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Abstract.	The	concept	‘models	of	everywhere’	was	first	introduced	in	
the	mid	2000s	as	a	means	of	reasoning	about	the	environmental	
science	of	a	place,	changing	the	nature	of	the	underlying	modelling	
process,	from	one	in	which	general	model	structures	are	used	to	one	
in	which	modelling	becomes	a	learning	process	about	specific	places,	
in	particular	capturing	the	idiosyncrasies	of	that	place.	At	one	level,	
this	is	a	straightforward	concept,	but	at	another	it	is	a	rich	multi-
dimensional	conceptual	framework	involving	the	following	key	
dimensions:	models	of	everywhere,	models	of	everything	and	models	
at	all	times,	being	constantly	re-evaluated	against	the	most	current	
evidence.	This	is	a	compelling	approach	with	the	potential	to	deal	with	
epistemic	uncertainties	and	non-linearities.	However,	the	approach	
has,	as	yet,	not	been	fully	utilised	or	explored.	This	paper	examines	the	
concept	of	models	of	everywhere	in	the	light	of	recent	advances	in	
technology.	The	paper	argues	that,	when	first	proposed,	technology	
was	a	limiting	factor	but	now,	with	advances	in	areas	such	as	Internet	
of	Things,	cloud	computing	and	data	analytics,	many	of	the	barriers	
have	been	alleviated.	Consequently,	it	is	timely	to	look	again	at	the	
concept	of	models	of	everywhere	in	practical	conditions	as	part	of	a	
trans-disciplinary	effort	to	tackle	the	remaining	research	questions.	
The	paper	concludes	by	identifying	the	key	elements	of	a	research	
agenda	that	should	underpin	such	experimentation	and	deployment.	
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1	 Introduction	

The	concept	of	‘models	of	everywhere’	was	introduced	by	Beven	in	2007	(Beven,	
2007),	and	revised	in	a	follow	up	paper	(Beven	and	Alcock,	2012).	The	concept	is	
fundamentally	about	having	a	stronger	association	between	a	given	environmental	
model	and	the	place	that	it	represents.	In	the	2012	paper,	they	argue	that	it	is	
“useful,	and	even	necessary,	to	think	in	terms	of	models	of	everywhere…	[and	this]	
…	will	change	the	nature	of	the	modelling	process,	from	one	in	which	general	model	
structures	are	used	in	particular	catchment	applications	to	one	in	which	modelling	
becomes	a	learning	process	about	places”.	The	‘necessity’	stems	from	the	need	to	
constrain	uncertainty	in	the	modelling	process	in	order	to	support	policy	setting	and	
decision-making,	particularly	around	water	management	(e.g.	flooding	and	water	
quality),	although	the	principles	can	also	potentially	apply	to	other	areas	of	
environmental	modelling	and	management.	(In	the	rest	of	the	paper,	we	will	tend	to	
use	examples	and	illustrations	from	hydrology	and	flood	modelling	although	we	
stress	this	potential	generality	of	the	approach.)	
	
This	is	a	compelling	argument,	and	a	reaction	against	the	view	that	there	can	be	
generic	environmental	models	capable	of	representing	processes	and	behaviours	
across	multiple	places	and	indeed	across	multiple	scales.	Such	general	models	are	
“expensive	to	develop,	difficult	to	maintain	and	to	apply	because	of	their	data	
demands	and	need	for	parameter	estimation	or	calibration”	(Beven,	2007).	They	also	
have	problems	in	dealing	with	local	epistemic	uncertainties	and	non-stationarities,	
for	example	caused	by	change	in	local	characteristics	and	climate	drivers	(e.g.	
Prudhomme	et	al.,	2010;	Beven,	2002,	2016).	
	
Some	examples	of	models	of	everywhere	have	been	deployed	but	for	relatively	
constrained	applications	and	at	specific	scales.	However,	the	concept	has	not	been	
developed	to	the	extent	that	the	authors	envisaged,	where	everywhere	is	
represented	across	all	scales	in	a	coherent	way.	This	paper	re-examines	the	concept	
of	models	of	everywhere	from	a	technological	perspective	arguing	that,	at	the	time,	
the	underlying	technology	was	not	sufficiently	advanced	to	support	the	concept.	
Now,	however,	this	has	changed,	with	significant	developments	in	areas	such	as	data	
acquisition	techniques,	data	storage	and	processing	technologies,	and	data	analytics	
capabilities,	alongside	a	move	towards	a	more	open	science	supported	by	these	
developments.	
	
Note	that	in	developing	ideas	of	models	of	everywhere	we	mean	something	quite	
different	to	the	"hyperresolution"	models	that	are	starting	to	be	used	in	Earth	
Systems	Science	(e.g.	Wood	et	al.,	2011;	Beven	and	Cloke,	2012;	Bierkens	et	al.,	
2015;	Gilbert	and	Maxwell,	2017).			With	resolutions	of	the	order	of	1km,	the	latter	
do	not	(as	yet)	provide	simulations	and	visualisations	at	scales	that	local	
stakeholders	can	relate	to	directly	(see	the	discussion	of	Beven	et	al.,	2015).		This	is	a	
critical	aspect	of	how	the	models	of	everywhere	concept	has	the	potential	to	change	



the	way	that	modelling	is	done.			Both	approaches	do,	however,	focus	attention	on	a	
requirement	for	scale	dependent	parameterisations	that	has	proven	difficult	to	
resolve	(e.g.	McDonnell	and	Beven,	2014).	
	
The	overall	aim	of	the	paper	is	to	determine	the	current	feasibility	of	models	of	
everywhere,	particularly	in	the	area	of	hydrological	modelling,	given	the	state-of-the-
art	in	underlying	technology.	This	breaks	down	into	the	following	objectives:	
	
1. To	carry	out	a	detailed	examination	of	the	concept	of	models	of	everywhere	to	

determine	key	underlying	technological	requirements;	
2. To	compare	the	state-of-the-art	in	technology	in	the	period	2007-2012	and	the	

present	day	to	evaluate	whether	the	time	is	now	right	for	a	widespread	
deployment	of	models	of	everywhere;	

3. To	provide	a	research	roadmap	to	support	such	deployment	in	terms	of	
outstanding	research	questions	and	challenges.	
	

Note	that	there	are	other	issues	related	to	models	of	everywhere	that	also	should	be	
addressed,	most	notably	human	and	societal	issues.	Such	issues	include	the	need	to	
move	towards	open	science	and	open	data,	and	the	role	of	communities	in	
improving	models	in	representing	local	places.	These	are	alluded	to	in	the	paper	but	
a	full	treatment	of	this	important	dimension	is	beyond	the	scope	of	the	paper.	We	
elect	instead	to	focus	on	technological	readiness.	
	
The	work	is	being	carried	out	in	the	context	of	a	significant	re-evaluation	of	
approaches	to	flood	modelling	and	associated	risk	management.	For	example,	the	
UK	Government’s	National	Flood	Resilience	Review,	published	in	September	20161,	
included	important	recommendations	around	improvements	to	long-term	modelling	
capabilities.	The	review	also	encouraged	the	use	of	natural	flood	mitigation	methods	
or	“working	with	natural	processes”.	This	concept	involves	the	use	of	many	
distributed	in-channel	and	off-channel	storage	features,	coupled	with	changes	of	
land	use	to	try	to	retain	more	flood	runoff	in	catchment	headwaters,	or	at	least	slow	
down	its	arrival	to	areas	at	risk	of	flooding	(see	Dadson	et	al.,	2017).	There	are	many	
current	projects	in	the	UK	that	are	implementing	natural	flood	management	
measures.	Very	few,	however,	have	been	associated	with	detailed	monitoring	of	
changes	to	the	flow,	or	the	operation	of	individual	mitigation	measures.	Additionally,	
there	are	issues	about	whether	the	strategy	will	be	effective	under	extreme	flood	
events,	which	in	the	UK,	are	often	preceded	by	a	period	of	prior	catchment	wetting	
(see	Metcalfe	et	al.,	2017;	Hankin	et	al.,	2017).	In	fact,	by	slowing	the	flow	in	some	
parts	of	the	catchment,	it	is	possible	that	the	peak	flow	might	increase	elsewhere.	
This	is	called	the	synchronicity	problem,	the	impact	of	which	will	vary	from	event	to	
event	(because	of	the	different	patterns	of	rainfall	intensities)	and	with	changes	in	
the	scale	of	catchment	being	considered.	The	distributed	nature	of	this	problem,	and	

                                                
1 https://www.gov.uk/government/publications/national-flood-resilience-review 



the	potential	for	such	mitigation	effects	to	have	impacts	on	other	environmental	
factors,	requires	an	integrated	catchment	modelling	approach	to	evaluate	possible	
implementation	scenarios.	However,	the	outputs	from	such	models	will	be	
associated	with	significant	uncertainty,	even	after	calibration	on	historical	data.	
Thus,	this	is	a	prime	example	where	the	concept	of	models	of	everywhere	and	the	
local	constraint	of	uncertainty	using	local	information	would	be	useful,	especially	
when	assessing	the	uncertainty	in	potential	outcomes	might	make	a	difference	to	
the	decision	that	might	be	made.	A	re-evaluation	of	the	concept	of	models	of	
everywhere	is	therefore	very	timely.	
	
The	paper	is	structured	as	follows.	Section	2	examines	the	concept	of	models	of	
everywhere	in	more	depth,	highlighting	the	different	dimensions	behind	this	initial	
vision,	and	culminating	in	a	set	of	technological	requirements	to	support	models	of	
everywhere.	Section	3	looks	at	the	technological	landscape,	as	it	existed	in	the	
period	2007-2012,	systematically	reviewing	the	different	technological	requirements	
and	concluding	with	an	overall	assessment	of	technology	readiness	at	that	time.	
Section	4	repeats	this	analysis,	but	looking	at	the	state-of-the-art	now.	The	paper	
then	presents	ongoing	research	in	this	area,	including	the	identification	of	a	research	
roadmap	for	the	implementation	of	the	concept	of	models	of	everywhere,	(Section	
5).	Section	6	documents	related	work,	including	existing	deployments	of	the	concept	
of	models	of	everywhere.	Finally,	Section	7	concludes	the	paper	with	some	final	
reflections	on	models	of	everywhere	from	a	technological	perspective.	

2	 Models	of	Everywhere	Unpicked	 	

While	models	of	everywhere	at	one	level	is	quite	a	straightforward	concept	
representing	as	association	of	models	with	particular	places,	at	another	level,	it	is	a	
rich	multi-dimensional	conceptual	framework.	In	particular,	we	discuss	three	
(mutually	supportive)	dimensions	with	the	goal	of	highlighting	the	technological	
requirements	to	support	the	overall	vision:		
	
• Models	of	everywhere;	
• Models	of	everything;	
• Models	at	all	times.	
	
These	are	discussed	in	turn	below.	



2.1	 Models	of	everywhere	

Key	characteristics	

The	starting	point	of	models	of	everywhere	is	to	move	from	generic	models	that	can	
then	be	customised	to	particular	locations,	for	example	through	appropriate	
parameterisation,	to	models	that	are	specific	to	particular	places.	As	such,	they	can	
be	tailored	to	represent	the	behaviour	at	a	specific	place	without	the	need	to	
represent	any	other	place.	In	particular,	observations	and	inputs	from	local	
stakeholders	can	be	used	to	constrain	the	uncertainty	that	is	associated	with	
environmental	modelling	(e.g.	Beven,	2009).		
	
Note	that	models	of	everywhere	is	often	interpreted	as	models	representing	specific	
localised	areas	but	the	concept	does	not	imply	any	particular	scale;	rather	models	of	
everywhere	can	represent	local,	regional,	national	and	global	scale	with	these	
models	often	co-existing.	While	there	is	an	expectation	that	model	
parameterisations	should	be	resolution	dependent	(e.g.	McDonnell	and	Beven,	2014;	
Beven,	2019),	in	the	absence	of	any	adequate	scaling	theory	for	many	environmental	
processes,	particular	models	may	need	to	be	tailored	for	the	scale	at	which	they	
operate	in	terms	of	both	process	representations	and	effective	parameter	values.	
The	approach	is	illustrated	in	Figure	1:	a	generic	model	with	a	specific	set	of	
parameter	values	cannot	represent	flooding	at	all	areas	of	the	catchment	and	hence	
five	localised	models	need	to	be	developed.	
 

 
Figure	1:	Models	of	everywhere:	showing	a	range	of	models	across	a	catchment	(the	Conwy)	
representing	different	places,	in	this	case	at	the	same	scale	(see	also	Figures	2/3	which	build	
on	this)	



A	core	motivation	of	models	of	everywhere	is	to	constrain	uncertainty,	exploiting	as	
much	knowledge	as	is	available	about	a	particular	place.	This	is	developed	further	
when	we	look	at	models	of	everything	and	models	at	all	times	in	Sections	2.2	and	2.3	
below.	

Technological	requirements	

The	main	requirement	of	models	of	everywhere	is	very	large-scale	computational	
capacity.	For	example,	if	this	approach	were	to	be	adopted	for	future	flood	
prediction,	there	would	be	a	need	for	the	deployment	of	very	large	numbers	of	
models	all	over	the	country	at	different	scales.	For	illustration,	consider	models	
applied	to	support	Flood	and	Coastal	Risk	Management	(FCRM)	in	England.	
	
For	any	given	community	(city,	town,	village	or	street),	there	may	be	an	array	of	
models	developed,	paid	for	and	used	by	different	organisations,	for	different	
purposes,	and	using	different	data	resources	(or,	very	often,	common	data	sets,	
exploited	in	different	ways).	Most	localities	are	included	within	national	scale	
models,	sometimes	referred	to	as	“strategic”,	with	the	outputs	of	the	National	Flood	
Risk	Assessment	(NaFRA2,	published	as	“Risk	of	Flooding	from	Rivers	and	Sea”3,)	
being	typically	the	most	generic.	Separate	models	have	been	applied	to	provide	
mapping	of	the	flooding	from	“Surface	Water”4	(ubiquitous	in	coverage,	
representing	potential	flooding	from	overland	flows	and	ponding,	rather	than	water	
overflowing	from	rivers	or	the	sea),	the	“Risk	of	Flooding	from	Reservoirs”	
(predicting	places	at	risk	in	the	event	of	dams	and	impoundments	being	breached),	
and	groundwater	flooding.	
	
More	detailed	models	also	exist	in	many	places	to	support	activities	such	as	the	
economic	appraisal	of	proposed	flood	defence	schemes,	flood	risk	assessments	for	
proposed	floodplain	developments,	or	the	detailed	design,	construction	and	
maintenance	of	drainage	systems.	These	models	usually	capture	further	information	
about	infrastructure	(e.g.	bridges,	culverts,	weirs,	sluice	gates)	and	river	channel	
surveys.		
	
Organisations	commissioning	and	owning	such	models	may	include	the	Environment	
Agency,	which	leads	on	FCRM	in	England	for	local	government,	water	companies	
supplying	drainage	services,	private	developers	or	other	landowners.	It	is	usual	for	all	
of	the	above	models	to	evolve	over	time,	incorporating	both	new	data	and	technical	
improvements	(e.g.	better	numerical	solution	schemes).	It	is	also	common	for	
multiple	instances	of	each	model	to	be	executed,	i.e.	many	individual	“runs”	or	

                                                
2	https://www.gov.uk/government/publications/flooding-in-england-national-assessment-of-
flood-risk	

3	https://data.gov.uk/dataset/risk-of-flooding-from-rivers-and-sea1	
4	https://www.gov.uk/government/publications/flood-maps-for-surface-water-how-they-
were-produced	



simulations,	to	support	scenario	or	uncertainty	analysis.	The	Environment	Agency	
has	over	1,500	such	detailed	local	models,	and	reported	in	its	2010-2015	modelling	
strategy5	an	investment	of	approximately	£17	million	per	year	in	modelling	and	
mapping	and	an	additional	£15	million	in	gathering	and	processing	data	to	support	
FCRM.	
 
This	has	significant	resource	requirements	in	terms	of	the	number	of	processors	or	
virtual	machines	to	run	these	models	and	data	storage,	as	well	as	the	human	costs	in	
terms	of	developing	and	tailoring	the	models	for	given	places,	and	analysing	and	
understanding	the	outputs.	For	example,	production6	of	the	“Risk	of	Flooding	from	
Surface	Water”	maps	cited	earlier	involved	more	than	70,000	individual	simulations	
of	flood	inundation	on	a	mosaic	of	approximately	7,100	36km2	tiles	covering	all	of	
England,	run	on	a	2m	x	2m	resolution	digital	height	map	that	included	over	91,000	
manually-determined	corrections.	This	process	needed	around	two	months	for	data	
preparation	and	one	month	of	computer	processing	time,	fully	utilising	a	grid	of	over	
100	GPU-accelerated	PCs.		
	
Where	possible,	technological	and	operational	support	would	need	to	be	provided	
for	such	development.	This	also	asks	important	questions	over	the	underlying	
distributed	systems	architecture	to	support	such	massive	deployment,	e.g.	
centralised,	distributed	or	decentralized	(or	indeed	combinations	of	different	
approaches).	
	
The	approach	also	asks	fundamental	questions	over	the	relationship	and	consistency	
of	models	at	different	scales	and	how	to	support	reasoning	across	scales	in	terms	of	
supporting	a	deeper	understanding	of	the	science	and	all	its	complexities	and	inter-
dependencies.	

2.2	 Models	of	everything	 	

Key	characteristics	

The	second	dimension	is	concerned	with	exploiting	information	about	a	place.	In	
particular,	coupling	a	model	of	that	place	with	as	much	local	data	as	can	be	
collected,	thus	embracing	the	heterogeneity	of	available	data	sources.	The	
availability	of	such	data	is	increasing	significantly	and	now	includes	(Blair	et	al.,	
2019):	

                                                
5	
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/292949/g
eho0310bsbt-e-e.pdf	

6	
https://www.whatdotheyknow.com/request/208078/response/520170/attach/3/National
%20modelling%20and%20mapping%20method%20statement%20May%202013.pdf 



 
• Remote	sensing	data	collected	by	satellites	or	aircraft-borne	instruments	

(including	drones);	
• Other	monitoring	technologies	that	consist	of	a	range	of	sensor	technologies	

typically	in	close	proximity	with	the	observed	phenomena,	including	the	use	of	
Internet	of	Things	(IoT)	technologies	to	provide	real-time	streaming	and	multi-
faceted	data	about	the	natural	environment;	

• Historical	records	held	in	a	variety	of	locations	and	scales;		
• The	increasing	amount	of	data	available	from	national/local	government	and	

other	open	data	portals	often	increasingly	offering	APIs,	e.g.	data.gov.uk;	
• Data	mining	provides	additional	information	from	the	web	or	social	media;	
• Data	collected	from	citizen	science,	with	the	potential	to	direct	citizen	science	to	

areas	of	data	scarcity.	
	
Together,	this	adds	up	to	the	potential	for	having	environmental	data	at	an	
unprecedented	scale	(Blair	et	al.,	2019).	For	example,	if	focusing	on	flood	prediction,	
it	is	possible	to	use	a	variety	of	data	sources	such	as	historical	Parish	records	and	
flood	marks,	satellite	imagery,	local	sensors,	photographs	from	social	media	and	
citizen	science	to	help	steer	process-based	hydrological	models.	Indeed	many	
researchers	are	advocating	such	approaches	in	hydrology,	e.g.	(Di	Baldassarre	et	al.,	
2009;	Smith	et	al.,	2009;	Smith	et	al.,	2015),	and	more	generally	in	disaster	risk	
reduction	(MacCallum	et	al.,	2016).	
	
The	concept	also	naturally	extends	to	other	aspects	of	environmental	science,	for	
example	collecting	and	analysing	data	around	water	quality	issues,	biodiversity,	or	
soils	and	indeed	the	inter-dependencies	between	them.	
	
The	additional	dimension	of	models	of	everything	is	shown	in	Figure	2.		
 
 



	
Figure	2:	Models	of	everything:	showing	the	rich	diversity	of	data	and	models	that	may	exist	
for	a	given	place	and	how	they	may	inform	each	other	

The	concept	of	models	of	everything	has	the	potential	to	further	reduce	the	
uncertainty	around	predictions	for	a	variety	of	different	variables	of	environmental	
interest	in	a	coherent	way.	This	is	particularly	important	where	the	relevant	
processes	are	intrinsically	coupled,	for	example	the	water	flows	that	drive	the	
transport	of	nutrients	from	farmland	and	households	into	rivers	and	lakes.	This	
constraint	of	uncertainty	is	important	because	many	of	the	sources	of	uncertainty	
are	epistemic	in	nature.	Epistemic	uncertainties	are	those	are	those	that	arise	from	
lack	of	knowledge,	in	contrast	to	aleatory	uncertainties	that	represent	random	
variability	that	derives	from	‘irreducible	natural	variability’	(see	Beven	2009,	2016;	
Rougier	et	al.,	2013;	Beven	and	Hall,	2014;	Di	Baldassarre	et	al.,	2017).	By	definition,	
it	is	not	possible	to	deal	with	epistemic	uncertainties	in	process	models	without	
breakthroughs	or	deepening	of	knowledge	about	a	given	place	and	its	states	and	
behaviours.	Beven	et	al.	(2015)	also	talk	about	the	role	of	models	of	everything	in	
overcoming	what	they	refer	to	as	hyperresolution	ignorance	in	modelling,	that	is	
evaluating	the	hyperresolution	information	produced	by	simulation	to	overcome	the	
local	lack	of	data	and	unknowns	in	scientific	understanding	(e.g.	the	understanding	
of	subsurface	structures	in	hydrology).	

Technological	requirements	

Models	of	everything	adds	significantly	to	the	requirements	imposed	on	the	
computational	infrastructure	around	five	key	areas:	
 



1. How	to	store	the	‘big	data’?	With	models	of	everywhere,	there	is	a	need	to	
capture	and	store	significant	quantities	of	data	about	a	given	place,	and	then	
repeat	this	across	all	places.	This	therefore	very	quickly	becomes	a	‘big	data’	
problem.	In	many	ways,	though,	this	is	more	demanding	than	many	areas	of	big	
data	given	the	high	level	of	heterogeneity	in	the	data-sets	with	some	of	the	data	
being	structured	and	other	elements	being	unstructured,	and	inevitably	captured	
in	a	wide	variety	of	formats	(Blair	et	al.,	2019).	

2. How	to	represent	and	manage	the	collected	data?	Given	the	variety	and	
heterogeneity	discussed	above,	there	is	a	need	to	represent,	evaluate	and	
manage	the	overall	collection	of	data,	and	this	must	include	support	for	
interoperability,	data	discovery	and	also	the	association	of	appropriate	meta-data	
and	ontologies,	including	provenance	information.		

3. How	to	ensure	open	access	to	data?	The	concept	of	models	of	everything	implies	
a	move	towards	open	data,	where	data	is	openly	available	for	use	and	stored	in	a	
way	that	allows	such	open	access	(also	important	to	support	a	more	collaborative	
and	cross-disciplinary	science	as	required	to	interpret	this	data).	As	mentioned	in	
the	introduction,	while	this	is	technically	straightforward	to	achieve,	this	
requirement	is	more	concerned	with	cultural	issues,	for	example	around	the	
perceived	value	of	data.	Note	that	ideally	this	open	philosophy	would	also	extend	
to	models,	with	models	available	as	open	source.	

4. How	to	make	sense	of	the	heterogeneous	data	elements?	It	is	one	thing	to	have	
access	to	this	rich	underlying	data,	but	it	is	another	thing	to	be	able	to	make	sense	
of	this	data	and	therefore	data	analysis	techniques	are	also	required	to	build	this	
higher-level	of	understanding	from	the	underlying	data	(cf.	environmental	data	
science	(Blair	et	al.,	2019)).	This	will	inevitably	imply	the	construction	of	data	
models	using	a	rich	array	of	statistical	and	machine	learning	techniques.	

5. How	to	combine	process	models	with	data	models?	Once	the	data	models	are	
constructed,	there	is	a	need	to	couple	the	data	model	or	models	with	process	
models	to	build	a	complete	understanding	of	a	given	place.	Techniques	are	
therefore	required	to	support	model	coupling	between	process	and	data	models.	
In	hydrology,	it	has	been	shown	that	even	hydrological	observations	may	not	
always	be	informative	in	model	calibration	and	validation	(e.g.	Beven	and	Smith,	
2015).	

	
There	are	also	important	human	and	societal	issues	around	privacy	and	security	but,	
as	mentioned	in	the	introduction,	this	area	is	not	considered	in	this	paper	(but	is	an	
important	area	of	future	investigation).	Note	that	the	execution	of	additional	data	
models,	and	the	need	to	allow	for	observational	uncertainties	also	increases	the	
computational	requirements	of	the	system.	



2.3	Models	at	all	times	

Key	characteristics	

The	final	dimension	is	that	models	should	be	active	at	all	times,	constantly	re-
evaluating	what	is	known	about	particular	places	and	adapting	accordingly.	This	does	
not	necessarily	mean	that	models	are	always	executing	as	this	would	consume	
significant	computational	resources	without	any	real	gain.	Rather,	models	should	
execute	periodically	and	frequently,	for	example	when	new	data	becomes	available,	
to	understand	the	“idiosyncrasies	of	particular	places”	(Beven,	2007)	and	how	this	
might	change	over	time.	At	other	times,	the	model	would	be	in	a	quiescent	state,	but	
otherwise	ready	to	re-execute	at	any	time.	This	contrasts	significantly	with	existing	
practice	when	distinct	model	runs	are	carried	out	infrequently	under	the	auspices	of	
a	scientific	experiment,	with	perhaps	more	runs	carried	out	an	at	a	pre-deployment	
phase	to	understand	the	sensitivities	and	uncertainties	of	a	given	(generic)	
hydrological	model.	This	iterative	approach	is	nicely	aligned	with	the	work	of	Box	
(1980)	on	the	iterative	relationship	between	practice	and	theory	(Box’s	loop),	
recently	extended	by	Blei	(2016)	in	the	context	of	latent	variable	models	applied	to	
complex	data-sets.	This	may	also	introduce	more	consistency	between	models	used	
for	short-term	forecasting,	often	applied	in	an	adaptive	framework	where	on-line	
data	can	be	used	for	updating,	and	simulation	models	that	are	rarely	updated.		
 
This	leads	to	a	new	perspective	of	“modelling	as	a	learning	process”,	as	discussed	in	
depth	in	the	2007	paper	(Beven,	2007).	The	2012	paper	(Beven	and	Alcock,	2012)	
develops	this	further	talking	about	models	as	hypotheses	to	be	tested	against	
current	and	historical	observations	with	some	models	being	rejected	in	favour	of	
others	and	indeed	this	changing	over	time,	so	the	current	chosen	model	structure	
and	associated	assumptions	best	reflect	the	full	idiosyncrasies	of	a	given	place	as	
represented	by	numerous	additional	data	observations.	This	in	turn	leads	to	an	
adaptive	approach	to	modelling.	
	
The	final	aspect	to	consider	is	what	can	be	adapted	about	the	model.	There	are	
various	possibilities	here,	increasing	in	level	of	sophistication	and	ambition:	
 
1. The	outcomes	from	a	model	can	be	adapted	for	the	purposes	of	real-time	

forecasting	when	data	can	be	made	available	for	assimilation,	and	post-event	
analysis	can	then	be	used	to	inform	local	improvements	to	the	model,	including	
adaptation	of	parameter	values	to	best	represent	behaviour	at	the	current	time;	

2. A	number	of	models	can	co-exist	in	an	ensemble	approach,	with	model	selection	
applied	to	identify	the	best	models	for	that	given	place/time;	

3. The	internal	structure	and	behaviour	of	a	given	model	can	be	adapted,	for	
example,	by	changing	fine-grained	elements	of	the	underlying	hydrology	to	best	
reflect	the	current	place/time;	



4. The	representation	of	residual	uncertainty	can	be	adapted	as	more	information	is	
obtained	locally.	
	

Clearly,	these	approaches	can	also	be	combined	in	different	ways.	Indeed,	a	
combination	of	all	four	offers	a	new	and	radical	approach	to	models	of	everywhere.	
	
The	concept	of	models	at	all	times	is	illustrated	in	Figure	3.	
	

	
Figure	3:	Models	at	all	times:	showing	the	meta-level	reasoning	framework	associated	with	
models	as	a	learning	process,	extracting	meaning	from	diverse	data	about	a	place,	applying	
learning	techniques	to	extract	meaning	from	this	data	and	making	appropriate	adaptations	
around	model	selection	and	parameterisation.	

The	key	motivation	of	models	at	all	times	is	to	offer	a	modelling	framework	that	
supports	explicit	reasoning	about	uncertainty,	with	the	explicit	goal	of	reducing	
uncertainty	for	a	given	place.	More	specifically,	the	approach	also	has	the	potential	
to	deal	with	epistemic	uncertainties,	as	argued	in	(Beven	and	Alcock,	2012).	In	this	
paper,	following	Beven	(2006),	the	authors	argue	for	an	approach	based	on	limits	of	
acceptability,	whereby	models	that	perform	well	according	to	such	limits	are	
acceptable	(and	perhaps	reinforced),	while	others	are	rejected,	with	this	driven	by	
the	collected	set	of	observational	data	(cf.	models	of	everything).	Finally,	the	
approach	has	significant	potential	to	deal	with	non-linearities	and	fundamental	
changes	over	time,	for	example	related	to	climate	change,	with	its	emphasis	on	
ongoing	adaptation	to	the	current	context.	



Technological	requirements	

Models	at	all	times	is	crucial	to	the	overall	vision	of	models	of	everywhere,	but	adds	
a	whole	new	level	of	complexity	in	terms	of	the	underlying	technology	requirements.	
In	particular,	the	approach	amplifies	the	underlying	resource	requirements	and	also	
the	underlying	distributed	systems	architecture	as	discussed	in	Section	2.1.	For	
example,	the	approach	requires	the	frequent	execution	of	potentially	ensemble	
models	at	large	numbers	of	places	and	different	scales.	
 
The	approach	also	introduces	significant	additional	(mutually	supportive)	
requirements:	
 
1. How	to	support	adaptive	reasoning?	As	discussed	above,	‘models	at	all	times’	is	

fundamentally	a	learning	process	and	implies	that	models	are	constantly	adapted	
in	response	to	new	knowledge	extracted	from	available	data-sets.	There	is	
therefore	the	need	to	support	this	adaptive	reasoning	and	ideally	this	should	
involve	a	strong	element	of	automation	as	provided,	for	example,	by	autonomic	
computing	(supporting	self-adaptive	systems)	(Kephart	and	Chess,	2003;	McKinley	
et	al.,	2009).	

2. How	to	incorporate	reasoning	about	uncertainty?	Building	on	the	above,	it	is	
important	that	adaptation	decisions	incorporate	reasoning	about	uncertainty,	and	
this	implies	making	uncertainty	explicit	in	the	modelling	process,	and	also	
incorporating	approaches	to	deal	with	epistemic	uncertainties	and	non-linearities	
as	inevitably	encountered	in	such	complex	systems.	

3. How	to	support	adaptation?	A	truly	adaptive	system	requires	ready	access	to	a	
range	of	elements	that	can	be	changed.	Supporting	more	coarse-grained	
adaptation	is	relatively	straightforward,	and	implemented	in	terms	of	selecting	
from	different	models	in	model	ensembles,	or	changing	model	parameters.	
Supporting	fine-grained	strategies	is	however	more	challenging	as	this	requires	
intimate	access	to	the	structure	and	behaviour	of	individual	models	in	terms	of,	
for	example,	alternative	hydrological	equations	at	the	heart	of	the	model.	Most	
existing	models	will	not	provide	such	access,	i.e.	black	box	implementations.	To	
fully	realise	the	vision	however,	we	need	to	go	further	than	this	and	provide	more	
white-box	access	to	internal	software	architectures	of	environmental	models,	as	
provided	by,	for	example,	reflective	architectures	(Maes,	1987;	Kon	et	al.,	2002).	

	
‘Models	at	all	times’	also	places	additional	emphasis	on	the	need	to	integrate	
process	and	data	models	(discussed	in	Section	2.2)	to	support	adaptive	reasoning.	
There	is	also	an	over-arching	requirement	emanating	from	this	analysis,	and	that	is	
the	ability	to	support	deployment	at	scale,	and	this	implies	the	ready	deployment	of	
individual	models	(of	everywhere)	and	also	of	large	numbers	of	models	at	different	
scales.	There	are	many	dimensions	to	this	scalability	involving,	for	example,	making	
it	easier	to	deploy	models	in	underlying	computational	infrastructure,	whether	
provided	by	HPC	or	cloud	facilities,	offering	software	frameworks	that	can	support	



the	deployment	of	models	or	ensembles	of	models	ready	to	be	tailored	for	the	
idiosyncrasies	of	places,	and	automating	the	subsequent	adaptation/learning	
process	(hence	the	importance	of	self-adaptive	approaches).	

2.4	 Overall	analysis	 	

‘Models	of	everywhere’	is	an	important	and	potentially	crucial	approach	to	
environmental	modelling,	particularly	in	terms	of	managing	uncertainty.	A	full	
implementation	of	the	concept	however	imposes	very	significant	requirements	in	
terms	of	the	technological	infrastructure	alongside	other	fundamentals,	most	
notably	cultural	elements	around	a	move	to	open	science	(incorporating	more	open	
approaches	to	data	and	modelling).	The	approach	is	best	understood	as	a	
combination	of	models	of	everywhere,	everything	and	at	all	times,	with	this	
trichotomy	used	to	analyse	the	overall	requirements	in	more	depth	in	the	
discussions	above.	The	resultant	requirements	are	shown	in	Table	1	below.	

Requirement	 Primary	motivation(s)	
R1:	Massive	resource	requirements	in	terms	of	underlying	
computation	and	storage	(cf.	big	data)	

Models	of	everywhere,	
everything	and	at	all	times	

R2:	Appropriate	underlying	distributed	systems	architecture	for	
models	of	everywhere	

Models	of	everywhere,	
everything	and	at	all	times	

R3:	Support	for	reasoning	across	scales	 Models	of	everywhere	
R4:	Appropriate	data	representation	architecture,	recognising	
the	heterogeneity	of	underlying	data	(structured	and	
unstructured)	and	its	complexities	

Models	of	everything	
	
	

R5:	Support	for	data	discovery	and	navigation	 Models	of	everything	
R6:	Supporting	open	access	to	data	 Models	of	everything	
R7:	Providing	rich	data	analytics	methods	to	make	sense	of	this	
data	

Models	of	everything	

R8:	Supporting	the	integration	of	process	and	data	models	 Models	of	everything,	at	
all	times	

R9:	Support	for	adaptive	reasoning	 Models	at	all	times	
R10:	Support	for	reasoning	about	uncertainty,	including	
epistemic	uncertainties	and	non-linearities	

Models	at	all	times	

R11:	Ability	to	support	coarse-grain	and	fine-gran	adaptation	of	
environmental	models	

Models	at	all	times	

R12:	Supporting	deployment	of	models	of	everywhere	at	scale	 Models	of	everywhere,	
everything	and	at	all	times	

Table	1:	Technological	requirements	for	models	of	everywhere,	everything	and	at	all	times	

These	requirements	can	usefully	be	clustered	as	follows:	
1. The	capacity	and	level	of	sophistication	of	the	underlying	technological	

infrastructure	in	terms	of	both	computation	and	data	(R1,	R2,	R4,	R5);	
2. The	availability	of	rich	data	analytics	capability	to	make	sense	of	complex	and	

highly	heterogeneous	data-sets	(R3,	R6,	R7,	R8);	



3. The	ability	to	support	modelling	as	a	learning	process,	including	reasoning	about	
uncertainties	(R9,	R10,	R11);	

4. Practical	issues	around	deployment	at	scale,	including	availability	of	open	data	
and	approaches	to	support	large-scale	deployment	(R3,	R12).	

	
This	clustering	will	be	used	in	the	assessment	of	the	changing	technological	
landscape	as	discussed	in	Sections	3	and	4	below.	

3	 Technological	Landscape	(2007-2012)	 	

3.1	 Overview	of	the	landscape	

In	the	period	2007	to	2012,	the	landscape	was	dominated	by	grid	computing.	The	
concept	of	grid	computing	was	first	introduced	in	in	the	1990s	and	became	
prominent	with	the	publication	of	seminal	paper	by	Foster	and	Kesselman	(1998),	
introducing	the	grid	as	a	“blueprint	for	a	new	computing	infrastructure”.	The	term	
was	introduced	as	a	metaphor	for	the	electricity	grid,	with	the	goal	of	making	
computational	power	as	accessible	and	ubiquitous	as	electricity.	Software	platforms	
were	developed	to	support	the	deployment	of	applications	and	services	in	the	grid,	
most	notably	the	Globus	toolkit,	with	various	versions	released	starting	in	1997	with	
the	last	major	release	(Globus	toolkit	version	5)	in	20097.	Around	this	time,	the	grid	
was	being	superseded	by	cloud	computing	(for	example,	the	first	version	of	Amazon	
Web	Services8	was	introduced	in	2006	with	rapid	growth	since);	this	growth	in	cloud	
computing	is	discussed	further	in	Section	4.1	below.	
	
In	parallel,	researchers	were	becoming	interested	in	the	use	of	such	computational	
power	to	support	a	range	of	application	domains	including,	for	example,	
eCommerce.	Most	notably,	in	the	context	of	this	paper,	there	was	also	great	interest	
in	eScience,	that	was,	the	use	of	technological	infrastructure	including	the	grid	to	
support	a	new	kind	of	computationally	intensive	and	data-rich	science	(Hey	et	al.,	
2009).	For	example,	in	the	UK,	the	national	eScience	programme	ran	from	2001	to	
2010,	supporting	a	range	of	infrastructure	projects	and	application	projects	in	areas	
as	diverse	as	bioinformatics,	neuroinformatics	and	medical	informatics.	In	the	
environmental	area,	the	most	prominent	project	was	climateprediction.net9.	Similar,	
large-scale	initiatives	were	launched	in	other	countries,	for	example	in	the	States	the	
National	Science	Foundation	(NSF)	funded	a	series	of	cyberinfrastructure	initiatives	

                                                
7 http://toolkit.globus.org/toolkit/ 
8 https://aws.amazon.com/ 
9 http://www.climateprediction.net/ 



starting	around	2003,	including	the	Open	Science	Grid10	developed	by	the	Open	
Science	Grid	Consortium	(OSGC).	

3.2 Addressing	the	requirements	

Underlying	technological	infrastructure	
The	emergence	of	the	grid	and	also	the	eScience	community	that	coalesced	around	
the	grid	provided	important	expertise,	experience	and	also	facilities	to	support	the	
development	of	models	of	everywhere.	However,	in	practice	(and	this	is	clear	in	
retrospect),	the	grid	did	not	meet	the	full	set	of	requirements	to	support	the	broader	
vision	of	models	of	everywhere.	
	
Although	the	vision	of	the	grid	was	to	provide	plentiful	resources	on	demand,	the	
reality	was	somewhat	different	at	that	time.	The	availability	of	resources	varied	
greatly	and	depended	on	access	to	one	of	the	experimental	grid	facilities	that	were	
introduced	in	different	global	centres.	The	overall	distributed	systems	architecture	
was	therefore	one	of	centres	at	given	fixed	locations	offering	(by	definition)	
relatively	centralised	services	with	partial	access	and	limited	control	of	these	
services.	A	number	of	researchers	explored	more	decentralized	architectures,	for	
example	climateprediction.net	(mentioned	above)	and	SETI@home11,	utilising	
BOINC12	–	a	more	peer-to-peer	volunteer	computing	platform,	but	such	initiatives	
were	not	mainstream	and	not	integrated	into	other	grid	initiatives.	
	
It	is	also	important	to	emphasise	that	this	was	a	research	programme	and	hence	the	
underlying	platforms	were	not	stable,	with	frequent	changes	over	time	in	terms	of	
services	and	facilities	on	offer.	As	will	be	seen,	this	contrasts	significantly	with	what	
is	available	now	in	terms	of	both	capacity	and	stability	of	services	(see	Section	4.2).	
More	fundamentally,	the	services	on	offer	did	not	have	the	level	of	sophistication	to	
meet	the	technology	infrastructure	requirements	as	identified	in	Table	1.	
	
The	main	middleware	technology	used	at	the	time	was	the	Globus	Toolkit,	with	the	
overall	architecture	of	the	Toolkit	(v5)	shown	in	Figure	4.	

                                                
10 https://www.opensciencegrid.org/	
11 https://setiathome.berkeley.edu/ 
12 https://boinc.berkeley.edu/	



 
Figure	4:	The	architecture	of	the	Globus	Toolkit	Version	513	

This	was	a	large	and	complex	architecture	with	many	dimensions	but,	as	can	be	
seen,	the	emphasis	is	on	supporting	resource	sharing,	and	at	a	fairly	low	level	of	
abstraction.	As	stated	in	the	seminal	paper	on	the	“anatomy	of	the	grid”,	Foster	et	
al.	(2001)	argue	that	the	grid	was	fundamentally	about	coordinated	resource	sharing	
and	problem	solving	in	dynamic,	multi-institutional	virtual	organizations”.	They	go	on	
to	argue	that	this	implies	“direct	access	to	computers,	software,	data,	and	other	
resources”….	and	this	sharing	should	be	“highly	controlled”.	Hence,	the	emphasis	
was	very	much	on	meta-level	concerns	such	as	standardised	APIs	to	ensure	
interoperability,	service	discovery,	access	control	and	resource	management.	There	
was	also	more	emphasis	in	practice	on	computational	resources	rather	than	data	
management,	for	example	GRAM	(Grid	Resource	Allocation	and	Management	
offered	an	architecture	to	submit	and	monitor	(batch)	jobs	in	the	Grid	(see	Figure	5).	
This	is	quite	different	though	from	the	execution	style	required	for	models	of	
everywhere.	

                                                
13 http://toolkit.globus.org/toolkit/about.html 



 
Figure	5:	The	architecture	of	GRAM14	

As	mentioned	above,	the	data	side	was	quite	primitive	with	an	emphasis	on	low-
level	facilities	for	access	to	data	remotely	(GridFTP15)	and	to	assist	in	replication	of	
data.	While	the	grid	was	used	successfully	for	a	number	eScience	experiments	
involving	elements	of	‘big	data’,	the	level	of	sophistication	of	data	management	was	
insufficient	for	the	rich	and	heterogeneous	data	required	for	models	of	everywhere	
(and	associated	needs	in	terms	of	discovery	and	navigation),	and	indeed	for	
environmental	data	more	generally.	As	will	be	seen	below,	this	is	one	area	that	has	
advanced	significantly	in	the	last	few	years.	
	
There	was	also	a	general	lack	of	experience	of	using	grid	computing	for	the	earth	and	
environmental	sciences.	Other	scientific	communities	were	more	advanced	in	terms	
of	their	use	of	grid	computing	and	embracing	eScience.	This	led	to	a	lack	of	services	
specific	to	this	field,	e.g.	to	support	environmental	modelling	in	the	grid,	although	
parallel	developments	such	as	the	OpenMI	(Open	Modelling	Interface)	standard16,	as	
adopted	by	the	Open	Geospatial	Consortium,	provided	important	building	blocks	to	
support	model	deployment	and	(most	crucially)	interoperability	across	models.	
	
In	summary,	grid	computing	was	important	in	terms	of	establishing	a	community	
working	together	on	distributed	architectures	and	infrastructure	and,	in	particular,	
for	building	a	strong	dialogue	with	the	science	community	in	terms	of	a	new	open,	
computational	and	data-rich	style	of	science.	However,	there	are	a	number	of	
limitations	that	impacted	on	the	feasibility	of	models	of	everywhere,	most	notably	
                                                
14 http://toolkit.globus.org/toolkit/docs/4.0/execution/wsgram/WS_GRAM_Approach.html 
15 http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/ 
16 http://www.openmi.org/	



the	difficulties	of	access	to	computational	and	data	resources,	the	lack	of	
sophistication	of	the	distributed	infrastructure	particularly	in	terms	of	data	
management,	and	the	primitive	nature	of	many	of	the	services	on	offer	(also	
revisited	below	under	‘deployment	at	scale’).	

Data	analytics	
The	ability	to	represent	and	access	very-large	scale	and	highly	heterogeneous	data	is	
important.	Equally,	it	is	crucial	to	have	a	range	of	techniques	to	make	sense	of	this	
data.	As	can	be	seen	above,	this	requires:	a	move	towards	open	data	as	a	
prerequisite	for	open	science;	the	availability	of	a	rich	set	of	techniques	to	analyse	
data;	the	ability	to	extend	this	reasoning	across	scales;	and	an	integration	of	process	
modelling	with	data	models	produced	to	analyse	the	complex	data	(over	and	above	
the	baseline	requirement	for	storing,	accessing	and	managing	large	and	complex	
data-sets).	Open	data	was	in	its	infancy	in	the	period	2007-2012	with	data	often	
regarded	as	core	intellectual	property	with	many	institutions	seeking	ways	to	
commercialise	their	rich	data-sets.	There	was	however,	a	growing	recognition	with	
the	complexity	of	modern	science,	that	a	new,	more	open	approach	to	data	was	
necessary.	For	example,	the	Royal	Society	published	“Science	as	an	Open	Enterprise”	
in	201217,	with	a	core	recommendation:		
 

“Scientists	should	communicate	the	data	they	collect	and	the	models	they	create,	
to	allow	free	and	open	access,	and	in	ways	that	are	intelligible,	assessable	and	
usable	for	other	specialists	in	the	same	or	linked	fields	wherever	they	are	in	the	
world”	

 
This	built	on	the	emergence	of	Science	2.0	(Waldrop,	2008),	seeking	an	open	
approach	to	science	based	on	emerging	Web	standards	(particularly	Web	2.0	
technologies	offering	user	generated	content	and	a	move	towards	a	more	social	
web).	In	practice,	however,	at	that	time	there	were	many	cultural	and	technological	
barriers	to	a	world	where	data-sets	were	available	for	open	access	in	common	
repositories.	
	
In	terms	of	making	sense	of	data,	the	environmental	sciences,	including	hydrology,	
make	extensive	use	of	process	models	to	understand	fundamental	processes	of	
nature	and	then	use	these	models	to	make	future	predictions.	A	wide	range	of	
process	models	have	been	developed,	for	example	in	hydrology,	where	there	have	
been	recent	attempts	to	incorporate	multiple	process	components	into	a	common	
framework	(e.g.	Fenicia	et	al.,	2011;	Clark	et	al.,	2015).	In	applications	for	flood	risk	
assessment,	there	have	been	many	codes	routinely	used	both	by	industry	and	
researchers	to	model	the	flow	of	water	through	the	landscape,	including	interactions	
with	physical	infrastructure	systems.	These	codes	can	be	categorised	reasonably	
precisely	in	terms	of	the	approximations	made	to	a	set	of	physical	governing	
                                                
17 https://royalsociety.org/~/media/Royal_Society_Content/policy/projects/sape/2012-06-20-
SAOE.pdf 



equations	(in	the	case	of	flood	models	this	means	simplifications	of	the	fundamental	
Navier-Stokes	equations	for	fluid	dynamics).	Even	so,	there	remain	differences	in	the	
interpretation	of	the	prototypical	physical	equations,	the	numerical	schemes	that	
are	used	to	solve	them,	the	discretisations	involved	in	applying	those	schemes	to	
real	data	sets,	and	in	the	very	many	“edge	cases”	for	which	special	solutions	are	
required.	Benchmark	comparisons18	have	shown	how	important	these	differences	
can	be	in	controlling	the	results	of	flood	simulations	in	various	situations.	There	is	
also	a	strong	body	of	research	on	training	models	based	on	historical	data,	and	
current	observations	can	be	used	to	steer	future	states	of	the	model	(data	
assimilation)	(Lahoz	et	al.,	2010;	Park	and	Lu,	2017).		
 
More	generally,	in	the	time	period	under	consideration,	there	was	a	deep	concern	
that	process	models	alone	are	not	sufficient,	and	that	fundamental	issues	remain,	
for	example,	reasoning	about	uncertainty	and	dealing	with	epistemic	uncertainties	
and	non-linearities	in	complex	systems.	Indeed,	this	is	the	prime	driver	for	models	of	
everything.	This	reflects	a	sense	that	it	is	necessary	to	integrate	the	process	model	
view	of	science	with	one	that	recognises	the	importance	of	data	and	associated	data	
analytic	techniques	(effectively	data	models).	This	is	a	significant	cross-disciplinary	
challenge	requiring	input	from	environmental,	computer	and	mathematical	
scientists.	At	that	time,	this	dialogue	was	not	happening	(discussed	further	in	Section	
4.1).	Scientists	also	tended	to	focus	on	specific	experiments	and	studies	to	
understand	phenomena	at	a	given	scale,	so	reasoning	across	scales	was	in	its	
infancy.	
	
Overall,	even	by	2012,	there	were	major	barriers	around	data	analytics	that	made	it	
very	hard	to	support	the	realisation	of	models	of	everywhere.	

Modelling	as	a	learning	process	
As	discussed	above,	the	perspective	of	models	as	a	learning	process	is	the	most	
important	but	also	most	demanding	aspect	of	implementing	models	of	everywhere	
requiring	a	new,	adaptive	approach	to	learning.	From	our	analysis,	this	breaks	down	
into	support	for	adaptive	reasoning,	explicitly	representing	consideration	of	
uncertainty	in	this	reasoning,	and	also	being	able	to	carry	out	both	coarse-grained	
and	(importantly)	fine-grained	adaptations.	
 
In	the	field	of	computer	science,	in	the	time	period	under	consideration,	a	deep	
understanding	of	adaptive	computing	developed.	For	example,	IBM	launched	a	new	
initiative	examining	autonomic	systems	in	2001,	that	is	systems	that	can	self-manage	
(mirroring	the	autonomic	functioning	of	nervous	system	in	the	human	body),	in	
terms	of	a	range	of	self-*	properties	(e.g.	self-	awareness,	self-configuration,	self-
healing	and	self-optimisation)	(Kephart	and	Chess,	2003).	More	generally,	there	was	
a	large	literature	around	software	architectures	to	support	self-adaptation	(including	
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hydraulic-flood-modelling-packages 



reflective	architectures),	the	use	of	control	loops	in	decision	making,	and	the	use	of	
more	advanced	machine	learning	techniques	to	support	higher	levels	of	autonomic	
self-management,	for	example	dealing	with	unknowns	(Oreizy	et	al,	1999;	McKinley	
et	al.,	2004).	However,	there	has	been	little	or	no	consideration	about	how	such	
techniques	can	be	used	in	terms	of	adaptive	environmental	modelling.	Existing	
environmental	models	are	also	often	written	in	older	programming	languages,	most	
notably	Fortran,	and	tend	to	be	monolithic,	black	box	implementations,	hence	do	
not	lend	themselves	to	the	implementation	of	fine-grained	adaptation	strategies.	
 
There	is	also	the	important	requirement	to	represent	and	reason	about	uncertainty	
explicitly	as	part	of	the	adaptation	process.	At	that	time,	there	was	growing	
recognition	of	the	need	to	represent	uncertainty	in	modelling	and	reasoning	about	
uncertainty	across	scientific	experiments.	For	example,	the	UncertWeb	project	
introduced	techniques	to	capture	uncertainties	as	meta-data	in	web-based	
environments,	with	details	of	the	resultant	UncertWeb	framework	published	in	early	
2013	(Bastin	et	al.,	2013).	Researchers	had	also	developed	a	number	of	frameworks	
to	reason	about	uncertainty	in	scientific	experiments,	including	seminal	work	by	
Beven	and	Binley	(1992,	2014)	and	others	(see	Renard	et	al.,	2010;	Vrugt	and	
Sadegh,	2013;	Nearing	et	al.,	2016).	As	discussed	in	the	2012	models	of	everywhere	
paper,	Beven	and	Alcock	(2012)	were	just	starting	to	think	about	reasoning	about	
uncertainties	in	model	selection	or	rejection	(as	a	key	part	of	models	as	a	learning	
process).	
 
In	summary,	most	of	the	building	blocks	were	there	by	2012,	but	the	work	was	
fragmented	and	split	across	many	communities,	and	key	issues	remained	over	how	
to	support	more	advanced	reasoning	of	uncertainties,	including	dealing	with	
epistemic	uncertainties.	

Deployment	at	scale	
Finally,	and	importantly,	there	is	the	key	question	of	whether	there	was	sufficient	
advancement	at	that	time	to	support	deployment	of	the	kind	of	scale	that	makes	
models	of	everywhere	a	reality.	As	discussed	above,	there	are	several	key	
dimensions	to	support	such	large-scale	deployment,	including	how	easy	it	is	to	
deploy	individual	models,	what	support	there	is	to	then	repeat	this	across	many	
places	(at	different	scales)	and	also	whether	the	learning	(and	hence	tailoring	
process)	can	be	automated.	The	latter	issue	is	intrinsically	inked	to	the	support	for	
self-adaptive	modelling	and	hence	we	focus	more	on	the	first	two	issues.	
 
One	of	the	key	problems	with	deploying	in	the	grid	environments,	or	indeed	to	other	
HPC	facilities,	is	the	low	level	of	abstraction	offered	by	software	platforms.	This	was	
discussed	in	the	consideration	of	the	Globus	Toolkit	above.	Given	this,	the	
development	and	deployment	of	even	an	individual	model	is	a	tedious,	expensive	
and	error	prone	process	and	this	in	itself	is	a	barrier	(Simm	et	al.,	2018)	to	the	
deployment	of	models	of	everywhere.	This	is	a	barrier	to	more	general	deployment	



across	a	range	of	places	where	the	individual	models	need	to	be	specific	to	this	
place,	both	initially	and	also	with	the	model	or	models	refined	over	time	to	reflect	
the	particular	idiosyncrasies	of	this	place.	This	implies	some	form	of	software	
framework	coupled	with	models	as	a	learning	process	and,	at	that	time,	this	was	
significantly	beyond	the	state-of-the-art	for	model	development.	
 
It	is	interesting	to	note	that	the	initial	models	of	everywhere	paper	(Beven,	2007)	
discusses	an	object-oriented	approach	to	programming	models	of	everywhere,	
mapping	individual	active	spatial	objects	to	places	and	also	explicitly	representing	
the	relationship	between	places	(mainly	in	terms	of	fluxes).	This	is	an	attempt	to	
seek	a	higher	level	of	abstraction	to	support	the	deployment	of	models	of	
everywhere.	At	the	time	of	writing,	object-oriented	computing	and	indeed	
distributed	objects	were	an	important	area	of	research	reflected	in	the	importance	
of	technologies	such	as	CORBA	(Common	Object	Request	Broker	Architecture)19.	This	
approach	is	now	largely	superseded	by	alternative	programming	models,	reflecting	
(most	principally)	difficulties	in	realising	distributed	objects	in	Internet-scale	
developments.		

3.3 Overall	assessment	and	technological	readiness	

It	is	clear	from	the	assessment	above	that,	even	by	the	end	of	this	period	(2012),	
there	were	major	technological	barriers	in	terms	of	the	deployment	of	models	of	
everywhere.	Our	overall	assessment	is	summarised	in	Table	2,	which	shows	an	
overall	rating	against	each	of	the	requirements	together	with	the	identification	of	
the	most	important	barriers.	

                                                
19 http://www.omg.org/spec/CORBA/ 



Requirements	
cluster	

Technological	
readiness	

Most	significant	barriers	

Technological	
infrastructure	

**	 Insufficient	level	of	resources	offered	by	the	grid;	lack	of	
stability	of	grid	platforms;	lack	of	sophistication	of	
services	offered;	lack	of	support	for	complex	and	highly	
heterogeneous	data.	

Data	analytics	 *	 Lack	of	progress	towards	open	data;	immaturity	and	
lack	of	cross-disciplinary	dialogue	on	data	analytics;	lack	
of	sophistication	in	dealing	with	uncertainty	in	process	
models;	lack	of	research	on	process	and	data	model	
integration;	lack	of	research	on	reasoning	across	scales.	

Modelling	as	a	
learning	process	

**	 Lack	of	cross-disciplinary	research	looking	at	adaptive	
techniques	in	environmental	modelling;	little	support	
for	fine-grained	adaptation	due	to	existing	model	
structures;	major	issues	around	representing	and	
reasoning	about	uncertainties;	lack	of	support	for	
epistemic	uncertainties	and	dealing	with	non-linearities.	

Deployment	at	
scale	

*	 Low	level	of	abstraction	in	grid	environments;	lack	of	
programming	models	or	frameworks	to	support	
deployment	at	scale.	

Key	(readiness	level):	****	=	very	high	(no	significant	barriers);	***	=	high	(some	significant	barriers);	**	
=	medium	(a	number	of	important	barriers);	*	=	low	(major	barriers	remain).	

Table	2:	Assessment	of	technological	readiness	(2007-2012)	

As	can	be	seen	from	Table	2,	the	overall	readiness	level	is	generally	low	to	medium,	
with	important	barriers	remaining	across	all	categories.	It	is	interesting	to	note	that	
quite	a	number	of	the	barriers	are	due	to	a	silo-ed	approach	to	research	and	can	be	
addressed	by	more	cross-disciplinary	collaboration	in	this	area.	Overall,	we	would	
argue	that,	in	the	period	2007-2012,	the	vision	of	models	of	everywhere	was	right	
but	the	technology	was	not	ready.	We	continue	our	discussion	by	considering	how	
things	have	advanced	to	date,	noting	important	developments	that	make	an	
implementation	of	the	concept	more	realistic.	

4	 Technological	Landscape	(Current)	 	

4.1	 Overview	of	the	landscape	

The	technological	landscape	has	changed	enormously	since	2012	and	indeed	this	is	
one	of	the	key	drivers	to	revisit	the	concept	of	models	of	everywhere	in	terms	of	
technological	readiness.	In	particular,	there	have	been	three	mutually	supportive	
areas	of	significant	innovation,	namely	cloud	computing,	data	science	and	IoT.	We	
look	at	each	in	turn	below.	
The	concept	of	cloud	computing	first	came	to	prominence	in	the	last	decade.	For	
example,	Amazon	introduced	Amazon	Web	Services,	as	an	early	cloud	offering,	in	



2006.	It	has	really	been	in	the	last	five	years	though	that	the	area	has	exploded	in	
terms	of	scale	and	sophistication	of	the	underlying	services	on	offer.	The	cloud	is	
defined	as	“a	set	of	Internet-based	application,	storage	and	computing	services	
sufficient	to	support	most	users’	needs,	thus	enabling	them	to	largely	or	totally	
dispense	with	local	data	storage	and	application	software”	(Coulouris	et	al.,	2011).	
Cloud	computing	further	promotes	the	view	of	everything	as	a	service,	from	low-
level	services	such	as	data	storage	or	virtualised	machines,	through	intermediary	
middleware	services	supporting	parallel/distributed	computing	or	database	facilities,	
through	to	a	plethora	of	applications	(referred	to	as	Infrastructure	as	a	Service	(IaaS),	
Platform	as	a	Service	(PaaS)	and	Software	as	a	Service	(SaaS)).	Cloud	computing	may	
be	offered	by	companies	and	made	available	to	others	as	services,	i.e.	public	clouds	
such	as	those	offered	by	Amazon,	Google,	IBM,	Microsoft	and	Yahoo,	or	private	
clouds	that	can	be	established	within	an	organisation	or	associated	community	(e.g.	
using	open	source	software	such	as	OpenStack	or	CloudStack).	Hybrid	solutions	are	
also	possible	where	an	organisation	may	have	their	own	private	cloud	but	extended	
with	extra	capacity	from	public	clouds.	There	is	also	a	move	in	cloud	computing	from	
owning	resources	to	a	more	elastic	use,	where	resources	can	be	requested	(and	paid	
for	in	the	case	of	public	clouds)	only	when	required.	
	
The	growth	of	cloud	computing	over	the	last	five	years	in	particular	has	been	
phenomenal.	For	example,	a	report	by	Cisco	indicates	that	in	2015	total	data	storage	
capacity	in	data	centres	is	382	EB,	with	this	projected	to	grow	to	1.8	ZB	by	202020.	
There	has	also	a	corresponding	growth	in	processing	capabilities,	and	innovation	
around	cloud	services,	most	notably	for	the	purposes	of	this	paper	in	the	area	PaaS,	
with	a	wide	range	of	new	services	introduced	to	storage	and	process	massive	data-
sets,	e.g.	BigTable,	Cassandra	and	HBase	in	terms	of	‘big’	data	storage	and	
MapReduce	and	Apache	Spark	in	terms	of	distributed	computation	(we	return	to	this	
innovation	in	Section	4.2	below).	
	
The	developments	in	cloud	computing	have	also	stimulated	interest	in	‘big	data’	or	
more	generally	data	science,	that	is	the	science	of	analysing	and	making	sense	of	
very	large	and/or	highly	complex	data-sets.	This	is	a	fundamentally	cross-disciplinary	
area	of	study	involving,	for	example	mathematical	sciences,	computational	sciences	
and	areas	of	application.	To	support	this,	a	number	of	such	cross-disciplinary	
institutes	have	been	set	up	worldwide,	including	the	Alan	Turing	Institute	in	the	UK,	
and	Data	Science	Institutes	at	Berkeley	and	Columbia	in	the	US,	and	Imperial,	UCL,	
Warwick	and	Lancaster	in	the	UK,	amongst	many	others.	With	the	huge	investments	
in	data	science,	there	is	a	growing	body	of	literature	on	techniques	to	extract	
meaning	for	large	and	complex	data-sets,	including	techniques	that	embrace	
unstructured	data.	More	importantly,	there	is	a	dialogue	across	disciplines	to	
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understand	how	different	techniques	can	work	together	to	resolve	major	challenges	
around	big	data.	
 
A	lot	of	the	research	in	data	science	is	targeted	at	underlying	algorithms	and	their	
scalability	and	efficiency.	There	is	also	an	emphasis	on	more	applied	research,	most	
notably	in	the	areas	of	eCommerce	and	marketing,	smart	cities,	logistics	and	
transport,	and	also	health	and	wellbeing	(Blair	et	al.	2017).	There	is	also	huge	
potential	in	data	science	for	the	natural	environment	although,	perhaps	surprisingly,	
this	is	an	area	that	is	relatively	under-developed	(it	is	though	one	of	the	major	
themes	of	the	Data	Science	Institute21	at	Lancaster	University,	UK).		
	
Finally,	there	have	been	significant	developments	in	the	area	of	IoT,	with	the	
Internet	evolving	from	being	an	Internet	of	computers	to	one	that	is	an	Internet	of	
‘Things’,	with	the	Things	being	everyday	objects	with	embedded	intelligence	(Atzori	
et	al.,	2010).	Experts	predict	that	IoT	will	embrace	over	50	billion	devices	by	2020	
(see	Figure	6).	
 

 
Figure	6:	Expected	growth	of	IoT22	

As	with	data	science,	the	main	growth	areas	are	expected	to	be	around	smart	cities,	
logistics	and	transport	and	health	and	wellbeing.	There	is	also	significant	potential	
for	IoT	deployments	in	the	natural	environment;	for	example,	Nundloll	et	al.	(2019)	
describe	an	experiment	in	deploying	an	environmental	IoT	in	a	catchment	in	Wales.	
It	is	clear	however	that	this	is	an	area	in	its	infancy.	The	real	significance	of	IoT	
technology	in	this	area	is	when	data	can	be	combined	with	other	sources	including	
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remote	sensing,	earth	monitoring	technologies,	historical	records	and	other	data	
mined	from	the	web	in	support	of	models	of	everything	(as	discussed	in	Section	2.2).	
	
These	technologies	are	mutually	supportive	in	that	cloud	computing	provides	the	
underlying	very	large-scale	and	elastic	pool	of	resources	and	associated	services	to	
store,	process	and	present	very	large	data-sets.	Data	science	provides	a	range	of	
methods	to	make	sense	of	complex	data	and	extract	meaning	from	this	data,	and	IoT	
technology	provides	access	to	real-time	observations	on	a	very	large	scale.	This	
symbiotic	relationship	is	illustrated	in	Figure	7.	
 

	

Figure	7:	The	symbiotic	relationship	between	cloud	computing,	data	science	and	IoT	

4.2	 Addressing	the	requirements	

Underlying	technological	infrastructure	
The	underlying	technological	infrastructure	has	changed	significantly	in	terms	of	
both	the	availability	of	large-scale	computational	resources	and	also	the	stability	of	
the	associated	platforms.	There	has	also	been	significant	innovation	in	this	area	with	
an	explosion	of	new	services	now	available.	
	
The	developments	in	cloud	computing,	as	documented	above,	are	particularly	
significant	in	this	regard.	Whereas	grid	computing	was	a	rather	niche	and	immature	
technology,	cloud	computing	provides	access	to	an	abundance	of	underlying	
resources	(in	terms	of	both	computation	and	storage)	and	also	an	ever	increasing	set	
of	associated	services.	The	services	most	relevant	for	models	of	everywhere	include:	
 
• A	rich	underlying	set	of	programming	constructs	to	support	distributed	

programming,	including	service-oriented	architecture,	containers	and	



microservices/serverless	computing,	e.g.	Docker23	and	Rocket24	(for	containers)	
and	OpenWhisk25	and	AWS	Lambda26	(for	microservices/serverless	approaches);	

• Services	to	support	the	subsequent	deployment	and	execution	of	complex	
distributed	executions,	e.g.	Kubernetes27	and	ZooKeeper28;	

• A	range	of	underlying	storage	architectures	that	cater	for	very	large	scale	and	
highly	heterogeneous	data-sets,	including	unstructured	data,	e.g.	Cassandra29,	
HBase30	and	MongoDB31;	

• Parallel	and	distributed	programming	paradigms	to	process	and	manipulate	
such	data-sets,	including	historical	and	streaming	data-sets,	e.g.	the	Hadoop	
framework32,	MapReduce	(Dean	and	Ghemawat,	2008),	Spark33	and	Pig34;	

• Techniques	to	semantically	enrich	and	subsequently	navigate	very	large	scale	
and	highly	heterogeneous	data-sets,	e.g.	building	on	technologies	such	as	OWL,	
SPARQL	and	RDF35,	and	also	graph	databases	such	as	GraphDB36,	AllegroGraph37	
or	Neo4j38;	

• Software	frameworks	and	associated	libraries	to	support	data	analytics,	e.g.	
Mahout39	or	RStudio40;	

• Services	to	support	scientific	workflow	in	the	cloud,	e.g.	Taverna41	and	Kepler42.		
	
There	is	also	strong	interest	in	achieving	integration	between	cloud	computing	and	
IoT	technology,	although	this	work	is	at	early	stages	of	development.	Most	
significantly,	there	is	a	rapidly	growing	body	of	research	around	edge	computing	
(sometimes	also	referred	to	as	fog	computing)	to	provide	intermediary	storage	and	
processing	capabilities	closer	to	end	devices	(Lopez	et	al.,	2015).	For	example,	edge	
devices	can	be	used	to	carry	out	initial	analyses	of	real-time	streaming	data	from	IoT	
devices,	with	only	aggregate	or	significant	data	then	sent	to	the	cloud	environment.	

                                                
23 https://www.docker.com/ 
24 https://coreos.com/blog/rocket.html 
25 https://openwhisk.incubator.apache.org/ 
26 https://aws.amazon.com/lambda/ 
27 https://kubernetes.io/	
28 https://zookeeper.apache.org/ 
29 http://cassandra.apache.org/ 
30 https://hbase.apache.org/	
31 https://www.mongodb.com/	
32 http://hadoop.apache.org/	
33 https://spark.apache.org/	
34 https://pig.apache.org/	
35 https://www.w3.org/standards/semanticweb/ 
36 http://graphdb.ontotext.com/ 
37 https://allegrograph.com/ 
38 https://neo4j.com/	
39 http://mahout.apache.org/	
40 https://www.rstudio.com/	
41 http://www.taverna.org.uk/ 
42 https://kepler-project.org/ 



Edge	computing	can	also	support	the	integration	of	mobile	devices	(Ahmed	and	
Ahmed,	2016).	
	
The	technological	landscape	has	therefore	changed	dramatically	with	many	of	the	
technologies	now	in	place	to	support	models	of	everywhere.	A	number	of	significant	
barriers	though	still	remain,	most	notably	the	lack	of	standardisation	in	cloud	
computing,	with	different	providers	offering	quite	distinct	programming	paradigms	
and	APIs.	This	leads	to	problems	of	vendor	lock-in	and	also	difficulties	in	managing	
computations	that	span	multiple	providers	(including	hybrid	cloud	environments	
embracing	public	and	private	providers).	There	are	also	difficulties	in	programming	
and	managing	the	underlying	technological	infrastructure	especially	when	combining	
cloud	computing	with	IoT	technology,	the	result	being	a	rather	sophisticated	but	
highly	complex	system	in	itself	(more	accurately	described	as	a	system	of	systems	
(Jamshidi,	2011)).	We	return	to	this	point	below	(under	deployment	at	scale).	

Data	analytics	 	
There	have	been	similar	advances	in	terms	of	data	analytics.	There	is	now	much	
more	awareness	of	the	need	to	move	to	open	science,	including	the	need	for	open	
data	policies.	Governments	and	research	funding	bodies	are	also	moving	towards	
the	need	for	open	data,	and	there	is	a	similar	move	towards	more	open,	
reproducible	or	repeatable	science43.	It	is	fair	to	say	though	that	important	barriers	
remain	and	these	tend	to	be	cultural	rather	than	technological44.	
	
In	terms	of	making	sense	of	data,	the	emergence	of	data	science	as	a	discipline	is	
strongly	encouraging	albeit	with	a	need	to	attract	more	data	scientists	to	work	on	
environmental	challenges	and	problems	(Blair	et	al.,	2019).	The	most	important	
development	has	been	the	cross-disciplinary	dialogue	that	is	now	happening	within	
the	data	science	community	involving	statisticians,	computer	scientists	and	domain	
experts	(amongst	others).	This	is	very	significant	and	is	leading	to	breakthroughs	in	
terms	of	efficient	algorithms	and	their	application	in	important	societal	problems.	In	
the	Data	Science	Institute	at	Lancaster,	for	example,	we	are	interested	in	how	
contemporary	techniques	such	as	extreme	value	theory,	changepoint	analysis,	time-
series	analyses	and	statistical/machine	learning	can	be	applied	to	complex	
environmental	data.	We	are	also	particularly	interested	in	how	resultant	data	
models	can	co-exist	and	inform	process	models,	combining	stochastic	and	
deterministic	understanding	of	complex	environmental	phenomena.	While	there	is	
increasing	awareness	of	the	potential	of	such	approaches,	this	is	a	relatively	
immature	area;	solutions	tend	to	be	ad	hoc	and	a	more	principled	understanding	of	
how	such	techniques	can	work	together	has	yet	to	emerge.	There	is	also	a	similar	
narrative	around	reasoning	across	scales;	while	there	is	more	experience	of	this	in	

                                                
43 http://royalsociety.org/uploadedFiles/Royal_Society_Content/policy/projects/sape/2012-
06-20-SAOE.pdf	

44 http://crc.nottingham.ac.uk/projects/rcs/OpenScience_Report-Sarah_Currier.pdf 



the	earth	and	environmental	sciences,	the	solutions	are	also	quite	ad	hoc	and	often	
not	shared	across	different	areas	of	study.	
 
In	conclusion,	there	have	been	significant	developments	since	2012,	particularly	in	
terms	of	the	required	cross-disciplinary	dialogue	around	data	science	for	the	natural	
environment.	Nevertheless,	this	work	is	still	at	a	relatively	early	stage	of	maturity	
with	important	(and	fairly	unique)	challenges	of	this	area	still	to	be	addressed	(Blair	
et	al.,	2019).	

Modelling	as	a	learning	process	
As	discussed	above,	many	of	the	building	blocks	for	models	as	a	learning	process	
were	already	in	place	by	2012,	albeit	fragmented	across	different	communities.	The	
state-of-the-art	now	is	quite	similar	and	there	remains	a	need	for	stronger	cross-
disciplinary	dialogue	between	researchers	working	on	environmental	modelling,	
data	science	and	adaptive/autonomic	computing.	The	most	significant	changes	in	
this	time	have	been:	i)	advances	in	areas	such	as	statistical	and	machine	learning	
that	directly	supports	meta-reasoning	about	model	selection	and	rejection,	and	ii)	
the	computational	capacity	offered	by	the	cloud,	which	supports	both	the	execution	
of	complex	environmental	models	in	the	cloud,	and	the	execution	of	associated	
reasoning	algorithms.	
	
There	has	been	little	progress	on	the	crucial	area	of	uncertainty	–	in	terms	of	
representing	uncertainty	explicitly	in	computations,	and	also	reasoning	about	
uncertainty	as	part	of	the	decision	making	process.	More	generally,	one	of	the	most	
significant	developments	over	this	time	period	in	the	environmental	sciences	has	
been	the	recognition	of	the	unavoidable	uncertainties	associated	with	predictive	
models,	whether	used	for	simulation	or	forecasting	purposes	(e.g.	Beven,	2009).	As	
noted	earlier,	a	primary	driver	for	the	models	of	everywhere	concepts	was	the	
potential	for	using	local	information	to	constrain	local	uncertainties	in	predicting	
local	variables.	This	is	not	just	a	problem	of	assessing	the	statistics	of	model	residuals	
(though	many	studies	have	approached	the	problem	in	this	way).	This	is	because	
many	sources	of	uncertainty	are	the	result	of	lack	of	knowledge	about	processes,	
variables	or	forcings	(particularly	into	the	future)	that	are	not	necessarily	easily	
represented	in	simple	statistical	forms.	In	particular,	input	uncertainties	will	be	
processed	through	the	nonlinear	dynamics	of	a	model	to	produce	complex	
nonstationary	residual	structures,	that	will	then	interact	with	uncertainties	in	the	
observational	data	used	in	model	evaluation,	which	might	also	have	associated	
epistemic	uncertainties	(e.g.	in	hydrology,	arising	from	the	rating	curves	used	in	the	
estimation	of	river	flows,	(see	Westerberg	et	al.,	2011;	Westerberg	and	McMillan,	
2015;	Coxon	et	al.,	2015).	These	issues	underlay	the	development	of	the	Generalised	
Likelihood	Uncertainty	Estimation	(GLUE)	methodology	(e.g.	Beven	and	Binley,	1992,	
2014;	Beven,	2006,	2016),	which	includes	some	statistical	methods	as	special	cases.	
	
As	new	data	become	available,	it	should	be	possible	to	learn	more	about	the	
characteristics	of	the	uncertainties	associated	with	different	predictands,	at	least	



where	the	new	data	are	informative	(that	this	may	not	always	be	the	case	has	been	
shown	by	Beven	et	al.,	2011	and	Beven	and	Smith,	2015).	In	doing	so,	it	will	be	
possible	to	combine	prior	information	with	the	new	information	to	update	the	
estimates.	This	leads	naturally	to	a	form	of	Bayesian	reasoning,	where	uncertainties	
can	be	represented	as	probabilities,	but	much	more	research	is	needed	in	
environmental	models	to	understand	how	best	to	define	the	likelihoods	used	in	the	
Bayesian	methodology.	Simple	statistical	likelihood	functions	used	with	
multiplicative	Bayesian	updating	appear	to	lead	to	overconditioning	of	model	
parameters	because	they	do	not	take	any	account	of	the	epistemic	nature	of	sources	
of	uncertainty	(e.g.	Beven	et	al.,	2012;	Beven,	2016,	2019).	There	are	also	issues	of	
whether	even	the	best	models	might	be	fit-for-purpose	for	the	type	of	decisions	that	
they	might	be	used	for	(see	the	discussion	of	Beven	and	Lane,	2019).	
	
A	critical	aspect	of	the	models	of	everywhere	concept	is	the	potential	for	using	local	
knowledge	within	this	learning	process	to	improve	the	representations	of	places.			
This	is	where	information	from	local	stakeholders	and	the	Internet	of	Things	might	
be	used	in	local	model	evaluations	to	reject	potential	model	structures	and	constrain	
uncertainties	in	parameterisations	and	outcomes.			This	can	be	considered	as	an	
extension	of	the	collaborative	and	participatory	learning	that	has	already	been	used	
in	a	number	of	local	flood	risk	assessments	and	water	resource	management	
projects	(e.g.	Lane	et	al.,	2011;	Landstrom	et	al.,	2011;	Evers	et	al.,	2012;	Maskrey	et	
al.,	2016;	Ferré,	2017;	Basco-Carrera	et	al.,	2017;	see	also	Voinov	et	al.,	2016).			An	
important	component	of	this	learning	process	is	the	potential	to	visualise	model	
outcomes	at	scales	that	allows	consideration	of	local	detail	by	local	stakeholders	so	
that	different	scenarios	(and	their	uncertainties)	can	be	explored	in	collaborative	
ways	(Hankin	et	al.,	2017,	see	below).			

 
Deployment	at	scale	
There	have	been	several	important	developments	in	terms	of	deploying	at	scale,	
with	containers	in	particular	making	it	far	easier	to	deploy	and	subsequently	manage	
executing	models	in	the	cloud	in	a	platform-independent	manner.	The	availability	of	
cloud-based	workflow	engines	is	also	significant,	although	there	are	questions	over	
whether	workflow	offers	the	right	abstraction	for	all	elements	of	environmental	
modelling	(Blair	et	al.,	2019).	
	
More	generally,	there	is	still	a	problem-implementation	gap	(France	and	Rumpe,	
2007)	between	what	scientists	would	like	to	do	in	the	cloud,	and	the	level	of	support	
offered	by	existing	technologies	and	services,	with	a	prior	knowledge	of	the	
underlying	technical	details	required.	This	makes	it	very	time	consuming	and	also	
error	prone	to	execute	environmental	models	or	ensemble	models	in	the	cloud,	and	
also	requires	access	to	computing	expertise,	which	may	be	a	scarce	resource	in	many	
environmental	research	labs.	In	the	context	of	models	of	everywhere,	the	models	
may	themselves	be	quite	complex,	involving	different	ensembles	of	process	models	



or	the	integration	of	process	and	data	models	for	example.	This	makes	the	cost	quite	
prohibitive,	especially	when	this	would	entail	the	deployment	of	many	instances	of	
these	models	at	many	different	places	and	scales.	
	
Software	frameworks	offer	a	promising	technology	to	support	the	more	rapid	
deployment	of	recurrent	software	architectures	(Johnson,	1997).	Software	
frameworks	are	tailored	towards	particular	domains	of	application,	abstracting	over	
the	lower	level	details	and	capturing	the	commonalities	within	that	domain,	while	
allowing	some	degree	of	specialisation.	They	are	heavily	used	in	cloud	computing,	
for	example	MapReduce	abstracts	over	the	complexities	of	managing	a	large	and	
complex	underlying	cloud	infrastructure	and	supports	the	execution	of	distributed	
algorithms	in	the	cloud,	allowing	the	user	to	plug-in	and	specialise	the	computation	
through	providing	application	specific	map	and	reduce	operations	(Dean	and	
Ghemawat,	2008).	At	present	though	such	frameworks	tend	to	be	relatively	generic,	
e.g.	dealing	with	distributed	computation,	and	are	not	specific	enough	to	support	
something	as	domain	dependent	as	environmental	models.	
	
In	terms	of	programming	models,	distributed	objects	have	now	been	replaced	by	
alternative	paradigms	supported	in	the	cloud,	around	service-oriented	architecture	
enhanced	by	concepts	such	as	deployment	in	containers	and	optionally	support	for	
microservices.	This	approach	overcomes	the	problems	associated	with	distributed	
object	technology,	being	much	better	suited	to	large-scale	Internet	wide	
deployment.	Some	research	is	required	though	in	terms	of	how	to	map	models	of	
everywhere	on	to	such	programming	concepts.	

4.3	 Overall	assessment	and	technological	readiness	 	

It	is	apparent	from	the	discussion	above	that	there	have	been	significant	advances	in	
the	underlying	technology	to	support	the	vision	of	models	of	everywhere.	Equally,	a	
number	of	barriers	remain.	Our	overall	assessment	is	summarised	in	Table	3,	
repeating	the	style	of	analysis	carried	out	for	the	period	2007-2012	(in	Table	2).	



Requirements	
cluster	

Technological	
readiness	

Most	significant	barriers	

Technological	
infrastructure	

***	 Lack	of	standardisation	in	cloud	computing;	difficulties	
in	managing	complex	underlying	distribute	systems	
infrastructure	(or	systems	of	systems).	

Data	analytics	 ***	 Cultural	impediments	to	open	data;	need	to	address	
particular	data	science	challenges	related	to	the	
environment,	including	around	process	and	data	model	
integration	and	on	reasoning	across	scales.	

Modelling	as	a	
learning	
process	

**	 Lack	of	cross-disciplinary	research	looking	at	adaptive	
techniques	in	environmental	modelling;	little	support	
for	fine-grained	adaptation	due	to	existing	model	
structures;	major	issues	around	representing	and	
reasoning	about	uncertainties;	lack	of	support	for	
epistemic	uncertainties	and	dealing	with	non-linearities.	

Deployment	at	
scale	

***	 Problem-implementation	gap	and	the	need	to	raise	the	
level	of	abstraction	in	terms	of	supporting	execution	in	
the	cloud;	lack	of	experience	of	using	cloud	
programming	paradigms	in	this	area.	

Key	(readiness	level):	****	=	very	high	(no	significant	barriers);	***	=	high	(some	significant	barriers);	**	
=	medium	(a	number	of	important	barriers);	*	=	low	(major	barriers	remain).	

Table	3:	Assessment	of	technological	readiness	now	

From	this	analysis,	we	can	see	that	there	have	been	significant	shifts	in	readiness	
around	the	underlying	technological	infrastructure	and	in	data	analytics	and	also	
(partially)	around	supporting	deployment	at	scale.	Support	for	modelling	as	a	
learning	process	has	not	changed	much	although	the	developments	in	cloud	
computing	and	data	analytics	does	offer	the	potential	(as	yet	unrealised)	of	
significant	advances	in	this	area.	The	need	for	cross-disciplinary	dialogue	is	a	
common	theme	across	all	these	areas	and	is	crucial	in	terms	of	addressing	the	
remaining	barriers.	
	
Overall,	we	conclude	that,	in	terms	of	technological	readiness,	the	time	is	right	to	
carry	out	large-scale	experiments	of	the	concept	of	models	of	everywhere.	The	next	
section	explores	ongoing	research	in	this	area.	

5	 Initial	Experiments	and	Research	Roadmap	

Ongoing	research	at	Lancaster	is	looking	at	an	experimental	deployment	of	the	
concept	of	modes	of	everywhere	in	the	area	of	hydrology,	supported	by	recent	
developments	in	cloud	computing,	data	science	and	new	sources	of	data	(including	
but	not	limited	to	IoT	technology).	The	initial	deployment	is	targeting	a	specific	place	
with	the	intention	of	having	a	modelling	framework	that	is	able	to	capture	and	
indeed	learn	the	idiosyncrasies	of	that	place.	The	overarching	goal	of	this	work	is	to	



identify	software	architectural	principles	for	implementing	models	of	everywhere	in	
the	cloud	with	a	view	to	supporting	more	widespread	deployment	of	models	of	
everywhere	at	different	places	and	at	different	scales	(discussed	further	below).	We	
are	also	strongly	interested	in	supporting	decision	making	at	different	scales,	for	
example	over	the	potential	effectiveness	of	different	natural	flood	management	
strategies	and	also	over	how	to	use	constrained	national	or	regional	budgets	most	
effectively.	
	

The	high-level	systems	architecture	is	as	shown	in	Figure	8	below.	

 
Figure	8:	High-level	systems	architecture	

This	recognises	the	existence	of	multiple	sources	of	data	and	the	importance	of	
integrating	this	data	and,	in	turn,	looking	at	model	integration	on	top	of	this,	which	
includes	both	data	and	process	models	coupled	together.	The	top	layer	then	
supports	interrogation	and	querying	of	the	information	about	that	particular	place.	
This	maps	on	to	a	more	detailed	cloud-based	systems	architecture	exploiting	the	
range	of	services	supported	by	the	cloud	in	each	of	these	areas.	This	is	shown	in	
Figure	9.	



 
Figure	9:	More	detailed	cloud-based	systems	architecture	

Through	this	work,	we	intend	to	overcome	the	remaining	technological	barriers	
around	models	of	everywhere	and	therefore	open	the	door	to	the	desired,	more	
widespread	deployment	of	the	concept	in	hydrology	and	beyond.	
	
Further	details	of	this	research	can	be	found	in	Towe	et	al.	(2019)	with	Edwards	et	al.	
(2017)	also	discussing	human	and	societal	dimensions	of	the	research	around	
decision	making.	
	
Our	overall	research	roadmap	is	summarised	in	Table	4,	which	shows	the	key	
research	questions	and	associated	areas	of	investigation.	



Research	questions	 Potential	solutions	
How	to	effectively	and	
efficiently	map	the	concept	
of	models	of	everywhere	on	
to	contemporary	cloud	
programming	paradigms	and	
associated	services?	

Identifying	appropriate	software	architectures	for	models	of	
everywhere	and	examining	the	mapping	on	such	
architectures	to	service-oriented	architecture,	containers	
and	microservices.	

How	to	deploy	models	of	
everywhere	at	scale,	with	a	
view	to	supporting	the	rapid	
deployment	of	new	
instances?	

Investigating	the	role	of	specialised	software	frameworks	for	
models	of	everywhere,	coupled	with	the	use	of	techniques	
from	the	model-driven	engineering	community,	especially	
around	domain	specific	languages.	

How	to	achieve	data	
integration	given	highly	
heterogeneous	sources	of	
data	(including	unstructured	
and	more	structured	data)?	

Investigating	underlying	cloud	storage	technologies	such	as	
Cassandra	or	HBase,	and	associated	technologies	for	
semantic	integration	(especially	ontologies	and	linked	data).	

How	to	make	sense	of	this	
complex	data?	

Explore	a	range	of	appropriate	data	science	methods	in	
isolation	and	in	combination.	

How	to	achieve	integration	
between	process	models	and	
data	models?	

Seek	underlying	principles	related	to	process	and	data	model	
integration;	investigate	how	this	can	support	a	reduction	of	
uncertainty	and	also	how	it	can	deal	with	epistemic	
uncertainty	and	non-linearities.	

How	to	realise	the	concept	of	
modelling	as	a	learning	
process?	

Seek	to	bring	together	expertise	in	adaptive/autonomic	
computing	and	environmental	modelling;	seek	ways	to	
annotate	computations	with	uncertainty	and	use	this	in	the	
reasoning/adaptation	process;	seek	approaches	to	support	
both	coarse	and	fine-grained	adaptation;	seek	approaches	to	
accept,	refine	or	reject	models,	including	consideration	of	
the	limits	of	acceptability	approach.	

Table	4:	Overall	research	roadmap	

Having	deployed	the	concept	of	models	of	everywhere	at	a	given	place,	we	then	
hope	to	consider	how	to	generalise	the	approach	to	model	other	environmental	
facets	at	that	place,	to	model	other	places	(including	places	at	other	scales),	and	to	
support	coherent	reasoning	across	scales.	This	also	involves	key	questions	over	
discretisation,	especially	given	the	fact	that	data	may	exist	at	different	scales	for	a	
given	place.	In	the	longer	term,	we	will	also	be	interested	in	how	the	concept	can	be	
applied	to	other	areas	of	environmental	science,	including	biodiversity	and	soil	
management,	and	also	how	models	of	everywhere	can	help	us	in	understanding	the	
inter-dependencies	across	such	areas	(a	key	motivation	of	models	of	everything	as	
discussed	above).	This	quickly	becomes	a	large	research	agenda	that	goes	beyond	
the	scope	of	our	research	study,	and	we	hope	to	stimulate	other	research	to	address	
these	key	issues.	



6	 Related	Work	

There	are,	of	course,	already	models	of	everywhere	(and	to	some	sense	everything)	
in	the	sense	of	global	earth	system	science	models	that	have	been	developed	from	
global	atmosphere	and	ocean	dynamic	circulation	models.	Examples	are	the	
Japanese	Earth	Simulator	(Habata	et	al.,	2003);	EC-Earth	(Hazeleger	et	al.,	2010)	and	
the	Community	Earth	System	Model	(Hurrell	et	al.,	2013).	While	these	are	still	
limited	to	grid	resolutions	of	kilometres	for	global	applications,	these	systems	
commonly	include	the	possibility	of	nesting	finer	grid	domains,	with	boundary	
conditions	provided	by	global	simulations.	The	philosophy	of	such	approaches,	
however,	has	been	quite	different	from	that	presented	here.	The	model	structure	
and	parameterisations	are	generally	fixed,	so	that	application	everywhere	has	been	a	
matter	of	finding	appropriate	effective	parameter	values	for	different	grid	locations	
using	whatever	data	might	be	available.		
	
There	have	also	been	some	attempts	to	produce	distributed	modelling	systems	that	
could	be	applied	widely	at	finer	grid	scales,	allowing	for	a	more	flexible	choice	of	
structures.	In	hydrology,	for	example,	there	was	the	inter-agency	Object	Modelling	
System	(OMS)	of	Leavesley	et	al.	(2002)	that	developed	into	a	more	general	
modelling	system	(Lloyd	et	al.,	2011;	David	et	al.,	2013).	More	recently,	Clark	et	al.	
(2015)	have	proposed	the	Structure	for	Unifying	Multiple	Modeling	Alternatives	
(SUMMA)	framework.	In	both	cases,	several	different	model	representations	were	
provided	for	the	user	to	choose	from	in	producing	a	models	structure	for	a	particular	
catchment	area.	Within	these	systems,	the	expertise	of	users	can	be	elicited	to	
define	appropriate	model	structures,	although	identification	of	appropriate	model	
parameters	and	hypothesis	testing	of	competing	model	structures	are	still	major	
issues	(e.g.	Weiler	and	Beven,	2015).	The	type	of	approaches	presented	here	could	
be	used	with	such	systems.	
	
In	flood	risk	management,	there	are	inherent	motivations	to	view	modelling	as	a	
process	of	learning	about	places,	stemming	from	two	distinctive	features	of	the	
problem.	Firstly,	the	likelihood	and	impacts	of	flooding,	although	driven	ultimately	
by	weather	and	climate,	are	strongly	influenced	by	local	features	of	landscapes,	land	
use,	and	human	activities.	In	some	cases,	even	very	small	topographic	features	or	
infrastructure	assets	can	have	a	significant	control	on	flood	risk,	for	example	by	
directing	the	flow	of	flood	waters	towards	or	away	from	buildings.	This	information	
is	not	always	captured	well	(if	at	all)	in	generic	model	structures	and	data	sets.	
Secondly,	the	assessment	of	flood	risk	involves	gathering	information	about	extreme	
events,	which	tends	to	place	an	emphasis	on	historical	knowledge,	often	reliant	
upon	detailed	knowledge	of	the	locality	for	interpretation,	and	on	the	updating	of	
risk	assessments	as	new	observations	become	available.		
	
For	these	reasons,	some	flood	risk	management	applications	already	implement	
frameworks	for	iterative	co-production	of	modelling,	based	on	the	incorporation	of	



knowledge	about	specific	localities	from	multiple	stakeholders.	One	such	system45	
has	been	developed	for	the	Flanders	Environment	Agency	(Vlaamse	
Milieumaatschappij,	VMM)	for	mapping	areas	at	risk	of	flooding	from	surface	runoff.	
Here,	a	web-based	interface	creates	a	shared	collaboration	space	enabling	local	
partners,	such	as	town	councils	or	local	water-	and	sewer	managers,	to	engage	in	a	
dialogue	about	model	improvements	(Figure	10). 
	
	

	
	 	

                                                
45 https://www.youtube.com/watch?v=lEWtELDWTsU&feature=youtu.be&t=74 
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Figure	10.	(a)	Co-production	and	local	improvements	of	a	flood	risk	model	by	
Flanders	Environment	Agency	(Vlaamse	Milieumaatschappij,	VMM),	illustrating	
place-based	dialogue	about	local	model	errors	and	data;	(b)	Difference	viewer	
allowing	cooperating	parties	to	assess	model	updates,	supported	by	contextual	
information.	
	
Important	features	that	have	been	incorporated	within	the	modelling	through	this	
process	include	areas	where	flood	water	can	be	held	back	by	embankments,	or	
drained	by	pumps	and	control	structures	(e.g.	gates,	sluices,	weirs,	culverts)	that	are	
known	to	local	staff	and	may	not	be	represented	adequately	without	that	detailed	
local	knowledge,	such	as	the	flood	retention	storage	and	flow	control	structures	
represented	in	Figure	10.	
	
The	co-production	website	is	shared	with	professional	partners	and	within	its	first	
three	months	of	operation	enabled	more	than	9,000	detailed	improvements	to	data	
and	modelling	to	be	implemented	together	with	nearly	300	re-simulations	for	103	
sub-models	involving	150	organisations,	and	resulting	in	positive	evaluations	of	
model	improvements	at	500	locations	across	the	whole	of	Flanders.	
	
The	VMM	example	discussed	here	explicitly	exposes	modelling	as	part	of	a	process	
of	learning	about	place	through	knowledge	sharing,	supported	by	digital	technology.	
A	more	constrained	example	is	the	flood	hazard	mapping	of	the	FEMA	National	
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Contextual	
map	layers

Model	output	
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Flood	Insurance	Program46,	where	model-based	flood	risk	assessments	are	published	
and	can	be	challenged	by	individuals,	on	the	basis	of	detailed	local	knowledge,	via	a	
web-based	facility.	
	
Stakeholder	interaction	with	the	outputs	of	models	of	everywhere	can	also	made	
more	direct	and	local,	to	demonstrate	and	explain	assumptions,	and	to	alter	inputs	
or	outputs	as	a	way	of	iterating	to	a	co-produced	model	of	a	place.	In	this	way	local	
models	will	be	better	constrained	by	the	local	stakeholder	information,	and	more	
trusted	if	done	well.	As	an	example	of	this	way	of	working,	a	series	of	workshops,	
sponsored	by	Natural	England,	were	used	to	engage	local	farming	communities	on	
the	potential	benefits	of	‘working	with	natural	processes’	(WWNP)	to	mitigate	
flooding,	often	called	Natural	Flood	Management	(see	Hankin	et	al,	2017	for	
modelling	concepts).		
	
Two	engagement	devices	were	used.	An	Augmented	Reality	Sandbox	was	used	to	
provide	real-time	feedback	on	the	response	of	flow	pathways	to	a	user	sculpting	
channels	in	sand.	Virtual	inputs	to	the	sandbox	are	controlled	by	waving	a	hand	over	
the	sandbox.	Water	flow	pathways	and	storages	are	then	shown	by	projection	of	
blue	onto	the	sand.	This	was	used	as	a	precursor	to	the	demonstration	of	more	
quantitative	modelling	results,	with	visualisations	being	projected	onto	a	large	
interactive	iTable	and	shown	in	Figure	11.	
 

 
Figure	11:	Engagement,	capture	of	local	data	and	knowledge	on	the	iTable	

Engagement	using	the	iTable	followed	4	key	steps:		

                                                
46 https://www.fema.gov/national-flood-insurance-program-flood-hazard-mapping 



1) The	model,	and	modelling	assumptions,	is	explained	following	a	general	
discussion	of	NFM.	A	baseline	run	of	the	model	under	flood	conditions	is	
discussed	for	acceptability	in	terms	of	local	knowledge	of	patterns	of	flooding. 

2) A	GIS	package	is	used	to	show	different	layers	for	the	local	catchment	and	bring	
in	layers	of	potential	opportunities	that	might	be	based	on	national	strategic	
layers47.	These	are	discussed	with	the	participants	and	options	and	be	switched	
on	and	off	according	to	where	the	catchment	partners	identify	where	they	
would	be	happy	to	try	different	sorts	of	NFM. 

3) The	measures	are	then	plugged	into	the	model	and	the	model	is	run	to	predict	
the	outcome	of	the	changed	configuration. 

4) The	distributed	changes	to	the	hydrological	responses	are	explored	with	the	
partners	to	understand	model	behaviour	and	effectiveness.	Figure	12	shows	the	
outputs	following	one	of	the	workshops. 

 
Interestingly,	in	some	discussions	of	significant	measures	in	front	of	their	peers,	
landowners	came	up	with	interventions	that	were	very	significant,	for	example	
sacrificing	some	summer	irrigation	storage	to	act	as	flood	storage	areas	in	the	winter	
season.	This	process	of	standing	around	the	tables	and	discussing	the	catchment	
with	peers	appeared	to	make	people	more	forthcoming,	and	the	process	more	
effective.	The	process	does,	however,	require	a	different	approach	to	modelling	
since	some	of	the	feedback	from	local	stakeholders	might	not	be	positive.	It	is	
therefore	important	that	the	modellers	involved	should	not	be	too	protective	about	
their	model,	but	should	recognise	and	explain	the	assumptions	and	uncertainties	
inherent	in	the	modelling	process	and	be	prepared	to	incorporate	new	knowledge	as	
far	as	possible.	Finding	ways	of	conveying	(and	if	necessary	recalculating)	prediction	
uncertainties	within	this	context	is	the	subject	of	on-going	work. 
 

                                                
47 http://naturalprocesses.jbahosting.com/ 



 
Figure	12:	FiGIS	and	model	outputs	on	the	iTable	following	one	of	the	workshops	

7	 Conclusions	 	

This	paper	has	carried	out	a	systematic	analysis	of	the	technological	readiness	for	
the	concept	of	models	of	everywhere.	In	particular,	the	paper	has	examined	the	
various	dimensions	associated	with	models	of	everywhere	and	determined	a	set	of	
technological	requirements	that	must	be	met	for	the	successful	large-scale	
deployment	of	the	concept.	This	set	of	requirements	was	then	used	to	compare	
technological	readiness	when	models	of	everywhere	was	first	proposed	against	the	
readiness	levels	now,	showing	that	the	time	is	right	for	widespread	experimentation	
and	deployment	of	the	concept.	Although	many	of	the	technological	barriers	have	
been	removed,	key	research	issues	remain	and	the	paper	has	highlighted	a	set	of	
open	research	questions	that	must	be	addressed	before	progress	can	be	made.	
Importantly,	this	research	agenda	represents	a	shift	in	environmental	modelling	
from	an	approach	centred	on	process	understanding	(through	deterministic	models)	
to	one	that	embraces	a	more	data-centric	perspective,	whereby	the	two	approaches	
can	work	in	tandem	to	achieve	a	deeper	understanding	of	specific	places	and	hence	
to	support	more	nuanced	decision	making	about	a	given	place.	
 
There	are	also	key	limitations	of	the	models	of	everywhere	approach	including	the	
computational	requirements	if	rolled	out	on	a	large	scale	and	also	the	advances	
needed	in	environmental	science	to	develop	scale	dependent	parameterisations	and	
embrace	an	underlying	science	of	everything,	everywhere	and	at	all	times.	



	
In	conclusion,	the	concept	of	models	of	everywhere	is	even	more	important	than	
when	it	was	first	proposed	given	the	environmental	challenges	we	face,	and	this	
paper	has	demonstrated	that	the	time	is	right	for	more	large-scale	experimentation	
with	the	concept.	Further	research	though	is	clearly	needed	to	deliver	against	this	
vision	and	this	research	has	to	be	fundamentally	trans-disciplinary	in	nature	bringing	
together	environmental	scientists,	data	scientists	and	computer	scientists	to	reach	a	
common	understanding	of	representing	complex	environmental	data,	making	sense	
of	the	resultant	highly	heterogeneous	data,	integrating	knowledge	from	process	and	
data	models,	and	rolling	out	the	concept	of	scale.	Equally	importantly,	there	is	a	
need	to	work	closely	with	social	scientists	to	understand	the	human	and	societal	
issues	related	to	models	of	everywhere,	including	the	necessary	cultural	shift	to	
open	data,	treatments	of	security	and	privacy	and	the	role	of	communities	in	
ensuring	models	represent	the	peculiarity	of	places.	
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