Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent:A comparative study of thermodynamic and experimental work

Wang, Xiaodong and Li, M. and Li, S. and Wang, H. and Wang, S. and Ma, X. (2010) Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent:A comparative study of thermodynamic and experimental work. Fuel Processing Technology, 91 (12). pp. 1812-1818. ISSN 0378-3820

Full text not available from this repository.

Abstract

Thermodynamic analysis and experimental tests of glycerol steam reforming with/without calcium oxide (CaO) as a carbon dioxide (CO2) sorbent have been performed and compared in this work. Methanol, ethanol, acetaldehyde, acetone and ethylene do not exist in equilibrium conditions according to the equilibrium calculations. Without CaO present, thermodynamic predictions show that a maximum hydrogen concentration of 67% can be obtained at 925 K, with a water to glycerol ratio (WGR) of 9. In the experiments, the Ni/ZrO2 catalyst fails to catalyze the reactions to thermodynamic equilibrium under the selected conditions as the highest hydrogen concentration obtained is 64%. With the presence of CaO, thermodynamic analysis implies hydrogen purity exceeding 95% can be achieved below 925 K at WGRs of 6 and 9. However, CaCO3 does not exist at temperatures greater than 1025 K. In the experiments, a hydrogen purity of 95% with only 5% CH4 as impurity can be reached at 850 K with a WGR of 9. The Ni/ZrO2 catalyst is not active enough to convert excess CH4 to hydrogen in glycerol steam reforming as CH4 concentrations are usually higher than the equilibrium values. The addition of CaO to this system greatly enhances the hydrogen production while reducing the CO concentration.

Item Type:
Journal Article
Journal or Publication Title:
Fuel Processing Technology
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2100/2103
Subjects:
ID Code:
136906
Deposited By:
Deposited On:
23 Sep 2019 10:40
Refereed?:
Yes
Published?:
Published
Last Modified:
04 Dec 2020 05:19