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Spatially differentiated effects of socioeconomic factors 
on China's NOx generation from energy consumption: 
iImplications for mitigation policy

Abstract
Nitrogen oxides (NOx) has become the priority of China's air pollution control, but the regional 
socio-economic factors responsible for NOx generation are embedded with spatial disparities, 
which leads to different effects of air quality policy at the local level. This study applied a 
geographically weighted regression (GWR) model to investigate the drivers of NOx generation 
from energy consumption (NGEC) in China's 30 provinces, to explore nonstationary spatial effects 
of NGEC. The results showed that population size has always been the dominant factor in spatial 
NGEC across all regions of China, although there is a minor north-south difference. However, the 
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effect of per capita GDP and energy intensity leads to a significant north-south difference when 
they are influencing NGEC, which shows a minor west-east difference from thermal power 
generation (TE). We also found that in Northern and Northeast China, the transition towards cleaner 
energy structure based on natural gas has started correlating significantly with NOx generation 
through a weakly negative effect in 2015. Our findings show alternative strategies on NOx 
reduction, which include the spatially differentiated effect of regional socioeconomic factors on 
energy consumption.

Keywords: NOx generation from energy consumption; Driving factors; Geographically weighted regression; 

China

1 Introduction

China's severe air pollution has been mainly induced by massive energy consumption based on fossil fuels, 
which has been driven by rapid industrialisation and urbanization over the past decades. The NOx emissions 
from China's fossil fuel consumption could account for more than 90% of the total emissions in China (Cui et 
al., 2013). Moreover, the severe haze and smog pollution in highly industrialized and populated areas, such as 
Beijing-Tianjin-Hebei and surrounding areas, the Yangtze River Delta, and the Weihe-Fenhe plain (Cai et al., 
2018; Yang et al., 2018), have become an important issue (Guo et al., 2014; Huang et al., 2018). Among all 
kinds of air pollutants, nitrogen oxides (NOx) have attracted much more attention from the scientific 
community, as NOx is a necessary precursor to cause fine particles, ozone, and other regional pollutants (
Huang et al., 2014). Therefore, it would be crucial to control NOx emissions from energy consumption for 
effectively reducing particulate matter (like PM2.5) concentrations.

In response to such concerns, a series of policies were issued by the Chinese government to mitigate NOx 
emissions, such as “the 13th Five Year Plan of Energy Saving and Emission Reduction”, which aims to reduce 
national NOx emissions by 15%– in 2020. The Blue-Sky Plan has also outlined provincial NOx reduction 
targets based on regional air quality goals. However, the top-down implementation of those policies is difficult 
due to the regional heterogeneity of socioeconomic factors and the geographical imbalances of 
industrialisation and urbanization (Kanada et al., 2013; Liang et al., 2016). Therefore, it is imperative to 
investigate the driving mechanisms behind regional NOx emissions for developing a spatially differentiated 
strategy on the NOx reduction targets.

For such an investigation, it is crucial to estimate NOx generation related to energy consumption. Previous 
studies mostly focused on generating the NOx emissions inventory using the bottom-up emissions inventory (
Hao et al., 2002; Huang et al., 2011) and satellite remote sensing (Cho et al., 2017; Jiang et al., 2016). The 
statistical data on NOx emissions have provided a critical foundation for assessing the characteristics of NOx 
spatial distribution using quantitative analysis. For example, Wang (2013) described the spatial characteristics 
of NOx emissions intensity in China based on exploratory spatial data analysis (ESDA), which showed that 
provincial NOx emissions intensity had spatial autocorrelation and agglomeration.



However, the current studies exploring the relations between spatial socioeconomic factors and NOx emissions 
have shown a significant research gap. Spatial econometric models that involve spatial autocorrelation and 
heterogeneity are usually employed in the research on the correlation between socioeconomic factors and air 
pollution (Hao and Liu, 2016; Kang et al., 2016; Zhou et al., 2017). Especially, Diao et al. (2018) have ever 
surveyed the relationship between NOx emissions and its determinants, using the spatial lag model (SLM), the 
spatial error model (SEM), and the spatial Durbin model (SDM), which all employed global models. However, 
these studies only assume the spatial stationarity as a prerequisite in the SEM, SLM and SDM, which all 
considered proximity effects. So they could not generate a separate parameter for each observation and thereby 
reveal the different spatial links of every object being studied (Griffith and Paelinck, 2018).

The emissions of air pollutants usually have spatial heterogeneity, thanks to the spatial difference in economic 
development (Wang et al., 2019). Specific research methods thus have to be applied to capture such spatial 
variability and non-stationarity. As a varying coefficient method, the Geographical Weighted Regression 
(GWR) model has recently gained more focus with the purpose to explore the location-specific impacts from 
various drivers on environmental pollution. Wang and Fang (2016) investigated the determinants of urban 
PM2.5 concentrations in the Bohai Economic Rim. Similarly, Xu and Lin (2017) and Xu et al. (2017) used the 
GWR model to evaluate the mechanisms of CO2 emissions from China's manufacturing and agricultural 
sectors. Fan et al. (2018) studied the impacts of urban form on air pollutant emissions in China, including NOx 
emissions.

Those studies compensated the research gap mentioned above but still have the following limits. First, 
previous research has mostly focused on the effect of end-of-pipe reduction technologies on NOx emissions, 
but less attention on how local socioeconomic aspects and energy consumption factor cause the spatial 
distribution of NOx generation at the source. Second, although some studies have considered spatial effects, 
they did not explain the heterogeneity between the driving forces of air pollutants because of the limitation of 
standardized coefficient regression methods (Mashhoodi, 2018). Third, previous studies focus on actual NOx 
emissions, which are mostly affected by end-of-pipe measures and socioeconomic factors together. China's 
strict environmental regulations of air pollution have made NOx emissions dropped dramatically (Wang et al., 
2018). Thus we need to understand the role of NOx generation, which is mainly affected by socioeconomic 
factors instead of end-of-pipe measures.

As a result, this study aims to fill those gaps by answering the following questions: (a) Hhow different are the 
impacts of energy consumption and socioeconomic context upon generation from NOx energy consumption 
(NGEC) across provincial regions in China? (b) what kind of impact mechanism based on spatial 
heterogeneity could work on NOx generation in China? (c) how the coal-to-gas policy and energy intensity 
improve the NOx generation across all regions?

Accordingly, this study would proceed with the following steps. First, through quantifying the provincial 
NGEC in China, we identify the characteristics of its spatial distribution and aggregation. Second, we use the 
GWR model to investigate location-specific effects of the driving factors on NGEC, where the estimated 
parameters outputted by the GWR model vary across provinces. Finally, this paper proposes an alternative 



strategy to manage the relationship between China's energy consumption, economic development, and NOx 
reduction.

The following structure would be in this study: Section  presents the framework and methods used in this 
study and explains the sources of the data used. Section  outlines and presents the results. Section  offers a 
thorough discussion of spatial influences and policy implications. Finally, the main conclusions are 
summarized and are outlined in Section .

2 Methodology

In this study, all statistical analysis would be conducted according to Fig. 1. We introduced Exploratory Spatial 
Data Analysis (ESDA) to examine univariate spatial autocorrelation in NGEC. Also, we would do a 
multivariate analysis by applying Ordinary Least Squares (OLS) regressions to examine initial relationships 
without spatial dependence, and test all possible combinations of variables. We chose the best OLS model 
based on AIC scores and examined variables retained for collinearity using Variance Inflation Factors (VIF). 
Statistically significant Koenker (BP) statistics could provide analysis variation in the relationships between 
variables and NGEC. Geographically Weighted Regression (GWR) could provide new insights for local 
differentiated NOx control.
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Fig. 1



2.1 Estimation of NOx generation from energy consumption

Based on the China Energy Statistical Yearbook (2006–2016), NOx generation from energy consumption 
would be estimated for China's 30 provinces from 2005 to 2015, using the bottom-up emission methods ( 
Huang et al., 2011 ; Wang et al., 2018):

Where E (t)  is the amount of NGEC at year t; the subscripts i, j, and f represent the province, sector, and fuel 
type in terms of energy consumption, respectively; EF is the NOx generation factor, and Q represents the 
quantity of fuel consumption for each sector. Fuel types in this study covered coal, diesel oil, coke, gasoline, 
fuel oil, crude oil, coke oven gas, kerosene, natural gas, liquefied petroleum gas, other gas, and refinery gas. 
The factors of NOx generation for each fuel (Appendix A) were obtained from  Kato and Akimoto (1992)  and  

Framework for the determinants of NGEC.
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Hao et al. (2002), which are widely applied in China-related environmental studies (Tian et al., 2001; Gao et 
al., 2006; Jiang et al., 2016). The generation factors for the heating and agricultural sectors refer to industry 
and wholesale, respectively. The accounting details for NGEC are given in Appendix B.

2.2 Exploratory spatial data analysis

Spatial autocorrelation models are popular to characterize spatial distribution patterns (Diao et al., 2018; Xu 
and Lin, 2017, 2018). Moran' is I which measures spatial autocorrelation (Moran, 1948; Geary, 1954) can be 
further classified into Global Moran' is I and Local Moran's I (Anselin and Griffith, 1988). In this study, we 
use Global Moran's I to estimate the degree of spatial dependence and heterogeneity of NGEC among 30 
provinces in China from the years 2005– to 2015, applying Open Geoda 1.2. The formula is as follows:

where x is a variable measured in each of the I = 1,2, …,n locations, and    is the element in row i and 

column j of the spatial weights matrix. The Z-score is calculated using   , where    and  

  are the expectation and variance, respectively.

The local Moran statistic is used to analyse spatial clustering and can provide more detailed insights into the 
location-specific nature of spatial dependence. The specific formula is as follows:

where    expresses the observation for region I for a variable as a deviation from the mean, and the    is the 
spatial lag for location I, obtained as:

In the local spatial autocorrelation implementation, each observation can be placed into one of four types: HH 
indicates that both the province itself and the neighbouring provinces have higher values; LL denotes that both 
the province itself and the neighbouring provinces have low NOx emissions; LH indicates low values 
surrounded by high values; finally, HL indicates high values surrounded by low values. Additionally, Local 
Indicators of Spatial Association (LISA) aggregation map were used to present the spatial distribution of 
results.

(2)

(3)

(4)



2.3 STIRPAT model

According to the Environmental Kuznets Curve (EKC) hypothesis (He and Wang, 2012), the STIRPAT model 
is widely used in the energy-related field (Poumanyvong et al., 2012; Liu et al., 2015; Wang et al., 2017a; 
Shafiei and Salim, 2014; Xu and Lin, 2017):

where a is the constant, b, c, d are the exponential terms of P (Population), A (Affluence), and T 
(Technology), respectively, and e is the error term.

The STIRPAT model preserves the multiple correlations between human driving forces of the IPAT model and 
considers human driving forces such as population, affluence, technology as primary factors influencing 
environmental pressure changes. The original model is often improved to suit the various purposes and needs 
of different empirical studies. In this study, we took the logarithmic of all variables to eliminate possible 
heteroscedasticity. At the same time, we also standardized variables 1  as the variables have different meanings 
and units:

Combining the STIRPAT model with the existing literature, we chose eight influencing factors to explore the 
impacts of socioeconomic factors on NGEC using the stepwise regression. We obtained the following model 
(Eq. (7) ):

where    represents NOx generation from energy consumption in the province I in year j, β 0  is a regression 
constant, β i  denotes the partial regression coefficients of the ith explanatory variable, and ε is the error. 
Economic growth is an important economic factor on air pollution emissions, which has always been a key 
concern of many studies ( Xu and Lin, 2017 ;  Hao et al., 2015 ;  West et al., 2013 ;  De Foy et al., 2016 ). As an 
increasingly important air pollutant, NGEC had been closely linked to the rapid growth of China's economy 
over the past years. So we selected include three variables in this study to show the A (Affluence) factors: 
GDP per capita (PGDP), foreign direct investment (FDI) and the proportion of tertiary industry (TP). 
Moreover, considering the effects of technological progress on NGEC, we applied three factors, including the 
energy intensity (EI), thermal power generation (TE) and natural gas consumption ratio (NGR) as the T 
(Technology) factors in this study. For example, if NGEC decreases with the decline of EI, then it is implied 
that technological progress plays a positive role ( Wu et al., 2016 ;  Xu and Lin, 2016 ;  Xu et al., 2016 ;  Diao et 

(5)

(6)

(7)



al., 2018). The P (Population) factors also were measured by two variables in this study. One is population 
size (PS), which could have a strong impact on energy consumption and air pollution emissions (Lamsal et al., 
2013; Lyu et al., 2016); the other is urban density (UD), which is closely related to industrial layout, urban 
planning and population policy. The detailed descriptions of input indicators are given in Table 1.

2.4 Geographical Weighted Regression

It may be more realistic to assume that human activities are heterogeneous in different regions ( Tenerelli et al., 
2016 ); thereby, a GWR model could be adopted to solve this problem. Two essential prerequisites are needed 
when we start applying the GWR model ( Wheeler and Páez, 2010 ). One is that the samples of socioeconomic 

alt-text: Table 1

Table 1

Summary of all variables in the modelling analysis.

Variables Definition
Units of 
measurement

Mean Standard deviation

Dependent variable

NGEC
NOx  generation from energy 
consumption

tonne 1,154,666 796,482

Independent 
variables

    

Population factors

PS Population size 104  people 4421.01 2654.75

UD Urban density People/km2 2370.43 1386.30

PGDP Per capita GDP Yuan 23,896 15,443

FDI Foreign direct investment 104  USD 2,799,081 3,214,462

TP The proportion of tertiary industry Per cent 46.82% 8.55%

Technology factors

EI Energy intensity 104  tonne/billion yuan 1.6360 0.9653

TE Thermal power generation 108  kW  h 1087.11 946.76

NGR Natural gas consumption ratio Per cent 7.28% 7.07%

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though 

the data is the same. To preview the actual presentation, view the Proof.



phenomena must have spatial autocorrelation; The other is that there should be spatial non-stationarity among 
the variables. The GWR model could be correctly applied only after the global and local spatial 
autocorrelation analysis. The form of the traditional linear regression model of GWR is:

where β 0  represents a constant, β i  represents the regression coefficient, which is estimated using the ordinary 
least squares (OLS) method, and    represents a random disturbance term, which satisfies the spherical 
disturbance hypothesis.

By allowing a local weight based on a spatial location matrix, we could describe the distance between the 
observed location and the estimated point location. So the GWR model can be re-expressed as below:

In this equation,    is the dependent variable of NOx generation from energy consumption in province   ,  

  is the intercept coefficient of province   ,    is the location regression coefficient,   denotes 

the coordinates of the province   ,    is the value of the kth independent variable, and    is the random 
location-specific error term of ith province. The location estimates are obtained by weighting the instances 
around province    according to Eq.  (10) :

where    is the estimate of the parameter in   , X indicates a vector of independent variables, y 

represents a vector of dependent the variable,    is a spatial weight matrix using the fixed Gaussian 

function, which refers to the weight of instance observed for province    for estimating the coefficient for 

province   . In Eq.  (10) ,    is the distance between i and j, and b is referred to as the bandwidth. In this study, 

(8)

(9)

(10)

(11)



using ArcGIS 10.2, the fixed bandwidth was determined by the corrected Akaike Information Criterion (AIC) 
of the GWR model.

2.5 Data sources

The data set consists of the cross-sectional data for the 30 provinces of mainland China; the Tibet Autonomous 
Region was not included due to incomplete data. Based on the China Statistical Yearbook (2006–2016), China 
Energy Statistical Yearbook (2006–2016), and China City Statistical Yearbook (2006–2016), we collected 
cross-sectional data forfrom the years 2005– to 2015, including PS, urban area, PGDP, FDI, industry structure, 
EI, and NGR. UD was equal to urban population divided by the urban area. In order to cut the effect of 
inflation, PGDP was converted into constant prices based on 1995. EI was equal to energy use from energy 
consumption divided by real GDP. TE was obtained from energy balance sheets of each province in the China 
Energy Statistical Yearbook (CESE), under the item of the output of thermal power in the transformation.

3 Results

3.1 Temporal and spatial distribution features of NGEC

As shown in Fig. 2a, we observed that national NGEC grew rapidly from 2005 to 2012, then peaked in 2012, 
and then slowly declined after 2012. This is because China has listed NOx emissions as one of the controlled 
indicators since 2011. At the provincial level (Fig. 2b), the provinces with red boxes in Fig. 2b showed a 
similar trend as the national level, but the provinces with blue boxes showed a different trend. It is worth 
noting that the declining trend of national NOx emissions is slow after 2012, which might indicate that the 
reduction of China's NGEC in future still need more actions from improving the industrial structure and energy 
consumption structure although end-of-pipe reduction policies could play a role in reducing NGEC. More 
importantly, we could not ignore the trend of NGEC in various provinces, and it is worth to explore how 
NGEC changes in different provinces were affected by different socio-economic and energy factors (see Fig. 3
).

Fig. 2



National and provincial characteristics of NGEC from 2005 to 2015. (a) national level; (b) provincial level.

Fig. 3
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Replacement Image: NGEC.jpg

Replacement Instruction: We have uploaded the revised figure to meet the requirements of mapping in China.

We chose the years of 2005, 2010, 2015, to represent the spatial distribution trend of NGEC over ten years, 
which are mainly based on China's Five-Year Plan 2 . We observed that NGEC had shown spatial heterogeneity 
in China from 2005 to 2015 (see Fig. 3). The high NGEC accumulation areas were mostly concentrated in 
Inner Mongolia, Guangzhou, the Yangtze River Delta region, Beijing-Tianjin-Hebei region and its surrounding 
areas. Comparably, low NGEC accumulation areas were located in the western less-developed areas. So, the 
reason might be that the spatial difference of rapid economic growth and urbanization has led to an increasing 
spatial difference in energy consumption size since 2000. We would apply the spatial correlation method and 
the GWR model to explore what and how the spatial socioeconomic drivers cause the spatial aggregation of 
NOx emissions in China.

3.2 Spatial correlation analysis on NGEC

The results in  Table 2  shows the global Moran's I values for the spatial correlation of NGEC from 2005 to 
2015. All the p-values in every single year from 2005 to 2015 had a significance level of 1%, which means 
that the null hypothesis can be rejected. Additionally, the Moran's I value was more than zero for each year, 
indicating that there was a spatial autocorrelation in NGEC. Furthermore, the Moran's I index declined from 
2005 to 2015, which further reveals that the spatial agglomeration weakened over the past ten years. In terms 
of Z-score, the index value for each year was over 1.65, suggesting that there was a positive spatial 
autocorrelation of HH and LL in terms of NGEC.

Spatial distribution of provincial NGEC.  (a) 2005, (b) 2010, (c) 2015.

alt-text: Table 2

Table 2

Moran's I of  NOx  generation from energy consumption .

Year Moran's I Expected Index Z-score p-value

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though 

the data is the same. To preview the actual presentation, view the Proof.



The three maps of local indicators of spatial association (LISA) agglomeration ( Fig. 4 ) depict the results of the 
year 2005, 2010 and 2015. Based on Moran's I, the spatial autocorrelation could be classified into four types 
including HH, LL, HL and LH. The red and blue provinces indicate HH and LL spatial clusters of NGEC, 
respectively. The HH depicts that Shandong and Jiangsu province are two cluster centre of remarkable high 
NGEC in China, and Qinghai province is a cluster centre of low NGEC. Additionally, HH and LL region was 
much stable in the past ten years. So, we would further explore how the spatially socioeconomic drivers cause 
high NGEC in Shandong, Jiangsu, and their surrounding regions.

Replacement Image: LISA-01.jpg

Replacement Instruction: We have uploaded the revised figure to meet the requirements of mapping in China.

2005 0.3159 −0.0345 2.9001 0.0037

2006 0.2516 −0.0345 3.1333 0.0056

2007 0.2534 −0.0345 2.4729 0.0100

2008 0.2508 −0.0345 2.4690 0.0200

2009 0.2399 −0.0345 2.6387 0.0100

2010 0.2982 −0.0345 2.7349 0.0062

2011 0.2226 −0.0345 2.8111 0.0100

2012 0.2287 −0.0345 2.4665 0.0200

2013 0.2498 −0.0345 2.8214 0.0200

2014 0.2481 −0.0345 2.5788 0.0100

2015 0.2482 −0.0345 2.4400 0.0300

Fig. 4

Figure Replacement Requested

LISA agglomeration maps of China's regional NGEC in the years (a) 2005, (b) 2010, (c) 2015.



3.3 Spatial correlations between driving factors and NGEC

According to the prerequisites of the GWR model, we should first test the OLS model of NGEC, which is 
presented in Table 3. The empirical results indicate that all of the independent variables were statistically 
significant at a 95% confidence level, and Variance Inflation Factors (VIFs) was relatively low. The Adjusted-
R2 values indicate that more than 96% of the variation in NGEC can be explained using this model. In general, 
the factors selected in the model were comprehensive and representative, and the fit of the model was high.

We have also observed that the Koenker statistic (BP) was significant, which indicates there was a spatial 
instability between the model-dependent variable and the independent variables. Moreover, this spatial 
instability reduces the fit of the model. Therefore, we set up a GWR model that could accommodate the spatial 

alt-text: Table 3

Table 3

Estimated parameters in the OLS model.

Variables/Year
2005 2010 2015

Coefficient p-value Coefficient p-value Coefficient p-value

lnPS 0.6260 0.000000* 0.6462 0.000000* 0.5716 0.000000*

lnUD −0.0728 0.042311* −0.0580 0.040405* −0.0095 0.004391*

lnPGDP 0.4412 0.000037* 0.3662 0.000117* 0.3617 0.000009*

lnFDI −0.1081 0.033541* −0.0131 0.036560* −0.0247 0.030002*

lnTP 0.0164 0.157231 0.0115 0.25606 −0.0311 0.027016*

lnEI 0.2357 0.000785* 0.2614 0.000243* 0.3813 0.000021*

lnTE 0.4321 0.000000* 0.4370 0.000000* 0.2947 0.000160*

lnNGR −0.0672 0.114338 −0.0516 0.274890 −0.1148 0.018649*

Adj-R2 0.9729 0.9665 0.9707

AICc 18.3831 −8.8646 −0.0264

J-B 0.9190 0.9004 0.4098

K(BP) 0.0335 0.0476 0.0426

NOTES: ‘*’ indicates a p-value of less than 0.05. Adj-R 2  , AIC, J-B, K(BP) are Adjusted R-squared, corrected Akaike Information 
Criterion, the p-value for Jarque-Bera statistic, and p-value for Koenker statistic, respectively.

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though 

the data is the same. To preview the actual presentation, view the Proof.



instability. We found that the corrected Akaike information criterion (AICc) in the GWR model is lower than 
in the OLS model, which means the GWR model performed better than the OLS regression model (Table 4).

According to GWR results, the coefficients which characterised to identify the temporally and spatially 
varying relationships are all collected in  Fig. 5 . Moreover, each box could reflect the spatial distribution of the 
relationships between a specific variable and provincial NGEC, also the positive or negative correlations of 
drivers. We found that, in all provinces of China, PS, PGDP, EI, and TE were positively correlated with 
NGEC, and NGP and UD were negatively correlated with NGEC. Specifically, TP only negatively correlated 
with NGEC in all regions. The top three rankings for elasticity in 2005 and 2010 are PS, PGDP, and TE, while 
EI replaced TE and ranked the third place in 2015, which means that the effect of EI on NGEC has been strong 
since 2015.

alt-text: Table 4

Table 4

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though 

the data is the same. To preview the actual presentation, view the Proof.

Summary of the GWR model output compared with the OLS model.

OLS GWR

Previous version
Expand

Summary of the GWR model output compared with the OLS model.

OLS GWR

Number parameters 8 Number parameters 240

AICc

2005 18.3831

AICc

200520102015 13.1211

2010 −8.8646  2010 −13.6349

2015 −0.0264  2015 −9.4764

Adj-R2

2005 0.9729

Adj-R2

200520102015 0.9866

2010 0.9665  2010 0.9847

2015 0.9707  2015 0.9801

 Neighbours 30

Updated version



4 Discussion

4.1 The spatial impact of energy factors on NGEC

It is known that energy consumption activities will directly influence the growth of NGEC. Policy-makers 
usually regulate the energy consumption activities with two approaches: energy efficiency and energy structure 
( Han et al., 2007 ). Energy intensity (EI) is the main indicator to measure the energy efficiency of a given 
economy, while the energy structure represents the input structure of primary energy in the economy.

We found that EI, of all factors, had a positive and significant correlation with spatial NGEC across all 
provinces from 2005 to 2015 ( Fig. 6 a), which featured the highest growth with time (increasing from 0.17–
0.29 to 0.33–0.42). Also, as indicated in  Fig. 7 , Northern China (0.21–0.25, 0.30–0.33) featured a stronger 
correlation than Central (0.18–0.21, 0.27–0.29) and Western (0.17–0.26, 0.22–0.34) China in 2005 and 2010. 
However, Southern China had a similar effect as Northern China only in 2015. We also observed a trend of 
increasing spatial convergence of EI from 2005 to 2015 ( Fig. 5 ).

Fig. 5

Coefficients of the GWR model for China's provincial NGEC. * The dashed lines indicate the elastic coefficient is zero. Moreover, 
greater than 0 means positive correlation, and vice versa.

Fig. 6
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Accordingly, these findings are meaningful to understand the impact mechanism of EI, and can lead to policy 
implications for future NOx reduction. Energy intensity is closely linked to energy policy and industrial 
structure. In the Northern and Eastern China, the energy-saving technologies and standards are more 
frequently updated thanks to the stringent regulation ( Zhang et al., 2019a ;  Wu et al., 2019 ). Such context of 
policy-making could mobilise more financial investment on improving EI, and also lead to more economic 

Comparison of GWR results among provinces.

Fig. 7

Figure Replacement Requested

Local coefficients of energy intensity (EI).



benefits for the reduction of NOx generations in those regions. On the other hand, China's trend towards green 
development is leading to a transition from high energy-intensity to low energy-intensity, which could take a 
prohibiting effect on NOx generation. Consequently, these factors caused a stronger correlation with NOx 
generation in Northern and Eastern China than the rest of the region.

We found that thermal power plants have a decreasing impact (dropping from 0.40–0.46 to 0.27–0.35) on 
NGEC (Fig. 6b). There is an impact gap of TE between Western China (0.31–0.39) and Eastern China (0.27–
0.31) in 2005 (Fig. 8). China has made ultra-low NOx emission standards for thermal power plants, but the 
implementation of those standards is stricter in Eastern China than in Western China.

Replacement Image: TE-01.jpg

Replacement Instruction: We have uploaded the revised figure to meet the requirements of mapping in China.

Another energy factor NGR, however, has shown a regional differentiation between Northern China (0.13–
0.16) and Southern (0.08–0.10) China. We found that the spatial distribution of NGR significantly correlated 
the spatial distribution of NOx generated significantly in 2015 ( Fig. 9 ), which is significantly different from 
the statistically non-significant result in 2005 and 2010 ( Fig. 6 c) although its effect in 2015 is still weaker than 
other factors. We further observed that Northern China clearly featured a stronger correlation with NGEC than 
other regions.

Fig. 8
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Local coefficients of thermal power generation (TE).

Fig. 9

Figure Replacement Requested
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4.2 The spatial effects of economic factors on NGEC

As economic factors in our model, both PGDP and FDI can represent regional economic development ( Jiang 
et al., 2018 ;  Hille et al., 2019 ). Based on the OLS results, PGDP has been identified as one of the crucial 
factors resulting in NGEC increase ( Amri, 2017 ;  Ding et al., 2017 ), while FDI shows a minor negative effect 
on national NGEC, which is similar to the conclusion of  Jiang et al. (2018) .

However, we observed that GDP growth has always dominantly affected the change of NGEC in China over 
the past ten years ( Fig. 6 d), although such effect is slowly dropping (from 0.37–0.49 to 0.29–0.41). 
Meanwhile, there is a significant spatial correlation effect from PGDP, where a stronger correlation happens in 
Northern and Eastern China ( Fig. 10 ).

Local coefficients of natural gas ratio (NGR) in 2015.
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Comparably, FDI only shows a weak effect (−0.17–0.05) on NGEC ( Fig. 6 e), which worked positively in 
Western China and negatively in Eastern, Northern, Northeast China in 2015 ( Fig. 11 ). Such finding is 
compliant with the “Pollution Haven Hypothesis” ( Hao et al., 2018 ;  Shahbaz et al., 2015 ) when applied to 
Western China (e.g., Xinjiang, Qinghai, Gansu, Sichuan, Yunnan, Chongqing, and Guizhou). There is, 
however, lack of evidence that FDI can lead to more air pollution across all regions. In general, FDI can either 
contribute to the introduction of environmentally-friendly or clean energy technologies in some cases, be 
associated with high pollution industries and cause more energy consumption and NGEC. As a result, it is 
crucial to set up the regionalised environmental regulations towards FDI entry strategies in Western China, 
which shall consider the environmental capacity for the region and the categories of investing industries.
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4.3 The spatial influence of population factors on NGEC

The population factor is the most correlative (0.59–0.67) factor on NGEC, i.e., a bigger population size 
correlated to more NGEC (Diao et al., 2018; Wang et al., 2018; Wang et al., 2017b). We found that PS's effect 
rapidly decreases in China over the past decades (Fig. 6f). We also observe a shift from the east-west 
difference (2005) to the north-south difference (2015) in the relationship between PS and NGEC (Fig. 12).
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Actually, these results bring some meaningful signals to policy-makers. First, the mitigation policy should give 
more attention on the changing relationship in the Southern China, where the increasing NGEC was drifting 
away from the impact of local population size over time, i.e., more people in the region no longer means a 
worse environment. For example, in Guangdong province, the contribution of tertiary industry surpassed the 
secondary industry in 2013. Such upgrading industrial structure has driven the change of the employment 
structure, which means more labour forces shifted from agriculture industry and manufacture industry to the 
service industry. There is a different case in the Beijing-Tianjin-Hebei regions, where PS is still closely linked 
with high EI manufacturing, thus has driven more NGEC from 2005 to 2015. These findings call for further 
research on the nexus of population-urbanization-employment and its impact on industrial structure and NOx 
generation.

4.4 Identifying the spatial differentiation of the impact mechanism

In order to obtain a comprehensive overview of impactors, this section further classified China into six sub-
national control zones of NOx ( Table 5 ) by comparing driving forces on provincial NGEC. We defined the 
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concept of “average regional influence” based the average value of the regression coefficients of these 
provinces in the same region (Xu and Lin, 2018). Based on that, we ranked all the driving factors by their 
impacts on NGEC and took the top three as the dominant factors in every region (Table 5), which should be 
given a priority concern in each NOx control zone.

As mentioned earlier, PS has been always the dominant factor correlating with NGEC over the past ten years 
across all provinces in China. Additionally, we found that there was an evolving spatial-homogeneity of the 
impact mechanism on the NGEC. In 2005, there no apparent spatial difference across Central China, Eastern 
China, Northern China, and Northeast China, where the PGDP led NGEC were more significant than the 
impact of TE, but in Western China and Southern China, TE takes the place of PGDP. In 2010, TE became the 
second important factor instead of PGDP across most regions, other than Northeast China. However, in 2015, 
EI and PGDP ranked second and third across most regions, except for Northeast China. These results clearly 
show the change of dominating driving forces on NGEC over the past years.

Because the impact mechanism varied around China and is very different from the OLS model results, which 
only focus on the homogeneity level. Our research conveys important messages in managing China's NOx 
emission. We know that EI has gradually grown into the dominant factor across all provinces, so the progress 
of EI would become increasingly essential for the control of NOx. Policy-makers should balance well PGDP 

alt-text: Table 5

Table 5

Dominating impact factors of China's  NOx  control zones .

Regions Covered provinces Dominating factors

2005 2010 2015

National scope All PGT PTG PEG

Northeast China Heilongjiang, Jilin, Liaoning PGT PGT PGE

Northern China Beijing, Tianjin, Hebei, Shanxi, Shandong, Henan PGT PTG PEG

Central China Hubei, Jiangxi, Hunan PGT PTG PEG

Eastern China Jiangsu, Anhui, ShanghaiZhejiang PTG PEG PEG

Southern China Fujian, Guangdong, Hainan PTG PTG PGT

Western China Eleven other provinces PTG PTG PEG

*: P represents population scale, G represents GDP per capita, T represents thermal power generation, and E represents energy 
intensity.

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though 
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and energy consumption in the future. Especially, Northeast China should get more attention from policies 
because its energy-intensive industry, such as petrochemical, energy and metallurgical, heavily relies on TE.

4.5 Policy implications

Our findings not only fill in the knowledge gap of the socioeconomic context of NOx generations but also 
generate insights for designing and implementing air quality policies in China.

Firstly, we have observed that China's continuous energy policy of improving energy intensity has a growing 
effect on reducing NOx generation, regardless of regional variety. We thus suggest that it is important to carry 
on stringent regulation on energy intensity due to its synergistic impact on reducing both energy consumption 
and air pollution. These findings are particularly useful to Northern China and Southern China, where energy 
intensity has become the most dominant factor to influence NOx generation.

Secondly, our findings call for a reassessment on the policy to increase natural gas consumption ratio all over 
China. Winter heating and manufacturing industries in Northern China have become a burden for local air 
quality management. In 2015, China initiated a drastic, statewide coal-to-gas initiative, which aimed to 
significantly increase the numbers and scale of natural gas-based power plants and heating facilities, in order 
to reshape energy structure. In July 2019, the initiative was called off and is currently under evaluation. Our 
research contributes to such evaluation because we found that, before this initiative, i.e., during 2005–2015, 
natural gas consumption rate has a strong prohibiting effect over NOx generation only in Northern and 
Northeast China. Such an effect is, however, not strong enough to replace the impact of energy intensity from 
2010 to 2015. Thus, there is no evidence that the coal-to-gas initiative, if carrying on, has a positive effect of 
reducing NOx generation.

Thirdly, our findings are linking the regional economic transition context towards NOx generation. We found 
that Northern China is experiencing a much faster decouple process between GDP growth and NGEC 
comparing with Southern China, but such impact gap has become smaller recently. The significance of such a 
decoupling effect in Northern China is due to the dominant share of energy-intensive industries in those 
regions. In contrast, Guangdong province as part of Southern China, for example, has not been dependent on 
energy-intensive industries in the past decade, and thus shows a different decoupling curve with NGEC (Wu et 
al., 2017) than Northern China. Such location-specific and spatially varying finds are different from previous 
studies which mainly implicitly presumed that economic development for all provinces has an unvarying 
impact on NOx (Diao et al., 2018; Ge et al., 2018; Zhang et al., 2019b).

4.6 Uncertainty analysis

To examine the reliability of our results and the uncertainty of data, we conducted a preliminary uncertainty 
analysis outlined below. In this study, the uncertainty is mainly associated with the estimated NGEC, 
socioeconomic determinants and the modelling. First, NGEC was calculated by the bottom-up emission 
methods (Eq. (1)): count various types of energy consumption in various industries, and this could avoid 
double-counting about non-fuel use of energy, for example, NOx generated during the production process. 
This estimating method has been accepted by the academic and widely used in the previous study. Moreover, 



NOx generation factor, distinguished by different economic sectors and energy types, was obtained from the 
previous studies (Kato and Akimoto, 1992; Hao et al., 2002) and it has been widely applied in many studies (
Tian et al., 2001; Gao et al., 2006; Jiang et al., 2016), which could prove it reliable and scientific. Meantime, 
NOx generation factors can cause the uncertainty of the estimated NGEC. NOx generation factor was 
measured by actual measurement, which may cause additional uncertainty due to differences in the accuracy of 
the actual measurements. Second, uncertainties and errors associated with socioeconomic determinants (Table 
1) may stem from officially published statistical yearbooks in China (Bai et al., 2018), for example, statistics 
might exist deviation in the statistical process. Third, as we know, models are simplified representations of 
real-world systems; they typically do not always mimic actual conditions. Variables used for modelling would 
introduce potential uncertainties. For example, uncertainty in the variability of urban density results from 
spatial data accuracy. Meanwhile, for the uncertainties of modelling, although models with high explanatory 
power and the significances of most variables reached the level of <0.05, Residual Sum of Squares still exists, 
and thus models carried some uncertainties.

5 Conclusions

The control on NOx generation is centring now in China's air pollution policy system because of its increasing 
concern about air quality. Considering the limitation of the OLS model on estimating the spatial agglomeration 
of NOx, this study applied the geographically weighted regression (GWR) model to analyse nonstationary 
spatial effects, including the spatial difference and spatial agglomeration of EI, clean energy structure, FDI, 
economic growth, and the effect of PS on NGEC. We observed that NGEC presents an increasing spatial 
heterogeneity varying from Northeast China to Southern China. The spatial aggregation with the highest NOx 
generation clearly concentrated in Shandong, Jiangsu, and its surrounding areas were shown.

We found that energy intensity has always shown a strong and positive correlation with spatial difference and 
agglomeration of NGEC over the past years, especially in Northern and Northeast China. Thermal power 
plants as an important contributor have a decreasing impact on NGEC, but there still keep the impact gap 
between Western and Eastern China. Differently, the spatial distribution of another energy factor, nature gas 
shares, freshly correlated the spatial NOx generation only in 2015 and featured by a south-north gap. Usually, 
PGDP of economic development often plays a crucial role in NGEC. However, we found that it did not always 
work this way because of its west-east difference of spatial correlation. However, the GWR model results 
show that another economic factor FDI correlated NGEC only positively in Western China and but negatively 
in Eastern, Northern, Northeast China in 2015. Moreover, the size of the PS in Northern and Northeast China 
shows positively correlated to high NGEC, although its effect was dropping across the last ten years. However, 
it did not happen in Southern China, including Guangdong province, which resulted mostly from the shift of 
labour force across the industry sector, which could affect the NGEC generation downward.
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