Using children’s literature to introduce computing principles and
concepts in primary schools: work in progress

Sarah Twigg, Lynne Blair, Emily Winter
School of Computing and Communications
Lancaster University
Lancaster, UK
s.j.twigg@icloud.com, l.blair@lancaster.ac.uk, e.winter@Ilancaster.ac.uk

ABSTRACT

With the recent paradigm shift in the teaching of computing and
computational thinking skills, schools are engaging pupils as
young as five in learning principles and concepts of programming.
However, there are still many challenges within primary
computing education, including the cost and availability of
resources, and teachers’ familiarity and/or confidence with these
resources. In this paper, we offer an approach that develops a
creative story-based pedagogy to address constraints such as these
and facilitate the development of lesson plans supporting
scaffolding and differentiation. Children’s literature is used to
introduce concepts such as pattern matching, abstraction and
algorithms, along with the three main programming constructs of
sequencing, repetition and selection. Through four stages of Read-
Act-Model-Program (RAMP), we present a set of unplugged and
Scratch-based activities and reflect on the potential impact of this
educational opportunity to inspire an early interest in computing.

CCS CONCEPTS

Social and professional topics — Computing education;
Computational thinking; Computing literacy; K-12 education

KEYWORDS

Programming; Computational Thinking; Pedagogy; Primary;
Children’s Literature

ACM Reference format: Sarah Twigg, Lynne Blair and Emily Winter.
2019. Using children’s literature to introduce computing principles and
concepts in primary schools. In Proceedings of the 14th Workshop in
Primary and Secondary Computing Education (WiPSCE ’19), October
23-25, 2019, Glasgow, UK. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/...

1 INTRODUCTION

Since 2014, the reformed national curriculum for England has
mandated that computer science be taught in schools for all 5-16
year olds (Key Stages 1-4) (DfE, 2013). The curriculum’s overall
aim is to teach children to understand the fundamental principles
and concepts of computer science and to develop problem-solving
skills using computational thinking concepts such as abstraction,
logical reasoning, algorithms, pattern recognition and evaluation.
This paradigm shift goes beyond the digital literacy skills required
to ‘use’ computer-based technology, moving into computational
thinking skills — and creativity — required to “understand and
change the world” (Caldwell, 2017).

In primary level classrooms, children’s literature is a familiar and
regularly used resource. Particularly at key stage 1 (ages 5-7),
such literature is often picture heavy and repetitious. The narrative
structures of sequencing, repetition and selection are typical
features of children’s stories — structures that are shared with
programming languages. By linking children’s literature and the
introduction of programming, we offer teachers of key stages 1-2
a creative approach to teaching introductory computing and
computational thinking skills to young children.

2 SELECTING CHILDREN’S BOOKS

A working set of children’s literature was selected by reviewing
the ‘The Book People’® website (a bookseller promoted in many
of our local schools), looking for age-appropriate (up to age 7)
classic picture books. This yielded a set of 75 books, which
reduced to 50 once book collections and duplicates were removed.
Each book was coded based on whether it exhibited sequencing,
selection and repetition (the programming constructs explicitly
included in the English KS1-2 curriculum). To perform this
coding, each book was read and the storyline considered as a
whole to identify all relevant programming constructs.

The following guidelines describe the relationship between
children’s literature and these 3 programming constructs:

Sequencing — a list of events to be followed in a logical order or
plot stages.
- All 50 books (100%) illustrated some form of sequencing.

1 http://thebookpeople.co.uk



WIiPSCE’19, October 2019, Glasgow, Scotland

Repetition — at least one example of a pattern of repeated
dialogue, actions, environment, etc. For example, a story may go
through different contexts where the same dialogue and/or action
is repeated in each context.

- 46% of books illustrated some form of repetition.
Selection — at least one example of a choice of dialogue, actions,
environment, etc. For example, where the dialogue follows a
repeated pattern but changes occur dependent on the context, or
where the current context of the storyline is examined to test
whether to continue or whether the desired goal has been reached
(terminating condition).

- 36% of books illustrated some form of selection.

Overall, a total of 32% (n=16) of the chosen type of books (classic
picture books for under 7s) illustrated all three constructs. A table
containing this full set of books is available online?. Given that a
typical primary school has many children’s books, our experience
from local schools and teachers indicates that the guidelines
presented above and the illustrative examples below support
teachers to identify other books that can be used to introduce
computing concepts to their classes.

Ilustrative examples from 3 books:

Dear Zoo, R. Campbell, Penguin, 1985.

Sequencing: After a boy writes to a zoo for a pet, the zoo sends
multiple pets one at a time. Each time the pet is not what the boy
expected, he sends the pet back. The sequence ends when the zoo
sends the boy a puppy.

Repetition: As the boy encounters each of the pets sent to him,
the following dialogue repeats:

Say — “They sent me a”

Say — <itemin a list of pets>

Say — <the boy’s reaction>

Say — “So I sent it back”

Selection: The responses vary depending on the pet sent. If the
pet is not a puppy, the above dialogue is repeated. If the pet is a
puppy, the following dialogue terminates the story:

Say — “So they thought very hard, and sent me a”

Say — “Puppy”

Say — “He’s perfect!”

We're Going on a Bear Hunt, M. Rosen, McElderry, 1989.
Sequencing: The characters set out on a bear hunt and go through
six different environments followed by an encounter with a bear!
After this they make their way back home through each of the
different environments.

Repetition: A dialogue is repeated in each environment:

Say — “We’re going on a bear hunt”

Say — “We’re going to catch a big one”

Say — “What a beautiful day”

Selection: The above dialogue is extended with additional
comments that vary depending on the environment.

If they’re in a grass field, say — “Grass! Long wavy grass!”

2 https://community.computingatschool.org.uk/resources/5681/single

If they’re crossing a river, say — “Dive in! Splash splosh!”

The Very Hungry Caterpillar, E. Carle, Collins, 1979.
Sequencing: A hungry caterpillar is on a hunt for food. After an
initial ‘set-up’ day on Sunday, each subsequent day of the week
he finds a new food to eat, and continues the hunt until no longer
hungry. The caterpillar then builds himself a cocoon and stays
inside it for more than two weeks when it changes into a butterfly.
Repetition: A dialogue is again repeated, but this time the exact
dialogue varies depending on the day of the week (that may be
represented by a list with items Monday through to Saturday):
Say — “On <day of week>, he ate through <number> <food
item(s)>, but was still hungry”.
Selection: The dialogue may be generated by selections that use
the day of the week to determine the appropriate number and type
of food item(s). For example,
if <day of week> = Monday then

Say - “On Monday, he ate through one apple, ...”
else if <day of week> = Tuesday then

Say - “On Tuesday, he ate through two pears, ...”

3 RAMP: Read, Act, Model and then Program

Having selected appropriate children’s books, the RAMP
approach aims for a gradual build-up of subject knowledge and
skills, initially through unplugged activities (Bell, 2009; Caldwell,
2017) before moving on to programming tasks.

Read: Read through a story, asking questions about what is
happening and introducing the learning objective(s), for example
identifying key computing terminology to be introduced.

Act — Act out a story, including watching for interesting patterns
of behaviour. Pupils may identify with different roles within a
story. For example, for Dear Zoo, roles might include a
zookeeper, a postal worker, the boy, and different animals. Watch
out for repeated patterns, and what changes during each repetition
- including what causes or triggers these changes. Repeat/ affirm
key terminology to ensure the link to computing is explicit.

Model — Start to model (or design) the code using unplugged
activities. Starting with a pack of laminated printouts of lines of
code (Scratch vector blocks), the class may initially be asked to
construct a long sequence of events that model the narrative of the
story. Alternatively, for a differentiated activity for pupils with
low reading ages, pupils can arrange images from the book into a
sequence.

The class can then be asked to identify patterns in the sequence
and start working to complete a design that identifies blocks of
repeated code and choice points in the story. A large template
sheet® may be used to assist with the algorithm for this design.
Depending on the individual classroom environment, differing
level of detail may be offered on this template to support
differentiated activities for differing abilities. Throughout this

Shttps://sites.google.com/view/aprogrammerstale



Using children’s literature to introduce computing principles and
concepts in primary schools: work in progress

stage, a pupil can act as a ‘computer’, reading through and
following the design, predicting behaviour, and debugging as
necessary, i.e. determining if any deviations from the story are
intentional or are bugs!

As can be seen from the text above, this stage offers a natural
opportunity to start to introduce elements of computational
thinking terminology*, such as creating algorithms, making
judgements about the level of detail to be included (abstraction),
identifying patterns of behaviour, predicting behaviour,
debugging, etc.

Program — The Read, Act and Model stages described above are
intended to aid the transition to programming through unplugged
and design-based activities. To offer additional scaffolding and
differentiation, we propose that pupils are further supported in this
programming step through examples of the code blocks and
structures that they are expected to use/ find. To offer examples of
this, sample teaching resources® were developed for a selection of
the children’s books. These have been used and evaluated in a
small number of focus groups, interviews, classroom lessons and
code clubs.

4 Experiences and Evaluation

14 primary school teachers were recruited through a Computing
At School® regional centre, to take part in a range of activities
including initial focus groups and semi-structured interviews,
classroom trials and code clubs, and follow-up semi-structured
interviews.b The data from these activities was thematically
analysed using a mixture of inductive/ deductive analysis. Themes
included suggested adaptations, considerations of applicability
and appropriateness in different contexts, implementation in the
classroom, scaffolding and differentiation techniques, levels of
teacher intervention required, and issues/concerns regarding
transitioning to Scratch.

Overall feedback indicated that the teachers were happy with and
excited about the use of children’s books to teach computing
concepts, and thought it would be appropriate at different ages
across key stages 1-2 (especially years 3-6), with teacher T6
commenting: ‘7 did the activities with year five and six and said I
know these books are a bit old for you but you 're going to be
coding it to show my year ones and two’. The teacher explained
that the children were all engaged in the stories and loved the
nostalgia of revisiting the stories, despite comments from other
teachers in the school stay ‘you 're reading them a story, you do

“ For example, Barefoot Computational Thinking poster: https://
www.barefootcomputing.org/resources/computational-thinking-poster,

and CAS Computational Thinking - A Guide for Teachers:
https://community.computingatschool.org.uk/resources/2324/single

5 http://www.computingatschool.org.uk/

6 Participant breakdown: Teachers: 11F, 3M; 2 KS1, 8 KS2, 4 mixed KS1/2
(including 1 special needs specialist and 2 cross-school computing specialists).
Classroom trials: all KS2 classes. Code clubs: mixed KS1/2 groups.

WIiPSCE’19, October 2019, Glasgow, Scotland

know they’re in year 6’! She further explained that ‘we had six
weeks of a lot of fun’.

Teachers were enthusiastic about the opportunity for a whole class
activities and children acting out roles. For example, teacher T3
enthused that: ‘I’d have children being these things [roles]. And
then you 've got one who's being the computer ... ‘Is that the right
place for you to be? What do they need to do? They 've got to go
back now, move on to the next one. Is that right? No, that’s not
the one either. You've got to go back’. And then sort of have the
class sort of directing so they re all involved ‘. This was echoed
with the code club experience: ‘using the example of Dear Zoo,
the computer role-playing activity led to several moments where
the ‘computer’ got stuck and the other children participated to
describe the problem, then debug and fix the algorithm .

T3 commented on the ideal opportunity to introduce
computational thinking terminology: ‘They love it, they love it.
I've got another big computing word for you kids. Are you
listening? Make sure, sit up, ‘cause this is important... Loads of
people won'’t know what this means but you know what you re
smart enough, you can hear this’. T6 echoed this regarding the
early introduction of terminology: ‘We do here, we do algorithms
and the children can tell me it’s a set of instructions for a
purpose. We use the real deal because ... it’s like teaching them
another language. There’s no point teaching them one version
and then going actually, we’re going to change all the names now
just to confuse you'.

Differentiation was raised as a significant component of
classroom teaching by the majority of teachers. T3 explained: 7
gave them all the Scratch. We ... self-differentiate, so we set
challenges and the children choose the one that they think works
for them. ... So we have fix it, revisit it, and push it. So fix it is for
if you're not very sure. Revisit just to reinforce, and push-it if you
think ‘yeah, I'm up for a challenge’. And then I just took bits out
for the challenges that are harder. So for fix it I just took out the
order of the different things’ [this meant leaving the structure of
the Scratch program, but taking out the contents of the repeat/
conditional blocks].

Two teachers commented on potential difficulties, especially for
non-specialist teachers, with the transition from the modelling/
design stage to programming in Scratch. T4 commented that the
perceived level of difficulty of the programming stage would
depend on the confidence and experiences of the teacher, and
suggested focusing on the first three stages (Read, Act, Model): 7
think you’d be meeting all the objectives - it would be a brilliant
lesson, and | love it all, but not have to put it into Scratch.” T2
reflected similarly: I don’t have a massive computer science,
programming, coding background at all. But it’s just something
that I'm happy to tinker about with. Looking at the kind of the
materials and things... I think it would scare some people who are
not specialists. | still think they would struggle with some



WIiPSCE’19, October 2019, Glasgow, Scotland

elements of the language’ [where language applied to both
Scratch and computational thinking terminology].

However, two teachers commented on particularly positive
experiences with the Scratch activities. One teacher T9 paired
children of mixed ability and explained, ‘We had one boy who's
very dyslexic, who can’t read or write, so he made his very
graphical. He had the caterpillar moving along the screen and the
apple would slowly disappear as he ate it.* Further to this, T6
commented: ‘We've got a severely autistic boy, who loved this. He
thought it was amazing: ‘look, look, look, look, look, it can do
this’ and normally when you get him to sit still it’s like ‘I don't
want to, I don’t want to, I don’t want to’ ... [but] he was
completely the opposite. | think because you can give those
different levels and because | put them in mixed ability groups, he
could be like ‘I want to do it in pictures’ and their partner saying
‘well can I put this bit on top, with a bit of writing.”” The context
here was that both T9 and T6 had higher confidence levels with
Scratch and were teaching classes that had previously been
introduced to Scratch.

5 Related work: other story-based work

There are also a number of story-based approaches that are now
available that teach computer science concepts. For example, in
Hello Ruby (Liukas, 2015), the central character (Ruby) goes on
an adventure and, as she meets new friends along the way,
encounters puzzles and problems that help to develop
programming skills as they are creatively explored and solutions
developed.

Moving closer to our own children’s literature-based approach,
Once Upon an Algorithm (Erwig, 2017) illustrates computational
layering in daily life activities and in familiar stories. Through
such activities and stories, computing concepts such as
algorithms, recursion, abstraction, data types/ data representation
and complexity are highlighted and explained. This interesting
resource differs from our own research in the level of computing
concepts targeted, with the work of Erwig targeting concepts that
are introduced later on in the education process, for example Key
Stages 3 and 4.

Research from an Italian middle school (Di Vano, 2011) explored
using nursery rhymes to identify repeated patterns of behaviour in
the structure of the rhyme, possibly also identifying a prologue
and epilogue if appropriate. Initially nursery rhymes are gathered
from pupils’ collective experiences and their structure analysed. A
set of activities including a ‘ladybug’ application and the Logo
programming language, lead to pupils developing programs to
automate the generation of simple (typically cyclical) nursery
rhymes.

6 Conclusions

It is increasingly important to develop a clear pedagogy and
associated set of resources that support the teaching of computing
in primary schools, particularly resources that are low (or zero)
cost and are familiar or intuitive for teachers and pupils alike. This
paper has discussed the potential of a 4-stage approach for key
stages 1-2, that makes use of creative story-based pedagogy to
introduce the core constructs of sequencing, repetition and
selection, plus computational thinking concepts including pattern
matching, abstraction and algorithms.

The first 3 stages of this approach - Read, Act and Model -
received very positive feedback from a set of 14 teachers and their
classes, with appreciation for the scaffolding and differentiation
opportunities. However, it was interesting that the 4th stage -
Program - received mixed reactions. Whilst no problem existed
for the study participants themselves, two teachers raised concerns
when considering how other non-specialist colleagues might
approach the transition to Scratch. This needs to be the subject of
further study to identify whether our approach can be further
developed to support the transition from ‘RAM’ to ‘P’, or whether
programming (or fear of the unknown) is a more fundamental
underlying problem that needs addressing separately.

Finally, we hypothesise that this creative approach has further
benefits related to diversity, and our studies have already seen
positive signs regarding students with learning difficulties. Future
work will investigate these benefits in more detail.

ACKNOWLEDGMENTS

This work was partially supported by the Computing At School
Regional Centre — NW (Lancaster). We are immensely grateful to
all our local CAS colleagues for their encouragement and time
spent helping to develop this research, and their contagious
enthusiasm throughout — thank you.

REFERENCES

T. Bell, J. Alexander, I. Freeman and M. Grimley. 2009. Computer science
unplugged: school students doing real computing without computers. New
Zealand Journal of Applied Computing and Information Technology. 13(1),
20-299; see also the CS Unplugged website: https://csunplugged.org

H. Caldwell and N. Smith [eds]. 2017. Teaching Computing Unplugged in
Primary Schools: exploring primary computing through practical activities
away from the computer. Sage Publications Ltd.

DfE (Department for Education). 2013. Statutory guidance. National
curriculum in England: computing programmes of study. Retrieved 15/6/18
from https://www.gov.uk/government/publications/national-curriculum-in-
england-computing-programmes-of-study

M. Erwig. 2017. Once Upon an Algorithm: How Stories Explain Computing.
MIT Press.

L. Liukas. 2015. Hello Ruby: Adventures in Coding. Macmillan.

D. Di Vano and C. Mirolo. 2011. Computer Science and Nursery Rhymes - A
Learning Path for the Middle School. ITICSE’11 (Innovation and technology
in computer science education), pp 238-242.



