
Mathematical Assoc. of America American Mathematical Monthly 121:1 January 9, 2019 11:40 a.m. opineq.amm.tex page 1

Operator-valued Extensions
of Matrix-norm Inequalities

G.J.O. Jameson

Abstract. We describe a rather striking extension of a wide class of inequalities. Some famous
classical inequalities, such as those of Hardy and Hilbert, equate to the evaluation of the norm
of a matrix operator. Such inequalities can be presented in two versions, linear and bilinear.
We show that in all such inequalities, the scalars can be replaced by operators on a Hilbert
space, with the conclusions taking the form of an operator inequality in the usual sense. With
careful formulation, a similar extension applies to the Cauchy–Schwarz inequality.

1. INTRODUCTION. The English mathematician G.H. Hardy (1877–1947) estab-
lished a number of significant inequalities, each known, in its own context, simply as
“Hardy’s inequality”. One of them states the following: if x1, x2, . . . are numbers (real
or complex), and such that

∑∞
k=1 |xk|2 is convergent, and

yj =
1

j
(x1 + x2 + · · ·+ xj) (j ≥ 1),

then

∞∑
j=1

|yj|2 ≤ 4
∞∑
k=1

|xk|2.

(and 4 is the best constant). Here y = Ax, where x, y are infinite sequences and A is
the “Cesaro matrix” given by aj,k = 1

j
for k ≤ j and 0 for k > j. Though Hardy did

not state it this way, his inequality amounts to the evaluation of the norm of this matrix
as a linear operator.

In general, let A = (aj,k) be any matrix (finite or infinite) of real or complex
numbers. Let ‖A‖ denote the usual operator norm of A as an operator on `n2 or `2
(for readers needing it, this notation is reviewed below). For vectors x, y, we then
have the linear inequality ‖Ax‖ ≤ ‖A‖ ‖x‖ and the bilinear inequality |〈Ax, y〉| ≤
‖A‖ ‖x‖ ‖y‖. Written out explicitly, these inequalities say:

• (N1) if x1, x2, . . . are (real or complex) scalars and yj =
∑

k aj,kxk for each j,
then ∑

j

|yj|2 ≤ ‖A‖2
∑
k

|xk|2;

• (N2) for scalars xj, yk,∣∣∣∣∣∑
j

∑
k

aj,kxkyj

∣∣∣∣∣ ≤ ‖A‖
(∑

j

|xj|2
)1/2(∑

k

|yk|2
)1/2

.
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So, for example, for the Cesaro matrix A, Hardy’s inequality states that ‖A‖ = 2.
There are other classical inequalities that express the norm of a matrix, for example
Hilbert’s inequality (to which we return later).

Our topic here is the rather striking fact that in all such inequalities, the scalars
xj, yk can be replaced by operators on a Hilbert space H , with the conclusions taking
the form of operator inequalities in the usual sense: A ≥ 0, for self-adjoint A, means
〈Ax, x〉 ≥ 0 for x ∈ H . In the case of (N1), this is achieved by simply replacing |xk|2
by X∗kXk and |yj|2 by Y ∗j Yj . So, for example, the operator-valued version of Hardy’s
inequality takes the form:

∑∞
j=1 Y

∗
j Yj ≤ 4

∑∞
k=1X

∗
kXk.

The operator-valued extension of the bilinear inequality (N2) requires a slightly
more subtle reformulation. We will show how to derive it from the linear version with
the help of an operator-valued version of the Cauchy–Schwarz inequality.

We will confine ourselves to proving the statements for finite matrices and se-
quences. The extensions to the infinite case are essentally routine and will present
no difficulty to experts.

Operator-valued versions of scalar inequalities have been a growth industry in re-
cent years. See, for example, the articles [6, 8] and the book [1]. Some of these results
are quite deep. The theorems we present here are at the easy end of the scale: they will
be obtained by simple and (arguably) elegant methods well within the scope of a basic
course on Hilbert spaces. Despite this, they have not, to the author’s knowledge, been
explicitly stated elsewhere. Some results on the norms of bilinear combinations of op-
erators are given in [9] and [10], but not the underlying operator inequalities. Most of
their results can be derived as consequences of ours.

2. REVIEW OF NOTATION AND RESULTS ASSUMED. We review very briefly
the ideas and results required; details can be seen in any introductory text on the sub-
ject, such as [4, 11].

Throughout the sequel, in any Hilbert space considered, the inner product will
be denoted by 〈 , 〉. The derived norm is defined by ‖x‖ = 〈x, x〉1/2. The Cauchy–
Schwarz inequality states |〈x, y〉| ≤ ‖x‖ ‖y‖. The space `n2 is Cn (or Rn) with inner
product defined by 〈x, y〉 =

∑n
j=1 xjyj , and `2 is the obvious extension to infinite

sequences with
∑∞

j=1 |xj|2 convergent.
Given a Hilbert space H , the space Hn is the space consisting of the n-tuples x =

(x1, x2, . . . , xn) with xj ∈ H , with inner product defined by 〈x, y〉 =
∑n

j=1〈xj, yj〉,
hence norm defined by ‖x‖2 =

∑n
j=1 ‖xj‖2.

A linear operator A between Hilbert spaces H , K is bounded if there is a constant
M such that ‖Ax‖ ≤ M‖x‖ for all x in H , and its norm ‖A‖ is the least such M .
With the Cauchy–Schwarz inequality, this implies that |〈Ax, y〉| ≤ ‖A‖ ‖x‖ ‖y‖ for
all x ∈ H and y ∈ K. The adjoint operatorA∗ (fromK toH) is defined by 〈Ax, y〉 =
〈x,A∗y〉. It satisfies A∗∗ = A, (AB)∗ = B∗A∗ and ‖A∗‖ = ‖A‖. If A is given by
the matrix (aj,k), then A∗ is given by (ak,j). The space of bounded linear operators
from H to K will be denoted by L(H,K), and by L(H) when H = K.

For a self-adjoint operator, 〈Ax, x〉 is real for all x, and we write A ≥ 0 if
〈Ax, x〉 ≥ 0 for all x (such operators are “positive semi-definite”; we will just call
them “positive”). We write A ≥ B if A − B ≥ 0. Since 〈A∗Ax, x〉 = ‖Ax‖2, we
have A∗A ≥ 0 for any A, and ‖A∗A‖ = ‖A‖2. Also, A∗A ≤ B∗B is equivalent to
‖Ax‖ ≤ ‖Bx‖ for all x ∈ H . If 0 ≤ A ≤ B, then ‖A‖ ≤ ‖B‖.

Finally, a positive operator A has a unique positive square root A1/2, and 0 ≤ A ≤
B implies A1/2 ≤ B1/2. (However, 0 ≤ A ≤ B does not imply A2 ≤ B2 unless
AB = BA.) For any operator A, the right and left moduli are defined by |A|R =
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(A∗A)1/2 and |A|L = (AA∗)1/2, so that |A|L = |A∗|R, and the two coincide for
self-adjoint A.

3. THE CAUCHY–SCHWARZ INEQUALITY FOR OPERATORS. Before pro-
ceeding to the generalizations of (N1) and (N2), we describe an operator version of
the Cauchy–Schwarz inequality. It will be needed for the extension of (N2). It is also
of interest in itself, and has found many other applications.

A simple-minded analogy with the scalar case might suggest something like the
following: given operators Xj , Yj , let S =

∑n
j=1X

∗
j Yj . Then

S∗S ≤
(

n∑
j=1

X∗jXj

)(
n∑

j=1

Y ∗j Yj

)
.

However, this is a nonstarter, because the operator on the right-hand side need not even
be self-adjoint: in fact, if A and B are self-adjoint, then AB is self-adjoint if and only
if AB = BA.

To point the way to a correct statement, consider the case n = 1. For u ∈ H , we
have

〈Y ∗XX∗Y u, u〉 = 〈XX∗Y u, Y u〉 ≤ ‖XX∗‖ ‖Y u‖2 = ‖X‖2〈Y ∗Y u, u〉,

so

(Y ∗X)(X∗Y ) ≤ ‖X‖2Y ∗Y. (1)

We mention that X and Y cannot be interchanged on the right-hand side, and no
liberties can be taken with the order of the operators. However, it can be rewritten, for
example, as (Y ∗X∗)(XY ) ≤ ‖X‖2Y ∗Y . Further, we can take square roots in this to
deduce |XY |R ≤ ‖X‖ |Y |R.

We are now ready for the result in question. Various proofs have been given. Here
we present a pleasantly simple one, following a method used in [8].

Theorem 1. Let Xj, Yj (1 ≤ j ≤ n) be operators on a Hilbert space H. Let S =∑n
j=1X

∗
j Yj . Then

S∗S ≤
∥∥∥∥∥

n∑
j=1

X∗jXj

∥∥∥∥∥
(

n∑
j=1

Y ∗j Yj

)
.

Proof. DefineX : H → Hn byXu = (X1u,X2u, . . . ,Xnu) (and Y similarly from
Yj). Then it is easily checked that X∗ : Hn → H is given by: X∗(u1, u2, . . . , un) =∑n

j=1X
∗
j uj . Hence X∗X =

∑n
j=1X

∗
jXj and X∗Y = S. The result now follows

from (1).

As mentioned already, we cannot tamper with the order of the terms. However, the
statement can, of course, be rewritten as follows: if T =

∑n
j=1XjYj , then T ∗T ≤

‖
∑n

j=1XjX
∗
j ‖(
∑n

j=1 Y
∗
j Yj). Also, we can deduce the following norm inequality

(which was stated, for example, in [7]), in which the asymmetry betweenXj and Yj is
suppressed: ∥∥∥∥∥

n∑
j=1

X∗j Yj

∥∥∥∥∥
2

≤
∥∥∥∥∥

n∑
j=1

X∗jXj

∥∥∥∥∥
∥∥∥∥∥

n∑
j=1

Y ∗j Yj

∥∥∥∥∥ .
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Theorem 1 is nontrivial even when theXj are replaced by scalars λj (more exactly,
by λjI). After also writing Xj for Yj and taking square roots, this delivers a version
looking very much like the original Cauchy–Schwarz inequality for scalars:∣∣∣∣∣

n∑
j=1

λjXj

∣∣∣∣∣
R

≤
(

n∑
j=1

|λj|2
)1/2( n∑

j=1

X∗jXj

)1/2

.

4. VECTOR-VALUED VERSIONS OF (N1) AND (N2) We return to (N1) and
(N2). Before giving the promised operator-valued extensions, we formulate vector-
valued versions.

Theorem 2. Let A = (aj,k) be an m× n matrix, and let H be a Hilbert space.
(i) If x1, . . . , xn ∈ H and zj =

∑n
k=1 aj,kxk for 1 ≤ j ≤ m, then

m∑
j=1

‖zj‖2 ≤ ‖A‖2
n∑

k=1

‖xk‖2. (2)

Equivalently, if AH is the operator from Hn → Hm defined by AH(x1, . . . , xn) =
(z1, . . . , zm), with zj as above, then ‖AH‖ ≤ ‖A‖.

(ii) For elements xk, yj of H, we have∣∣∣∣∣
m∑
j=1

n∑
k=1

aj,k〈xk, yj〉
∣∣∣∣∣ ≤ ‖A‖

(
n∑

k=1

‖xk‖2
)1/2( m∑

j=1

‖yj‖2
)1/2

. (3)

Proof. For (i), choose an orthonormal basis e1, e2, . . . , eR of H (or of the subspace
generated by the elements xk), and write xk =

∑R
r=1 xk(r)er. Then for each r, we

have zj(r) =
∑n

k=1 aj,kxk(r), so by (N1),

m∑
j=1

|zj(r)|2 ≤ ‖A‖2
n∑

k=1

|xk(r)|2.

Summation over r gives (2). This clearly implies ‖AH‖ ≤ ‖A‖. (Needless to say,
equality actually holds here, but this is not important for our purposes.)

Statement (ii) now follows at once, because the sum in (3) is 〈AHx, y〉, where
x = (x1, . . . , xn), y = (y1, . . . , ym).

Curiously, quite lengthy proofs of Theorem 2 have appeared in the literature (I will
refrain from listing them explicitly).

Remark. Enthusiasts for tensor products will recognize that (i) is also equivalent to
the statement ‖IH ⊗A‖ = ‖A‖. Nonenthusiasts can ignore this remark.

5. THE OPERATOR-VALUED EXTENSIONS. The promised operator version of
(N1) follows very easily from Theorem 2:

Theorem 3. Let A = (aj,k) be an m× n matrix and let H be a Hilbert space. Sup-
pose that X1, . . . , Xn ∈ L(H) and Yj =

∑n
k=1 aj,kXk for 1 ≤ j ≤ m. Then we

have the operator inequality

m∑
j=1

Y ∗j Yj ≤ ‖A‖2
n∑

k=1

X∗kXk. (4)
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Proof. The statement is equivalent to the assertion that

m∑
j=1

‖Yju‖2 ≤ ‖A‖2
n∑

k=1

‖Xku‖2

for all u ∈ H . But Yju =
∑n

k=1 aj,kXku for each j, so this is a case of (2).

Remark. By a straightforward adaptation of the proofs of Theorems 2 and 3, one can
establish the following analogous result, reproducing positivity of A rather than its
norm: Suppose that the n× n matrix A is positive, so that

∑n
j=1

∑n
k=1 aj,kxjxk ≥ 0

for all scalars xj . Then
∑n

j=1

∑n
k=1 aj,kX

∗
jXk ≥ 0 for Xj ∈ L(H). We leave it to

sufficiently interested readers to write out the details.

Theorems 1 and 3 fit together neatly to deliver the operator version of (N2).

Theorem 4. Let A = (aj,k) be an m× n matrix and let H be a Hilbert space. Let
Xj (1 ≤ j ≤ m) and Yk (1 ≤ k ≤ n) be elements of L(H), and let

T =
m∑
j=1

n∑
k=1

aj,kX
∗
j Yk.

Then

T ∗T ≤ ‖A‖2
∥∥∥∥∥

m∑
j=1

X∗jXj

∥∥∥∥∥
(

n∑
k=1

Y ∗k Yk

)
. (5)

Proof. For each j, let Zj =
∑n

k=1 aj,kYk. Then T =
∑n

j=1X
∗
jZj , and by Theorem

3,

m∑
j=1

Z∗jZj ≤ ‖A‖2
n∑

k=1

Y ∗k Yk.

By Theorem 1,

T ∗T ≤
∥∥∥∥∥

m∑
j=1

X∗jXj

∥∥∥∥∥
(

m∑
j=1

Z∗jZj

)
.

The statement follows.

6. NORM INEQUALITIES. Since 0 ≤ X ≤ Y implies ‖X‖ ≤ ‖Y ‖, we can de-
duce the following inequality of norms in Theorem 3:∥∥∥∥∥

m∑
j=1

Y ∗j Yj

∥∥∥∥∥ ≤ ‖A‖2
∥∥∥∥∥

n∑
k=1

X∗kXk

∥∥∥∥∥ . (6)

Similarly, in Theorem 4, we have the following norm inequality, suppressing the in-
herent asymmetry between Xj and Yk:

‖T‖2 ≤ ‖A‖2
∥∥∥∥∥

m∑
j=1

X∗jXj

∥∥∥∥∥
∥∥∥∥∥

n∑
k=1

Y ∗k Yk

∥∥∥∥∥ . (7)
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This norm inequality was given in [10], without any mention of the underlying operator
inequality we have stated.

Now ‖
∑m

j=1X
∗
jXj‖ ≤

∑m
j=1 ‖Xj‖2, so (7) holds with the right-hand side re-

placed by (
∑m

j=1 ‖Xj‖2)(
∑n

k=1 ‖Yk‖2). This inequality was given in [9], again with-
out the underlying operator inequality.

Both [9] and [10] actually present further inequalities for other norms, the “trace
class” or “Schatten ideal” norms. We will not embark on this topic here, except to
mention that their results (or most of them) can be derived as consequences of Theo-
rems 3 and 4.

Let us explore alternative types of norm inequalities a little further. Reverting to the
setting of Theorem 3, let Yj =

∑n
k=1 aj,kXk. Another possible generalization from

the scalar case would be an inequality of the form

m∑
j=1

‖Yj‖2 ≤ C2
n∑

k=1

‖Xk‖2, (8)

By comparison with (6), we now have a larger quantity on both sides. Now ‖Yj‖ ≤∑n
k=1 |aj,k| ‖Xk‖, so by the original scalar inequality (N1), statement (8) holds with

C equal to the norm of the matrix (|aj,k|) (which in general is larger than ‖A‖). As
the following simple example shows, (8) does not always hold with C = ‖A‖.

Example 1. Let

A =

(
1 1
1 −1

)
,

so that y1 = x1 + x2 and y2 = x1 − x2. Then |y1|2 + |y2|2 = 2|x1|2 + 2|x2|2, so
‖A‖ =

√
2. Now take the 2× 2 matrices X1 = diag(1, 1) and X2 = diag(1,−1).

Then ‖X1‖ = ‖X2‖ = 1, and clearly ‖Y1‖ = ‖Y2‖ = 2, so (8) only holds with
C ≥ 2.

7. OPERATOR-VALUED VERSIONS OF SOME CLASSICAL INEQUALI-
TIES. We finish by recording the operator-valued generalizations of some famous
classical inequalities of this type. These inequalities describe the norms of the infi-
nite matrices in question, thereby equating to the best constant when stated for all
finite truncations (in fact, exact determination of the norm of the n× n truncation is
generally not easy).

Example 2. Hardy’s inequality was mentioned in the Introduction. More generally,
as an operator on `p, the norm of the Cesaro matrix A is p/(p− 1). A proof can be
seen in [5, pp. 239–242]. For the case we want, p = 2, a very neat proof appeared
in the MONTHLY article [3], where it is attributed to [2]. It is so short that we can
repeat it here. One can easily verify that AA∗ is the matrix having 1/max(j, k) in
place (j, k), and hence that A + A∗ = AA∗ +D, where D is the diagonal matrix
with entries (1, 1

2
, 1
3
, . . .). Then ‖I −D‖ = 1 and

(I −A)(I −A∗) = I −A−A∗ +AA∗ = I −D,

so ‖(I −A)(I −A∗)‖ = ‖I −A‖2 = 1, hence ‖A‖ ≤ 2.
Theorem 3 gives the (linear) operator-valued version: Let Xk ∈ L(H) (1 ≤ k ≤

n) and let Yj = 1
j
(X1 + X2 + · · · + Xj) for 1 ≤ j ≤ n. Then

∑n
j=1 Y

∗
j Yj ≤
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4
∑n

k=1X
∗
kXk. The best constant, valid for all n, is 4, since this is already the case

for scalars. Of course, one can also write down a bilinear version as in Theorem 4.

Example 3. Copson’s inequality is the dual of Hardy’s inequality: the norm of the
transposed matrix is also 2. We go straight to the statement of the operator-valued
version: Let Xk ∈ L(H) (1 ≤ k ≤ n) and let Yj =

∑n
k=j Xk/k (1 ≤ j ≤ n).

Then
∑n

j=1 Y
∗
j Yj ≤ 4

∑n
k=1X

∗
kXk.

Example 4. According to [5], the result we know as Hilbert’s inequality was simply
included by Hilbert in his lectures, and it was actually published by Weyl in his dis-
sertation in 1908. In matrix form, it states the following: let hj,k = 1/(j + k + 1)
for j ≥ 0, k ≥ 0. Then the norm of the matrix (hj,k) equals π. This can, of course,
be written out explicitly in both linear and bilinear versions as in (N1) and (N2). The
bilinear version is often known as Hilbert’s “double series theorem”. Hilbert’s beau-
tiful proof can be seen in [5, pp. 235–236], and in generalized form in [11, Section
13.4]. (Choi’s method, described in Example 2, gives a quick proof of the weaker
bound 4, by comparison with AA∗.) So the (linear) operator-valued version is: Let
Xk ∈ L(H) (0 ≤ k ≤ n), and let Yj =

∑n
k=0Xk/(j + k + 1) for 0 ≤ j ≤ n.

Then
∑n

j=0 Y
∗
j Yj ≤ π2

∑n
k=0X

∗
kXk.

It is tempting to conjecture that Hilbert would have approved of this extension of
his inequality to the spaces named after him.
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