
Using children’s literature to introduce computing principles and
concepts in primary schools: work in progress

Sarah Twigg, Lynne Blair, Emily Winter
 School of Computing and Communications

 Lancaster University

 Lancaster, UK

 s.j.twigg@icloud.com, l.blair@lancaster.ac.uk, e.winter@lancaster.ac.uk

ABSTRACT

With the recent paradigm shift in the teaching of computing and

computational thinking skills, schools are engaging pupils as

young as five in learning principles and concepts of programming.

However, there are still many challenges within primary

computing education, including the cost and availability of

resources, and teachers’ familiarity and/or confidence with these

resources. In this paper, we offer an approach that develops a

creative story-based pedagogy to address constraints such as these

and facilitate the development of lesson plans supporting

scaffolding and differentiation. Children’s literature is used to

introduce concepts such as pattern matching, abstraction and

algorithms, along with the three main programming constructs of

sequencing, repetition and selection. Through four stages of Read-

Act-Model-Program (RAMP), we present a set of unplugged and

Scratch-based activities and reflect on the potential impact of this

educational opportunity to inspire an early interest in computing.

CCS CONCEPTS

Social and professional topics → Computing education;

Computational thinking; Computing literacy; K-12 education

KEYWORDS

Programming; Computational Thinking; Pedagogy; Primary;

Children’s Literature

ACM Reference format: Sarah Twigg, Lynne Blair and Emily Winter.

2019. Using children’s literature to introduce computing principles and

concepts in primary schools. In Proceedings of the 14th Workshop in

Primary and Secondary Computing Education (WiPSCE ’19), October

23–25, 2019, Glasgow, UK. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/...

1 INTRODUCTION

Since 2014, the reformed national curriculum for England has

mandated that computer science be taught in schools for all 5-16

year olds (Key Stages 1-4) (DfE, 2013). The curriculum’s overall

aim is to teach children to understand the fundamental principles

and concepts of computer science and to develop problem-solving

skills using computational thinking concepts such as abstraction,

logical reasoning, algorithms, pattern recognition and evaluation.

This paradigm shift goes beyond the digital literacy skills required

to ‘use’ computer-based technology, moving into computational

thinking skills – and creativity – required to “understand and

change the world” (Caldwell, 2017).

In primary level classrooms, children’s literature is a familiar and

regularly used resource. Particularly at key stage 1 (ages 5-7),

such literature is often picture heavy and repetitious. The narrative

structures of sequencing, repetition and selection are typical

features of children’s stories – structures that are shared with

programming languages. By linking children’s literature and the

introduction of programming, we offer teachers of key stages 1-2

a creative approach to teaching introductory computing and

computational thinking skills to young children.

2 SELECTING CHILDREN’S BOOKS

A working set of children’s literature was selected by reviewing

the ‘The Book People’1 website (a bookseller promoted in many

of our local schools), looking for age-appropriate (up to age 7)

classic picture books. This yielded a set of 75 books, which

reduced to 50 once book collections and duplicates were removed.

Each book was coded based on whether it exhibited sequencing,

selection and repetition (the programming constructs explicitly

included in the English KS1-2 curriculum). To perform this

coding, each book was read and the storyline considered as a

whole to identify all relevant programming constructs.

The following guidelines describe the relationship between

children’s literature and these 3 programming constructs:

Sequencing – a list of events to be followed in a logical order or

plot stages.

- All 50 books (100%) illustrated some form of sequencing.

1 http://thebookpeople.co.uk

WiPSCE’19, October 2019, Glasgow, Scotland

Repetition – at least one example of a pattern of repeated

dialogue, actions, environment, etc. For example, a story may go

through different contexts where the same dialogue and/or action

is repeated in each context.

- 46% of books illustrated some form of repetition.

Selection – at least one example of a choice of dialogue, actions,

environment, etc. For example, where the dialogue follows a

repeated pattern but changes occur dependent on the context, or

where the current context of the storyline is examined to test

whether to continue or whether the desired goal has been reached

(terminating condition).

- 36% of books illustrated some form of selection.

Overall, a total of 32% (n=16) of the chosen type of books (classic

picture books for under 7s) illustrated all three constructs. A table

containing this full set of books is available online2. Given that a

typical primary school has many children’s books, our experience

from local schools and teachers indicates that the guidelines

presented above and the illustrative examples below support

teachers to identify other books that can be used to introduce

computing concepts to their classes.

Illustrative examples from 3 books:

Dear Zoo, R. Campbell, Penguin, 1985.

Sequencing: After a boy writes to a zoo for a pet, the zoo sends

multiple pets one at a time. Each time the pet is not what the boy

expected, he sends the pet back. The sequence ends when the zoo

sends the boy a puppy.

Repetition: As the boy encounters each of the pets sent to him,

the following dialogue repeats:

Say – “They sent me a”

Say – <item in a list of pets>

Say – <the boy’s reaction>

Say – “So I sent it back”

Selection: The responses vary depending on the pet sent. If the

pet is not a puppy, the above dialogue is repeated. If the pet is a

puppy, the following dialogue terminates the story:

Say – “So they thought very hard, and sent me a”

Say – “Puppy”

Say – “He’s perfect!”

We're Going on a Bear Hunt, M. Rosen, McElderry, 1989.

Sequencing: The characters set out on a bear hunt and go through

six different environments followed by an encounter with a bear!

After this they make their way back home through each of the

different environments.

Repetition: A dialogue is repeated in each environment:

Say – “We’re going on a bear hunt”

Say – “We’re going to catch a big one”

Say – “What a beautiful day”

Selection: The above dialogue is extended with additional

comments that vary depending on the environment.

If they’re in a grass field, say – “Grass! Long wavy grass!”

2 https://community.computingatschool.org.uk/resources/5681/single

If they’re crossing a river, say – “Dive in! Splash splosh!”

The Very Hungry Caterpillar, E. Carle, Collins, 1979.

Sequencing: A hungry caterpillar is on a hunt for food. After an

initial ‘set-up’ day on Sunday, each subsequent day of the week

he finds a new food to eat, and continues the hunt until no longer

hungry. The caterpillar then builds himself a cocoon and stays

inside it for more than two weeks when it changes into a butterfly.
Repetition: A dialogue is again repeated, but this time the exact

dialogue varies depending on the day of the week (that may be

represented by a list with items Monday through to Saturday):

Say – “On <day of week>, he ate through <number> <food

item(s)>, but was still hungry”.

Selection: The dialogue may be generated by selections that use

the day of the week to determine the appropriate number and type

of food item(s). For example,

if <day of week> = Monday then

 Say - “On Monday, he ate through one apple, ...”

else if <day of week> = Tuesday then

 Say - “On Tuesday, he ate through two pears, ...”

3 RAMP: Read, Act, Model and then Program

Having selected appropriate children’s books, the RAMP

approach aims for a gradual build-up of subject knowledge and

skills, initially through unplugged activities (Bell, 2009; Caldwell,

2017) before moving on to programming tasks.

Read: Read through a story, asking questions about what is

happening and introducing the learning objective(s), for example

identifying key computing terminology to be introduced.

Act – Act out a story, including watching for interesting patterns

of behaviour. Pupils may identify with different roles within a

story. For example, for Dear Zoo, roles might include a

zookeeper, a postal worker, the boy, and different animals. Watch

out for repeated patterns, and what changes during each repetition

- including what causes or triggers these changes. Repeat/ affirm

key terminology to ensure the link to computing is explicit.

Model – Start to model (or design) the code using unplugged

activities. Starting with a pack of laminated printouts of lines of

code (Scratch vector blocks), the class may initially be asked to

construct a long sequence of events that model the narrative of the

story. Alternatively, for a differentiated activity for pupils with

low reading ages, pupils can arrange images from the book into a

sequence.

The class can then be asked to identify patterns in the sequence

and start working to complete a design that identifies blocks of

repeated code and choice points in the story. A large template

sheet3 may be used to assist with the algorithm for this design.

Depending on the individual classroom environment, differing

level of detail may be offered on this template to support

differentiated activities for differing abilities. Throughout this

3https://sites.google.com/view/aprogrammerstale

Using children’s literature to introduce computing principles and
concepts in primary schools: work in progress

WiPSCE’19, October 2019, Glasgow, Scotland

stage, a pupil can act as a ‘computer’, reading through and

following the design, predicting behaviour, and debugging as

necessary, i.e. determining if any deviations from the story are

intentional or are bugs!

As can be seen from the text above, this stage offers a natural

opportunity to start to introduce elements of computational

thinking terminology4, such as creating algorithms, making

judgements about the level of detail to be included (abstraction),

identifying patterns of behaviour, predicting behaviour,

debugging, etc.

Program – The Read, Act and Model stages described above are

intended to aid the transition to programming through unplugged

and design-based activities. To offer additional scaffolding and

differentiation, we propose that pupils are further supported in this

programming step through examples of the code blocks and

structures that they are expected to use/ find. To offer examples of

this, sample teaching resources3 were developed for a selection of

the children’s books. These have been used and evaluated in a

small number of focus groups, interviews, classroom lessons and

code clubs.

4 Experiences and Evaluation

14 primary school teachers were recruited through a Computing

At School5 regional centre, to take part in a range of activities

including initial focus groups and semi-structured interviews,

classroom trials and code clubs, and follow-up semi-structured

interviews.6 The data from these activities was thematically

analysed using a mixture of inductive/ deductive analysis. Themes

included suggested adaptations, considerations of applicability

and appropriateness in different contexts, implementation in the

classroom, scaffolding and differentiation techniques, levels of

teacher intervention required, and issues/concerns regarding

transitioning to Scratch.

Overall feedback indicated that the teachers were happy with and

excited about the use of children’s books to teach computing

concepts, and thought it would be appropriate at different ages

across key stages 1-2 (especially years 3-6), with teacher T6

commenting: ‘I did the activities with year five and six and said I

know these books are a bit old for you but you’re going to be

coding it to show my year ones and two’. The teacher explained

that the children were all engaged in the stories and loved the

nostalgia of revisiting the stories, despite comments from other

teachers in the school stay ‘you’re reading them a story, you do

4 For example, Barefoot Computational Thinking poster: https://

www.barefootcomputing.org/resources/computational-thinking-poster,

and CAS Computational Thinking - A Guide for Teachers:

https://community.computingatschool.org.uk/resources/2324/single
5 http://www.computingatschool.org.uk/
6 Participant breakdown: Teachers: 11F, 3M; 2 KS1, 8 KS2, 4 mixed KS1/2

(including 1 special needs specialist and 2 cross-school computing specialists).

Classroom trials: all KS2 classes. Code clubs: mixed KS1/2 groups.

know they’re in year 6’! She further explained that ‘we had six

weeks of a lot of fun’.

Teachers were enthusiastic about the opportunity for a whole class

activities and children acting out roles. For example, teacher T3

enthused that: ‘I’d have children being these things [roles]. And

then you’ve got one who’s being the computer… ‘Is that the right

place for you to be? What do they need to do? They’ve got to go

back now, move on to the next one. Is that right? No, that’s not

the one either. You’ve got to go back’. And then sort of have the

class sort of directing so they’re all involved‘. This was echoed

with the code club experience: ‘using the example of Dear Zoo,

the computer role-playing activity led to several moments where

the ‘computer’ got stuck and the other children participated to

describe the problem, then debug and fix the algorithm’.

T3 commented on the ideal opportunity to introduce

computational thinking terminology: ‘They love it, they love it.

I’ve got another big computing word for you kids. Are you

listening? Make sure, sit up, ‘cause this is important... Loads of

people won’t know what this means but you know what you’re

smart enough, you can hear this’. T6 echoed this regarding the

early introduction of terminology: ‘We do here, we do algorithms

and the children can tell me it’s a set of instructions for a

purpose. We use the real deal because ... it’s like teaching them

another language. There’s no point teaching them one version

and then going actually, we’re going to change all the names now

just to confuse you’.

Differentiation was raised as a significant component of

classroom teaching by the majority of teachers. T3 explained: ‘I

gave them all the Scratch. We ... self-differentiate, so we set

challenges and the children choose the one that they think works

for them. ... So we have fix it, revisit it, and push it. So fix it is for

if you’re not very sure. Revisit just to reinforce, and push-it if you

think ‘yeah, I’m up for a challenge’. And then I just took bits out

for the challenges that are harder. So for fix it I just took out the

order of the different things’ [this meant leaving the structure of

the Scratch program, but taking out the contents of the repeat/

conditional blocks].

Two teachers commented on potential difficulties, especially for

non-specialist teachers, with the transition from the modelling/

design stage to programming in Scratch. T4 commented that the

perceived level of difficulty of the programming stage would

depend on the confidence and experiences of the teacher, and

suggested focusing on the first three stages (Read, Act, Model): ‘I

think you’d be meeting all the objectives - it would be a brilliant

lesson, and I love it all, but not have to put it into Scratch.’ T2

reflected similarly: I don’t have a massive computer science,

programming, coding background at all. But it’s just something

that I’m happy to tinker about with. Looking at the kind of the

materials and things… I think it would scare some people who are

not specialists. I still think they would struggle with some

WiPSCE’19, October 2019, Glasgow, Scotland

elements of the language’ [where language applied to both

Scratch and computational thinking terminology].

However, two teachers commented on particularly positive

experiences with the Scratch activities. One teacher T9 paired

children of mixed ability and explained, ‘We had one boy who’s

very dyslexic, who can’t read or write, so he made his very

graphical. He had the caterpillar moving along the screen and the

apple would slowly disappear as he ate it.‘ Further to this, T6

commented: ‘We’ve got a severely autistic boy, who loved this. He

thought it was amazing: ‘look, look, look, look, look, it can do

this’ and normally when you get him to sit still it’s like ‘I don’t

want to, I don’t want to, I don’t want to’ … [but] he was

completely the opposite. I think because you can give those

different levels and because I put them in mixed ability groups, he

could be like ‘I want to do it in pictures’ and their partner saying

‘well can I put this bit on top, with a bit of writing.’’ The context

here was that both T9 and T6 had higher confidence levels with

Scratch and were teaching classes that had previously been

introduced to Scratch.

5 Related work: other story-based work

There are also a number of story-based approaches that are now

available that teach computer science concepts. For example, in

Hello Ruby (Liukas, 2015), the central character (Ruby) goes on

an adventure and, as she meets new friends along the way,

encounters puzzles and problems that help to develop

programming skills as they are creatively explored and solutions

developed.

Moving closer to our own children’s literature-based approach,

Once Upon an Algorithm (Erwig, 2017) illustrates computational

layering in daily life activities and in familiar stories. Through

such activities and stories, computing concepts such as

algorithms, recursion, abstraction, data types/ data representation

and complexity are highlighted and explained. This interesting

resource differs from our own research in the level of computing

concepts targeted, with the work of Erwig targeting concepts that

are introduced later on in the education process, for example Key

Stages 3 and 4.

Research from an Italian middle school (Di Vano, 2011) explored

using nursery rhymes to identify repeated patterns of behaviour in

the structure of the rhyme, possibly also identifying a prologue

and epilogue if appropriate. Initially nursery rhymes are gathered

from pupils’ collective experiences and their structure analysed. A

set of activities including a ‘ladybug’ application and the Logo

programming language, lead to pupils developing programs to

automate the generation of simple (typically cyclical) nursery

rhymes.

6 Conclusions

It is increasingly important to develop a clear pedagogy and

associated set of resources that support the teaching of computing

in primary schools, particularly resources that are low (or zero)

cost and are familiar or intuitive for teachers and pupils alike. This

paper has discussed the potential of a 4-stage approach for key

stages 1-2, that makes use of creative story-based pedagogy to

introduce the core constructs of sequencing, repetition and

selection, plus computational thinking concepts including pattern

matching, abstraction and algorithms.

The first 3 stages of this approach - Read, Act and Model -

received very positive feedback from a set of 14 teachers and their

classes, with appreciation for the scaffolding and differentiation

opportunities. However, it was interesting that the 4th stage -

Program - received mixed reactions. Whilst no problem existed

for the study participants themselves, two teachers raised concerns

when considering how other non-specialist colleagues might

approach the transition to Scratch. This needs to be the subject of

further study to identify whether our approach can be further

developed to support the transition from ‘RAM’ to ‘P’, or whether

programming (or fear of the unknown) is a more fundamental

underlying problem that needs addressing separately.

Finally, we hypothesise that this creative approach has further

benefits related to diversity, and our studies have already seen

positive signs regarding students with learning difficulties. Future

work will investigate these benefits in more detail.

ACKNOWLEDGMENTS

This work was partially supported by the Computing At School

Regional Centre – NW (Lancaster). We are immensely grateful to

all our local CAS colleagues for their encouragement and time

spent helping to develop this research, and their contagious

enthusiasm throughout – thank you.

REFERENCES

T. Bell, J. Alexander, I. Freeman and M. Grimley. 2009. Computer science
unplugged: school students doing real computing without computers. New
Zealand Journal of Applied Computing and Information Technology. 13(1),
20–299; see also the CS Unplugged website: https://csunplugged.org

H. Caldwell and N. Smith [eds]. 2017. Teaching Computing Unplugged in
Primary Schools: exploring primary computing through practical activities
away from the computer. Sage Publications Ltd.

DfE (Department for Education). 2013. Statutory guidance. National
curriculum in England: computing programmes of study. Retrieved 15/6/18
from https://www.gov.uk/government/publications/national-curriculum-in-
england-computing-programmes-of-study

M. Erwig. 2017. Once Upon an Algorithm: How Stories Explain Computing.
MIT Press.

L. Liukas. 2015. Hello Ruby: Adventures in Coding. Macmillan.

D. Di Vano and C. Mirolo. 2011. Computer Science and Nursery Rhymes - A
Learning Path for the Middle School. ITiCSE’11 (Innovation and technology
in computer science education), pp 238-242.

