO);  153.0 (C8), 151.2 (C5), 127.4 (C1 or C4), 126.8 (C1 

or C4), 112.0 (C2 or C3), 111.4 (C2 or C3), 81.9 (C6), 52.9 (C9), 27.4 (C7). 

FTIR (ATR)  (cm-1): 2984, 1748 (C=O), 1716 (C=O). 

HRMS (APCI): m/z calculated for: C11H16N2O4 [M-H]- 239.1037, found 239.1029.  

Rearranged Allylic Acetate 209f 

 

Note: Likely a mixture of both compounds in addition to the already complex NMR spectra for 

these compounds 

Rf (Hexane-EtOAc, 2:1) = 0.29  

1H NMR (400 MHz, 348 K, d6-DMSO);  7.22-7.14 (br m, 1H, H1), 5.21-5.12 (br m, 1H H2), 

5.06-5.00 (br m, 1H, H3), 4.52-4.26 (br m, 1H, H4A), 3.75-3.71 (b m, 3H, H9), 3.47-3.22 (br m, 

1H, H4B), 2.04-1.90 (br m, 3H, H11), 1.46-1.43 (br m, 9H, H7). 

13C NMR (100 MHz, 348 K, d6-DMSO, additional peaks due to regioisomers and complex rate 

processes denoted by an asterisk);  169.3 (C10), 155.4 (C5 or C8), 151.4 (C5 or C8), 128.8 

(C1), 128.3* (C1), 102.8 (C2), 101.9* (C2), 82.0 (C6), 81.0* (C6), 63.2 (C3), 63.1* (C3), 53.1 

(C9), 52.9* (C9), 48.5 (C4, weak), 27.4 (C7), 27.3* (C7), 20.3* (C11), 20.2 (C11). 
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FTIR (ATR)  (cm-1): 2958, 1718 (C=O), 1648 (C=O). 

HRMS (ESI): m/z calculated for: C13H20N2O6 [M+Na]+ 323.1214, found 323.1205. 

1-Benzyl-2-tert-butyl-1,2-dihydropyridazine-1,2-dicarboxylate 9g 

 

Using general procedure X, a mixture of hydrazine 43g (1.01 g, 3.77 mmol), iodobenzene 

diacetate (1.27 g, 3.94 mmol) and 1-acetoxy-1,3-butadiene 202a (0.67 mL, 5.63 mmol) in 

CH2Cl2 (1.5 mL) was stirred at room temperature for 17 hours. After being passed through a 

short silica gel column (eluent: hexane-EtOAc, 7:1→3:1), cycloadduct (1.23 g, 3.27 mmol), 

Pd(OAc)2 (15 mg, 0.07 mmol), triphenylphosphine (68 mg, 0.26 mmol) and triethylamine (0.9 

mL, 6.54 mmol) in 1,4-dioxane (6.5 mL) gave the crude product. Purification by flash column 

chromatography on silica gel (eluent: hexane-EtOAc, 14:1→7:1) gave 1,2-dihydropyridazine 9g 

(658 mg, 2.08 mmol, 55%) as highly viscous orange oil. 

Cycloadduct 203g 

 

Note: Likely a mixture of both compounds in addition to the already complex NMR spectra for 

these compounds 

Rf (Hexane-EtOAc, 2:1) = 0.28 

1H NMR (400 MHz, CDCl3);  7.36-7.28 (br m, 10H, H11, H12, H13), 6.92-6.80 (br m, 1H, H1), 

6.09-6.02 (br m, 1H, H3), 5.93-5.79 (br m, 1H, H2), 5.28-5.11 (br m, 2H, H9), 4.63-4.38 (m, 1H, 

H4A), 3.91-3.66 (br m, 1H, H4B), 2.06-1.79 (br m, 3H, H15), 1.47-1.34 (br m, 9H, H7). 

13C NMR (100 MHz, CDCl3, additional peaks due to regioisomers and complex rate processes 

denoted by an asterisk);  169.6 (C14), 169.4* (C14), 155.4* (C5 or C8), 154.4 (C5 or C8), 

136.1* (C10), 135.7 (C10), 129.4 (C3), 128.6 (C11, C12 or C13), 128.5 (C11, C12 or C13), 

128.4* (C11, C12 or C13), 128.2* (C11, C12 or C13), 127.7 (C11, C12 or C13), 122.1 (C2), 

81.4 (C6), 73.8 (C1), 68.3 (C9), 67.9* (C9), 42.7 (C4), 42.3* (C4), 28.1 (C7), 21.0 (C15), 20.7* 

(C15). 
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FTIR (ATR)  (cm-1): 2978, 1735 (C=O), 1707 (C=O). 

HRMS (ESI): m/z calculated for: C19H24N2O6 [M+Na]+ 399.1527, found 399.1516.  

1,2-Dihydropyridazine 9g 

 

Rf (Hexane-EtOAc, 2:1) = 0.45 

1H NMR (400 MHz, 298 K, d6-DMSO);  7.43-7.27 (br m, 5H, H11, H12, H13), 6.86-6.68 (br m, 

2H, H1, H4), 5.89-5.67 (br m, 2H, H2, H3), 5.37-5.04 (br m, 2H, H9), 1.50-1.19z (br s, 9H, H7). 

1H NMR (400 MHz, 348 K, d6-DMSO);  7.40-7.31 (br m, 5H, H11, H12, H13), 6.78-6.72 (m, 

2H, H1, H4), 5.81-5.73 (m, 2H, H2, H3), 5.26-5.18 (m, 2H, H9), 1.41 (s, 9H, H7). 

13C NMR (100 MHz, 298 K, d6 -DMSO, additional peaks due to complex rate processes denoted 

by an asterisk);  153.2 (C5 or C8), 152.3 (C5 or C8), 135.7 (C10), 128.4 (C11, C12 or C13), 

128.2 (C11, C12 or C13), 127.8 (C11, C12 or C13), 127.4 (C1 or C4), 126.9 (C1 or C4), 113.1* 

(C2 or C3), 112.3 (C2 or C3), 111.2* (C2 or C3), 82.4 (C6), 67.5 (C9), 27.6 (C7). 

13C NMR (100 MHz, 348 K, d6-DMSO);  152.5 (C8), 151.3 (C5), 135.4 (C10), 128.0 (C11, C12 

or C13), 127.7 (C11, C12 or C13), 127.5 (C1 or C4), 127.3 (C11, C12 or C13), 126.7 (C1 or 

C4), 112.2 (C2 or C3), 111.5 (C2 or C3), 82.0 (C6), 67.2 (C9), 27.3 (C7). 

FTIR (ATR)  (cm-1): 2978, 1713 (C=O). 

HRMS (ESI): m/z calculated for: C17H20N2O4 [M+Na]+ 339.1315, found 339.1316.  

Rearranged Allylic Acetate 209g 

 

Note: Likely a mixture of both compounds in addition to the already complex NMR spectra for 

these compounds 

Rf (Hexane-EtOAc, 2:1) = 0.34  

1H NMR (400 MHz, 348 K, d6-DMSO);  7.39-7.18 (br m, 6H, H1, H11, H12, H13), 5.27-5.13 (br 

m, 3H, H2, H9), 5.05-5.01 (br m, 1H, H3), 4.53-4.33 (br m, 1H, H4A), 3.54-3.23 (br m, 1H, H4B), 

2.04-1.84 (br m, 3H, H15), 1.48-1.27 (br m, 9H, H7). 
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13C NMR (100 MHz, 348 K, d6-DMSO, additional peaks due to regioisomers and complex rate 

processes denoted by an asterisk, only one C5, C8 peaks and no C4 peak – spectrum still too 

broad);  169.2 (C14), 150.8 (C5 or C8), 135.6* (C10), 135.3 (C10), 128.8 (C1), 128.0 (C11, 

C12 or C13), 127.8 (C11, C12 or C13), 127.6 (C11, C12 or C13), 127.2 (C11, C12 or C13), 

103.1 (C2), 82.1 (C6), 81.1* (C6), 67.4 (C9), 67.2* (C9), 63.1 (C3), 27.3 (C7), 20.3  (C15), 20.2* 

(C15). 

FTIR (ATR)  (cm-1): 2976, 1716 (C=O), 1648 (C=O). 

HRMS (ESI): m/z calculated for: C19H24N2O6 [M+Na]+ 399.1527, found 399.1521. 

 

2-Phenyl-[1,2,4]triazolo[1,2-a]pyridazine-1,3-dione 9h165  

 

Using general procedure G, a mixture of 4-phenyl urazole 43h (1.03 g, 5.82 mmol), 

iodobenzene diacetate (1.88 g, 5.85 mmol) and 1-acetoxy-1,3-butadiene 202a (1.0 mL, 8.46 

mmol) in CH2Cl2 (10 mL) was stirred at room temperature for 1 hour. After the addition of hexane 

(20 mL), filtration and drying, cycloadduct (1.64 g, 5.69 mmol), Pd(OAc)2 (13 mg, 0.07 mmol), 

triphenylphosphine (60 mg, 0.23 mmol) and triethylamine (1.6 mL, 11.4 mmol) in 1,4-dioxane 

(11 mL) gave the crude product. Purification by flash column chromatography on silica gel 

(eluent: hexane-EtOAc, 1:1) gave 1,2-dihydropyridazine 9h (957 mg, 4.21 mmol, 72%) as a 

yellow solid. The spectroscopic data for 9h are consistent with those reported previously.4  

Cycloadduct 203h 

 

Rf (Hexane-EtOAc, 1:1) = 0.23 

mp = 130-132 ˚C 

1H NMR (400 MHz, CDCl3);  7.55-7.45 (m, 4H, H7, H8), 7.41-7.37 (m, 1H, H9), 6.82-6.81 (m, 

1H, H1), 6.26-6.22 (m, 1H, H3), 6.16-6.12 (m, 1H, H2), 4.52 (ddd, J = 17.2, 4.6, 1.7, 1H, H4A), 

4.07-4.02 (m, 1H, H4B), 2.08 (s, 3H, H11). 

13C NMR (100 MHz, CDCl3);  169.7 (C10), 152.5 (C5 or C6), 150.8 (C5 or C6), 130.9 (C7), 

129.3 (C9), 128.5 (C10), 126.4 (C3), 125.4 (C8), 121.1 (C2), 72.5 (C1), 43.7 (C4), 20.7 (C11). 

FTIR (ATR)  (cm-1): 3014, 1785 (C=O), 1722 (C=O). 

HRMS (ESI): m/z calculated for:C12H10N3O2 [M-OAc]+ 228.0768, found 228.0775.  

1,2-Dihydropyridazine 9h 
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1H NMR (400 MHz, CDCl3);  7.54-7.38 (br m, 5H, H5, H6, H7), 6.88 (br dd, J = 6.1, 2.7 Hz, 2H, 

H1), 5.34 (br dd, J = 6.1, 2.7 Hz, 2H, H2). 

13C NMR (100 MHz, CDCl3);  142.7 (C3), 131.0 (C4), 129.4 (C5), 128.7 (C7), 125.8 (C6), 120.9 

(C1), 105.2 (C2). 

 

Di-tert-butyl 4-methylidene-3,4-dihydropyridazine-1,2-dicarboxylate 216 

 

Using general procedure F, di-tert-butyl azodicarboxylate 8d (1.00 g, 4.35 mmol) and 1-acetoxy-

3-methyl-1,3-butadiene 202a (0.82 g, 6.51 mmol) in CH2Cl2 (0.9 mL) was stirred at 40 °C for 31 

hours. After the addition of hexane (20 mL), filtration and drying, cycloadduct (1.01 g, 2.83 

mmol), Pd(OAc)2 (6 mg, 0.03 mmol), triphenylphosphine (29 mg, 0.11 mmol) and triethylamine 

(0.8 mL, 5.74 mmol) in 1,4-dioxane (5.7 mL) gave the crude product. Purification by flash 

column chromatography on silica gel (eluent: hexane-EtOAc, 14:1→9:1→7:1) gave diene 216 

(506 mg, 1.71 mmol, 39%) as a colourless solid. 

Cycloadduct 215 

 

Rf (Hexane-EtOAc, 2:1) = 0.35 

1H NMR (400 MHz, d6-DMSO);  6.69-6.62 (m, 1H, H1), 5.62-5.54 (m, 1H, H2), 4.27-4.09 (m, 

1H, H4A), 3.72-3.53 (m, 1H, H4B), 2.01 (br s, 3H, H13), 1.73 (br s, 3H, H5), 1.46-1.35 (m, 18H, 

H8 and H11). 

13C NMR (100 MHz, d6-DMSO, additional peaks due to complex rate processes denoted by an 

asterisk);  168.8 (C12), 153.5 (C6 or C9), 151.6 (C6 or C9), 138.1 (C3), 116.3 (C2), 81.3 (C7 

or C10), 80.7* (C7 or C10), 80.0 (C7 or C10), 73.3* (C1), 72.8 (C1), 46.9* (C4), 45.1 (C4), 28.0* 

(C8 or C11), 28.0* (C8 or C11), 27.7 (C8 or C11), 27.7 (C8 or C11), 20.7 (C13), 19.2 (C5). 

FTIR (ATR)  (cm-1): 2978, 2933, 1733 (C=O), 1698 (C=O). 

HRMS (ESI): m/z calculated for: C17H28N2O6 [M+Na]+ 379.1840, found 379.1825. 

Diene 216 
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Rf (Hexane-EtOAc, 7:1) = 0.32 

1H NMR (400 MHz, 348 K, d6-DMSO);  6.98 (br d, J = 8.0 Hz, 1H, H1), 5.63 (br d, J = 8.0 Hz, 

1H, H2), 4.91-4.88 (br m, 1H, H5A), 4.77-4.74 (br m, 1H, H5B), 4.57 (br d, J = 15.3 Hz, 1H, H4A), 

3.74 (br d, J = 15.3 Hz, 1H, H4B), 1.47-1.39 (br m, 18H, H8 and H11).  

13C NMR (100 MHz, 348 K, d6-DMSO);  154.3 (C9), 149.4 (C6), 134.1 (C3), 125.4 (C1), 108.8 

(C5), 107.9 (C2), 81.4 (C7 or C10), 81.0 (C7 or C10), 49.3 (C4), 27.4 (C8 or C11), 27.3 (C8 or 

C11). 

FTIR (ATR)  (cm-1): 2978, 2933, 1713 (C=O). 

HRMS (APCI): m/z calculated for: C15H24N2O4 [M+Na]+ 319.1628, found 319.1613. 

 

Di-tert-butyl 4-oxo-3,4-dihydropyridazine-1,2-dicarboxylate 218 

 

Using general procedure H, di-tert-butyl azodicarboxylate 8d (52 mg, 0.23 mmol, 1.0 eq) and 

Danishefsky’s diene 217 (106 µL, 0.54 mmol, 2.4 eq) in CH2Cl2 (0.5 mL) gave the crude product. 

Purification by flash column chromatography on silica gel (eluent: hexane-EtOAc, 9:1→7:1) 

gave enone 218 (60 mg, 0.20 mmol, 89%) as a colourless solid. 

Rf (Hexane-EtOAc, 2:1) = 0.33 

mp = 84-86 ˚C 

1H NMR (400 MHz, 348 K, d6-DMSO);  8.11 (br d, J = 8.6 Hz, 1H, H1), 5.40 (br d, J = 8.6 Hz, 

1H, H2), 4.41-3.95 (br m, 2H, H4A and H4B), 1.51 (s, 9H, H7 or H9), 1.42 (s, 9H, H7 or H9).  

13C NMR (100 MHz, 348 K, d6-DMSO);  188.0 (C3), 154.1 (C5 or C8), 148.3 (C5 or C8), 141.8 

(C1), 105.9 (C2), 83.6 (C6 or C9), 82.6 (C6 or C9), 53.2 (C4), 27.3 (C7 or C10), 27.2 (C7 or 

C10). 

FTIR (ATR)  (cm-1): 3071, 2983, 2935, 1717 (C=O), 1670 (C=O). 

HRMS (ESI and APCI): Target mass not found.  
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Di-tert-butyl 3-methoxy-5-oxo-1,2-diazinane-1,2-dicarboxylate 219 

 

Rf (Hexane-EtOAc, 2:1) = 0.39 

1H NMR (400 MHz, 348 K, d6-DMSO);  5.49-5.45 (br m, 1H, H2), 4.41-4.30 (br m, 1H, H5A), 

3.68-3.59 (br m, 1H, H5B), 3.37 (br s, 3H, H1), 2.89 (br dd, J = 16.1, 6.4 Hz, H3A), 2.56 (br dd, 

J = 16.1, 3.9 Hz, H3B), 1.47-1.42 (br m, 18H, H8 and H11).  

13C NMR (100 MHz, 348 K, d6-DMSO);  201.4 (C4), 153.2 (C6 or C9), 152.3 (C6 or C9), 83.3 

(C2), 81.4 (C7 or C10), 80.4 (C7 or C10), 54.9 (C1), 53.8 (C5), 43.5 (C3), 27.5 (C8 or C11), 

27.4 (C8 or C11). 

FTIR (ATR)  (cm-1): 2978, 2933, 1730 (C=O), 1708 (C=O). 

HRMS (APCI): m/z calculated for: C15H26N2O6 [M+Na]+ 353.1683, found 353.1697. 

 

Methyl 2-[(methoxycarbonyl)amino]-1H-pyrrole-1-carboxylate 210a33 

 

Using general procedure I, a solution of 1,2-dihydropyridazine 9a (520 mg, 2.62 mmol) in o-

xylene (5 mL) was heated at reflux for 5 hours. Purification by flash column chromatography on 

silica gel (eluent: hexane-EtOAc, 100% hexane→9:1) gave 2-aminopyrrole 210a (320 mg, 1.61 

mmol, 62%) as a colourless solid.  

Rf (Hexane-EtOAc, 2:1) = 0.35  

mp = 46-47 ˚C 

1H NMR (400 MHz, CDCl3);  9.05 (br s, 1H, NH), 6.85 (dd, J = 3.6, 1.8 Hz, 1H, H1), 6.42-6.32 

(br m, 1H, H3),  6.13 (t, J = 3.6 Hz, 1H, H2), 3.95 (s, 3H, H8), 3.77 (s, 3H, H6). 

13C NMR (100 MHz, CDCl3);  153.1 (C5), 152.4 (C7), 130.5 (C4), 114.0 (C1), 111.6 (C2), 98.4 

(C3), 54.2 (C8), 52.6 (C6). 

FTIR (ATR)  (cm-1): 3349 (NH), 2950, 1724 (C=O). 

HRMS (APCI): m/z calculated for: C8H10N2O4 [M+H]+ 199.0713, found 199.0712.  

 

Ethyl 2-[(ethoxycarbonyl)amino]-1H-pyrrole-1-carboxylate 210b 
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Using general procedure I, a solution of 1,2-dihydropyridazine 9b (562 mg, 2.48 mmol) in o-

xylene (5 mL) was heated at reflux for 5 hours. Purification by flash column chromatography on 

silica gel (eluent: hexane-EtOAc ,100% hexane→14:1) gave 2-aminopyrrole 210b (481 mg, 

2.13 mmol, 86%) as a pale yellow oil.  

Rf (Hexane-EtOAc, 1:1) = 0.57 

1H NMR (400 MHz, CDCl3)  9.08 (br s, 1H, NH), 6.87 (dd, J = 3.6, 1.8 Hz, 1H, H1), 6.42-6.31 

(br m, 1H, H3), 6.13 (t, J = 3.6 Hz, 1H, H2), 4.40 (q, J = 7.1 Hz, 2H, H9), 4.22 (q, J = 7.1 Hz, 

2H, H6), 1.41 (t, J = 7.1 Hz, 3H, H10), 1.30 (t, J = 7.1 Hz, 3H, H7). 

13C NMR (100 MHz, CDCl3)  152.8 (C5), 152.0 (C8), 130.8 (C4), 113.9 (C1), 111.5 (C2), 98.2 

(C3), 63.8 (C9), 61.6 (C6), 14.7 (C7), 14.3 (C10). 

1H NMR (400 MHz, d6-DMSO)  8.92 (br s, 1H, NH), 7.07 (dd, J = 3.6, 1.9 Hz, 1H, H1), 6.15 

(t, J = 3.6 Hz, 1H, H2), 6.10-6.06 (br m, 1H, H3), 4.32 (q, J = 7.1 Hz, 2H, H9), 4.08 (q, J = 7.1 

Hz, 2H, H6), 1.30 (t, J = 7.1 Hz, 3H, H10), 1.20 (t, J = 7.1 Hz, 3H, H7). 

13C NMR (100 MHz, d6-DMSO)  154.1 (C5), 150.0 (C8), 128.1 (C4), 117.3 (C1), 110.1 (C2), 

105.3 (C3), 63.4 (C9), 60.6 (C6), 14.5 (C7), 13.9 (C10). 

FTIR (ATR)  (cm-1): 3345 (NH), 3145 (NH), 2980, 1718 (C=O). 

HRMS (ESI): m/z calculated for: C10H14N2O4 [M+H]+ 227.1026, found 227.1024. 

Important NOE Contacts (d6-DMSO) 

 

 

Isopropyl 2-(isopropoxycarbonylamino)-1H-pyrrole-1-carboxylate 210c 

 

Using general procedure I, a solution of 1,2-dihydropyridazine 9c (906 mg, 3.56 mmol) in o-

xylene (10 mL) was heated at reflux for 5 hours. Purification by flash column chromatography 
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on silica gel (eluent: hexane-EtOAc, 100% hexane→14:1) gave 2-aminopyrrole 210c (818 mg, 

3.22 mmol, 90%) as yellow oil.  

Rf (Hexane-EtOAc, 2:1) = 0.58 

1H NMR (400 MHz, CDCl3);  9.08 (br s, 1H, NH), 6.85 (dd, J = 3.6, 1.8 Hz, 1H, H1), 6.40-6.32 

(br m, 1H, H3), 6.12 (t, J = 3.5 Hz, 1H, H2), 5.16 (sept, J = 6.2 Hz, 1H, H9), 5.00 (sept, J = 6.2 

Hz, 1H, H6), 1.39 (d, J = 6.2 Hz, 6H, H10), 1.29 (d, J = 6.2 Hz, 6H, H7). 

13C NMR (100 MHz, CDCl3);  152.4 (C5), 151.6 (C8), 131.0 (C4), 113.8 (C1), 111.3 (C2), 98.0 

(C3), 72.3 (C9), 69.1 (C6), 22.2 (C7), 21.9 (C10). 

FTIR (ATR)  (cm-1): 3366 (NH), 2982, 1720 (C=O). 

HRMS (APCI): m/z calculated for: C12H18N2O4 [M+Na]+ 277.1159, found 277.1154.  

 

tert-Butyl 2-(tert-butoxycarbonylamino)pyrrole-1-carboxylate 210d 

 

Using general procedure X, a solution of 1,2-dihydropyridazine 9d (304 mg, 1.08 mmol) in o-

xylene (3 mL) was heated at reflux for 5 hours. Purification by flash column chromatography on 

silica gel (eluent: hexane-EtOAc ,100% hexane→9:1) gave 2-aminopyrrole 210d (33 mg, 0.12 

mmol, 11%) as a brown oil and 2-aminopyrrole 220d (56 mg, 0.31 mmol, 28%) as a brown film.  

2-Aminopyrrole 210d 

 

Rf (Hexane-EtOAc, 2:1) = 0.58 

1H NMR (400 MHz, CDCl3);  9.00 (br s, 1H, NH), 6.79 (dd, J = 3.5, 1.8 Hz, 1H, H1), 6.35-6.29 

(br m, 1H, H3), 6.08 (t, J = 3.5 Hz, 1H, H2), 1.59 (s, 9H, H7 or H10), 1.50 (s, 9H, H7 or H10). 

13C NMR (100 MHz, CDCl3);  151.8 (C5), 150.8 (C8), 131.2 (C4), 113.9 (C1), 110.8 (C2), 97.5 

(C3), 84.8 (C6 or C9), 80.6 (C6 or C9), 28.5 (C7 or C10), 28.1 (C7 or C10). 

FTIR (ATR)  (cm-1): 3366 (NH), 2982, 1720 (C=O). 

HRMS (APCI): m/z calculated for: C12H18N2O4 [M+Na]+ 277.1159, found 277.1154.  

2-Aminopyrrole 220d 
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Rf (Hexane-EtOAc, 2:1) = 0.50 

1H NMR (400 MHz, CDCl3);  9.60 (br s, 1H, NHA), 7.26 (br s, 1H, NHB), 6.50-6.45 (m, 1H, H1), 

6.07 (m, 1H, H2), 5.61-5.51 (m, 1H, H3), 1.52 (s, 9H, H7). 

13C NMR (100 MHz, CDCl3);  153.4 (C5), 128.1 (C4), 112.1 (C1), 107.0 (C2), 92.5 (C3), 81.1 

(C6), 28.4 (C). 

FTIR (ATR)  (cm-1): 3452 (NH), 3314 (NH), 2980, 1679 (C=O).  

HRMS (ESI): m/z calculated for: C9H14N2O2 [M+H]+ 183.1128, found 183.1127.  

Important NOE Contacts 

 

 
Dimethyl 3,6-bis(isopropoxycarbonylamino)benzene-1,2-dicarboxylate 224 

 

Dimethyl acetylenedicarboxylate 223 (31 µL, 0.25 mmol, 1.1 eq) was added in one portion to a 

stirred solution of 2-aminopyrrole 210c (58 mg, 0.23 mmol, 1.0 eq) in PhMe (3.0 mL). The 

reaction was heated at 60 °C for 18 hours, then cooled to room temperature and evaporated 

under reduced pressure to give the crude product. Purification by flash column chromatography 

on silica gel (eluent: hexane-EtOAc, 4:1→2:1) gave p-phenylenediamine derivative 224 (59 mg, 

0.15 mmol, 65%) as a yellow solid. 

Rf (Hexane-EtOAc, 2:1) = 0.4 

Mp = 118-120 °C  

1H NMR (400 MHz, CDCl3);  8.42 (br s, 2H, NH), 8.31 (s, 2H, H2), 4.99 (sept, J = 6.3 Hz, 2H, 

H7), 3.87 (s, 6H, H5), 1.29 (d, J = 6.3 Hz, 12H, H8). 

13C NMR (100 MHz, CDCl3);  167.9 (C4), 153.4 (C6), 133.6 (C1), 124.7 (C2), 119.4z (C3), 69.3 

(C7), 53.0 (C5), 22.2 (C8). 

FTIR (ATR)  (cm-1): 3343 (NH), 3308 (NH), 2984, 1720 (C=Oester), 1705 (C=Ocarbamate). 

HRMS (APCI): m/z calculated for: C18H24N2O8 [M-H]- 395.1460, found 395.1454. 
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Diisopropyl naphthalene-1,4-diylbiscarbamate 234a 

 

Using general procedure J, a solution of 2-aminopyrrole 210c (44 mg, 0.17 mmol, 2.1 eq) and 

aryne precursor 233a (20 µL, 0.08 mmol, 1.0 eq) in MeCN (0.8 mL) were heated at 40 °C for 

2.5 hours. Purification by flash column chromatography on silica gel (eluent: hexane-EtOAc, 

4:1→2:1) gave diamine 234a (20 mg, 0.06 mmol, 74%) as a colourless solid. 

Rf (Hexane-EtOAc, 2:1) = 0.26 

mp = 187-189 ˚C (decomposition) 

1H NMR (400 MHz, d6-DMSO);  9.37 (br s, 2H, NH), 8.02 (br dd, J = 6.5, 3.3 Hz, 2H, H4), 7.54 

(br dd, J = 6.5, 3.3 Hz, 2H, H5) 7.51-7.49 (m, 2H, H2), 4.91 (sept, J = 6.2 Hz, 2H, H7), 1.28 (br 

d, J = 6.2 Hz, 12H, H8). 

13C NMR (100 MHz, d6-DMSO);  154.7 (C6), 131.1 (C1), 128.7 (C3), 125.8 (C5), 123.1 (C4), 

121.4 (C2), 67.6 (C7), 22.0 (C8). 

FTIR (ATR)  (cm-1): 3263 (NH), 2974, 1737 (C=O), 1690 (C=O).  

HRMS (ESI): m/z calculated for: C18H22N2O4 [M+Na]+ 353.1472, found 353.1458.  

 

Diisopropyl quinoline-5,8-diylbiscarbamate 234b 

 

Using general procedure J, a solution of 2-aminopyrrole 210c (44 mg, 0.17 mmol, 2.0 eq) and 

aryne precursor 233b (20 µL, 0.09 mmol, 1.0 eq) in MeCN (0.8 mL) were heated at 40 °C for 

2.5 hours. Purification by flash column chromatography on silica gel (eluent: hexane-EtOAc, 

7:1→2:1) gave diamine 234b (8 mg, 0.02 mmol, 28%) as an orange film. 
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Rf (Hexane-EtOAc, 2:1) = 0.29 

1H NMR (400 MHz, d6-DMSO);  9.44 (br s, 1H, NHA), 9.05 (br s, 1H, NHB), 8.89 (dd, J = 4.2, 

1.6 Hz, 1H, H6), 8.44 (dd, J = 8.6, 1.6 Hz, 1H, H8), 8.21 (d, J = 8.4 Hz, 1H, H3), 7.65 (dd, J = 

8.6, 4.2 Hz, 1H, H7), 7.60 (d, J = 8.4 Hz, 1H, H2), 5.01-4.86 (m, 2H, H11 and H14), 1.33-1.24 

(m, 12H, H12 and H15). 

13C NMR (100 MHz, d6-DMSO);  154.6 (C10 or C13), 152.5 (C10 or C13), 148.8 (C6), 137.7 

(C5), 132.3 (C8), 131.5 (C4), 127.8 (C1), 123.3 (C9), 122.1 (C2), 121.8 (C7), 114.2 (C3), 68.3 

(C11 or C14), 67.8 (C11 or C14), 22.0 (C12 or C15), 21.9 (C12 or C15). 

FTIR (ATR)  (cm-1): 3375 (NH), 3278 (NH), 2978, 1724 (C=O), 1689 (C=O). 

HRMS (ESI): m/z calculated for: C17H21N3O4 [M+H]+ 332.1605, found 332.1598; [M+Na]+ 

354.1424, found 354.1423.  

Important NOE Contacts 

 

 

Diisopropyl isoquinoline-5,8-diylbiscarbamate 234c 

 

Using general procedure J, a solution of 2-aminopyrrole 210c (44 mg, 0.17 mmol, 2.1 eq) and 

aryne precursor 233c (20 µL, 0.08 mmol, 1.0 eq) in MeCN (0.8 mL) were heated at 40 °C for 

1.5 hours. Purification by flash column chromatography on silica gel (eluent: hexane-EtOAc, 

1:1→100% EtOAc) gave diamine 234c (8 mg, 0.02 mmol, 29%) as a pink film. 

Rf (EtOAc, 100%) = 0.28 

1H NMR (400 MHz, d6-DMSO);  9.73 (br s, 1H, NHB), 9.52 (br s, 1H, NHA), 9.39 (br s, 1H, H6), 

8.51 (d, J = 5.8 Hz, 1H, H7), 7.88 (dd, J = 5.8, 0.6 Hz, 1H, H8), 7.80 (d, J = 8.3 Hz, 1H, H2), 

7.67 (d, J = 8.3 Hz, 1H, H3), 4.98-4.87 (m, 2H, H11 and H14), 1.31-1.25 (m, 2H, H12 and H15). 
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13C NMR (100 MHz, d6-DMSO);  154.5 (C10 or C13), 154.4 (C10 or C13), 148.1 (C6), 142.6 

(C7), 131.5 (C4), 130.7 (C9), 130.0 (C1), 124.9 (C2), 122.8 (C5), 121.8 (C3), 115.5 (C8), 68.0 

(C11 or C14), 67.9 (C11 or C14), 22.0 (C12 and C15). 

FTIR (ATR)  (cm-1): 3269 (NH), 2978, 1728 (C=O), 1694 (C=O). 

HRMS (ESI): m/z calculated for: C17H21N3O4 [M+H]+ 332.1605, found 332.1591. 

Important NOE Contacts 

 

 

Di-tert-butyl-1-{1-(isopropyloxy)carbonyl-5-[(isopropyloxycarbonyl)amino]-pyrrol-2-yl}-

hydrazine-1,2-dicarboxylate 235 

 

Di-tert-butyl azodicarboxylate 8d (200 mg, 0.87 mmol, 1.1 eq) was added in one portion to a 

stirred solution of 2-aminopyrrole 210c (201 mg, 0.79 mmol, 1.0 eq) in PhMe (1.5 mL) at room 

temperature under argon. The reaction mixture was heated at 60 °C for 24 hours, cooled to 

room temperature and the solvent was removed under reduced pressure to give the crude 

product. Purification by flash column chromatography on silica gel (eluent: hexane-EtOAc, 

7:1→5:1) gave pyrrole 235 (308 mg, 0.64 mmol, 81%) as a pale yellow solid. 

Rf (Hexane-EtOAc, 2:1) = 0.45  

mp = 40-42 ˚C 

1H NMR (400 MHz, d6-DMSO);  9.18-8.58 (br m, 2H, NHA and NHB), 6.10-6.05 (br m, 1H, H2), 

5.98-5.90 (br m, 1H, H3), 5.01-4.95 (m, 1H, H6 or H9), 4.83-4.77 (m, 1H, H6 or H9), 1.47-1.17 

(m, 30H, H7, H10, H13 and H16). 

13C NMR (100 MHz, d6-DMSO, additional peaks due to complex rate processes denoted by an 

asterisk);  154.8 (C11 or C14), 153.9 (C5 or C8), 153.7* (C5, C8, C11 or C14), 153.2* (C5, C8, 

C11 or C14), 148.9 (C5 or C8), 128.0 (C1 or C4), 126.3 (C1 or C4), 107.7 (C2), 103.1 (C3), 

82.4* (C12 or C15), 80.7 (C12 or C15), 79.7 (C12 or C15), 79.2* (C12 or C15), 71.8 (C6 or C9), 

71.7* (C6 or C9), 68.0* (C6 or C9), 67.9 (C6 or C9), 28.0 (C13 or C16), 27.7 (C13 or C16), 21.9 

(C7 or C10), 21.1 (C7 or C10), 21.1* (C7 or C10). 
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1H NMR (400 MHz, 348 K, d6-DMSO);  8.72 (s, 1H, NHA), 8.38 (br s, 1H, NHB), 6.11 (d, J = 

3.7 Hz, 1H, H2), 5.97 (br dd, J = 3.7, 0.4 Hz, 1H, H3), 5.03 (sept, J = 6.3 Hz, 1H, H6 or H9), 

4.84 (sept, J = 6.3 Hz, 1H, H6 or H9), 1.45-1.35 (m, 18H, H13 and H16), 1.33 (d, J = 6.3 Hz, 

H7 or H10), 1.23 (d, J = 6.3 Hz, H7 or H10). 

13C NMR (100 MHz, 348 K, d6-DMSO, additional peaks due to rotamers denoted by an asterisk); 

 154.3 (C11 and C14), 153.2 (C5 or C8), 153.1 (C5, C8, C11 or C14), 148.9 (C5 or C8), 127.4 

(C1 or C4), 126.5 (C1 or C4), 107.7 (C2), 102.2 (C3), 80.5 (C12 or C15), 79.5 (C12 or C15), 

71.7 (C6 or C9), 67.7 (C6 or C9), 27.7 (C13 or C16), 27.4 (C13 or C16), 21.4 (C7 or C10), 20.8 

(C7 or C10). 

FTIR (ATR)  (cm-1): 3364 (NH), 2980, 1718 (C=O). 

HRMS (ESI): m/z calculated for: C22H36N4O8 [M+H]+ 485.2606 and [M+Na]+ 507.2425, found 

485.2585 and 507.2401, respectively.  

Important NOE contacts 

 

 

Diisopropyl 3,6-dihydroxy-3,6-dihydropyridazine-1,2-dicarboxylate 238 

 

m-CPBA (76 mg, 0.44 mmol, 1.1 eq) was added in one portion to a stirred solution of 1,2-

dihydropyridazine 9c (100 mg, 0.39 mmol, 1.0 eq) in MeCN (1 mL) at 0 °C under argon. The 

reaction mixture was stirred at room temperature for 44 hours, then the solvent was removed 

under reduced pressure to give the crude product. Purification by flash column chromatography 

on silica gel (eluent: hexane-EtOAc, 3:1→2:1→1:1) gave diol 238 (63 mg, 0.22 mmol, 56%) as 

a colourless oil which became an off-white solid upon standing. 

Rf (Hexane-EtOAc, 1:1) = 0.11   

mp = 108-110˚C 

1H NMR (400 MHz, 328 K, CDCl3);  6.03-5.98 (m, 2H, H2 and H3), 5.94-5.85 (br m, 2H, H1 

and H4), 4.97 (sept, J = 6.3 Hz, 2H, H6 and H9), 1.26 (br d, J = 6.3 Hz, 12H, H7 and H10). 

13C NMR (100 MHz, 328 K, CDCl3);  154.6 (C5 and C8), 127.6 (C2 and C3), 72.4 (C1 and C4), 

70.9 (C6 and C9), 22.1 (C7 or C10), 22.0 (C7 or C10). 

FTIR (ATR)  (cm-1): 3416 (OH), 2982, 1679 (C=O). 

HRMS (ESI): m/z calculated for: C12H20N2O6 [M+Na]+ 311.1214, found 311.1199.  
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Diisopropyl 3,3,8,8-tetrachloro-5,6-diazatricyclo[5.1.0.02,4]octane-5,6-dicarboxylate 241 

 

An aqueous solution of NaOH (50% w/v, 5 mL) was added dropwise to a solution of 1,2-

dihydropyridazine 9c (101 mg, 0.40 mmol, 1.0 eq) and tetrabutylammonium chloride (11 mg, 

0.04 mmol, 0.1 eq) in CHCl3 (10 mL) at room temperature under argon, then stirred at room 

temperature for 3 hours. The reaction mixture was quenched with a saturated aqueous solution 

of NH4Cl (10 mL) and the organic layer was separated. The aqueous layer was extracted with 

EtOAc (3 x 10 mL), the combined organic layers were dried (MgSO4) and evaporated under 

reduced pressure to give the crude product. Purification by flash column chromatography on 

silica gel (eluent: hexane-EtOAc, 7:1→4:1) gave tricycle 241 (117 mg, 0.28 mmol, 71%) as an 

off-white sticky solid. 

Rf (Hexane-EtOAc, 2:1) = 0.44 

mp = 118-120 ˚C 

1H NMR (400 MHz, CDCl3);  5.04-4.94 (m, 2H, H8 and H11), 3.63-3.54 (m, 2H, H1 and H6), 

2.15-2.11 (m, 2H, H3 and H4), 1.35-1.23 (m, 12H, H9 and H12). 

13C NMR (100 MHz, CDCl3);  153.2 (C7 and C10), 71.5 (C8 and C11), 63.0 (C2 and C5), 42.2 

(C1 and C6), 25.8 (C3 and C4), 22.3 (C8 or C11), 21.8 (C8 or C11). 

FTIR (ATR)  (cm-1): 2978, 2926, 1757 (C=O), 1724 (C=O). 

HRMS (APCI): m/z calculated for: C14H18N2O4Cl4 [M+H]+ 419.0093, found 419.0079.  

 

Diisopropyl 3,4-dihydroxy-3,4-dihydropyridazine-1,2-dicarboxylate 242 and 243 

 

NMO (140 mg, 1.20 mmol, 3.0 eq) was added in one portion to a stirred solution of 1,2-

dihydropyridazine 9c (102 mg, 0.40 mmol, 1.0 eq) and OsO4 (2.5% w/v in tBuOH, 0.2 mL, 0.02 

mmol, 0.05 eq) in acetone:H2O (8:1, 4.5 mL) at room temperature under argon, then stirred at 

room temperature for 17 hours. The reaction mixture was diluted with a saturated aqueous 

solution of Na2S2O3 (5 mL) and extracted with CH2Cl2 (5 x 5 mL). The combined organic layers 

were dried (MgSO4) and evaporated under reduced pressure to give the crude product. 

Purification by flash column chromatography on silica gel (eluent: hexane-EtOAc, 
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4:1→2:1→1:1) gave diol 242 (24 mg, 0.08 mmol, 21%) and diol 243 (66 mg, 0.23 mmol, 57%) 

as colourless solids. 

cis-Diol 242 

 

Rf (Hexane-EtOAc, 1:1) = 0.14 

mp = 104-106˚C 

1H NMR (400 MHz, d6-DMSO);  6.81-6.44 (br m, 2H, H4 and OHA), 5.51-5.38 (br m, 1H, H1), 

4.99-4.93 (br m, 1H, OHB), 4.87-4.71 (br m, 3H, H3, H6 and H9), 4.10-4.04 (br m, 1H, H2), 1.24-

1.19 (m, 12H, H7 and H10). 

13C NMR (100 MHz, d6-DMSO, C1 not visible, additional peaks due to complex rate processes 

denoted by an asterisk);  152.6 (C5 or C8), 151.3 (C5 or C8), 123.7 (C4), 108.4 (C3), 70.1* 

(C6 or C9), 69.9 (C6 or C9), 62.6* (C2), 62.4 (C2), 21.7* (C7 or C10), 21.6 (C7 or C10), 21.6 

(C7 or C10). 

1H NMR (400 MHz, 348 K, d6-DMSO);  6.77 (br d, J = 8.0 Hz, 1H, H4), 6.22-6.11 (br m, 1H, 

OHA), 5.50-5.47 (br m, 1H, H), 4.91-4.77 (br m, 3H, H3, H6 and H9), 4.66 (br d, J = 7.7 Hz, 1H, 

OHB), 4.13-4.09 (br m, 1H, H2), 1.25-1.20 (m, 12H, H7 and H10). 

13C NMR (100 MHz, 348 K, d6-DMSO, additional peaks due to complex rate processes denoted 

by an asterisk);  152.9 (C5 or C8), 123.7 (C4), 108.2 (C3), 74.1 (C1), 69.6 (C6 or C9), 69.3 

(C6 or C9), 62.2 (C2), 21.4* (C7 or C10), 21.3* (C7 or C10), 21.3 (C7 or C10), 21.2* (C7 or 

C10), 21.2* (C7 or C10), 21.2 (C7 or C10). 

FTIR (ATR)  (cm-1): 3424 (OH), 2980, 1687 (C=O).  

HRMS (APCI): m/z calculated for: C12H20N2O6 [M+Na]+ 311.1214, found 311.1199.  

Important NOE Contacts 

 

trans-Diol 243 

 

Rf (Hexane-EtOAc, 1:1) = 0.08  
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mp = 104-106˚C 

1H NMR (400 MHz, d6-DMSO);  7.02-6.88 (br m, 1H, H4) 6.52-6.35 (br m, 1H OHA), 5.59-5.44 

(br m, 1H, H1), 5.11-5.08 (br m, 1H, OHB), 5.06-4.95 (br m, 1H, H3), 4.86-4.77 (br m, 2H, H6 

and H9), 3.71-3.66 (br m, 1H, H2), 1.26-1.14 (m, 12H, H7 and H10). 

13C NMR (100 MHz, d6-DMSO, additional peaks due to complex rate processes denoted by an 

asterisk);  153.6 (C5 or C8), 153.4 (C5 or C8), 152.2 (C5 or C8), 150.9 (C5 or C8), 125.6* (C4), 

125.3 (C4), 125.0* (C4), 105.4 (C3), 105.2* (C3), 80.4* (C1), 80.3 (C1), 79.3* (C1), 78.9* (C1),  

70.1* (C6 or C9), 69.8 (C6 or C9), 69.4 (C6 or C9), 69.3* (C6 or C9), 69.1* (C6 or C9), 68.9* 

(C6 or C9),  63.7* (C2), 63.4 (C2), 21.9* (C7 or C10), 21.8* (C7 or C10), 21.7 (C7 or C10), 21.5 

(C7 or C10). 

1H NMR (400 MHz, 348 K, d6-DMSO);  6.95 (br d, J = 7.9 Hz, 1H, H4), 6.18-6.12 (br m, 1H, 

OHA), 5.60-5.52 (br m, 1H, H1), 5.07-5.00 (br m, 1H, H3), 4.89-4.79 (br m, 3H, H6, H9 and 

OHB), 3.75-3.71 (br m, 1H, H2), 1.29-1.17 (m, 12H, H7 and H10). 

13C NMR (100 MHz, 348 K, d6-DMSO, additional peaks due to complex rate processes denoted 

by an asterisk);  152.9 (C5 or C8), 125.0 (C4), 105.5 (C3), 79.8 (C1), 69.6 (C6 or C9), 68.8 

(C6 or C9), 63.5 (C2), 21.4* (C7 or C10), 21.3 (C7 or C10), 21.2 (C7 or C10), 21.2* (C7 or C10). 

FTIR (ATR)  (cm-1): 3422 (OH), 2984, 1702 (C=O), 1649 (C=O).  

HRMS (APCI): m/z calculated for: C12H20N2O6 [M+Na]+ 311.1214, found 311.1199.  

Important NOE Contacts 

 

 

Dimethyl 2,3-diazabicyclo[2.2.0]hex-5-ene-2,3-dicarboxylate 10a33,35 

 

Using general procedure K, a solution of 1,2-dihydropyridazine 9a (140 mg, 0.71 mmol) in 

MeCN (14 mL) was irradiated for 44 hours to give the crude product. Purification by flash column 

chromatography on silica gel (eluent: hexane-EtOAc, 4:1→2:1) gave the bicycle 10a (61 mg, 

0.31 mmol, 44%) as an off-white solid. 

Rf (Hexane-EtOAc, 2:1) = 0.1 

mp = 76-78 ˚C 

1H NMR (400 MHz, CDCl3);  6.74-6.71 (m, 2H, H1), 5.21-5.18 (m, 2H, H2), 3.81 (s, 6H, H4). 

13C NMR (100 MHz, CDCl3);  160.6 (C3), 143.7 (C1), 67.5 (C2), 53.7 (C4). 

FTIR (ATR)  (cm-1): 2961, 1743 (C=O), 1720 (C=O). 
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HRMS (ESI): m/z calculated for: C8H10N2O4 [M+Na]+ 221.0533, found 221.0532.  

 

Diethyl 2,3-diazabicyclo[2.2.0]hex-5-ene-2,3-dicarboxylate 10b36 

 

Using general procedure K, a solution of 1,2-dihydropyridazine 9b (170 mg, 0.75 mmol) in PhMe 

(15 mL) was irradiated for 24 hours to give the crude product. Purification by flash column 

chromatography on silica gel (eluent: hexane-EtOAc, 7:1→4:1) gave the bicycle 10b (121 mg, 

0.54 mmol, 71%) as a pale yellow oil. 

Rf (Hexane-EtOAc, 1:1) = 0.29  

1H NMR (400 MHz, CDCl3)  6.76-6.68 (m, 2H, H1), 5.22-5.14 (m, 2H, H2), 4.31-4.17 (m, 4H, 

H4), 1.30 (t, J = 7.1 Hz, 6H, H5). 

13C NMR (100 MHz, CDCl3)  160.1 (C3), 143.6 (C1), 67.3 (C2), 62.8 (C4), 14.6 (C5). 

FTIR (ATR)  (cm-1): 2984, 2935, 1746 (C=O), 1703 (C=O). 

HRMS (APCI): m/z calculated for: C10H14N2O4 [M+H]+ 227.1026, found 227.1019. 

 

Diisopropyl 2,3-diazabicyclo[2.2.0]hex-5-ene-2,3-dicarboxylate 10c  

 

Using general procedure K, a solution of 1,2-dihydropyridazine 9c (191 mg, 0.75 mmol) in 

MeCN (15 mL) was irradiated for 24 hours to give the crude product. Purification by flash column 

chromatography on silica gel (eluent: hexane-EtOAc, 9:1→4:1) gave the bicycle 10c (159 mg, 

0.63 mmol, 83%) as an off-white solid. 

Rf (Hexane-EtOAc, 1:1) = 0.35 

mp = 48-50 ˚C 

1H NMR (400 MHz, CDCl3);  6.72-6.69 (m, 2H, H1), 5.17-5.14 (m, 2H, H2), 5.00 (sept, J = 6.3 

Hz, 2H, H4), 1.29-1.27 (m, 12H, H5). 

13C NMR (100 MHz, CDCl3);  159.7 (C3), 143.5 (C1), 70.6 (C4), 67.1 (C2), 22.11 (C5), 22.09 

(C5). 

FTIR (ATR)  (cm-1): 2988, 2939, 1698 (C=O). 

HRMS (APCI): m/z calculated for: C12H18N2O4 [M+Na]+ 277.1159, found 277.1147.  
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Di-tert-butyl 2,3-diazabicyclo[2.2.0]hex-5-ene-2,3-dicarboxylate 10d 

 

Using general procedure K, a solution of 1,2-dihydropyridazine 9d (212 mg, 0.75 mmol) in 

MeCN (15 mL) was irradiated for 24 hours to give the crude product. Purification by flash column 

chromatography on silica gel (eluent: hexane-EtOAc, 14:1→9:1) gave the bicycle 10d (171 mg, 

0.61 mmol, 81%) as an off-white solid. 

Scale up procedures 

0.85 grams: Using general procedure K, a solution of 1,2-dihydropyridazine 9d (0.85 g, 3.00 

mmol) in MeCN (60 mL, 1 x 60 mL tube) was irradiated for 48 hours to give the crude product. 

Purification by flash column chromatography on silica gel (eluent: hexane-EtOAc, 14:1→9:1) 

gave the bicycle 10d (0.69 g, 2.45 mmol, 82%) as an off-white solid. 

8.5 grams: Using general procedure K, a solution of 1,2-dihydropyridazine 9d (8.47 g, 30.0 

mmol) in MeCN (600 mL) was split across 10 x 60 mL tubes, then irradiated for 48 hours to give 

the crude product. Purification by flash column chromatography on silica gel (eluent: hexane-

EtOAc, 14:1→9:1) gave the bicycle 10d (6.06 g, 21.5 mmol, 72%) as an off-white solid. 

Rf (Hexane-EtOAc, 1:1) = 0.46  

mp = 81-83 ˚C 

1H NMR (400 MHz, CDCl3);  6.71-6.70 (m, 2H, H1), 5.09-5.08 (m, 2H, H2), 1.49 (s, 18H, H5). 

13C NMR (100 MHz, CDCl3);  159.0 (C3), 143.5 (C1), 82.1 (C4), 66.7 (C2), 28.3 (C5). 

FTIR (ATR)  (cm-1): 2982, 2937, 1694 (C=O). 

HRMS (APCI): m/z calculated for: C14H22N2O4 [M+Na]+ 305.1472, found 305.1464.   

 

Dibenzyl 2,3-diazabicyclo[2.2.0]hex-5-ene-2,3-dicarboxylate 10e 

 

Using general procedure J, a solution of 1,2-dihydropyridazine 9e (263 mg, 0.75 mmol) in PhMe 

(15 mL) was irradiated for 24 hours to give the crude product. Purification by flash column 

chromatography on silica gel (eluent: hexane-EtOAc, 9:1→4:1) gave the bicycle 10e (155 mg, 

0.44 mmol, 59%) as a yellow oil. 

Rf (Hexane-EtOAc, 2:1) = 0.28  
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1H NMR (400 MHz, CDCl3);  7.36-7.31 (m, 10H, H6, H7, H8), 6.66-6.63 (m, 2H, H1), 5.26-5.18 

(m, 4H, H2, H4). 

13C NMR (100 MHz, CDCl3);  159.9 (C3), 143.6 (C1), 135.7 (C5), 128.6 (C6 or C7), 128.4 (C8), 

128.2 (C6 or C7), 68.2 (C4), 67.4 (C2).  

FTIR (ATR)  (cm-1): 3032, 2954, 1703 (C=O). 

HRMS (ESI): m/z calculated for: C20H18N2O4 [M+Na]+ 373.1159, found 373.1142.  

 

tert-Butyl methyl 2,3-diazabicyclo[2.2.0]hex-5-ene-2,3-dicarboxylate 10f 

 

Using general procedure J, a solution of 1,2-dihydropyridazine 9f (180 mg, 0.75 mmol) in PhMe 

(15 mL) was irradiated for 24 hours to give the crude product. Purification by flash column 

chromatography on silica gel (eluent: hexane-EtOAc, 7:1→4:1) gave the bicycle 10f (127 mg, 

0.53 mmol, 70%) as an off-white solid. 

Rf (Hexane-EtOAc, 2:1) = 0.18 

mp = 79-81 ˚C 

1H NMR (400 MHz, CDCl3);  6.74-6.72 (m, 1H, H1 or H2), 6.70-6.69 (m, 1H, H1 or H2), 5.17-

5.16 (m, 1H, H3 or H4), 5.12-5.10 (m, 1H, H3 or H4), 3.79 (s, 3H, H9), 1.49 (s, 9H, H7). 

13C NMR (100 MHz, CDCl3);  160.6 (C8), 158.9 (C5), 143.6 (C1 or C2), 143.4 (C1 or C2), 82.4 

(C6), 67.2 (C3 or C4), 67.0 (C3 or C4), 53.6 (C9), 28.3 (C7). 

FTIR (ATR)  (cm-1): 2978, 2932, 1735 (C=O), 1702 (C=O). 

HRMS (ESI): m/z calculated for: C11H16N2O4 [M+Na]+ 263.1002, found 263.0991.  

 

Benzyl tert-butyl 2,3-diazabicyclo[2.2.0]hex-5-ene-2,3-dicarboxylate 10g 

 

Using general procedure J, a solution of 1,2-dihydropyridazine 9g (237 mg, 0.75 mmol) in PhMe 

(15 mL) was irradiated for 24 hours to give the crude product. Purification by flash column 

chromatography on silica gel (eluent: hexane-EtOAc, 14:1→9:1→7:1) gave the bicycle 10g 

(179 mg, 0.57 mmol, 75%) as a colourless oil. 

Rf (Hexane-EtOAc, 2:1) = 0.26 
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1H NMR (400 MHz, CDCl3);  7.36-7.29 (m, 5H, H11, H12, H13), 6.70-6.69 (m, 1H, H1 or H2), 

6.67-6.65 (m, 1H, H1 or H2), 5.25-5.21 (m, 2H, H9), 5.18-5.16 (m, 1H, H3 or H4), 5.12-5.11 (m, 

1H, H3 or H4), 1.46 (s, 9H, H7). 

13C NMR (100 MHz, CDCl3);  159.9 (C8), 158.9 (C5), 143.5 (C1 or C2), 143.5 (C1 or C2), 

135.8 (C10), 128.6 (C11 or C12), 128.4 (C13), 128.2 (C11 or C12), 82.4 (C6), 68.0 (C9), 67.1, 

(C3 or C4), 67.1 (C3 or C4), 28.2 (C7). 

FTIR (ATR)  (cm-1): 2978, 2932, 1735 (C=O), 1702 (C=O). 

HRMS (ESI): m/z calculated for: C17H20N2O4 [M+Na]+ 339.1315, found 339.1310.  

 

Ethyl 4-ethoxy-5-oxa-2,3-diazabicyclo[4.2.0]octa-3,7-diene-2-carboxylate 316b 

 
Using general procedure L, a solution of bicyclic 1,2-diazetidine 10b (23 mg, 0.10 mmol) in 

PhMe (1 mL) was heated at reflux for 24 hours to give the crude product. Purification by flash 

column chromatography on silica gel (eluent: hexane-EtOAc, 4:1→2:1) gave the rearranged 

bicycle 316b (17 mg, 0.08 mmol, 74%) as a pale yellow oil. 

Rf (Hexane-EtOAc, 1:1) = 0.34 

1H NMR (400 MHz, CDCl3);  6.47-6.45 (br m, 1H, H1), 6.31-6.29 (br m, 1H, H2), 5.46 (br dd, J 

= 4.3, 2.4 Hz, 1H, H3), 5.18-5.11 (br m, 1H, H4), 4.30-4.17 (br m, 4H, H6 and H9), 1.34-1.30 

(br m, 6H, H7 or H10). 

13C NMR (100 MHz, CDCl3);  154.1 (C8), 150.4 (C5), 142.0 (C1), 138.8 (C2), 79.4 (C3), 64.7 

(C6 or C9), 62.3 (C6 or C9), 55.7 (C4), 14.7 (C7 or C10), 14.2 (C7 or C10). 

FTIR (ATR)  (cm-1): 2982, 1735 (C=O), 1666 (C=N). 

HRMS (APCI): m/z calculated for: C10H14N2O4 [M+H]+ 227.1026, found 227.1017.  

 

Isopropyl 4-isopropoxy-5-oxa-2,3-diazabicyclo[4.2.0]octa-3,7-diene-2-carboxylate 316c 

 
Using general procedure L, a solution of bicyclic 1,2-diazetidine 10c (25 mg, 0.10 mmol) in 

PhMe (1 mL) was heated at reflux for 4 hours to give the crude product. Purification by flash 

column chromatography on silica gel (eluent: hexane-EtOAc, 9:1→3:1) gave the rearranged 

bicycle 316c (23 mg, 0.09 mmol, 92%) as an off-white solid. 

Rf (Hexane-EtOAc, 2:1) = 0.25 

mp = 48-50 ˚C 
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1H NMR (400 MHz, CDCl3);  6.46-6.44 (br m, 1H, H1), 6.30-6.29 (br m, 1H, H2), 5.43 (br dd, J 

= 4.3, 2.4 Hz, 1H, H3), 5.15-5.11 (br m, 1H, H4), 5.04-4.93 (br m, 2H, H6 and H9), 1.33-1.28 

(br m, 6H, H7 or H10). 

13C NMR (100 MHz, CDCl3);  153.6 (C8), 149.7 (C5), 142.0 (C1), 138.6 (C2), 79.4 (C3), 72.4 

(C6 or C9), 69.7 (C6 or C9), 55.7 (C4), 22.3 (C7 or C10), 22.3 (C7 or C10), 21.9 (C7 or C10), 

21.5 (C7 or C10). 

FTIR (ATR)  (cm-1): 2980, 1731 (C=O), 1657 (C=N). 

HRMS (ESI): m/z calculated for: C12H18N2O4 [M+Na]+ 277.1159, found 277.1159.  

 

tert-Butyl 4-tert-butoxy-5-oxa-2,3-diazabicyclo[4.2.0]octa-3,7-diene-2-carboxylate 316d 

 
Thermal Reaction: Using general procedure L, a solution of bicyclic 1,2-diazetidine 10d (30 

mg, 0.11 mmol) in PhMe (1 mL) was heated at reflux for 4 hours to give the crude product. 

Purification by flash column chromatography on silica gel (eluent: hexane-EtOAc, 9:1→3:1) 

gave the rearranged bicycle 316d (21 mg, 0.07 mmol, 70%) as an off-white solid and trace 

amounts of the degraded bicycle 317d. 

Palladium(0) Reaction: Bicyclic 1,2-diazetidine 10d (50 mg, 0.18 mmol, 1.0 eq), Pd(OAc)2 (2 

mg, 0.01 mmol, 0.05 eq) and PPh3 (9 mg, 0.04 mmol, 0.02 eq) were added to a dried vial under 

argon. THF (0.9 mL) was added and the vial was sealed, then stirred at room temperature for 

29 hours. The reaction mixture was evaporated under reduced pressure to give the crude 

product. Purification by flash column chromatography on silica gel (eluent: hexane-EtOAc, 

14:1→9:1) gave the rearranged bicycle 316d (36 mg, 0.13 mmol, 72%) as an off-white solid. 

Rf (Hexane-EtOAc, 2:1) = 0.38 

mp = 77-79 ˚C 

1H NMR (400 MHz, CDCl3);  6.47-6.44 (br m, 1H, H1), 6.30-6.29 (br m, 1H, H2), 5.37 (br dd, J 

= 4.3, 2.3 Hz, 1H, H3), 5.09-5.04 (br m, 1H, H4), 1.52 (s, 9H, H7 or H10), 1.50 (s, 9H, H7 or 

H10). 

13C NMR (100 MHz, CDCl3, C8 not observed);  148.1 (C5), 141.8 (C1), 138.7 (C2), 83.1 (C6 

or C9), 80.8 (C6 or C9), 79.0 (C3), 55.4 (C4), 28.5 (C7 or C10), 28.1 (C7 or C10). 

1H NMR (400 MHz, d6-DMSO);  6.57-6.38 (br m, 2H, H1 and H2), 5.47-5.44 (br m, 1H, H3), 

5.02-4.94 (br m, 1H, H4), 1.53-1.43 (br m, 18H, H7 or H10). 

13C NMR (100 MHz, d6-DMSO);  152.1 (C8), 148.1 (C5), 141.3 (C1), 139.2 (C2), 82.0 (C6 or 

C9), 79.7 (C6 or C9), 78.5 (C3), 55.1 (C4), 28.0 (C7 or C10), 27.5 (C7 or C10). 

FTIR (ATR)  (cm-1): 2976, 2933, 1683 (C=O), 1646 (C=N). 

HRMS (ESI): m/z calculated for: C14H22N2O4 [M+Na]+ 305.1472, found 305.1469.  



4- Photocyclisation: A New Route to Functionalised Four-Membered Rings 

194 
Thomas Britten – April 2019 

tert-Butyl 4-oxo-5-oxa-2,3-diazabicyclo[4.2.0]oct-7-ene-2-carboxylate 317d 

 
Two Step Reaction: A solution of bicyclic 1,2-diazetidine 10d (512 mg, 1.81 mmol) in 1,4-

dioxane (3.5 mL) was heated at reflux for 24 hours. The reaction mixture was cooled to room 

temperature, a 1M aqueous solution of HCl (1 mL) was added and the mixture stirred for at 

room temperature for 1 hour. The reaction mixture was quenched with a saturated aqueous 

solution of NaHCO3 (1 mL), the organic layer was separated and the aqueous phase was 

extracted with CH2Cl2 (5 x 5 mL). The combined organic layers were dried (MgSO4) and the 

solvent was evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography on silica gel (eluent: hexane-EtOAc, 4:1→2:1) gave the degraded 

bicycle 317d (293 mg, 1.30 mmol, 72%) as a colourless solid.  

Acid Reaction: p-Toluenesulfonic acid monohydrate (45 mg, 0.24 mmol, 1.1 eq) was added in 

one portion to a stirred solution of bicyclic 1,2-diazetidine 10d (58 mg, 0.21 mmol, 1.0 eq) in 

CH2Cl2 (1 mL) at room temperature under argon, then stirred at room temperature for 10 

minutes. The reaction mixture was quenched with a saturated aqueous solution of NaHCO3 (1 

mL), the organic layer was separated and the aqueous phase was extracted with CH2Cl2 (5 x 5 

mL). The combined organic layers were dried (MgSO4) and the solvent was evaporated under 

reduced pressure to give the crude product. Purification by flash column chromatography on 

silica gel (eluent: hexane-EtOAc, 4:1→2:1) gave the degraded bicycle 317d (23 mg, 0.10 mmol, 

50%) as a colourless solid and diene 320 (33 mg, 0.07 mmol, 35%) as a colourless solid.  

Bicycle 317d 

 

Rf (Hexane-EtOAc, 2:1) = 0.07 

mp = 134-136 ˚C 

1H NMR (400 MHz, CDCl3);  7.21 (br s, 1H, NH), 6.42-6.41 (br m, 1H, H1 or H2), 6.34-6.33 (br 

m, 1H, H1 or H2), 5.44-5.42 (br m, 2H, H3 and H4), 1.50 (s, 9H, H8). 

13C NMR (100 MHz, CDCl3);  153.6 (C5 or C6), 151.9 (C5 or C6), 141.5 (C1 or C2), 140.2 (C1 

or C2), 83.6 (C7), 81.5 (C3), 60.2 (C4), 28.3 (C8). 

1H NMR (400 MHz, d6-DMSO);  9.84 (br s, 1H, NH), 6.55-6.52 (br m, 1H, H1), 5.41-5.39 (br 

m, 1H, H2), 5.43-5.41 (br m, 1H, H3), 5.33-5.31 (br m, 1H, H4), 1.44 (br s, 18H, H8). 
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13C NMR (100 MHz, d6-DMSO);  154.1 (C6), 151.7 (C5), 142.2 (C1), 140.3 (C2), 81.8 (C7), 

81.2 (C3), 60.6 (C4), 27.7 (C8). 

FTIR (ATR)  (cm-1): 3293 (NH), 2982, 2933, 1728 (C=O), 1683 (C=O). 

HRMS (ESI): m/z calculated for: C10H14N2O4 [M+Na]+ 249.0846, found 249.0839. 

Diene 320 

 

Rf (Hexane-EtOAc, 2:1) = 0.29  

mp = 48-50 ˚C 

1H NMR (400 MHz, 348 K, d6-DMSO);  9.19-8.69 (br m, 1H, NH), 7.79 (d, J = 8.2 Hz, 2H, H12), 

7.49 (d, J = 8.2 Hz, 2H, H13), 7.05 (br d, J = 13.6 Hz, 1H, H4), 6.72 (br d, J = 11.7 Hz, 1H, H1), 

6.16 (br t, J = 11.4 Hz, 1H, H2), 5.55 (br t, J = 12.5 Hz, 1H, H3), 2.43 (s, 3H, H15), 1.49-1.38 

(br m, 18H, H7 and H10). 

13C NMR (100 MHz, 348 K, d6-DMSO, additional peaks due to complex rate processes denoted 

by an asterisk);  153.7 (C5 and C8), 145.0 (C14), 134.9 (C1), 131.8 (C11), 131.3 (C4), 129.8 

(C13), 127.4 (C12), 119.5 (C2), 101.9 (C3), 81.6 (C5 or C9), 79.6 (C5 or C9), 78.6* (C5 or C9), 

27.8* (C7 or C10), 27.7 (C7 or C10), 27.3 (C7 or C10), 20.7 (C15). 

FTIR (ATR)  (cm-1): 3326 (NH), 2978, 1721 (C=O), 1709 (C=O), 1367 (SO2), 1145 (SO2). 

HRMS (ESI): m/z calculated for: C21H30N2O7S [M+Na]+ 477.1666 and [M-H]- 453.1701, found 

477.1669 and 453.1714, respectively.  

 

5-oxa-2,3-diazabicyclo[4.2.0]oct-7-en-4-one 330 

 

ZnCl2 (40 mg, 0.29 mmol, 2.7 eq) was added in one portion to a stirred solution of bicyclic 1,2-

diazetidine 10d (31 mg, 0.11 mmol, 1.0 eq) in MeOH (0.2 mL) at room temperature under argon. 

The reaction mixture was stirred at room temperature for 19 hours, then evaporated under 

reduced pressure to give the crude product. Purification by flash column chromatography on 

silica gel (eluent: CH2Cl2-MeOH, 100:0→99:1→98:1) gave the bicycle 330 as an orange oil with 

impurities. 

Rf (CH2Cl2-MeOH, 96:4) = 0.11  

1H NMR (400 MHz, d6-DMSO);  8.45 (br s, 2H, NHB), 6.41-6.38 (br m, 1H, H1), 6.31-6.28 (br 

m, 1H, H2), 5.48-5.45 (br m, H, NHA), 5.20-5.16 (br m, H, H3), 4.22-4.18 (br m, 1H, H4). 

13C NMR (100 MHz, d6-DMSO);  154.2 (C5), 142.3 (C1), 138.9 (C2), 80.3 (C3), 61.0 (C4). 
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FTIR (ATR)  (cm-1): 3319 (NH), 1655 (C=O). 

HRMS (APCI): m/z calculated for: C5H6N2O2 [M+H]+ 127.0502, found 127.0509.  

Important NOE contacts: 

 

 

1,2-Bis(tert-butoxycarbonyl)-1,2-diazetidine-3,4-dicarboxylic acid 332 

 
An aqueous 10% NaIO4 solution (20 mL) was added dropwise to a stirred solution of bicyclic 

1,2-diazetidine 10d (402 mg, 1.42 mmol, 1.0 eq) and RuO2.xH2O (2 mg, 0.01 mmol, 0.01 eq) in 

EtOAc (14 mL) at 0 °C, then stirred at room temperature for 41 hours. The organic layer was 

separated, the aqueous layer was saturated with NaCl and extracted with EtOAc (5 x 10 mL). 

Isopropanol (2 mL) was added to the combined organic layers and left to stand for 2 hours. The 

organic layer was dried (MgSO4), filtered through Celite and evaporated under reduced 

pressure to give diacid 332 (374 mg, 1.08 mmol, 76%) as a grey solid. 

Rf (CH2Cl2-MeOH, 9:1) = baseline  

mp = 168-170 ˚C (decomposition) 

1H NMR (400 MHz, d4-MeOD);  5.05 (s, 2H, H2), 1.48 (s, 18H, H5). 

13C NMR (100 MHz, d4-MeOD);  170.2 (C1), 159.9 (C3), 84.0 (C4), 63.2 (C2), 28.3 (C5). 

1H NMR (400 MHz, CDCl3);  10.6 (br s, 2H, OH), 5.00 (br s, 2H, H2), 1.46 (s, 18H, H5). 

13C NMR (100 MHz, CDCl3);  170.8 (C1), 158.4 (C3), 84.2 (C4), 61.6 (C2), 28.0 (C5). 

FTIR (ATR)  (cm-1): 3078 (OH), 2980, 2935, 1718 (C=O). 

HRMS (ESI): m/z calculated for: C14H22N2O8 [M+Na]+ 369.1268, found 369.1254.  

 

Di-tert-butyl 2,4-dihydroxy-3-oxa-6,7-diazabicyclo[3.2.0]heptane-6,7-dicarboxylate 333 

 

An aqueous 10% NaIO4 solution (2.1 mL) was added dropwise to a stirred solution of bicyclic 

1,2-diazetidine 10d (50 mg, 0.18 mmol, 1.0 eq) and RuO2.xH2O (1 mg, 0.01 mmol, 0.05 eq) in 

EtOAc (1.8 mL) at 0 °C, then stirred at room temperature for 10 minutes. The organic layer was 
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separated, the aqueous layer was saturated with NaCl and extracted with EtOAc (5 x 5 mL). 

Isopropanol (1 mL) was added to the combined organic layers and left to stand for 2 hours. The 

organic layer was dried (MgSO4), filtered through Celite and evaporated under reduced 

pressure to give the crude product. Purification by flash column chromatography on silica gel 

(eluent: hexane-EtOAc, 2:1→1:1) gave the bicycle 333 (50 mg, 0.15 mmol, 85%) as a colourless 

solid. 

Rf (Hexane-EtOAc, 1:1) = 0.11   

mp = 38-40 ˚C 

1H NMR (400 MHz, d6-DMSO);  6.63 (d, J = 5.5 Hz, 2H, OH), 5.50 (d, J = 5.5 Hz, 2H, H1), 4.60 

(br s, 2H, H2), 1.41 (s, 18H, H5). 

13C NMR (100 MHz, d6-DMSO);  157.0 (C3), 99.1 (C1), 81.4 (C4), 69.1 (C2), 27.7 (C5). 

FTIR (ATR)  (cm-1): 3407 (OH), 2980, 2935, 1702 (C=O) 

HRMS (ESI): m/z calculated for: C14H24N2O7 [M+Na]+ 355.1476, found 355.1468.  

 

1,2-Di-tert-butyl 3,4-dimethyl 1,2-diazetidine-1,2,3,4-tetracarboxylate 337 

 
(Trimethylsilyl)diazomethane (2M solution in hexanes, 0.8 mL, 1.60 mmol, 10 eq) was added 

dropwise to a stirred solution of diacid 332 (54 mg, 0.156 mmol, 1.0 eq) in MeOH (1.4 mL) at 

room temperature, then stirred for 10 minutes. The solvent was removed under reduced 

pressure. The residue was dissolved in CHCl3 (2 mL), washed with a saturated solution of 

sodium thiosulfate (5 mL), dried (Na2SO4) and the solvent removed under reduced pressure to 

give the crude product. Purification by flash column chromatography on silica gel (eluent: 

hexane-EtOAc, 7:1→4:1) gave the diester 337 as a colourless film (41 mg, 0.11 mmol, 70%).  

Rf (Hexane-EtOAc, 1:1) = 0.48  

1H NMR (400 MHz, CDCl3);  4.94 (s, 2H, H3), 3.76 (s, 6H, H1) 1.47 (s, 18H, H6). 

13C NMR (100 MHz, CDCl3);  167.7 (C2), 158.0 (C4), 83.2 (C5), 61.4 (C3), 52.9 (C1), 28.1 

(C6). 

FTIR (ATR)  (cm-1): 2980, 1752 (C=Oester), 1709 (C=Ocarbamate). 

HRMS (ESI): m/z calculated for: C16H26N2O8 [M+Na]+ 397.1581, found 397.1585; [2M+Na]+ 

771.3271, found 771.3271.  

 

Di-tert-butyl 3-ethenyl-4-[(E/Z)-2-phenylethenyl]-1,2-diazetidine-1,2-dicarboxylate 340a,b 
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Styrene (61 µL, 0.53 mmol, 5.0 eq) was added in one portion to a stirred solution of bicyclic 1,2-

diazetidine 10d (30 mg, 0.11 mmol, 1.0 eq) and Hoveyda-Grubbs 2nd generation catalyst (3 mg, 

0.01, 0.05 eq) in CH2Cl2 at room temperature under argon, then heated at reflux for 1 hour. The 

reaction mixture was cooled to room temperature and the solvent removed under reduced 

pressure to give the crude product. Purification by flash column chromatography on silica gel 

(eluent: hexane-EtOAc, 11:1→7:1) gave the 1,2-diazetidine 340a,b (30 mg, 0.08 mmol, 73%, 

E:Z 1.0:1.5) as a light brown oil.   

Z-isomer 340a 

 

Rf (Hexane-EtOAc, 2:1) = 0.48 

1H NMR (400 MHz, CDCl3);  7.36-7.27 (m, 3H, H9 and H10), 7.21-7.18 (m, 2H, H8), 6.80 (d, J 

= 11.5 Hz, 1H, H6), 5.99-5.84 (m, 2H, H2 and H5), 5.47-5.36 (m, 3H, H1A, H1B and H4), 4.90-

4.84 (m, 1H, H3), 1.47 (br s, 9H, H13), 1.44 (br s, 9H, H16). 

13C NMR (100 MHz, CDCl3);  159.2 (C11), 158.2 (C14), 135.8 (C7), 135.0 (C6), 132.3 (C2), 

128.7 (C8), 128.5 (C9), 127.9 (C10), 126.1 (C5), 120.6 (C1), 82.1 (C12 and C15), 66.8 (C3), 

61.9 (C4), 28.3 (C13 or C16), 28.3 (C13 or C16). 

FTIR (ATR)  (cm-1): 2978, 2932, 1702 (C=O). 

HRMS (ESI): m/z calculated for: C22H30N2O4 [M+Na]+ 409.2098, found 409.2096; [2M+Na]+ 

795.4303, found 795.4299.  

E-isomer 340b 

 

Rf (Hexane-EtOAc, 2:1) = 0.44  
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1H NMR (400 MHz, CDCl3);  7.40-7.25 (m, 5H, H8, H9, H10), 6.65 (d, J = 15.7 Hz, 1H, H6), 

6.24 (dd, J = 15.7, 8.6 Hz, 1H, H5), 5.97-5.88 (m, 1H, H2), 5.45-5.34 (m, 2H, H1A and H1B), 

5.07-5.01 (m, 1H, H4), 4.97-4.91 (m, 1H, H3), 1.49-4.40 (m, 18H, H13 and H16). 

13C NMR (100 MHz, CDCl3);  158.9 (C), 158.6 (C), 136.1 (C7), 135.9 (C6), 132.5 (C2), 128.8 

(C9), 128.4 (C10), 126.8 (C8), 123.5 (C5), 120.8 (C1), 82.1 (C12 or C15), 81.9 (C12 or C15), 

66.8 (C3), 66.5 (C4), 28.3 (C13 or C16), 28.2 (C13 or C16). 

FTIR (ATR)  (cm-1): 2980, 2932, 1709 (C=O). 

HRMS (ESI): m/z calculated for: C22H30N2O4 [M+Na]+ 409.2098, found 409.2092; [2M+Na]+ 

795.4303, found 795.4296.  

 

Di-tert-butyl 2-oxo-1,3-diazepine-1,3-dicarboxylate 344 

 

An aqueous solution of NaOH (50% w/v, 1.6 mL) was added dropwise to a solution of bicyclic 

1,2-diazetidine 10d (56 mg, 0.20 mmol, 1.0 eq) and tetrabutylammonium chloride (5 mg, 0.02 

mmol, 0.1 eq) in CHCl3 (3.5 mL) at room temperature under argon, then stirred at room 

temperature for 5 hours. The reaction mixture was quenched with a saturated aqueous solution 

of NH4Cl (2 mL) and the organic layer was separated. The aqueous layer was extracted with 

CH2Cl2 (5 x 5 mL), the combined organic layers were dried (MgSO4) and evaporated under 

reduced pressure to give the crude product. Purification by flash column chromatography on 

silica gel (eluent: hexane-EtOAc, 9:1) gave diazepine 344 (13 mg, 0.04 mmol, 21%) as a 

colourless film. 

Rf (Hexane-EtOAc, 2:1) =  0.52 

1H NMR (400 MHz, CDCl3);  6.50-6.47 (m, 2H, H1), 5.88-5.85 (m, 2H, H2), 1.52 (s, 18H, H6). 

13C NMR (100 MHz, CDCl3);  155.6 (C3), 151.5 (C4), 131.8 (C1), 128.0 (C2), 84.3 (C5), 28.1 

(C6). 

1H NMR (400 MHz, d6-DMSO);  6.51-6.48 (m, 2H, H1), 6.04-6.00 (m, 2H, H2), 1.45 (m, 2H, 

H6). 

13C NMR (100 MHz, d6-DMSO);  154.3 (C3), 150.6 (C4), 127.5 (C1), 118.5 (C2), 83.7 (C5), 

27.4 (C6). 

FTIR (ATR)  (cm-1): 2980, 2933, 1718 (C=O). 

HRMS (ESI): m/z calculated for: C15H22N2O5 [M+Na]+ 333.1421, found 333.1404.  
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Di-tert-butyl (1Z,3Z)-buta-1,3-diene-1,4-diylbiscarbamate 350 

 

SmI2 prepared according to a previously reported procedure.305  

Note: It was essential for dry THF without stabilisers to be used for the preparation of SmI2. 

 

A solution of SmI2 in THF (0.075 M, 21 mL, 1.57 mmol, 2.2 eq) was added in one portion to a 

stirred degassed solution of bicyclic 1,2-diazetidine 10d (202 mg, 0.72 mmol, 1.0 eq) in MeOH 

(7.2 mL) at room temperature under argon, then stirred at room temperature for 30 minutes. 

The reaction mixture was purged with air until the colour changed from blue to yellow and the 

solvent was removed under reduced pressure to give the crude product. Purification by flash 

column chromatography on silica gel (eluent: hexane-EtOAc, 14:1→9:1) gave diene 350 (48 

mg, 0.17 mmol, 24%) as a colourless solid 

Rf (Hexane-EtOAc, 2:1) = 0.48 

mp = 206-208 ˚C (decomposition) 

1H NMR (400 MHz, CDCl3);  6.47-6.26 (br m, 4H, NH, H1), 5.17-4.99 (br m, 2H, H2), 1.48 (br 

s, 18H, H5). 

13C NMR (100 MHz, CDCl3);  152.6 (C3), 122.3 (C1), 100.2 (C2), 81.3 (C4), 28.4 (C5). 

1H NMR (400 MHz, d6-DMSO);  9.07-8.77 (br m, 2H, NH), 6.14-6.04 (br m, 2H, H1), 5.66-5.49 

(br m, 2H, H2), 1.43 (br s, 18H, H5). 

13C NMR (100 MHz, d6-DMSO);  153.1 (C3), 121.0 (C1), 102.2 (C2), 79.2 (C4), 28.0 (C5). 

FTIR (ATR)  (cm-1): 3325 (NH), 2980, 2935, 1690 (C=O), 1621 (C=O). 

HRMS (ESI): m/z calculated for: C14H24N2O4 [M+Na]+ 307.1628, found 307.1628.  

 

Di-tert-butyl 1-(cyclobut-2-en-1-yl)hydrazine-1,2-dicarboxylate 353 

 

Na/NH3(l) Reaction: A solution of bicyclic 1,2-diazetidine 10d (50 mg, 0.18 mmol, 1.0 eq) in 

THF (3 mL) was added to a stirred solution of distilled ammonia (3 mL) at –78 °C under argon. 

Sodium metal (41 mg, 1.77 mmol, 10 eq) was added portion wise at –78 °C, then the reaction 

mixture was warmed to room temperature. The reaction mixture was left at room temperature 

overnight to remove the ammonia. The residue was dissolved in EtOAc (5 mL), dried (MgSO4) 

and the solvent removed under reduced pressure to give the crude product. Purification by flash 
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column chromatography on silica gel (eluent: hexane-EtOAc, 9:1→4:1) gave a mixture of 

cyclobutene 353 and diene 354 (44 mg, 0.16 mmol, 87%, 2.4:1.0 353:354) as a white cloudy 

oil. 

Zinc/Ammonium Chloride reaction: NH4Cl (15 mg, 0.20 mmol, 1.1 eq) was added in one 

portion to a stirred suspension of bicyclic 1,2-dizetidine 10d (53 mg, 0.19 mmol, 1.0 eq) and 

zinc powder (123 mg, 1.88 mmol, 10 eq) in MeOH (0.4 mL) at room temperature under argon, 

then stirred at room temperature for 22 hours. The reaction mixture was filtered through Celite 

and the filtrate evaporated under reduced pressure to give the crude product. Purification by 

flash column chromatography on silica gel (eluent: hexane-EtOAc, 9:1→4:1) gave a mixture of 

cyclobutene 353 and diene 354 (42 mg, 0.15 mmol, 79%, 1.0:1.4 353:354) as a white cloudy 

oil. 

Note: Diene 354 can be isolated as a colourless solid with careful purification. The purification 

of cyclobutene 353 always resulted in the presence of diene 354. 

Cyclobutene 353 

 

Rf (Hexane-EtOAc, 2:1) = 0.46 

1H NMR (400 MHz, d6-DMSO);  8.92-8.51 (br m, 1H, NH), 6.16-6.08 (br m, 1H, H1), 5.94-5.80 

(br m, 1H, H2), 5.10-4.84 (br m, 1H, H4), 2.69-2.40 (br m, 2H, H3), 1.43-1.38 (br m, 18H, H7 

and H10). 

13C NMR (100 MHz, d6-DMSO, additional peaks due to rotamers annotated by an asterisk);  

155.6* (C5 or C8), 155.4 (C5 or C8), 154.0* (C5 or C8), 153.7 (C5 or C8), 137.2 (C1), 136.4* 

(C2), 136.2 (C2), 80.0* (C6 or C9), 79.6 (C6 or C9), 79.1 (C6 or C9), 56.3* (C4), 55.9 (C4), 

55.6* (C4), 36.3 (C3), 28.0 (C7 or C10), 27.9 (C7 or C10). 

FTIR (ATR)  (cm-1): 3301 (NH), 2976, 2928, 1702 (C=O). 

HRMS (ESI): m/z calculated for: C14H24N2O4 [M+Na]+ 307.1628, found 307.1637.  

Important NOE contacts: 
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Diene 354 

 

Rf (Hexane-EtOAc, 2:1) = 0.52 

mp = 96-98 ˚C 

1H NMR (400 MHz, 348 K, d6-DMSO);  9.24-8.70 (br m, 1H, NH), 7.06 (br d, J = 13.6 Hz, 1H, 

H4), 6.42-6.32 (m, 1H, H2), 5.68-5.62 (m, 1H, H3), 5.06-5.01 (m, 1H, H1A), 4.89-4.86 (m, H, 

H1B), 1.47-1.41 (br m, 18H, H7 and H10). 

13C NMR (100 MHz, 348 K, d6-DMSO);  153.7 (C5 and C8), 134.3 (C2), 130.2 (C4), 112.7 

(C1), 109.6 (C3), 81.4 (C6 or C9), 79.5 (C6 or C9), 27.7 (C7 or C10), 27.4 (C7 or C10). 

FTIR (ATR)  (cm-1): 3289 (NH), 2978, 2932, 1715 (C=O), 1649 (C=O). 

HRMS (ESI or APCI): target mass not found.  

 

Di-tert-butyl 2,3-diazabicyclo[2.2.0]hexane-2,3-dicarboxylate 308d and di-tert-butyl 1,2-

diazinane-1,2-dicarboxylate 356 

 
Palladium on carbon (10 wt. %, 38 mg, 0.04 mmol, 0.05 eq) was added in one portion to a 

stirred solution of bicyclic 1,2-diazetidine 10d (201 mg, 0.71 mmol, 1.0 eq) in 7:1 THF:EtOH (8 

mL) at room temperature under argon. The reaction flask was evacuated and refilled with 

hydrogen gas three times and then stirred at room temperature for 24 hours. The reaction 

mixture was filtered through Celite and the filtrate was evaporated under reduced pressure to 

give the crude product. Purification by flash column chromatography on silica gel (eluent: 

hexane-EtOAc, 9:1→4:1) gave the saturated bicycle 308d (13 mg, 0.05 mmol, 6%) as a 

colourless oil and diazinane 356 (174 mg, 0.61 mmol, 85%) as a colourless solid.    

Saturated bicycle 308d 

 

Rf (Hexane-EtOAc, 4:1) = 0.17 

1H NMR (400 MHz, CDCl3);  4.68-4.66 (br m, 2H, H2), 2.55-2.52 (br m, 4H, H1), 1.50 (br s, 

18H, H5). 
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13C NMR (100 MHz, CDCl3);  158.7 (C3), 81.9 (C4), 64.1 (C2), 28.3 (C5), 27.4 (C1). 

FTIR (ATR)  (cm-1): 2976, 2932, 1739 (C=O), 1700 (C=O). 

HRMS (ESI and APCI): Target mass not found.  

Diazinane 356 

 

Rf (Hexane-EtOAc, 4:1) = 0.24 

mp = 56-58 ˚C 

1H NMR (400 MHz, CDCl3);  4.16-3.97 (br m, 2H, H1A), 3.05-2.82 (br m, 2H, H1B), 1.66-1.57 

(br m, 2H, H2), 1.46 (br s, 18H, H5). 

13C NMR (100 MHz, CDCl3, additional peaks due to complex rate processes annotated by an 

asterisk, C3 not observed);  80.7 (C4), 46.5* (C1), 44.5 (C1), 28.4 (C5), 24.1* (C2), 23.7 (C2). 

1H NMR (400 MHz, d6-DMSO);  4.01-3.83 (br m, 2H, H1A), 2.94-2.70 (br m, 2H, H1B), 1.62-

1.37 (br m, 22H, H2 and H5). 

13C NMR (100 MHz, d6-DMSO, additional peaks due to complex rate processes annotated by 

an asterisk);  153.9* (C3), 153.5 (C3), 153.1* (C3), 80.2* (C4), 79.8 (C4), 46.3* (C1), 46.0* 

(C1), 44.0 (C1), 43.5* (C1), 27.9 (C5), 23.4* (C2), 23.0 (C2). 

1H NMR (400 MHz, 348 K, d6-DMSO);  4.01-3.89 (br m, 2H, H1A), 2.88-2.79 (br m, 2H, H1B), 

1.63-1.42 (br m, 22H, H2 and H5). 

13C NMR (100 MHz, 348 K, d6-DMSO);  153.1 (C3), 79.5 (C4), 44.4 (C1), 27.6 (C5), 22.8 (C2). 

FTIR (ATR)  (cm-1): 2982, 2932, 1690 (C=O). 

HRMS (APCI): m/z calculated for: C14H26N2O4 [M+Na]+ 309.1785, found 309.1794.  

 

Di-tert-butyl-1-[2,3-bis(methoxycarbonyl)cyclohexa-2,5-dien-1-yl]hydrazine-1,2-

dicarboxylate 357 

 

Dimethyl acetylenedicarboxylate 223 (78 µL, 0.64 mmol, 5.0 eq) was added in one portion to a 

stirred solution of diene 354 (36 mg, 0.13 mmol, 1.0 eq) in MeCN (1.3 mL). The reaction was 

heated at 60 °C for 17 hours, then cooled to room temperature and evaporated under reduced 
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pressure to give the crude product. Purification by flash column chromatography on silica gel 

(eluent: CH2Cl2-MeOH, 100:0→99:1) gave cycloadduct 357 (42 mg, 0.10 mmol, 76%) as a 

colourless oil. 

Rf (Hexane-EtOAc, 1:1) = 0.48 

1H NMR (400 MHz, 378 K, d6-DMSO);  7.84 (br s, 1H, NH), 5.99-5.94 (br m, 1H, H2), 5.77-

5.72 (br m, 1H, H3), 5.50-5.46 (br m, 1H, H4), 3.71 (s, 3H, H8 or H10), 3.67 (s, 3H, H8 or H10), 

3.04-2.80 (br m, 2H, H1A and H1B), 1.42 (s, 9H, H13 or H16), 1.40 (s, 9H, H13 or H16). 

13C NMR (100 MHz, 378 K, d6-DMSO, C4 not visible, additional peaks due to complex rate 

processes annotated by an asterisk);  166.6 (C8 or C10), 165.7 (C8 or C10), 154.7 (C11 or 

C14), 153.3 (C11 or C14), 125.4 (C2), 122.4 (C3), 79.9 (C12 or C15), 79.0 (C12 or C15), 78.5* 

(C12 or C15), 51.3 (C8 or C10), 51.1 (C8 or C10), 27.6* (C13 or C16), 27.4 (C13 or C16), 27.4 

(C13 or C16), 26.9 (C1). 

FTIR (ATR)  (cm-1): 3330 (NH), 2978, 1720 (C=O). 

HRMS (ESI or APCI): m/z calculated for: C20H30N2O8 [M+Na]+ 449.1894, found 449.1890.  

Note: When the NMR sample of 357 (in d6-DMSO) was heated at temperatures above 130 °C, 

dimethyl benzene-1,2-dicarboxylate 358 and di-tert-butyl hydrazodicarboxylate 43d were 

formed. 

 

Dimethyl benzene-1,2-dicarboxylate 358 

 

1H NMR (400 MHz, d6-DMSO);  7.75-7.72 (m, 2H, H1), 7.69-7.66 (m, 2H, H2), 3.82 (s, 6H, 

H5). 

13C NMR (100 MHz, d6-DMSO);  167.4 (C4), 131.7 (C2), 131.4 (C3), 128.7 (C1), 52.6 (C5). 

 

Di-tert-butyl hydrazodicarboxylate 43d 

 

1H NMR (400 MHz, d6-DMSO);  8.61-8.14 (br m, 2H, NH), 1.38 (br s, 18H, H3). 

13C NMR (100 MHz, d6-DMSO, additional peaks due to rotamers denoted by an asterisk);  

155.6 (C1), 79.0* (C2), 78.9 (C2), 28.2* (C3), 28.1 (C3), 27.9* (C3). 
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8.1 X-Ray Data 

1. X-Ray Crystal Structure Data for 9c 

 

Identification code SC104 

Empirical formula C12H18N2O4 

Formula weight 254.28 

Temperature/K 100.2(5) 

Crystal system monoclinic 

Space group C2/c 

a/Å 18.4345(2) 

b/Å 7.62687(9) 

c/Å 19.5917(3) 

α/° 90 

β/° 108.8812(15) 

γ/° 90 

Volume/Å3 2606.32(6) 

Z 8 

ρcalcg/cm3 1.296 

μ/mm-1 0.814 

F(000) 1088.0 

Crystal size/mm3 0.348 × 0.149 × 0.078 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 9.542 to 153.332 
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Index ranges -23 ≤ h ≤ 17, -9 ≤ k ≤ 9, -23 ≤ l ≤ 24 

Reflections collected 13406 

Independent reflections 2731 [Rint = 0.0188, Rsigma = 0.0099] 

Data/restraints/parameters 2731/0/167 

Goodness-of-fit on F2 1.057 

Final R indexes [I>=2σ (I)] R1 = 0.0336, wR2 = 0.0847 

Final R indexes [all data] R1 = 0.0340, wR2 = 0.0850 

Largest diff. peak/hole / e Å-3 0.22/-0.28 

2. X-Ray Crystal Structure Data for 218 

 

Identification code MC231-new 

Empirical formula C14H22N2O5 

Formula weight 298.33 

Temperature/K 293(2) 

Crystal system triclinic 

Space group P-1 

a/Å 6.2354(2) 

b/Å 11.0207(5) 

c/Å 12.4263(6) 

α/° 82.256(4) 

β/° 79.645(4) 

γ/° 83.269(4) 
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Volume/Å3 828.55(6) 

Z 2 

ρcalcg/cm3 1.196 

μ/mm-1 0.758 

F(000) 320.0 

Crystal size/mm3 0.472 × 0.082 × 0.025 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 7.282 to 152.928 

Index ranges -7 ≤ h ≤ 7, -13 ≤ k ≤ 13, -15 ≤ l ≤ 15 

Reflections collected 17030 

Independent reflections 3456 [Rint = 0.0373, Rsigma = 0.0226] 

Data/restraints/parameters 3456/0/196 

Goodness-of-fit on F2 1.048 

Final R indexes [I>=2σ (I)] R1 = 0.0449, wR2 = 0.1273 

Final R indexes [all data] R1 = 0.0491, wR2 = 0.1323 

Largest diff. peak/hole / e Å-3 0.20/-0.20 

 

3. X-Ray Crystal Structure Data for 238 

 

Identification code SC106 

Empirical formula C12H20N2O6 

Formula weight 288.30 

Temperature/K 100 

Crystal system monoclinic 
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Space group P21/c 

a/Å 10.0193(3) 

b/Å 14.8599(4) 

c/Å 9.9341(3) 

α/° 90 

β/° 110.451(3) 

γ/° 90 

Volume/Å3 1385.83(7) 

Z 4 

ρcalcg/cm3 1.382 

μ/mm-1 0.942 

F(000) 616.0 

Crystal size/mm3 0.218 × 0.092 × 0.07 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 9.42 to 153.318 

Index ranges -12 ≤ h ≤ 12, -18 ≤ k ≤ 18, -10 ≤ l ≤ 12 

Reflections collected 9374 

Independent reflections 2863 [Rint = 0.0287, Rsigma = 0.0238] 

Data/restraints/parameters 2863/0/187 

Goodness-of-fit on F2 1.073 

Final R indexes [I>=2σ (I)] R1 = 0.0399, wR2 = 0.1049 

Final R indexes [all data] R1 = 0.0420, wR2 = 0.1065 

Largest diff. peak/hole / e Å-3 0.38/-0.30 
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4. X-Ray Crystal Structure Data for 241 

 

Identification code SC105 

Empirical formula C28H36Cl8N4O8 

Formula weight 840.21 

Temperature/K 100.00(10) 

Crystal system triclinic 

Space group P-1 

a/Å 10.2631(2) 

b/Å 11.9194(3) 

c/Å 15.8919(4) 

α/° 89.4160(18) 

β/° 89.8269(18) 

γ/° 77.4429(18) 

Volume/Å3 1897.44(7) 

Z 2 

ρcalcg/cm3 1.471 

μ/mm-1 5.859 

F(000) 864.0 

Crystal size/mm3 0.433 × 0.247 × 0.18 
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Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 7.6 to 152.966 

Index ranges -11 ≤ h ≤ 12, -14 ≤ k ≤ 15, -19 ≤ l ≤ 20 

Reflections collected 29243 

Independent reflections 7879 [Rint = 0.0347, Rsigma = 0.0205] 

Data/restraints/parameters 7879/0/441 

Goodness-of-fit on F2 1.175 

Final R indexes [I>=2σ (I)] R1 = 0.0470, wR2 = 0.1223 

Final R indexes [all data] R1 = 0.0473, wR2 = 0.1224 

Largest diff. peak/hole / e Å-3 0.61/-0.38 

 

5. X-Ray Crystal Structure Data for 224 

 

Identification code pre_MC201 

Empirical formula C18H24N2O8 

Formula weight 396.39 

Temperature/K 292.52(10) 

Crystal system monoclinic 

Space group P21/n 

a/Å 9.8453(3) 

b/Å 7.5243(2) 

c/Å 26.0993(11) 
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α/° 90 

β/° 98.958(3) 

γ/° 90 

Volume/Å3 1909.82(11) 

Z 4 

ρcalcg/cm3 1.379 

μ/mm-1 0.924 

F(000) 840.0 

Crystal size/mm3 0.203 × 0.036 × 0.024 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 9.206 to 147.368 

Index ranges -12 ≤ h ≤ 11, -9 ≤ k ≤ 6, -31 ≤ l ≤ 31 

Reflections collected 13128 

Independent reflections 3805 [Rint = 0.0411, Rsigma = 0.0393] 

Data/restraints/parameters 3805/0/259 

Goodness-of-fit on F2 1.045 

Final R indexes [I>=2σ (I)] R1 = 0.0384, wR2 = 0.0876 

Final R indexes [all data] R1 = 0.0512, wR2 = 0.0933 

Largest diff. peak/hole / e Å-3 0.28/-0.26 
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6. X-Ray Crystal Structure Data for 10d 

 

Identification code SC107 

Empirical formula C14H22N2O4 

Formula weight 282.33 

Temperature/K 99.99(10) 

Crystal system monoclinic 

Space group P21/c 

a/Å 8.95843(13) 

b/Å 19.3911(2) 

c/Å 9.66742(12) 

α/° 90 

β/° 114.1195(17) 

γ/° 90 

Volume/Å3 1532.75(4) 

Z 4 

ρcalcg/cm3 1.223 

μ/mm-1 0.740 

F(000) 608.0 

Crystal size/mm3 0.433 × 0.309 × 0.26 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 9.122 to 153.564 
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Index ranges -11 ≤ h ≤ 11, -23 ≤ k ≤ 24, -12 ≤ l ≤ 12 

Reflections collected 17499 

Independent reflections 3203 [Rint = 0.0248, Rsigma = 0.0127] 

Data/restraints/parameters 3203/0/187 

Goodness-of-fit on F2 1.027 

Final R indexes [I>=2σ (I)] R1 = 0.0369, wR2 = 0.0913 

Final R indexes [all data] R1 = 0.0374, wR2 = 0.0918 

Largest diff. peak/hole / e Å-3 0.25/-0.24 

 

7. X-Ray Crystal Structure Data for 316d 

 

Identification code SC112 

Empirical formula C14H22N2O4 

Formula weight 282.33 

Temperature/K 100.0(3) 

Crystal system monoclinic 

Space group P21/c 

a/Å 9.5903(10) 

b/Å 18.1507(15) 

c/Å 9.6769(12) 

α/° 90 

β/° 117.983(15) 

γ/° 90 
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Volume/Å3 1487.5(3) 

Z 4 

ρcalcg/cm3 1.261 

μ/mm-1 0.762 

F(000) 608.0 

Crystal size/mm3 0.325 × 0.246 × 0.236 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 9.746 to 155.142 

Index ranges -10 ≤ h ≤ 12, -21 ≤ k ≤ 22, -12 ≤ l ≤ 12 

Reflections collected 12121 

Independent reflections 3103 [Rint = 0.0489, Rsigma = 0.0302] 

Data/restraints/parameters 3103/0/187 

Goodness-of-fit on F2 1.156 

Final R indexes [I>=2σ (I)] R1 = 0.0871, wR2 = 0.1955 

Final R indexes [all data] R1 = 0.0891, wR2 = 0.1962 

Largest diff. peak/hole / e Å-3 0.57/-0.41 

 

8. X-Ray Crystal Structure Data for 317d 

 

Identification code SC108 

Empirical formula C10H14N2O4 

Formula weight 226.23 

Temperature/K 100.2(4) 
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Crystal system monoclinic 

Space group P21/c 

a/Å 10.3330(6) 

b/Å 9.5174(5) 

c/Å 11.5317(7) 

α/° 90 

β/° 102.715(7) 

γ/° 90 

Volume/Å3 1106.26(11) 

Z 4 

ρcalcg/cm3 1.358 

μ/mm-1 0.893 

F(000) 480.0 

Crystal size/mm3 0.171 × 0.142 × 0.07 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 8.772 to 152.362 

Index ranges -12 ≤ h ≤ 12, -11 ≤ k ≤ 11, -14 ≤ l ≤ 8 

Reflections collected 6952 

Independent reflections 2281 [Rint = 0.0313, Rsigma = 0.0277] 

Data/restraints/parameters 2281/0/148 

Goodness-of-fit on F2 1.056 

Final R indexes [I>=2σ (I)] R1 = 0.0545, wR2 = 0.1455 

Final R indexes [all data] R1 = 0.0604, wR2 = 0.1504 

Largest diff. peak/hole / e Å-3 0.65/-0.28 
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X-Ray Crystal Structure Data for 333 

 

Identification code SC111 

Empirical formula C28H48N4O14 

Formula weight 664.70 

Temperature/K 99.8(6) 

Crystal system monoclinic 

Space group P21/n 

a/Å 6.1413(2) 

b/Å 17.9643(7) 

c/Å 30.8961(13) 

α/° 90 

β/° 91.127(4) 

γ/° 90 

Volume/Å3 3407.9(2) 

Z 4 

ρcalcg/cm3 1.296 

μ/mm-1 0.880 

F(000) 1424.0 

Crystal size/mm3 0.435 × 0.064 × 0.022 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 7.548 to 155.91 

Index ranges -5 ≤ h ≤ 7, -21 ≤ k ≤ 22, -36 ≤ l ≤ 38 
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Reflections collected 32146 

Independent reflections 7047 [Rint = 0.0749, Rsigma = 0.0534] 

Data/restraints/parameters 7047/0/431 

Goodness-of-fit on F2 1.043 

Final R indexes [I>=2σ (I)] R1 = 0.0532, wR2 = 0.1323 

Final R indexes [all data] R1 = 0.0746, wR2 = 0.1497 

Largest diff. peak/hole / e Å-3 0.36/-0.23 

 

9. X-Ray Crystal Structure Data for 350 

 

Identification code SC117 

Empirical formula C14H24N2O4 

Formula weight 284.35 

Temperature/K 99.9(2) 

Crystal system monoclinic 

Space group P21/n 

a/Å 5.23750(9) 

b/Å 8.83307(15) 

c/Å 16.5180(3) 

α/° 90 

β/° 92.6082(17) 

γ/° 90 

Volume/Å3 763.39(2) 

Z 2 
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ρcalcg/cm3 1.237 

μ/mm-1 0.743 

F(000) 308.0 

Crystal size/mm3 0.109 × 0.098 × 0.082 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 10.724 to 153 

Index ranges -6 ≤ h ≤ 6, -11 ≤ k ≤ 11, -17 ≤ l ≤ 20 

Reflections collected 9639 

Independent reflections 1589 [Rint = 0.0415, Rsigma = 0.0201] 

Data/restraints/parameters 1589/0/94 

Goodness-of-fit on F2 1.058 

Final R indexes [I>=2σ (I)] R1 = 0.0369, wR2 = 0.0961 

Final R indexes [all data] R1 = 0.0386, wR2 = 0.0977 

Largest diff. peak/hole / e Å-3 0.21/-0.23 

 

8.2 Differential Scanning Calorimetry (DSC) Traces 

1. Bicyclic 1,2-Diazetidine 10d 
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2. Rearranged Bicycle 316d 

 

3. Degraded Bicycle 317d 

 

 

 


