Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds

Li, M. and Wang, Xiaodong and Li, S. and Wang, S. and Ma, X. (2010) Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds. International Journal of Hydrogen Energy, 35 (13). pp. 6699-6708. ISSN 0360-3199

Full text not available from this repository.

Abstract

Nickel based catalysts derived from thermal decomposition of Ni/Mg/Al hydrotalcite-like precursors have been studied in ethanol steam reforming (ESR) for hydrogen production. X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction (TPR) and thermogravimetric analysis (TGA) were used to investigate the physic-chemical properties of the catalysts prepared. The catalysts being mainly composed of Ni–Mg–O solid solution phase exhibited high activity and stability for ethanol steam reforming. Ethanol could be completely converted even at 673 K, and hydrogen concentration tended to increase with increasing reaction temperature, gas hourly space velocity (GHSV) and Ni/Mg ratio. XRD and TEM investigations demonstrate that low Ni/Mg ratio led to insufficient Ni0 phase available, which may result in decreasing activity and stability due to coke formation observed on the NiMg10 (Ni/Mg = 1/10) catalyst. High reduction pretreatment temperature (>973 K) could promote the reduction of Ni0 metal, and effectively improve the catalytic activity and stability. The optimum reduction temperature might be 1073 K, at which proper amount of Ni0 species and good resistance to coke formation could be obtained.

Item Type:
Journal Article
Journal or Publication Title:
International Journal of Hydrogen Energy
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2100/2105
Subjects:
ID Code:
136907
Deposited By:
Deposited On:
23 Sep 2019 10:45
Refereed?:
Yes
Published?:
Published
Last Modified:
23 Sep 2020 05:39