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Abstract

Emissions	of	NOx,	a	precursor	 to	several	atmospheric	pollutants,	are	a	crucial	aspect	of	air	pollution	 in	China,	which	 is	closely	related	 to	 its	booming	economy	and	high	energy	consumption.	However,	 few	studies

explore	 the	 economic	 structure	 factors	 on	NOx	emissions	 from	energy	 consumption,	 especially	 the	 spatial	 heterogeneity	 of	 economic	drivers.	 To	bridge	 the	knowledge	gap,	 this	 study	adopts	 a	 structural	 decomposition

analysis	 (SDA)	to	quantify	and	map	the	contributions	of	six	drivers	of	China's	NOx	emissions	 from	energy	consumption	(NEEC)	between	2007	and	2012,	which	represent	economic	scale,	economic	structure,	and	energy

consumption	patterns.	For	China	as	a	whole,	the	final	demand	scale	and	energy	intensity	factors	increased	NEEC,	whereas	economic	structure	factors	showed	an	inhibiting	effect.	However,	the	change	in	provincial	NEEC	due

to	the	production	structure	and	product	mix	of	the	final	demand	varied	in	a	large	interval.	A	negative	production	structure	accompanying	a	positive	final	demand	product	mix	led	to	NEEC	growth	in	metropolises	like	Beijing

and	Shanghai.	Provincial	disparities	were	dramatic	within	economic	regions	in	eastern	China,	including	the	northwest,	north	coast,	east	coast,	and	south	coast	regions.	These	findings	indicate	that	spatially	differentiated

economic	structure	and	economic	growth	diversely	featured	the	driving	mechanism	on	provincial	NOx	emissions,	which	should	be	generally	considered	to	make	the	different	regional	reduction	policies	in	the	future.



Nomenclature
Abbreviations

NOx

Nitrogen	oxides

NEEC

NOx	emissions	from	energy	consumption

SDA

Structural	decomposition	analysis

IDA

Index	decomposition	analysis

LMDI

Logarithmic	Mean	Divisia	Index

FYP

Five-Year	Plan

MIOTs

Monetary	input-output	tables

ISC

Index	of	sectoral	contribution

Symbols

Q

The	calculated	NEEC

N

NOx	emissions	coefficients	by	sector

S

Energy	intensity,	the	energy	consumption	per	unit	of	the	total	sectoral	output

X

Total	output

L
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Leontief	inverse	matrix

Y

Final	demand	matrix	by	sector

M

Final	demand	structure

F

Final	demand	composition

G

Final	demand	scale

1	Introduction
In	recent	decades,	China's	booming	economy	has	resulted	in	severe	environmental	pollutant	emissions,	particularly	of	nitrogen	oxides	(NOx),	which	cause	direct	damage	to	organism	health	and	contribute	to	the	formation	of

photochemical	smog,	acid	rain,	and	fine	particulates,	including	PM2.5	and	PM10	(Lin	et	al.,	2010;	Hao	et	al.,	2002).	Thus,	NOx	is	a	key	element	of	air	pollution	control.	Moreover,	NOx	inventories	have	shown	that	the	source	of	NOx

emissions	in	China	is	complicated,	mainly	including	multiple	energy-intensive	industries,	e.g.,	electricity	generation,	industry,	and	transportation	(Hao	et	al.,	2002;	Ohara	et	al.,	2007;	Fu	et	al.,	2013;	Zhao	et	al.,	2013;	Zheng	et	al.,

2009;	Qi	et	al.,	2017),	 and	 its	 concentration	 correlates	with	 socio-economic	development	 (Hao	et	al.,	2002;	Fu	 et	 al.,	 2013;	 Zheng	 et	 al.,	 2009;	Qi	 et	 al.,	 2017;	 Jiang	 et	 al.,	 2016).	Hence,	 understanding	NOx	 emissions	 from	 the

perspective	of	economic	activities,	as	a	complement	to	the	improvement	of	end-of-pipe	treatment,	is	crucial.

It	has	been	widely	verified	that	both	emissions	and	concentrations	of	NOx	are	correlated	with	or	influenced	by	several	aspects	of	socio-economic	development	by	econometric	methods	and	index	decomposition	analysis	(IDA).

Overall,	economic	growth	is	the	most	crucial	factor	for	changes	of	NOx	emissions	(Diao	et	al.,	2016,	2018;	Ding	et	al.,	2017;	Lyu	et	al.,	2016;	Wang	et	al.,	2018;	Xu	et	al.,	2019)	and	concentration	(He	and	Wang,	2012;	Luo	et	al.,	2014).

Moreover,	a	few	studies	take	the	economic	structure	and	industrial	sectors	 into	account,	the	effect	of	which	varies	spatiotemporally	and	has	become	more	important	 in	recent	years	(Ding	et	al.,	2017).	Luo	et	al.	 (2014)	 verify	 the

quadratic	relationship	between	NO2	concentration	and	the	per	capita	output	of	secondary	and	tertiary	industry	with	the	stationary	point	showed	at	a	rather	high	output	level.	Wei	et	al.	(2018)	regress	NOx	emissions	on	variables	of

China's	energy	production	and	consumption	and	conclude	that	the	major	socio-economic	sources	are	coal	consumption,	coke	production,	power	generation,	and	car	ownership.	He	and	Wang	(2012)	include	capital-abundance	ratio	as	an

indicator	of	economic	structure	in	the	EKC	model	and	indicate	the	factor	could	directly	affect	the	relationship	between	pollutant	emissions	and	the	income.	Within	this	strand	of	literature,	other	main	influencing	factors	studied	include

urbanization	(Ge	et	al.,	2018;	Xu	et	al.,	2019),	population	scale	(Xu	et	al.,	2019;	Lyu	et	al.,	2016;	Wang	et	al.,	2018),	spatial	structure	of	population	(Wang	et	al.,	2018),	sectoral	outputs	(Wei	et	al.,	2018),	production	structure	(Lyu	et	al.,

2016),	degree	of	economic	openness	(He	and	Wang,	2012),	energy	efficiency	(Xu	et	al.,	2019;	Ding	et	al.,	2017;	Lyu	et	al.,	2016),	and	technology	improvement	(Ding	et	al.,	2017).

Structural	Decomposition	Analysis	(SDA),	with	higher	data	requirements	for	the	input–output	table,	performs	more	advanced	and	detailed	decomposition	of	the	economic	structure;	thus,	it	can	capture	both	direct	and	indirect

effects	(Hoekstra	and	Van	den	Bergh,	2003).	For	China	as	a	whole,	studies	have	been	conducted	to	understand	the	driving	factors	of	NOx	emissions	by	SDA,	with	studied	periods	lying	between	1995	and	2012	(Chen	et	al.,	2019;	Liu	and

Liang,	2017;	Xie	et	al.,	2018;	Xu	et	al.,	2017;	Zhang	et	al.,	2015).	Three	of	the	studies	decompose	the	total	pollutant	emissions	(including	NOx)	(Chen	et	al.,	2019;	Xie	et	al.,	2018)	or	the	NOx	emissions	multiplier	(Liu	and	Liang,	2017)

other	than	NOx	emissions.	In	general,	economic	scale	effect	contributes	to	the	emissions	growth	(Chen	et	al.,	2019;	Xie	et	al.,	2018;	Xu	et	al.,	2017;	Zhang	et	al.,	2015).	Factors	that	inhibited	China's	NOx	emissions	previously	are

mainly	related	to	technical	progress,	including	the	end-of-pipe	facilities	(Zhang	et	al.,	2015),	phasing	out	of	backward	capacity	(Zhang	et	al.,	2015),	and	energy	intensity	(Xu	et	al.,	2017;	Xie	et	al.,	2018).	However,	economic	structure,

as	measured	by	the	change	of	Leontief	inverse	matrix,	shows	varied	influences	during	different	periods	and	among	the	models	(Xu	et	al.,	2017;	Zhang	et	al.,	2015;	Xie	et	al.,	2018).

Evidence	from	provincial	analyses	demonstrates	potential	regional	differences	in	the	driving	mechanism	of	NOx	emissions.	Unlike	other	studies	in	which	economic	growth	was	predominant	to	NOx	emissions,	a	case	study	in

Beijing	concluded	that	the	population	was	the	main	driving	factor	(Zhang	et	al.,	2015).	Furthermore,	economic	structure,	both	production	structure	effect	and	final	demand	structure	effects,	shows	opposite	influence	on	NOx	emissions

of	Beijing	and	Sichuan	(Zhang	et	al.,	2015;	Liu	et	al.,	2018).

Compared	with	most	developed	countries,	regional	heterogeneity	is	a	novel	feature	of	China	(Meng	et	al.,	2011),	typified	by	vast	spatial	disparities	in	physical	geography	and	socio-economic	development	(Dong	et	al.,	2015;



Dong	et	al.,	2015;	Kanada	et	al.,	2013).	Taking	China	as	a	whole	may	lead	to	overlooking	the	internal	difference	and	drawing	a	misleading	conclusion	(Wei	et	al.,	2018).	Therefore,	to	understand	the	specific	problem	in	China,	it	is

crucial	to	consider	these	spatial	disparities.

Since	the	12th	Five-Year	Plan	(FYP)	(2011–2015),	NOx	has	been	included	in	major	indicators	of	environmental	protection	by	the	Chinese	government.	In	China's	current	top-down	target	system	for	NOx	emissions	reduction,	the

national	reduction	target	is	directly	broken	into	provincial	targets	based	on	provincial	air	quality	goals	(The	State	Council	of	the	People's	Republic	of	China,	2011,	2016).	In	this	context,	efforts	to	reduce	NOx	emissions	should	be

addressed	at	both	national	and	provincial	scales.	The	lack	of	connection	between	reduction	targets	and	local	economic	policymaking	conditions	may	cause	a	discrepancy	between	the	two	parts	and	result	in	difficulties	in	achieving

provincial	and	national	reduction	targets.	To	solve	this	issue,	the	relationship	between	NOx	emissions	and	economic	development,	as	well	as	energy	consumption,	must	first	be	comprehensively	understood.

Some	first	attempts	to	understand	the	spatial-temporal	disparities	of	the	driving	forces	behind	energy	consumption	or	emissions	have	been	conducted	by	so-called	multi-country	temporal	analysis,	which	compares	independent

decompositions	of	each	country	(Ang	et	al.,	2016).	This	analysis	has	recently	been	applied	to	study	changes	in	energy	consumption	(Yu	et	al.,	2019),	CO2	emissions	(e.g.	Yan	et	al.,	2016;	Liu	et	al.,	2012a;	Liu	et	al.,	2012b)	and	PM2.5

(Zhang	et	al.,	2019).	For	NOx	emissions,	regional	disparity	analysis	of	driving	forces	remains	limited,	with	the	few	first	attempts	performed	only	by	Logarithmic	Mean	Divisia	Index	(LMDI)	analysis	(Diao	et	al.,	2016;	Ding	et	al.,	2017),

which	cannot	effectively	evaluate	 the	 indirect	 influence	of	production	structure	and	demand	structure	changes.	To	 the	best	of	our	knowledge,	 the	drivers	of	China's	NOx	emissions	on	a	provincial	 scale	have	not	been	adequately

quantified	and	compared,	particularly	regarding	economic	structural	factors.

This	study	aims	to	address	this	knowledge	gap	by	decomposing	and	comparing	the	drivers	of	NOx	emissions	from	energy	consumption	(NEEC)	in	30	provinces	in	China	between	2007	and	2012	by	adopting	the	SDA	model.	This

includes	the	drivers	of	final	demand	scale,	production	structure,	product	structure	of	the	final	demand,	final	demand	composition,	energy	intensity,	and	sectoral	emissions	coefficients.	As	a	result,	the	driving	mechanisms	of	NEEC	in

eight	economic	regions	of	China	are	identified,	which	can	provide	a	reference	for	future	regional	NOx	reduction.	The	main	contribution	of	this	research	is	twofold:	(i)	the	contribution	of	production	structure,	final	demand	structure,

final	demand	scale,	and	energy	consumption	patterns	to	NEEC	changes	in	30	Chinese	provinces	during	the	economic	transition	period	is	quantified	and	mapped;	(ii)	this	research	is	unique	in	introducing	a	three-scope	analysis	to

understand	the	drivers	of	China's	NOx	emissions;	i.e.,	national,	economic–regional,	and	provincial	analysis,	which	can	help	improve	the	setting	of	top-down	NOx	reduction	goals	in	China.

2	Methods	and	data
2.1	Structural	decomposition	analysis

The	input–output	model	has	been	widely	used	 in	various	empirical	analyses.	 It	can	fully	portray	the	relationship	between	economic	sectors,	 the	technological	situation,	and	demand	patterns	 in	the	economy.	Therefore,	 the

structural	decomposition	method,	which	 is	based	on	 the	 input–output	model,	has	become	a	powerful	 tool	 for	 identifying	how	various	 factors	 in	 the	economic	system	are	related	 to	each	other	and	how	they	affect	 important	policy

objectives	(Miller	and	Blair,	1985).	In	this	study,	an	SDA	model	was	constructed	to	incorporate	national	and	provincial	analyses	of	China	into	a	consistent	framework.	Six	drivers	of	NEEC	changes	are	identified	and	calculated.	Table	1

shows	a	conceptual	framework	of	the	environmental–economic	input–output	model.	NEEC	can	be	described	and	calculated	as:

Where	Q	 is	NEEC	(104 t);	N	 (1 × n	column)	 indicates	 the	NOx	emissions	coefficients	by	 sector,	whose	element	nj	 represents	 the	NOx	emissions	per	unit	 energy	 consumption	by	 sector	 j	(104 t/tce);	and	S	 (n × n	 diagonal	matrix)	 is

the	energy	intensity	of	each	sector,	whose	diagonal	element	sj	represents	the	energy	consumption	per	unit	of	the	total	output	by	sector	j	(tce/104	CNY).	Under	the	input–output	model	(Miller	and	Blair,	1985),	the	total	output,	X,	can	be

described	as:

Table	1	Conceptual	framework	of	the	environmental–economic	input–output	model	used	in	this	research.

alt-text:	Table	1

Intermediate	output Final	demand Total	outputs

Intermediate	input AX Y X

Total	inputs X

NEEC NSX

The	n × 1	column	vector	X	indicates	each	sector's	total	output	(104	CNY).	The	n × n	matrix	(I−A)−1	is	the	Leontief	inverse	matrix,	which	represents	the	total	inducement	from	final	unit	demand	or	total	output	induced	by	the	unit

Q = NSX, (1)

(2)



final	demand.	The	n × 1	column	vector	Y	indicates	each	sector's	final	demand	(CNY)	and	can	be	further	decomposed	into	the	following	form:

Where	 the	 n × 3	 matrix	 M	 indicates	 the	 final	 demand	 structure,	 and	 elements	 of	 mkj	 represent	 the	 share	 of	 the	 final	 domestic	 product	 used	 from	 sector	 j	 in	 final	 demand	 category	 k,	 including	 consumption,	 fixed	 capital

formation,	and	net	outflow.	The	3 × 1	column	F	represents	the	final	demand	composition,	and	element	fk	represents	the	ratio	of	the	final	demand	category	k	to	the	total	final	demand	for	domestic	products.	G	represents	the	final	demand

scale	(104	CNY).

Using	L	to	represent	the	Leontief	inverted	matrix	and	combining	the	sectoral	emission	coefficients,	N,	energy	intensity,	and	S,	and	by	incorporating	Eq.	(2)	into	Eq.	(1),	the	NOx	emissions	from	energy	consumption,	Q	(in	tons),

can	be	described	by	Eq.	(4):

Changes	in	NEEC	through	the	years	can	be	represented	by	Eq.	(5):

The	notation	ΔQ	indicates	the	change	in	NEEC,	and	the	subscripts	t	and	0	denote	the	years	of	2012	and	2007,	respectively.	Follow	the	technique	of	two	polar	decomposition	(Dietzenbacher	and	Los,	1998;	Zhang,	2009),	ΔQ	is	then

decomposed	as	shown	in	Table	2.

Table	2	Decomposition	equation	of	ΔQ.
alt-text:	Table	2
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Finally,	the	total	change	in	NEEC	can	be	expressed	as:

Based	on	the	results	obtained	by	Eq.	(5),	we	can	quantify	the	impact	of	different	factors	on	NOx	emissions	during	the	study	period.	 , , , , and	 indicate	changes	in	NOx	emissions	due	to	the	sectoral

emissions	coefficients	factor,	energy	intensity	factor,	production	structure	factor,	production	mix	of	the	final	demand	factor,	final	demand	composition	factor,	and	final	demand	scale	factor,	respectively.

The	six	factors	are	categorized	into	three	effects:	the	economic	scale	effect,	the	economic	structure	effect,	and	the	energy	consumption	pattern	effect	(Fig.	1).	The	economic	scale	effect	only	contains	the	final	demand	scale

factor	( ).	In	the	economic	structure	effect,	the	production	structure	( ),	product	mix	of	the	final	demand	( ),	and	final	demand	composition	( )	factors	are	considered.	The	energy	consumption	pattern	effect	includes

the	energy	intensity	factor	( )	and	sectoral	emissions	coefficients	factor	( ).	Additionally,	according	to	the	production	side	and	demand	side,	the	production	structure	factor	captures	the	flow	of	intermediate	products	in	various

sectors	of	production.	The	final	demand	scale	factor,	production	mix	of	the	final	demand	factor,	and	final	demand	composition	factor	capture	the	economic	drivers	of	NEEC	from	the	demand	side.

Y = MFG, (3)

Q = NSLMFG. (4)

(5)

		ΔQ

		 	 		 	 		 	 		ΔQN

		 	 		 	 		ΔQS

		 	 		 	 		ΔQL
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		 	 		 	 		ΔQF

		 	 		 	 		ΔQG

(6)
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2.2	Data	source
The	monetary	input-output	tables	(MIOTs)	of	the	nation	and	30	provinces	for	2007	and	2012	were	obtained	from	the	National	Bureau	of	Statistics	of	China.	One	mainland	province,	Tibet,	as	well	as	Taiwan,	Hong	Kong,	and

Macao	are	not	included	because	of	the	lack	of	data.	Also,	due	to	the	data	availability,	we	rely	on	the	2007	and	2012	MIOTs,	which	have	the	most	recent	data	that	can	be	obtained.	To	match	the	sectoral	energy	consumption	data,	MIOTs

with	42	 sectors	were	consolidated	 into	 seven	 sectors;	 a	 summary	of	 sector	 integration	 is	 shown	 in	Table	S1,	 Supplementary	Material.	Monetary	data	 for	 2007	 and	2012	were	 converted	 into	 constant	 prices	 using	 the	GDP	 index,

assuming	2007	as	the	base	year	(Xu	et	al.,	2017).	The	GDP	index	used	in	this	study	is	a	product	of	the	GDP	indices	of	2008–2012	(PY = 100),	which	were	obtained	from	the	corresponding	periods	in	the	China	Statistical	Yearbook.	The

data	in	China's	MIOTs	include	domestic	and	imported	data.	In	order	to	avoid	exaggerating	the	environmental	impact,	the	imported	goods	and	services	in	both	the	intermediate	consumption	and	final	consumption	were	separated	from

the	MIOTs,	which	is	consistent	with	the	methods	of	previous	studies	(Zhang	et	al.,	2015;	Weber	et	al.,	2008).	This	new	IO	table,	with	new	intermediate	demand	matrices	and	final	demand	vectors,	is	termed	noncompetitive	MIOTs	(Liu	and

Liang,	2017).	Sectoral	emissions	coefficients	(N	in	Eq.	(3))	are	calculated	based	on	China's	sectoral	energy	consumption	data	of	2007	and	the	NOx	emission	factors	by	energy	type	and	industrial	sector	presented	by	Kato	and	Akimoto

(1992).	The	energy	intensity	factor	(S	in	Eq.	(3))	is	calculated	from	the	energy	consumption	data	and	the	total	output	of	various	sectors.	The	energy	consumption	data	were	collected	from	China	Energy	Statistical	Yearbooks	of	2008	and

2013.

3	Results
3.1	Overview	of	NEEC	and	decomposition	results

Between	2007	and	2012,	China's	NEEC	aggregated	from	the	30	provinces	grew	from	3050 × 104 t	to	4296 × 104 t.	An	increase	in	NEEC	was	observed	in	all	provinces	except	Beijing.	However,	the	amount	of	NEEC	and	its	growth

varied	significantly	among	the	30	provinces	(Fig.	2).	In	2007,	the	smallest	and	largest	emitters	were	Hainan	(9 × 104 t)	and	Shandong	(314 × 104 t),	respectively.	In	2012,	the	smallest	and	largest	emitters	were	Qinghai	(16 × 104 t)	and

Shandong	(411 × 104 t),	revealing	a	larger	gap	between	the	two.	Moreover,	provinces	with	a	growth	rate	over	80%	included	Xinjiang	(109%),	Hainan	(100%),	Ningxia	(92%),	Shaanxi	(88%),	and	Inner	Mongolia	(86%).	Inner	Mongolia

was	one	of	the	top	emitters,	Xinjiang	and	Shaanxi	were	moderate	emitters,	and	Hainan	and	Ningxia	were	lesser	emitters.	Also,	the	top	10	emitters	remained	the	same	during	all	five	years;	these	included	Shandong,	Hebei,	Jiangsu,

Guangdong,	Henan,	Inner	Mongolia,	Liaoning,	Zhejiang,	Shanxi,	and	Hubei,	which	are	all	eastern	coastal	provinces	and	their	neighbors.

Fig.	1	Diagram	of	the	structure	decomposition	model.

alt-text:	Fig.	1



Decomposition	results	are	shown	in	Table	S2,	Supplementary	Material.	From	2007	to	2012,	China's	NEEC	increased	by	30%.	The	main	driver	was	the	final	demand	scale,	which	led	to	an	increase	of	27%	(Fig.	3).	The	energy

consumption	pattern	effect,	combining	energy	intensity	and	the	sectoral	emissions	coefficients	factor,	was	the	second	largest	driver	of	NEEC	increases,	with	a	contribution	of	23%.	Moreover,	all	three	components	of	economic	structure

factors	partly	offset	NEEC	growth.	Holding	other	factors	constant,	the	production	structure	factor,	the	product	mix	of	the	final	demand	factor,	and	final	demand	composition	factor	would	lead	to	an	NEEC	decrease	of	14%,	4%,	and	2%,

respectively.

Fig.	4	shows	maps	of	the	decomposition	results	of	each	province.	Each	map	illustrates	the	contribution	of	each	factor	to	the	percentage	change	of	provincial	NEEC;	i.e.,	the	rate	of	NEEC	change	by	specific	factors	compared	to

2007.	Shades	of	red	represent	a	positive	contribution	of	the	factor	to	local	NEEC	increases,	and	shades	of	blue	indicate	a	contribution	to	local	NEEC	decreases.	The	shades	indicate	the	variation	in	the	factor's	contributing	ability	to

local	NEEC	changes.	Provinces	in	darker	shades	have	higher	contributions	from	that	factor,	and	vice	versa.	At	the	provincial	level,	the	final	demand	scale,	energy	intensity,	and	production	structure	factors	were	more	prominent	than

the	other	three	factors.	From	the	perspective	of	geographical	distribution,	the	final	demand	scale	factor	and	energy	intensity	factor	led	to	an	NEEC	increase	in	most	provinces,	whereas	the	performance	of	the	other	four	factors	was

geographically	heterogeneous,	which	is	discussed	in	detail	in	the	following	subsections.

Fig.	2	Geographical	distribution	of	China's	NEEC	in	2007	and	2012.
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Fig.	3	Contributions	of	driving	factors	to	national	NEEC	changes	from	2007	to	2012.
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3.2	Contribution	of	the	economic	scale,	economic	structure,	and	energy	consumption	patterns	to	national	and	provincial	NEEC
changes

The	economic	scale	effect	is	represented	by	the	impact	of	the	final	demand	scale	on	NEEC.	The	increase	in	the	final	demand	scale	is	a	major	factor	in	China's	NOx	growth	over	2007–2012,	contributing	to	an	increase	in	NEEC

of	774 × 104 t.	A	similar	impact	of	final	demand	has	been	found	by	Zhang	et	al.	(2015)	and	Xu	et	al.	(2017).	At	the	provincial	level,	the	economic	scale	effect	promotes	NEEC	in	most	provinces	(26	out	of	30),	except	Tianjin,	Hebei,	Jilin,	and

Guangdong.	However,	regional	disparities	reveal	a	greater	impact	on	NEEC	in	inland	provinces	than	in	coastal	provinces	(Fig.	4).	In	addition,	the	contribution	to	NEEC	was	significant	in	Ningxia,	Beijing,	and	Hainan,	which	was	mainly

due	to	their	low	initial	emissions.

The	economic	structure	effect	includes	three	factors:	the	production	structure	factor,	the	product	mix	of	the	final	demand	factor,	and	the	final	demand	composition	factor.	For	China	as	a	whole,	the	production	structure	factor

inhibited	NEEC	growth	from	2007	to	2012,	which	is	generally	in	line	with	the	result	of	Xu	et	al.	(2017).	Sectoral	changes	behind	this	phenomenon	are	twofold:	(1)	to	produce	one	unit	of	overall	final	demand,	the	requirements	of	three

input	sectors,	electric	and	thermal	power	generation,	agriculture,	and	industry,	decrease;	(2)	the	overall	input	requirements	reduced	to	produce	one	unit	of	final	demand	of	the	construction	sector	and	the	sales	and	catering	sector.

According	to	provincial	results,	the	inhibitory	effect	in	Beijing	(−138%)	was	most	significant,	followed	by	Hainan	(−52%),	Ningxia	(−35%),	Chongqing	(−26%),	and	Shanghai	(−26%).	The	promoting	effect	was	most	prominent	in	Jilin

(46%),	followed	by	Hebei	(35%),	Jiangxi	(28%),	Hubei	(26%),	and	Shandong	(25%).	The	production	structure	factor	inhibited	and	promoted	NEEC	to	a	lesser	extent	in	the	other	ten	provinces.

The	production	structure	factor	represents	the	influence	of	Leontief	inverse	matrix	changes,	which	reflect	the	efficiency	and	technological	situation	of	the	economy	(Liang	et	al.,	2016a,b	Wang	et	al.,	2014a,	2014b).	As	technology

progresses,	the	production	structure	factor	could	lead	to	opposite	changes.	Technological	improvement	in	one	sector	could	conserve	more	input	from	upstream	sectors	(Liang	et	al.,	2016a,b)	but	could	also	lead	to	product	upgrades,

requiring	more	input	from	other	sectors	(Zhang	et	al.,	2015).	Considering	the	comprehensive	interaction	between	economic	sectors	in	different	economies,	the	reasons	behind	the	diverse	performance	might	be	quite	different	(Plank	et

al.,	2018).	Taking	Shanghai	as	an	example,	as	one	of	the	most	industrialized	cities	in	China,	an	economic	transformation	occurred	as	the	economic	focus	shifted	from	industry	to	services.	In	contrast,	production	structure	changes	led	to

a	dramatic	increase	of	NEEC	in	Hebei	and	Shandong	because	the	industry	remains	the	leading	economic	sector	during	rapid	development	in	these	provinces.

The	impact	of	product	mix	of	final	demand	factor	was	complex	and	related	to	the	product	demand	shift	of	each	category	of	final	demand	(Zhang	et	al.,	2015).	This	factor	led	to	a	national	NEEC	decrease	of	4%	from	2007	to	2012.

In	16	provinces,	this	factor	showed	an	inhibitory	effect	on	NEEC,	which	varied	from	−25%	to	−2%,	with	an	average	of	−10%.	Geographically,	five	of	the	16	provinces	are	in	the	north,	seven	are	coastal	provinces	in	the	east	and	south,

and	four	are	southern	inland	provinces.	The	other	14	provinces	are	mainly	in	the	central-inland	area,	where	the	product	mix	of	final	demand	promoted	NEEC,	with	the	contribution	ranging	from	0.22%	to	20%,	except	for	an	extremely

high	effect	in	Beijing	(56%).

The	final	demand	composition	factor	decreased	national	NEEC	by	2%.	Similarly,	at	the	provincial	scale,	final	demand	composition	played	a	less	prominent	role	than	the	other	two	structure	factors,	with	its	contribution	varying

between	−5%	and	17%.	This	factor	inhibited	NEEC	growth	in	14	provinces	and	promoted	NEEC	growth	in	the	other	16	provinces.	Moreover,	the	geographical	distribution	of	these	two	groups	of	provinces	was	more	scattered	than	for

Fig.	4	Contributions	of	six	factors	to	provincial	NEEC	changes	from	2007	to	2012.
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the	product	mix	of	final	demand	factor	(Fig.	4).	The	final	demand	composition	indicates	the	contribution	of	all	six	components	to	the	final	demand,	including	the	consumption	expenditure	of	rural	residents,	urban	residents,	and	the

government	and	 the	 investment	 including	gross	 fixed	capital	 formation,	 inventory,	and	export.	As	 the	six	components	relate	 to	different	 types	of	goods	and	services,	changing	 the	combination	could	 indirectly	 influence	 the	NEEC

through	the	supply	chain	(Zhang	et	al.,	2015).	During	the	study	period,	the	share	of	the	total	final	consumption	expenditure	decreased	in	24	out	of	30	provinces.	In	addition,	the	share	of	exports	saw	the	most	significant	change,	which

was	generally	in	the	same	direction	as	the	final	demand	composition	factor	for	the	whole	country	as	well	as	26	out	of	30	provinces,	which	may	indicate	the	universal	importance	of	external	trade	in	NEEC	changes	in	recent	years.

From	the	perspective	of	the	energy	consumption	pattern	effect,	the	energy	intensity	factor	represents	the	influence	of	the	change	in	energy	consumption	per	unit	of	total	output.	This	factor	increased	the	national	NEEC	by	26%

during	the	study	period.	At	the	provincial	scale,	this	factor	inhibited	provincial	NEEC	growth	only	in	Beijing	(−43%),	Jiangxi	(−27%),	Hunan	(−15%),	Shanghai	(−12%),	Zhejiang	(−7%),	Hubei	(−5%),	and	Jilin	(−5%).	In	the	other	23

provinces,	the	energy	intensity	factor	promoted	NEEC	growth	to	different	extents,	from	2%	to	49%.	Similar	results	of	the	promoting	emissions	impact	of	the	energy	intensity	factor	have	also	been	found	in	previous	studies.	Specifically,

Shi	et	al.	(2014)	found	that	the	energy	intensity	factor	inhibited	NOx	emissions	in	China	from	1990	to	2000;	however,	it	increased	emissions	during	2000	and	2010	(Weber	et	al.,	2008).	Xu	et	al.	(2017)	reported	that	the	energy	intensity

factor	decreased	NOx	emissions	from	2005	to	2010,	but	it	has	had	almost	zero	impact	from	2010	to	2012.	The	generally	negative	performance	of	the	energy	intensity	factor	observed	in	recent	years	could	be	related	to	the	so-called

rebound	effect,	whereby	energy	efficiency	improvements	may	lead	to	increased	consumption,	offsetting	the	energy	saving	due	to	increased	efficiency	(Baiocchi	and	Minx,	2010).

The	sectoral	emissions	coefficients	factor	is	the	other	factor	reflecting	energy	consumption	patterns.	The	original	NOx	emissions	coefficients	are	related	to	specific	sectors	and	energy	types,	which	are	consistent	among	the

provinces	for	all	five	years.	In	the	SDA	model	we	adopted,	the	coefficients	matrix	is	a	row	vector,	in	which	each	element	represents	the	weighted	average	coefficient	of	a	specific	sector.	Thus,	the	performance	of	the	sectoral	emissions

coefficients	factor	reflects	the	way	an	economy	consumes	energy.	However,	between	2007	and	2012,	the	impact	of	this	factor	was	minimal,	with	a	contribution	of	−4%	to	the	national	NEEC.	For	most	provinces,	contributions	were

between	−4%	and	12%,	except	for	those	of	Beijing	(−11%)	and	Hainan	(24%).

4	Discussion
China	is	a	large	country	with	various	resources,	energy	endowments,	and	economic	characteristics	(Meng	et	al.,	2011),	which	directly	influence	NEEC.	Additionally,	spatial	dependence	exists	in	the	economic	development	and

pollutant	emissions	characteristics	of	China	(Li	and	Hou,	2003);	thus,	the	drivers	of	NEEC	must	be	further	studied	within	sub-regions.	This	study	adopted	the	classification	proposed	by	the	Development	Research	Center	of	the	State

Council,	which	separates	the	31	mainland	provinces	in	China	into	eight	economic	regions	(Fig.	5).	Within	each	region,	the	provinces	are	geographically	adjacent	and	share	similarities	in	natural	conditions,	resource	endowment,	and

socio-economic	characteristics	(Li	and	Hou,	2003).

According	to	Fig.	5,	inequalities	appeared	both	in	the	regional	distribution	of	NEEC	and	between	the	economic	scale	and	NEEC	in	specific	regions.	As	the	upper	doughnut	chart	in	Fig.	5	shows,	the	NEEC	contribution	by	each

Fig.	5	Geographical	distribution,	the	share	of	NEEC,	and	share	of	GDP	for	eight	economic	regions.
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region	was	rather	stable,	with	less	than	2%	variation.	Interestingly,	the	three	coastal	regions,	which	emitted	on	average	39%	of	the	national	NEEC,	contributed	54%	to	China's	economy.	The	northeast	region	and	middle	Yellow	River

region	contributed	21%	to	the	economy	and	36%	of	the	national	NEEC.	The	other	three	regions,	located	in	middle	and	west	China,	contributed	almost	equally	to	the	NEEC	and	GDP.

Fig.	6	shows	the	decomposition	results	of	each	province	grouped	by	economic	regions.	Four	of	eight	economic	regions	in	the	north	and	west	of	China	belong	to	the	G-S	type,	that	the	final	demand	scale	and	the	energy	intensity

contributed	to	NEEC	increase	together.	Overall,	the	impacts	of	these	drivers	were	largely	consistent	among	provinces	within	the	middle	Yellow	River,	southwest,	and	northwest	regions,	while	Jilin	performed	differently	than	did	the

other	two	provinces	 in	the	northeast	region.	The	major	 inhibitory	factor	to	NEEC	growth	varied	across	regions.	For	the	northeast,	southwest,	and	northwest,	 the	change	 in	the	product	mix	of	 the	final	demand	featured	the	major

inhibiting	factor,	whereas	the	production	structure	took	the	place	of	it	in	the	middle	Yellow	River	region.

The	exhibited	driving	mechanism	could	relate	to	regional	feature	with	a	relatively	undeveloped	economy	at	the	base	year	and	the	growing	energy-dependent	industries	during	the	studied	period.	Regions	of	this	group	have	a

relatively	low	combined	efficiency	of	technology,	resource,	and	environment	(Tang	et	al.,	2016).	Specifically,	the	northeast	region	and	the	southwest	region	are	the	heavy	industrial	bases	of	China	and	the	middle	Yellow	River	region	is

the	largest	coal	mining	and	processing	area.	Since	2003,	a	revitalization	strategy	was	introduced	in	the	northeast	region.	Due	to	the	industrial	reviving,	a	significant	increase	in	both	the	manufacturing	sector	and	energy	consumption

was	observed	between	2003	and	2012	(Li	et	al.,	2016).	Similarly,	the	great	western	development	strategy	has	been	initiated	since	2000,	in	which	most	of	the	provinces	of	the	southwest,	northwest,	and	middle	Yellow	River	regions	are

included.

The	driving	mechanism	of	NEEC	in	the	east	coast	and	middle	Yangtze	River	regions	is	the	G-other	type;	i.e.,	the	final	demand	scale	factor	was	dominant	while	other	factors	were	variable.	Specifically,	in	the	east	coast	region,

the	driver	performance	in	the	core	metropolis,	Shanghai,	was	different	from	the	surrounding	provinces.	The	NEEC	increase	in	Shanghai	was	predominantly	promoted	by	the	product	mix	of	the	final	demand	factor	and	inhibited	by	the

production	structure	factor.	However,	the	production	structure	factor	showed	a	positive	impact	on	NEEC	growth	in	Zhejiang.	The	impacts	of	the	production	mix	of	the	final	demand	factor	in	both	Jiangsu	and	Zhejiang	were	opposite	to

those	in	Shanghai.	The	middle	Yangtze	River	region	includes	four	inland	provinces	with	favorable	natural	resources	for	agriculture	and	industry	(Tang	et	al.,	2016).	Production	structure	was	the	main	factor	driving	NEEC	in	this	region,

mainly	in	Jiangxi	and	Hubei	province.	The	possible	reason	behind	this	phenomenon	is	the	growing	intermediate	input	from	the	power	sector	and	manufacture	sector	was	required	to	provide	the	final	demand.

The	driving	mechanism	of	NEEC	growth	in	the	north	coast	and	south	coast	regions	was	the	L-S	type;	i.e.,	the	production	structure	factor	and	energy	intensity	factor	jointly	drove	NEEC	growth	in	these	regions.	The	impact	of

the	final	demand	scale	was	relatively	low,	and	the	factors	indicating	that	the	final	demand	structure	were	not	significant.	The	north	coast	and	south	coast	developed	into	China's	high-tech	and	manufacturing	centers	during	the	studied

period,	while	the	manufacturing	industry	of	consumer	products	developed	rapidly	in	the	South	Coast	region.

One	province	(or	metropolis)	in	each	of	these	two	regions	showed	a	different	driving	mechanism	than	the	other	provinces,	i.e.,	Beijing	in	the	North	Coast	region	and	Hainan	in	the	South	Coast	region.	Similarly,	NEEC	in	Beijing

and	Hainan	was	rather	small	compared	to	that	of	the	entire	region;	in	2012,	the	NEEC	in	Beijing	was	39 × 104 t,	representing	5%	of	North	Coast	emissions,	and	the	NEEC	in	Hainan	was	19 × 104 t,	representing	5%	of	South	Coast

emissions.	Unlike	Hainan	Province,	where	the	scale	of	the	population	and	economy	is	small,	Beijing	is	the	political	and	cultural	center	of	China,	much	of	its	industrial	production	has	moved	elsewhere,	and	its	development	needs	are

supplied	by	other	provinces,	which	could	indirectly	influence	the	industrial	structure,	energy	consumption,	and	pollutant	emissions	in	surrounding	provinces.

Fig.	6	Contributions	of	six	factors	to	provincial	NEEC	changes	grouped	by	region	(Y-axis:	percentage	change	of	NEEC	from	2007	level).
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Generally,	the	Beijing-Tianjin-Hebei,	Yangtze	River	Delta,	and	Pearl	River	Delta	areas	represent	three	city	clusters	of	the	greatest	concern	for	economic	development	in	China,	which	include	not	only	three	municipalities,	i.e.

Beijing,	Tianjin,	and	Shanghai,	but	also	some	developed	provinces,	i.e.	Jiangsu	province,	Zhejiang	province,	Anhui	province,	and	Guangdong	province.	These	areas	as	key	areas	for	the	prevention	and	control	of	air	pollution	(Ministry	of

Environmental	Protection,	2012)	used	to	exhibit	high	NOx	concentrations.	Here,	a	similar	drivers’	performance	was	observed	from	the	central	metropolises	of	these	clusters,	i.e.,	Beijing	and	Shanghai,	which	differed	notably	from	their

surrounding	provinces.	Specifically,	the	production	structure	in	Beijing	and	Shanghai	inhibited	NEEC	growth,	whereas	the	product	mix	of	final	demand	factors	contributed	significantly	to	emissions,	in	contrast	to	the	other	provinces	in

these	two	regions.	We	define	an	Index	of	Sectoral	Contribution	(ISC),	indicated	by	the	row-sum	of	Leontief	inverse	matrix	(Li),	which	can	be	interpreted	as	the	increase	in	output	of	the	ith	sector	to	supply	one-unit	increase	in	the	final

demands	of	each	sector	(Jiang,	2011;	Bekhet,	2010).	As	shown	in	Fig.	7,	the	ISC	of	most	of	the	sectors	reduced	greatly	in	Beijing	and	Shanghai,	probably	due	to	the	less	dependence	of	domestic	sectoral	output.	Additionally,	disparity	of

the	changes	of	key	sectors	within	the	economic	area	was	more	prominent	in	the	Beijing-Tianjin-Hebei	area	than	in	the	Yangtze	River	Delta	area.

This	phenomenon	could	be	related	to	the	functional	orientation	of	the	development	of	the	specific	subnational	region	and	regional	cooperation	in	the	national	economic	development.	Taking	the	Beijing-Tianjin-Hebei	area	as	an

example,	the	major	exporter	of	embodied	NOx	in	this	area	was	Hebei,	exporting	to	both	Beijing	and	Tianjin,	and	Tianjin	was	also	an	exporter	to	Beijing	to	a	less	extent	(Wang	et	al.,	2017).	It	is	implied	that	in	addition	to	the	currently

implemented	national–provincial	 reduction	 targets,	 specific	 reduction	 targets	 for	 economic	 regions	 could	 be	 introduced	 in	 order	 to	 ensure	 the	 rational	 allocation	 of	 reduction	 obligations	 and	 improve	 inter-provincial	 cooperation

towards	overall	NOx	reductions.

5	Conclusion
The	year	of	2007	indicates	a	meaning	shift	process	in	China's	economic	development,	at	which	the	GDP	growth	rate	reached	its	peak	level.	Furthermore,	as	China	is	a	large	national	economy,	economic	production	spatially

varies	among	regions	and	provinces,	as	do	the	resulting	environmental	impacts.	This	study	focused	on	the	economic	drivers	of	NEEC	in	China	after	2007	using	the	latest	available	data.	Compared	to	previous	studies,	the	types	and

spatial	disparities	of	NEEC	driving	mechanisms	are	emphasized.	Based	on	the	findings	of	our	research,	future	NEEC	reduction	and	regional	cooperation	in	China	can	be	better	supported.

From	the	demand	side,	the	impact	of	the	final	demand	scale	was	typically	dominant	compared	to	the	structural	factors	of	final	demand.	The	product	mix	of	the	final	demand	slightly	influenced	the	NEEC	in	most	provinces,

which	could	have	resulted	from	high	sector	aggregation	(Plank	et	al.,	2018).	Interestingly,	a	change	in	the	product	mix	of	the	final	demand	promoted	NEEC	growth	by	more	than	20%	in	Beijing	and	Shanghai,	the	two	most	developed

municipalities	in	China.	This	requires	greater	vigilance	because	NOx	emissions	could	increase	along	with	the	rapid	urban	development	and	increased	use	of	fine	products.	Meanwhile,	further	exploration	and	continuous	tracking	of	the

driving	mechanism	is	needed	for	China's	most	developed	metropolises.

From	the	production	side,	we	confirm	that	the	production	structure	was	the	main	overall	 inhibiting	factor	to	NEEC	growth	in	China	from	2007	to	2012.	Regionally,	the	inhibiting	impact	only	occurred	in	the	northwest	and

middle	Yellow	River	regions.	Moreover,	in	the	north	coast,	south	coast,	and	middle	Yangtze	River	regions,	the	production	structure	increased	NEEC,	requiring	structural	adjustments	to	economic	development.

Fig.	7	Change	of	sectoral	intermediate	input	for	one	unit	of	final	demand.
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Differences	in	the	performance	of	drivers	among	the	eight	economic	regions	are	obvious,	whereas	provincial	disparities	and	similarities	were	found	within	specific	regions.	A	major	driving	mechanism	of	NEEC	growth	in	China

is	the	positive	influence	of	the	final	demand	scale	accompanying	the	negative	influence	of	energy	intensity,	which	applied	to	the	national	results	and	most	of	the	provinces	in	the	northeast,	middle	Yellow	River,	northwest,	and	southwest

regions.	Considering	that	the	economy	is	expected	to	grow	steadily	in	the	near	future	in	China,	promoting	energy	efficiency	and	optimizing	economic	structure	could	be	the	main	path	to	NEEC	reduction.

One	major	limitation	of	this	study	is	the	latest	available	IOT	is	of	2012,	due	to	the	long	five-year	term	for	compiling	and	publishing	the	official	IOT,	which	is	considered	a	common	limitation	in	this	field.	With	the	data	of	2007	and

2012,	this	study	has	shown	the	meaningful	regional	disparity	of	the	economic	drivers	of	NOx	emissions,	whereas	it	could	not	be	enough	to	provide	the	concrete	suggestions	for	real-time	policies	in	the	future.	So,	more	studies	with	up-

to-date	dataset	are	needed	to	benefit	public	policy	to	a	further	extent.	In	addition,	the	estimated	result	of	NEEC	is	an	uncertainty.	Data	source	of	NOx	emissions	in	previous	studies	includes	Multi-resolution	Emission	Inventory	for

China	(MEIC)	developed	by	Tsinghua	University	(e.g.	Lyu	et	al.,	2016;	Xu	et	al.,	2017),	national	statistics	on	environment	(e.g.	Zhang	et	al.,	2015;	Ding	et	al.,	2017),	and	the	data	estimated	by	emission	factors	(e.g.	Wang	et	al.,	2018).

Due	to	the	time	mismatch	of	economic	and	emissions	data	as	well	as	the	scope	of	this	study,	an	estimation	method	based	on	emission	factors	was	adopted.	Future	study	with	emissions	data	of	high	spatiotemporal	resolution	would

provide	a	deeper	understanding	of	the	driving	mechanisms	of	NOx	emissions.
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