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“The importance of the forest canopy to forestry and forest research has been reflected 

in the ingenuity of foresters in devising methods and instruments to measure it.”  
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Abstract  

Tree management is the practice of protecting and caring for trees for sustainable, 

defined objectives. However, there are often conflicts between maintaining trees and 

the obligation to protect targets, such as people or infrastructure, from the risks 

associated with the failure of trees and major limbs. Where there are targets worthy 

of protection, tree structural condition is typically monitored relative to the prescribed 

management objectives. Traditionally, field methods for capturing data on tree 

structural condition are manual with a tree surveyor taking very limited direct 

measurements, and only from parts of the tree that are within reach from the ground. 

Consequently, large sections of the tree remain unmeasured due to the logistical 

complications of accessing the aerial structure. Therefore, the surveyor estimates tree 

part sizes, approximates counts of relevant tree features and uses personal 

interpretation to infer the significance of the observations. These techniques are 

temporally and logistically demanding, and largely subjective.  

 

This thesis develops solutions to the limitations of traditional methods through the 

development of remote sensing (RS) tools for assessing tree structural condition, in 

order to inform tree management interventions. For individual trees, a proximal 

photogrammetry technique is developed for objectively quantifying tree structural 

condition by measuring the self-affinity of tree crowns in fractal dimensions. This can 

identify the individual tree crown complexity along a structural condition continuum, 

which is more effective than the traditional categorical approach for monitoring tree 

condition. Moving out in scale, a framework is developed which optimises the match-

pairing agreement between ground reference tree data and RS-derived individual tree 

crown (ITC) delineations in order to quantify the accuracy of different ITC 
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delineation algorithms. The framework is then used to identify an optimal ITC 

delineation algorithm which is applied to aerial laser scanning data to map individual 

trees and extract a point cloud for each tree. Metrics are then derived from the point 

cloud to classify a tree according to its structural condition, a process which is then 

applied to the tree population across an entire landscape. This provides information 

with which to spatially optimise tree survey and management resources, improve the 

decision making process and move towards proactive tree management. 

 

The research presented in this thesis develops RS tools for assessing tree structural 

condition, at a range of investigative scales. These objective, data-rich tools will 

enable resource-limited tree managers to direct remedial interventions in an optimised 

and precise way.  
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1 Introduction 

Modern tree managers attempt to retain trees in-situ for as long as is possible, whilst 

trying to balance the environmental, biodiversity and amenity values of trees. At the 

same time, tree managers have to minimise the potential for failure and limit the 

amount of risk exposure in any given situation, as people, property and infrastructure 

are considered ‘targets’ that are worthy of protection in tree-risk management terms 

(Lonsdale 1999). Ultimately, the failure of trees can lead to the damage of property, 

personal injury, or in the most severe cases, the loss of life (Mattheck and Breloer 

1994, NTSG 2011, Leong, Burcham et al. 2012). The existing academic knowledge 

about trees, based on how they grow and reproduce, create and store their own food 

resources, and generate their woody structure at a cellular level, in reality, does little 

to aid the decision making process of a tree manager faced with a problematic tree 

that requires some level of remedial intervention. 

 

Operational tree management often begins with a tree surveyor taking observations 

and limited measurements of the selected trees under investigation. Surveyors rely 

upon their personal interpretation of individual knowledge, experiences and 

understanding of the observations as presented on the day of inspection (Lonsdale 

1999). Following rapid assessment and consolidation of both observed and assumed 

‘facts’, the surveyor then has to prescribe a tree operation that has the tree subject to 

destructive interventions; including the removal of physiologically valuable limb 

structures, or even the entire removal of a tree, decisions based on a largely 

speculative field assessment methodologies (Barrell 1993, Norris 2007). However, 
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there is often a disparity between the academic knowledge of the subject, and the 

application of the knowledge on an operational basis. It is a commonly accepted 

axiom that while tree management has its basis in science (specifically biology, plant 

science and silviculture), the application of scientific knowledge in tree management 

is for the large part, a subjective and interpretive exercise (Norris 2007).  

 

It is understood that the identification of structural change is a proxy for localised 

stress symptoms, and a red flag to tree and environmental managers when considering 

remedial interventions or other environmental management (Barrell 1993, Mattheck 

and Breloer 1994, Norris 2007, NTSG 2011). However, a significant limitation of 

current tree surveying practices are the significant logistical and resource costs of 

locating, surveying and repeatedly moving between the trees that are within the survey 

remit. Therefore, it is recognised that solutions to these problems are required that can 

combine recent advancements in academic knowledge, and can fulfil the requirement 

to have practical, repeatable methods that can be used to advance the understanding 

of the structural condition of trees. It is proposed that integrated remote sensing (RS) 

techniques can be employed in attempting to overcome these issues, including the use 

of discrete return (DR) aerial laser scanning (ALS) data captured at high spatial 

resolution and proximal photogrammetry techniques. These RS techniques enable 

investigations to be conducted at significantly different scales, from the wider 

landscape (ALS), down to the proximal investigation of individual trees using 

hemispherical imagery. In addition, there is the requirement to develop a method of 

identifying structural features that are symptomatic of stress induced structural 

change.  
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1.1 Thesis Aim and Objectives 

This project aims to develop RS methods for the objective quantification of tree 

structural condition, for use in the assessment and classification of trees. This aim will 

be met by fulfilling the following objectives: 

 

1. To develop an objective methodology to assess the structural condition of 

broadleaved tree crowns from proximal hemispherical photography.  

 

2. To develop a technique for quantifying the accuracy of individual tree crown 

(ITC) delineation from remotely-sensed data. 

 

3. To develop a methodology for categorising the structural condition of 

individual trees across a landscape scale from ALS data. 

1.2 Thesis Structure 

This research proposes to build upon earlier published works where high-end technology 

is used as a decision support tool to aid operational tree management. Specifically 

focussing on developing RS methods to capture tree data at a variety of scales, then 

categorise the tree structure using a combination of novel field and analysis techniques. 

This includes both proximal data capture and distant observations of the landscape, 

ultimately to develop methods that can be used to characterise the condition of many trees 

that are observable at the wide-landscape scale.  

 

This research is informed by the limitations of the current and traditional tree observation 

and assessment practices, that are used extensively throughout forest management, 

arboriculture and forest science, that are based on outdated, historical field techniques. 

These techniques are shown to be frequently dependent on user subjectivity and the 
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consideration of the significance of the observations by the individual field surveyor. 

Therefore, it is likely that the subjectivity will lead to a range of different conclusions 

being reached by different assessors. The requirement is therefore, to develop observation 

and analytical techniques that are removed, insofar as it is possible, from the subjective 

process.  

 

In order to develop solutions to this research problem, additional questions and technical 

considerations will also be addressed. During the initial experimental research phases, the 

research problem is considered; does the structural condition of trees change in a way that 

can be independently quantified and be used to discriminate between different types of 

structural condition? Furthermore, can it be demonstrated that the structural condition of 

a tree changes in such a way that can inform an objective assessment of the tree condition? 

These issues relate to the first objective which is considered in Chapter 4, which 

demonstrates whether it is possible to quantify the complexity of tree structural condition 

using proximal photogrammetry.  

 

Following the investigation of tree structure, the next research problem addressed 

considers the technical issue of confirming exactly where trees are located when RS data 

is compared to field-captured, ground reference (GR) data. Tree crown delineation 

alignment is a frequently overlooked issue in RS investigations, yet it is commonly used 

in the validation phases during analysis. GR tree measurements are taken in the field to 

describe the geospatial location (Euclidean space) and physical attributes of the tree, such 

as crown location, crown orientation and crown extent. These biophysical attributes can 

also be modelled from a 3D point cloud and the ITC attributes delineated from the point 

data using specific delineation algorithms. However, there are frequently discrepancies 

between the GR data and the ITC delineations of tree location and attributes, and many 
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previous investigations rely heavily on the acceptance of arbitrary, linear distance 

thresholds or similar assumptions, to confirm ITC delineation agreement between the 

datasets without any further validation of how well ITC delineated tree crowns match 

what is expected in the GR data. Correspondingly Chapter 5, which addresses the second 

objective, describes the development of a new framework that can quantify the extent of 

the similarity between tree delineations in two types of delineation data, providing the 

opportunity to measure the amount of agreement, and therefore, provide a way for 

researchers to make informed choices regarding the most suitable delineation method to 

provides the highest level of ITC agreement between different datasets.  

 

The final research problem being considered is the development of a method for assessing 

and categorising tree structure conducted from a remote perspective, and to consider the 

individual biophysical characteristics of the many trees that occupy the landscape scale 

view. This research problem is driven by the requirement to upscale and optimise limited 

resources into individual tree assessment, for all the relevant trees within the field of view.  

These trees would be typically surveyed by individual field operatives, at exponential 

financial and logistical costs dependant on the extent of the survey. The solution will need 

to consider how to assess individual trees at the landscape scale, compare the individual 

to an ideal reference model dataset, and subsequently classify these trees into groups that 

will identify trees both in good structural condition, while also identifying other trees that 

are in much poorer condition. This work will provide a landscape scale assessment 

technique that will allow field operatives to make informed decisions about where to 

concentrate remedial interventions, such as an area of identified poor condition trees. This 

work is considered in Chapter 6, which also addresses objective 3, and describes the 

development of a method to use ALS LiDAR data for the optimised, remote classification 

of tree structure.   
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2 Literature Review 

This literature review is to provide an in-depth evaluation of the current research 

landscape relating to the RS of trees. Within this context, the review will focus on 

operational problems faced in tree management and the complications that arise from 

fieldwork methodologies, including practitioner influence on tree assessments. 

Furthermore, there is commentary on what tree managers or researchers need to help 

facilitate their decision making process, and how the development of different RS 

technologies and techniques are being used to understand the complexities of tree 

assessment and tree management. These issues will be addressed through the 

independent review of scientific and investigative works, where there will be a critical 

examination of the publications, including both academic and relevant grey literature, 

identifying the key research themes that are relative to this project. Finally, this 

literature review will also enable the identification and definition of pertinent terms 

and technical procedures that are of relevance to or used within this project, and that 

are referred to throughout this thesis.  

2.1 The Problem of Subjectivity  

Subjectivity is the philosophical influence of one’s thoughts, beliefs, personal 

interpretation or personal feelings that can lead to a compromise in the integrity of the 

operational or experimental process. Ultimately, the perspective is that for scientific 

or factual observations to be declared subjective, the inference is that the findings are 

of no more valuable to the wider scientific knowledge than a simple commentary of 

individual opinion. This is especially pertinent when considering the assessment of 
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tree crowns or canopies from the ground. Harper, McCarthy et al. (2004) undertook 

an investigation into tree surveyor bias when the trees were viewed from two 

locations; firstly, from a ground perspective using binoculars as a visual aid, and 

secondly from an aerial perspective, where the trees were manually climbed using 

standard arboricultural work positioning techniques. The time taken and for 

identifying tree defects (stem and branch hollows) for both surveying methods was 

compared against one another and against a destructive sample for overall accuracy. 

It was found that manual climbing was more time costly but yielded higher accuracy 

(82% of defects identified), while ground surveys were comparatively quick, but 

much less accurate at identifying defects (44% of defects identified). Furthermore, 

Harper, McCarthy et al. (2004) observed a correlation between the number of tree 

defects identified and an increase in tree diameter at breast height (DBH) size (r2 = 

0.77), thereby suggesting that the larger more obvious defects were more readily 

detected, while subtler tree defects were not readily detected using manual 

observation from either vantage point. It can also be considered that the method of 

tree crown observation may introduce an amount of surveyor bias to the observations, 

where not all potential defects will be identified as a result.  

 

Notwithstanding the physical and logistical complexities of direct manual 

measurement of the upper parts of the tree structure, historically, tree managers, 

foresters, tree surveyors and scientists have frequently relied upon simple field 

methodologies that are entirely subjective in their method and application. Jennings, 

Brown et al. (1999) discuss a widely used measure of tree canopy cover, where at a 

predetermined measuring point the forester or tree surveyor would look vertically 

upward at how much tree canopy obscures the sky, and subsequently estimate a 

percentage of tree canopy cover at that location. Jennings, Brown et al. (1999) also 



Remote Sensing Tools for the Objective Quantification of Tree Structural Condition  

from Individual Trees to Landscape Scale Assessment 

8  

describe that even when more advanced or scientific tree crown measurement 

techniques are used, there is often confusion in the supporting methodological 

literature about what is actually being measured. For example, in the measurement of 

direct or indirect light levels, the area of ground under the canopy cover, or the amount 

of sky obscured by canopy closure. Subsequently, the field practitioners have 

unanswered concerns about how the generated data can be used in operational best 

practice or to help inform the decision process for forest or tree management 

interventions (Jennings, Brown et al. 1999).  

 

For managers of trees, forests, woodland and their immediate environment around the 

trees, there is often a requirement to undertake tree health and safety & site 

assessments or tree hazard analysis surveys (Lonsdale 1999, Redmill 2002, Britt and 

Johnston 2008, NTSG 2011). A fundamental element of this work is the process of 

assessing trees, identifying which parts are likely to be problematic or have the future 

potential for failure, a procedure which requires a large degree of guess work on 

behalf of the surveyor.  Redmill (2002) describes a typical risk analysis procedure, 

influenced by subjectivity, “risk analysis is often assumed to be objective, and its 

results, risk values and the decisions based on them, to be correct. Yet all stages of 

the process, including the techniques used, involve subjectivity. Always there is 

uncertainty, the need for judgement, considerable scope for human bias, and 

inaccuracy. The results obtained by one risk analyst are unlikely to be obtained by 

others starting with the same information”. 

 

Subjectivity within tree surveys and field-based observations is an ongoing concern 

within the tree management industry. In a study by Norris 2007), subjectivity has been 

demonstrated to influence the observations of several experienced tree surveyors, 
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each making independent observations and coming to different conclusions when 

assessing the same group of trees. A potential influence for these observational 

differences is that it is understood that tree managers or surveyors who are aiming to 

introduce some form of management intervention, may be influenced by the known 

objectives of the management, rather than from findings based on their judgement of 

the situation as found at the field site (JNCC 2004). Earlier recommendations by 

Ghiselin (1982), states that when attempting to reach sound environmental 

management decisions, the logical, objective perspective can successfully be reached 

by field practitioners working in groups, where objective statements can be externally 

judged by others and ultimately, a consensus can be agreed upon.  

2.1.1 Subjectivity and Tree Management 

Tree managers, foresters and tree surveyors are frequently lone workers due to the 

operational and logistical nature of the tasks required and, due to the physical 

locations of the tree stock under their management. The lone worker group is one that 

Ghiselin (1982) argues, are predominantly subjective thinkers. Interestingly, Ghiselin 

(1982) further argues that in the process of reaching a final judgement, such as a tree 

surveyor reaching a final decision on a tree’s structural condition, the decision maker 

commonly balances all available elements of objective, science based views, with 

interpretive subjective views, and ultimately arrives at a final, blended, management 

decision. de Groot (1992), highlights that the process of externalising subjective 

opinions and supporting them with descriptive, scientific statements, such as when 

creating tree related risk reports or forest management plans, is an attempt by the 

report author to rationalise the subjectivity of their findings. de Groot (1992) 

consequently describes the conclusions from this blending process as being 

“subjectivity objectified”. This view is also supported by Dana, Jeschke et al. (2013) 

who state that in an operational environmental management situation, managers 
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frequently make their intervention decisions based upon the process of “subjective 

reasoning” rather than by using the available scientific evidence.  

 

Within the tree management industry, there have been various attempts to minimise 

the impact of subjectivity in tree assessments, several of which have been published 

which makes their use relatively common throughout the industry as the practices are 

adopted by many practitioners (Table 1). While these prescriptive methodologies 

have an aura of objectivity, and are frequently presented as such, there remains a large 

degree of guesswork and subjective assessment variables that are compounded in the 

methodological process as attempts are made to objectively quantify the tree 

assessment, while at the same time, relying on largely subjective inputs. Table 1 

provides an overview of several of these commonly used methodologies: 

Table 1  An overview of tree surveying methods currently in use in the 

forestry, arboriculture or tree management sectors. The word 

‘objective’ refers to direct measurement or factually acquired data. 

The word ‘subjective’ refers to instances where a field operative uses 

interpretation, estimates or best guess methods to acquire 

‘measurements’ for the survey method. This list is not exhaustive, but 

is representative of tree surveying methods frequently used in the UK, 

USA and worldwide.  

Survey 
Type 

Description Method 

BS5837: 
2012 
 

British Standard 5837 tree 
survey method, used in relation 
to trees on, or near, 
development sites. Completed 
at the pre-commencement 
development stage, this 
method identifies which trees 

Categorical assignment to tree 
retention groups, which are 
determined via a subjective 
‘quality’ assessments and are 
ranked in order of value or 
significance to the 
development. Some trees are 
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are worthy of retention in the 
long term or are best removed 
for the successful 
implementation of the 
development. Used on single 
trees and woodlands.  
 

immediately considered not 
worthy of retention. Expert use. 

CAVAT 

Capital Asset Value for Amenity 
Trees (CAVAT). A street tree 
valuation system where trees 
are considered as public assets 
which are valued in monetary 
terms. Used on single trees, tree 
groups or woodlands in an 
‘urban street’ context (or 
similar). 

Accumulative financial value 
determined by taking a DBH 
measurement and assigning to 
a predetermined ‘value band’. 
Adjusted by subjective 
estimation of life expectancy, 
population density in the 
immediate area, and judgement 
on public amenity 
performance. Expert use. 
 

CTLA 
Method 

Council of Tree and Landscape 
Appraisers (CTLA) method. A 
street tree valuation method 
where trees are considered as 
private assets, quantified in 
monetary terms. Used on single 
trees, tree groups or woodlands 
in an ‘urban street’ context (or 
similar). 

Accumulative financial value 
determined by taking a DBH 
measurement, then adjusted by 
several variables, including the 
subjective observation of 
general condition, location, 
species class (via a look up 
table of a variety of previously 
interpreted characteristics). 
Expert use. 
 

ISA 
Method 

 

International Society of 
Arboriculture (ISA) Tree 
Hazard Evaluation method. 
Production of a hazard rating to 
identify presumed failure 
potential, and therefore 
associated risk, from potential 
tree failure. Used on single 
trees, but can include single 
trees in tree groups or 
(potentially) woodlands  
 

Accumulative hazard rating 
based on combined objective 
i.e. is the feature present Y/N? 
Plus subjective field 
observations, including; tree 
part most likely to fail, the 
estimated size of the part, and 
the potential significance of the 
target area. Expert use. 

TEMPO 

Tree Evaluation Method for 
Preservation Orders (TEMPO). 
A three-part field guide to 
decision making that considers; 
amenity, expediency and the 
decision process. Trees are 
assessed for suitability in being 
legally protected under a tree 
preservation order (TPO), a 

Accumulative suitability score 
that requires the subjective 
consideration of a range of 
variables, including; qualitative 
descriptors of assumed 
condition, and subjective 
prediction of life expectancy, 
potential future visibility after 
land use change, and 
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legal tool under UK planning 
legislation used for the 
protection of trees near 
building development. Used on 
single trees, tree groups or 
woodlands. 
 

estimation of foreseeable or 
perceived threats. Requires 
expert use.  

i-Tree 
(ECO) 

i-Tree is a series of software 
suites and field survey methods 
used to provide both urban and 
forest, analysis and benefits 
assessment. I-Tree Eco 
quantifies tree structure and 
the environmental benefits and 
services, that trees offer a given 
area. Used on single trees, tree 
groups, woodlands/forests and 
up to wider landscape 
application.  

Accumulative, model-based 
street tree value system that 
can use minimal GR input data 
to estimate tree structure, 
function and environmental 
benefits by using 
predetermined models. 
Subjectivity is compounded in 
the model as this allows users 
to run analysis with very 
limited input data fields, 
potentially only; local 
geographic and meteorological 
data, with tree species and DBH 
measurements. The system can 
also run the model using 
estimated DBH, not direct 
measurements, to output 
customised benefits and costs 
data. Also recommended for 
expert and non-expert use.  
 

QTRA 
 

Quantified Tree Risk 
Assessment (QTRA). A tree risk 
assessment method to 
‘quantify’ the level of risk 
attributed to trees in their 
location. 

Accumulative ‘probable risk 
threshold’ score, based on 
subjective field estimations 
including; target, size, and 
probability of failure. Licenced, 
expert use. 

Notes: Target – refers to people or property that are worth of protection (from tree failure or similar), 

Size – often refers to the size of the part of the tree most likely to fail. A fundamental problem with 

this estimated value is that a best guess must be used to predict the future failure, and then also predict 

the future through guessing how big the failure part will be, and not measuring the potential failure 

part during the observational assessment. Probability/Likelihood of failure – a simple estimation 

from the field operative, based on their individual feelings of how quickly they predict a whole tree, or 

tree part, may fail. Arrived at by balancing an estimation of their feelings on probability, with a 

temporal prediction. DBH – tree stem diameter taken at breast height (either 1.3m or 1.5m). Expert 

use – typically this system is recommended for use by industry specific experts. Non-expert use – this 

system can also be used by interested laymen. Licenced – this system requires the attendance at a 

training course and the completion of a formal assessment, and ongoing subscription to the service to 

be used commercially.  

 

The fundamental issue with tree management subjectivity is that objectivity is the 

gold standard that foresters, arboriculturists or tree managers strive to achieve in their 
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managerial decision-making. However, there is a large reliance on a scientific base 

knowledge that must be vastly interpreted and applied in many unique operational 

situations. Even where industry best practice, guidance or recommendations are 

followed, there remains a strong emphasis on the need for estimation, interpretation 

and assumption (Stewart, O'Callaghan et al. 2013). The current situation for tree 

managers is that despite many attempts at maintaining professionalism and 

independence from subjectivity, their judgements on the best way to manage their tree 

stock remains idiosyncratic. The current suite of available tools, at best, only provide 

a set of rules that it is hoped give sufficient clarity for the tree managers to be able to 

(subjectively) classify an observed set of circumstances. With prior knowledge, 

experience, and benchmarks provided using the surveying procedures, to arrive at the 

management recommendation of a ‘reasonable’ person (Norris 2007, Stewart, 

O'Callaghan et al. 2013). While this approach cannot be considered an objective 

procedure, it is widely accepted within the tree management industries that this 

approach is the accepted status quo, despite being inherently famed within a large 

amount of subjectivity.  

2.2 The Development of Tree Surveying 

Historically, the main purpose behind forest management was for the production of 

timber; through increasing growth yields and optimising harvesting for the maximum 

commercial return (Wulder, Hall et al. 2005). While this commercial element remains 

to some degree in the majority of forest and woodland management activities, in more 

recent times the underlying justification for forest and woodland management has 

shifted to include assessment of wildlife potential, recreation (both current and 

potential use), aesthetics (internal and external), biological and conservation 

requirements (Watson 2006). This development means that the basic forest inventory 
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assessment of growth patterns and tree volumes no longer provides the most suitable 

data for the management task. Operational level monitoring now has to include 

sufficient information on forest structure, the success of silvicultural intervention 

methods, habitat, biodiversity, hydrology and soil profiling, as well as the long-term 

planning of the entire production cycle (Jennings, Brown et al. 1999, Wulder, Hall et 

al. 2005).  

 

As a result, many variables must be measured within trees or in forest stands, for the 

purposes of understanding growth patters or enabling the prediction of future yields, 

or for understanding the type and availability of habitat within a given area. (Strahler, 

Jupp et al. 2008) describe that for a great number of forest inventory and management 

applications, the measurement of vegetation structure is essential to aid better 

understanding of the tree stock attributes. Latifi, Fassnacht et al. (2015), highlight that 

the expansive forests of central Europe are still monitored with conventional, large-

scale terrestrial inventories, where the operational management of the forests is 

considered challenging by the rapid environmental changes as a response to natural 

disturbances and many “multilayer silvicultural systems” that are in use throughout 

the region.  

 

Whatever the justification is for measuring trees, for a long time, simple, easy-to-

reach measurements have been taken from trees, and these are used as the input 

variables into a wide range of allometric equations, looking to find predictive 

relationships. For example, the standard measurement of tree (or top) height and DBH 

(Dassot, Constant et al. 2011). Several studies show however, that frequently there 

are significant errors in the use of allometric equations in the measurement of trees, 

volume estimates or for other forestry applications that require later rectification 
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(Dassot, Constant et al. 2011, Ahmed, Siqueira et al. 2013, Mugasha, Mwakalukwa 

et al. 2016). Typical GR tree measurements taken at established plots or individual 

trees, used for the determination of tree characteristics, include the readily accessible 

features of the tree; species, location, overall height, DBH, crown height, crown 

extent, stem density at plot or location, and a general site description (Lovell, Jupp et 

al. 2003). It is believed that issues with large scale environmental management are 

being overcome with the increased use of Light Detection and Ranging (LiDAR) RS 

techniques. It is believed that this will reduce issues of what are considered to be time-

costly, manual, field based methodologies that when sampled can only provide rough 

estimates of stand attributes, and cannot account for large amounts of variability in 

site terrain and vegetation changes (Gorrod and Keith 2009, Dassot, Constant et al. 

2011, Hamraz, Contreras et al. 2016).  

 

Lindberg, Holmgren et al. (2012), also advise taking detailed GR observations of 

control trees, as this data is typically geo-referenced and frequently considered a data 

‘certainty’ upon which many environmental and vegetation models are based 

(McNellie, Oliver et al. 2015). Valbuena (2014) and Lovell, Jupp et al. (2003) also 

highlight that the majority of ALS applications for forestry investigations will require 

a combination of additional data sources, in particular field measurement or GR data, 

and for complex investigations, even co-registered combinations of ALS with 

terrestrial laser scanning (TLS) and acquired GR data are shown to be effective 

(Hauglin, Lien et al. 2014).  

2.2.1 Plot Establishment for Site Surveys 

The connection between undertaking forest surveying and establishing specific site 

areas or plots is well established in practice, as in particular, ALS LiDAR becomes 

ever more frequently used in forest inventory applications (Hauglin, Lien et al. 2014). 
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To acquire accurate geolocation information about survey plot location or the 

biophysical properties of the vegetation within them, i.e. GR data, it is important to 

determine the field information with high accuracy as the GR data will serve as a 

cross reference to the RS data. Subsequently, this requirement leads to the use of high-

gain global navigation satellite system (GNSS) or global positioning system (GPS) to 

provide this information for plot level or stand level data acquisition (Latifi, Fassnacht 

et al. 2015). In a comparative study of characterising forest structure through the 

combination of ALS LiDAR, RapidEye satellite imagery and auxiliary environmental 

GR data, Dash, Watt et al. (2016) describe an extensive set of field measurements 

were taken from a network of 493 field plots (0.06 ha), across a total area of 180,000 

ha (surveyed area 29.58 ha/0.01% of total area). The plot centres were located with 

high accuracy GPS and corrected using permanent, local, differential base stations. 

Common forest and tree attributes were recorded at each plot, specifically attributes 

that are regularly used in forest management and inventory operations e.g. DBH, tree 

height etc. Approximately 12% of these plots (60 sites), were randomly selected and 

used for later model validation purposes (Dash, Watt et al. 2016).  

2.3 Decision Support Systems for Tree Management  

Through a review of decision support systems (DSSy) used in the European forest 

management sector, Segura, Ray et al. (2014) identified that the majority of 

operational problems causing DSSy to be employed are fundamentally related to 

management issues of temporal and spatial scales, and the requirement of meeting the 

specific objectives of decision makers or shareholders. Their investigation identified 

that simulation and modelling is used in 63% of instances where the DSSy is 

employed in a spatial context, and to optimise the application of statistical solutions 

with known management problems, DSSy are used in 60% of instances within the 
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study sample. Furthermore, Segura, Ray et al. (2014) also highlight that forest 

managers frequently use analytical technology to support the DSSy, with nine out of 

ten implementing a DSSy with other associated technologies. The DSSy would be 

typically augmented with a standalone database for record keeping, within an 

integrated geographical information system (GIS), or would use both systems 

concurrently.  

 

DSSy are also used in forest and woodland management to aid the decision process 

for specific tree management interventions. To generate the most economically viable 

results concerning the harvest of trees, Accastello, Brun et al. (2017) have developed 

a spatial economic model to maximise the financial return of harvesting. The model 

identifies a range of potential options for the harvest site, and through applying a 

multi-criteria decision-making metric, a range of harvesting strategies are considered, 

and the most cost-effective approach is selected for a prescribed area. Due to the very 

fine financial and operational margins that tree managers and foresters work with, this 

study highlights the industry’s need to be able to apply higher order decision models 

to assist in their landscape management and forest planning through using an 

operational optimising tool, which lead to the minimisation of expenditure or 

unforeseen costs to the operation. Furthermore, in the general field of wildlife 

conservation, research by Dana, Jeschke et al. (2013) showed that for the development 

of more effective environmental management, multi-criteria DSSy are considered 

essential in providing environmental managers with the correct agenda or framework 

to prioritise their most essential works in an effort to drive up efficiency. In addition, 

Dana, Jeschke et al. (2013) also discuss that the application of DSSy over larger 

geographic areas is preferential, and conclude that greater efforts are needed to 

develop new DSSy approaches, as only having a limited suite of management tools, 
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is believed to limit the potential choices for management and potentially leads to 

management intervention bias.  

2.4 Tree Structure 

Trees are complex, biological structures that are influenced by a variety of internal 

and external forces, which combine to produce an adaptive response in the tree as a 

defensive reaction to the stress. Without the ability to alter the form and shape of the 

structure, the biological mass of the tree would inevitably succumb to the combined 

extent of the forces, and eventually may suffer a catastrophic structural failure event 

which could prevent the tree in successfully continue its physiological processes. 

Ultimately, inflexibility of this type would lead to the tree’s death (Mattheck 1998, 

Lonsdale 1999, Niklas 2001). The stresses that effect trees often persist over long 

periods of time and their effects are not solitary, but have a combined impact on the 

tree’s composition and physiological structure (Niinemets 2010). As a response to 

these stresses, the most significant of which are considered to be gravitational force, 

internal growth stress and external wind forces, trees utilise adaptive strategies to 

minimise these effects through a process of self-optimisation (Niklas 1992, Mattheck 

and Breloer 1994, Mattheck 1998). 

2.4.1 Dynamic Change in Tree Structure 

Notwithstanding the canopy changes that occur in trees as a response to 

environmental stresses, some tree species also undergo seasonal changes, particularly 

as observed in temperate, broadleaved trees which undergo the annual leaf abscission. 

As Bournez, Landes et al. (2017) describe, the accurate reconstruction of tree structure 

from three dimensional (3D) point clouds may rely upon techniques that require the 

clear line of sight to the tree crown structure. When the deciduous branches begin to 

bear leaves, new shoots and flowering structures, careful consideration has to be made 



Chapter 2: Literature Review 

19 

to understand the significance of how the changes in the tree structure will affect the 

3D analysis. Commonly, RS research is undertaken that investigate trees at either end 

of the canopy spectrum; either investigating trees in a leaf-off condition (Korpela, 

Orka et al. 2010, Lu, Guo et al. 2014, Ayrey, Fraver et al. 2017), or undertaking tree 

research that investigates trees in a leaf-on condition (Brandtberg 2007, Ørka, Næsset 

et al. 2009, Bouvier, Durrieu et al. 2015).  

 

However, in a study by White, Arnett et al. (2015) which investigated the validity of 

investigating forest structure attributes as defined by investigative metrics and ALS 

data, found that the use of leaf-off data for large area investigations enabled the 

accurate estimation of forest attributes for both coniferous and broadleaved trees. 

Further, White, Arnett et al. (2015) also concluded that analysis that uses a mixed 

dataset of both leaf-off and leaf-on data leads to large root mean squared error 

(RMSE) values and bias in the investigation, and therefore the mixing of the data and 

model types should be avoided, a view also supported by Bouvier, Durrieu et al. 

(2015). Few studies have sought to understand the significance of the structural 

change in tree crowns as a consequence of the incremental growth of buds, new shoots 

or fruiting bodies as Bournez, Landes et al. (2017) describe.  

2.4.2 Phenotypic Tree Structure 

In a study by Korpela, Orka et al. (2010) attempts were made to improve the potential 

for the identification of tree species from ALS LiDAR using a bidirectional 

reflectance analysis. Using intensity values, Korpela, Orka et al. (2010) were able to 

successfully determine the most regionally important species in southern Finland; 

scots pine, Norway spruce and birch with an accuracy of 88-90%, however, the same 

study reported that in some instances, the classifiers used had difficulty determining 

the differences between spruce and birch. The results suggested that the overall size 
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of the tree structure and the tree size in comparison to neighbouring trees was a 

deterministic factor, which was compounded by the size of other key elements in the 

structure, specifically; leaf size, orientation, and overall crown density. This 

demonstrates that there is difficulty in classifying smaller trees, or trees with naturally 

fine or sparse crowns, with ALS LiDAR because of complications associated directly 

with the physical tree structure. In research using ALS LiDAR for the detection of 

individual trees from within a larger forested area, Rahman and Gorte (2008), describe 

that the physical characteristics of the tree structure enables the identification of tree 

locations due to the increased density of the tree crown around the central stem area. 

The increased structural complexity at the branch, stem interface is recorded as an 

area of increased LiDAR point density in the higher parts of the crown; densities of 

high points (DHP).  

 

Rahman and Gorte (2008), further explain that the structure of the crown causes this 

phenomenon, as returned LiDAR pulses above a specified height threshold will be 

denser in the centralised area of a crown, and the density diminishes towards the 

crown edge. Furthermore, Rahman and Gorte (2009) identify that due to the increased 

surface area at the central point of the crown, even with a range of differing crown 

shapes including; conical, circular and flat topped, the rule holds true and provides 

opportunities to estimate the centralised location of a tree crown (Rahman and Gorte 

2008). Therefore, it can be stated that due to measurable differences in tree crown 

structure complexity, it is possible to derive investigative metrics to determine 

geospatial observations about subject trees.  
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2.5 The General Principles of Remote Sensing in the 

Environment 

Remote sensing is understood to be one of the most significant developments for 

environmental research and operational environmental management (Vauhkonen, 

Maltamo et al. 2014). Within research focussing on vegetation and the environment, 

RS is historically associated with studies that focus in the optical region, particularly 

aerial imagery captured from a satellite platform (Jones and Vaughn 2010). However, 

RS has a much broader range of applications and varieties of RS techniques are used 

across a wide range of disciplines and for vastly differing research purposes. From 

the quantification of entire global scale biomes, to management planning for forest 

ecosystems, the completion of woodland inventory to the investigation of individual 

tree characteristics (Vauhkonen, Maltamo et al. 2014). To provide researchers with a 

suite of investigative tools that can be used to successfully scrutinise the environment 

at a variety of possible magnitudes, it should also be recognised that RS is not simply 

limited to optical earth observation imagery from satellites. In its fullest sense, RS 

also includes techniques for data collection at a host of more proximal distances, and, 

with a range of unique tools other than those used for the capture of simple 

photographic imagery (Jones and Vaughn 2010). These modern tools include laser 

scanners, hand-held detectors and sensors, mobile ranging devices, all providing 

researchers with access to a variety of potential investigations, at ever decreasing 

proximities than from satellite platforms alone. This makes the use of RS more 

accessible and often, significantly cheaper to undertake then in the early years of RS 

research (Jones and Vaughn 2010, Westoby, Brasington et al. 2012, Vauhkonen, 

Maltamo et al. 2014).  
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2.5.1 Remote Sensing and Trees 

Due to the strong relationship between vegetation and its reliance on its immediate 

environment for its ability to maintain physiological process and ensure plant 

survival, there has been an increasing recognition of the need to develop a range of 

investigative tools for the quantification of vegetation in the wider environment 

(Jones and Vaughn 2010). The drive for which can be seen through the many 

increasing needs to satisfy international or national environmental agreements and 

treaties (Vauhkonen, Maltamo et al. 2014), that require members states to explicitly 

quantify the benefits of their environmental management endeavours in a global 

context. For example, Mitchard, Feldpausch et al. (2014) aimed to improve estimates 

of forest carbon density from the Amazonian forests, where ground vegetation was 

surveyed on a multi-plot basis, and pantropical biomass maps were created to identify 

areas of greatest forest carbon capture. The focus of this study was to understand the 

distribution of the Amazonian forest carbon stock and its role in the global carbon 

cycle by comparing newly acquired RS data with previously published vegetation 

carbon maps developed from field sampling and the calculation of allometric 

projections in the region.  

 

Mitchard, Feldpausch et al. (2014) showed through the use of RS techniques, the 

forest carbon density mapping was either over, or, under estimated by +/-25%, 

dependant on the specific region. Furthermore, that the RS techniques captured 

greater information about the changes in the vertical tree structure, biomass and the 

resulting carbon stock, than was identified in the pantropical forest biomass maps that 

were derived from field survey sites alone. Mitchard, Feldpausch et al. (2014) also 

recommend that to achieve the best insights in to the forest composition, a combined 

approach of acquiring RS data with a network of carefully established field plots, will 
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enable the calibration and validation of the RS data and lead to greater accuracy within 

similar studies. Research of this type highlights the suitability of using RS for large-

scale vegetation investigations and the potential for accuracy improvements when 

acquiring environmental data. In particular, when research is dealing with the 

measurement and analysis of trees, and the upper parts of the tree are difficult to 

measure with certainty from the ground.  

 

A review of the reconstruction of tree structure from LiDAR acquired 3D point 

clouds, highlighted that while tree structure is composed of varying branches, all of 

different length, diameter and order, that the arrangement of tree structure 

components is extremely complex. Mitchard, Feldpausch et al. (2014) also observe 

that this complexity increases when the trees are in a leaf-on condition, due to the 

leaves obscuring parts of the tree crown structure. Furthermore, this effect also leads 

to complications in understanding the tree crown geometry and may affect the ability 

to successfully recreate 3D tree models.  

2.5.2 LiDAR 

LiDAR is a RS technology that uses laser scanning to gain high resolution information 

about scanned surfaces or objects, and can capture data at a range of scales. LiDAR 

systems are principally similar to the more well-known radio detection and ranging 

(RADAR), however, LiDAR typically operates within the optical or near-infrared 

spectrum (Liang, Li et al. 2012), and is frequently used for individual tree or large 

area forest investigations (Vauhkonen, Maltamo et al. 2014). The basis of all active 

LiDAR systems is that data is captured by emitting a short duration laser light pulse 

towards an area or object of interest, whereas passive LiDAR systems use solar 

radiation to illuminate the scan scene (Killinger 2014). Lasers are classified by their 

operational wavelength and whether they are small footprint, DR or full waveform 
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(FW) systems. A key difference between the DR and FW is that all of the waveform 

is available for interrogation within FW, whereas as Murray, Blackburn et al. (2014) 

describe, DR point clouds acquire a general impression of the subjects structure, 

however, elements of the structure will not be represented in the dataset due to the 

gaps in the DR point cloud. Furthermore, Murray, Blackburn et al. (2014) state that 

there are opportunities to investigate the relationships between the data points to 

enable the investigation of additional elements of tree structures.  

 

For most LiDAR systems, the operational waveform is in the visible, to near infra-red 

wavelength range, typically 1064nm to 1550nm, while some bathymetric LiDAR 

systems used for the penetration of water, operate at wavelengths ~532nm (Wang and 

Philpot 2007, Jones and Vaughn 2010, Danson, Gaulton et al. 2014, Killinger 2014). 

To capture data about the subject of interest, the laser scanner’s sensor measures the 

difference in time between the emission and return detection of the pulse, known as 

the pulse return time (PRT). Using the speed of light and knowledge of where the 

scanner is in time and space with high accuracy GPS, LiDAR systems function in a 

similar fashion to a laser rangefinder. The time difference between the emission of a 

pulse, the interaction with a surface and then the receiving of the pulse back at the 

LiDAR sensor is measured to give information on the distance to an object. Therefore 

this shows the pulse position in 3D space through the computation of co-ordinates 

(Jones and Vaughn 2010, Vauhkonen, Maltamo et al. 2014). As described by 

Baltsavias (1999), this principle is summarised at equation (2.1). 

 𝑹 = 𝒄
𝒕

𝟐
 (2.1) 
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Where 𝑹 is the range or distance to the object, 𝒄 is the speed of light (~299,792,458 

metres/second), and 𝒕 is the time interval between the emission and return of the pulse 

(in nanoseconds) (Baltsavias 1999). Similarly, how frequently the LiDAR measures 

the pulse is the range resolution, which is the function of the length of the emitted 

pulse and the frequency of measurement intervals, expressed at Equation (2.2): 

 

 ∆𝑹 = 𝒄
∆𝒕

𝟐
 (2.2) 

 

The range resolution will influence the density of the LiDAR pulse data points that 

are available in the subsequent 3D point cloud (Kovalev and Eichinger 2005). When 

accompanying the range that the pulse is being emitted over as an experimental 

variable, the range resolution will have a significant influence on the data richness of 

the final dataset (Liang, Li et al. 2012). Valbuena (2014), describes that for 

operational purposes, there is a trade-off between the range resolution and the 

subsequent extent of the detail within the survey that can be achieved. At equation 

2.3, the amplitude of the returned laser pulse is described as: 

 

 𝑷𝑹 = 
𝑷𝑻𝑮𝑻
𝟒𝝅𝑹𝟐

 ×  
𝝈

𝟒𝝅𝑹𝟐
 ×  
𝝅𝑫𝟐

𝟒
 × 𝜼𝑨𝒕𝒎 𝟐𝜼𝑺𝒚𝒔 (2.3) 

 

Where 𝑷𝑹 is the power of the returning pulse, 𝑷𝑻 is the power of the transmitted 

pulse, 𝑮𝑻 is the antenna transmitter gain, 𝝈 is the cross section of the object, and 𝑫 is 

the receiving antenna aperture. 𝜼𝑨𝒕𝒎  is the one way atmosphere attenuation 

coefficient, and 𝜼𝑺𝒚𝒔  is the transmission coefficient of the LiDAR optical system 

(Baltsavias 1999). As the laser pulse interacts with the scanned surface and returns to 
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the scanner, the location, distance and frequency of the returned pulse is computed, 

along with other geographic and operational information, including the return 

number, the number of returns from each location, pulse intensity, scan angle, scan 

direction etc. This pulse emission and return process, or PRT phase, is repeated many 

times over in a single scan, potentially in the order of millions or higher, dependent 

on the overall scan area and resolution. Each data point can have attributes applied in 

post-processing and through the classification of the data, such as running algorithms 

identifying when a data point is returned from a ground, or above-ground, location 

(Jones and Vaughn 2010, Kraus 2011, Killinger 2014, Vauhkonen, Maltamo et al. 

2014).  

 

Ultimately, the data produced during a LiDAR investigation is a 3D point cloud of 

varying possible densities (dependent on the equipment calibration), where each data 

point contains XYZ coordinates and a range of accompanying data attributes that 

enable detailed spatial analysis to be undertaken. For these reasons, LiDAR is 

commonly used as an investigative tool for large geographical areas due to the 

opportunity to capture large amounts of attribute data, at high spatial resolution and 

high positional accuracy (Vauhkonen, Maltamo et al. 2014). Killinger (2014), 

describes the requirements for LiDAR based geographical mapping surveys of hard 

targets, e.g. tree structure, that the resulting data has such a high degree of accuracy 

it is similar to US geological surveys. Correspondingly, the US based National 

Institute of Standards and Technology, have created a set of calibration standards for 

LiDAR surveys of this type. Similarly, the Government of Canada under their office 

of Natural Resources Canada (NRC), has also defined a minimum specification 

document for the increase in consistency and measurement accuracy for ALS LiDAR 
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acquisition, aiming to improve collaboration and integration in cross-border ALS 

LiDAR data acquisition campaigns (NRC 2017).  

 

Fundamentally, LIDAR is an elegant process by which many objects can be 

geospatially measured concurrently. However, the mechanism by which this is 

accomplished, and in particular the platform upon which the LIDAR measurements 

are captured, is a significant element of the LiDAR investigation. LiDAR sensors are 

predominantly carried via one of four platforms, either upon; an orbiting satellite, an 

aerial platform, a terrestrial platform (e.g. surveyors tripod), or via mobile systems 

(Jones and Vaughn 2010, Prost 2013). Satellite laser scanning (SLS) has the 

advantage of being applied to the largest-scale investigations, such as biomes or the 

full geographical extent of tropical forests due to the ability to capture data from a 

high vantage point (Hansen, Stehman et al. 2008). An operational drawback to this 

method however, is that due to the vast distances between the scanner and the Earth’s 

surface, the lateral distance between the data points in the 3D point cloud are also 

frequently large, as Otepka, Ghuffar et al. (2013) describe, potentially up to several 

hundreds of metres for certain satellite RS techniques e.g. satellite laser altimetry.  

 

ALS is predominantly undertaken from fixed or rotary-wing aircraft, upon which the 

LiDAR scanner is mounted, with accompanying processing computers and high-gain 

GPS. TLS, as the name implies, is undertaken from a ground based position, 

commonly fixed on a surveying tripod that can be readily moved between different 

locations, thereby allowing several scans of a stationary, central object to be co-

registered at a later point. Mobile laser scanning (MLS) systems are either affixed to 

moving vehicles, e.g. all-terrain vehicles, road vehicles, trains etc., or can be mounted 

on backpacks while a surveyor walks across a survey site. Some MLS systems can be 
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held in the hands as the surveyor walks around an area of interest, while the scanning 

procedure is completed, such as the GeoSLAM Zeb1 3D laser scanner. All these 

differing scanning platforms and procedures will influence what the investigation can 

reveal, as the scale of the investigation also determines the ideal scanning platform to 

be used. Utilising a common RS approach, Lindberg, Holmgren et al. (2012) highlight 

that many attributes of individual trees can be readily estimated from both ALS or 

TLS platforms, provided that the generated point cloud has the required point density 

from either the correct resolution at the time of scanning or via overlapping repetitions 

of scan swath.  

 

TLS is more frequently being applied to undertake the measurement of a variety of 

forest inventory measurements, including; tree height, dbh, stem density for a defined 

area, basal area assessment, and for the character assessment of tree canopies or 

crowns, with; gap fraction assessments, 3D modelling and virtual projections, and 

models of foliage distribution (Dassot, Constant et al. 2011). An advantage of using 

a TLS LiDAR based system is the potential for rapid deployment of the equipment, 

thereby enabling the opportunity for relatively easy temporal studies on a short return 

period, for the study of change detection within a subject, as is the approach found in 

the majority of current change detection studies that utilise a TLS approach (Telling, 

Lyda et al. 2017). Olschofsky, Mues et al. (2016) undertook research into the use of 

TLS for the quantification of above ground biomass (AGB), and in particular to 

improve the assessment of AGB over traditional methodologies, with the view that 

TLS can measure AGB with a higher degree of precision and accuracy. This higher 

measurement accuracy was exploited in the research of Raumonen, Kaasalainen et al. 

(2013) where TLS was used to reconstruct flexible cylinder models of above ground 

tree structure. This method was further developed by Åkerblom, Raumonen et al. 



Chapter 2: Literature Review 

29 

(2017), where quantitative structure models (QSM) were used in the automatic 

classification of selected tree species. The QSM method for the reconstruction of tree 

structure is dependent only on the distribution of the 3D points of the tree and is not 

influenced by other scan attributes. The potential of the QSM method to classify tree 

species based upon structural characteristics indicates the potential to utilise a TLS 

based approach in the characterisation of tree structure for condition assessment 

purposes.  

 

Unfortunately, not all operational LiDAR systems are without potential difficulties. 

Through comparing a range of laser scanning scales and LiDAR pulse resolution, 

Wimmer, Schardt et al. (2000) demonstrate the advantages of achieving data rich 

investigations with very high resolution SLS scans. Wimmer, Schardt et al. (2000) 

also show that operational problems regarding missing information within forest 

scans can be overcome by increasing point cloud density, which further improves the 

performance of forest surveys and inventories. Of particular benefit to forest based 

investigations, is the potential to use ALS LiDAR data to georeference large forest 

areas in a single operation and the ability of the ALS LiDAR to penetrate the canopy 

and provide previously unseen information about the forest environment (Valbuena 

2014). Hilker, van Leeuwen et al. (2010) highlight that the spatial resolution of the 

laser scan being undertaken needs to be considered appropriate to the scale or area of 

investigation, specifically that TLS generally has a higher point density per scan when 

compared to ALS.  

 

However, the TLS range or coverage area is limited by the capacity of the sensor, 

potentially to only a few hundred metres. This factor would have a deterministic effect 

on the laser scanning method that an investigator could choose for their study, and 
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subsequently, would also impact on the scope of the study and the experimental 

question that it would be possible to investigate. Valbuena (2014) describes that 

although ALS LiDAR data has a vast potential application for forest based 

investigations, there is limited potential information that can be learnt regarding the 

species diversity of a forest site, and at the time of writing, only limited applications 

for the determination of forest health. 

2.6 Photogrammetry 

Photographic RS methods for capturing information about the environment, and then 

taking measurements from the images, has been used for many years (Evans and 

Coombe 1959). In recent times a comparatively cost effective RS methodology has 

developed with the capture of aerial imagery from high-quality, off-the-shelf digital 

cameras and readily accessible aerial platforms such as unmanned aerial vehicles 

(UAVs, also referred to as ‘drones’ particularly in nonprofessional terms). Leberl, 

Irschara et al. (2010) identify that from the development of the use of LiDAR based 

point clouds; there has been extensive sector wide discussion as to the efficacy, 

throughput and cost effectiveness of the use of photogrammetry, for vegetation 

investigations. However, Leberl, Irschara et al. (2010) also highlight that for “street-

side” investigations, photogrammetric methodologies retain some advantages over 

LiDAR based approaches. Westoby, Brasington et al. (2012) describe modern 

photogrammetry techniques as providing the ability to capture high-resolution 

datasets from cheap, portable surveying platforms and the use of ground control 

points to enable 3D scene reconstruction, particularly advantageous for providing 

access to otherwise inaccessible or remote field sites. Furthermore, Westoby, 

Brasington et al. (2012) also state that there is great potential for photogrammetry 

methods to be used in many geoscientific or earth observation applications, in areas 
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with complex topography, and using image capture techniques that utilise multiple 

overlapping photographs. In terms of mathematical-geometric analysis, the content of 

an image is considered an idealised model, not a true representation of reality. This is 

due to unavoidable lens, camera and photographic errors that arise when using 

photography and photogrammetry equipment; therefore, these must be accounted for 

in order to enable the highest levels of accuracy to be achieved (Kraus 2011). 

 

Liang, Jaakkola et al. (2014) identify that the use of un-calibrated hand-held digital 

cameras for individual tree investigations, can provide highly accurate 

photogrammetry derived data that is comparable to scanning individual trees with 

TLS. In addition, Liang, Jaakkola et al. (2014) report an 88% mapping accuracy 

(commission score) for image based point clouds of trees, when compared to GR tree 

maps. Similarly, for the comparison of leaf area index (LAI) assessment Lovell, Jupp 

et al. (2003) identified that there was a high commission rate between the modelled 

LAI from TLS acquired data, and the LAI values that were calculated directly from 

hemispherical imagery assessments, thereby suggesting that the use of hemispherical 

methods can be considered as accurate as laser quantified measurements.  

2.6.1 Proximal Hemispheric Imagery  

Not all photogrammetric investigations are conducted from an aerial perspective at 

distnace. Proximal RS with digital photography is a widely accepted “indirect optical” 

method for assessing and quantifying tree crown characteristics (Chianucci, Chiavetta 

et al. 2014, Chianucci 2016), particularly due to the ease and realtively low costs of 

which appropriate equipment such as digital single-lens reflex (dSLR) cameras, can 

be obtained. In order to reduce complications of technical problems and erroneous 

data collection for investigations as LAI, Jonckheere, Fleck et al. (2004) describe that 

the use of hemispherical imagery is a preferred solution. However, Jonckheere, Fleck 
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et al. (2004) also recognise that there needs to be improvements in the technique in 

order for hemispherical imagery to be used as the preferred tool for this type of 

investigation. Nonetheless, Jennings, Brown et al. (1999) state that the way to achieve 

the most thorough measure of the extent of canopy closure is be taking a photograph 

at a specified measurement point beneath the crown with a 180° fisheye lens adapted 

camera. The resultant image is to be thresholded to distinguish between tree crown 

structure and the sky. Furthermore, at the time of writing, Jennings, Brown et al. 

(1999) state that hemispherical imagery is the “most accurate method of estimating 

canopy closure” when operational issues such as adverse lighting conditions are 

overcome.  

 

Chianucci and Cutini (2012), describe that hemispherical images from proximal 

photogrammetry are maps of canopy openings or closures depending on the 

requirements of the study, and provide rich insights into the assessment of 

heterogeneity within tree crowns. Chianucci and Cutini (2012) also state that proximal 

photogrammetry using a zenith angle range of 0°–15°, provides ideal oppertunities for 

the “management and monitoring” for tree canopies, particularly in applications of 

repeated routine canopy parameter assessment in tree inventories. Sanchez-Gonzalez, 

Cabrera et al. (2016) also used proximal imagery techniques to undertake data capture 

for forest inventories. Basal area, mean tree count and mean diameter were all 

assessed using hemispherical imagery, where structural parameters of the tree crowns 

were extracted from stereoscopic images. 

2.6.2 Landscape Scale Photogrammetric Investigations 

To improve the alignment of aerial imagery during photogrammetric investigations 

of forested landscapes is a difficult task due to the poor match of the spatial 
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distribution of grey-scale pixels in aerial images and the spatial distribution of the 

point cloud achieved with ALS LiDAR data. In the approach described by Lee, Biging 

et al. (2016) tree tops are extracted through image processing and an “extended-

maxima transformation” with LiDAR data. This methodology was required due to the 

limited spatial information that is available from the aerial image, however, with the 

addition of the LIDAR data, enabled an improvement in accuracy and allowed the 

alignment of aerial images to single-tree level. Lee, Biging et al. (2016) believe that 

this combined approach can enable the use of aerial images to be used in fine 

resolution change detection investigations and enable the extraction of biophysical 

properties of trees due to the enhancement with LiDAR. Gobakken, Bollandsas et al. 

(2015) used a comparative method to investigate tree structure with both aerial 

imagery and small footprint LiDAR, by extracting a series of biophysical properties 

of forest trees, including: canopy height and density. The study showed that although 

forest tree structure can be assessed using an aerial photogrammetric approach, that 

the best overall results were actually obtained via LiDAR. Interestingly however, 

photogrammetric analysis performed better than the LiDAR when assessing sparse 

crowns and smaller or younger trees from within the wider dataset (Gobakken, 

Bollandsas et al. 2015).  

2.7 Unique Programming Requirements of RS Data  

When working with large amounts of RS data, preparatory data processing should be 

completed before analysis. For example, with LiDAR data, the visualised 3D point 

cloud will offer some recognisable impression of the scanned scene as a model 

representation. However, to conduct meaningful analysis of the scanned scene, 

Otepka, Ghuffar et al. (2013) explain that individual features will need to be located 

within the scene which may also require elements of the scan to be deleted. 
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Additionally, Otepka, Ghuffar et al. (2013) state that to draw out essential scene 

evidence, multiple scene features will have to be classified according to reference type 

and entire feature sets assigned to feature classes; for example, ground data points, 

above ground data points, buildings etc. It is also worth considering that the 

processing of LiDAR data, or indeed working with RS data in general, is 

computationally demanding due to the large bit size and complex file structures of the 

data. This suggests that working with RS data for classification or analysis requires 

an optimised and efficient approach (Yan, Shaker et al. 2015). 

2.7.1 Canopy Height Model Data Pits 

ITC delineation is the procedure wherein trees are individually segmented from RS 

data, and the tree locations and crown extents are described. An important element of 

the delineation procedure is the creation of a canopy height model (CHM). This height 

map is fundamental for the subsequent acquisition and analysis of forest inventory 

information from RS data (Jones and Vaughn 2010, Khosravipour, Skidmore et al. 

2014). However, it is considered that their efficacy is often dependent of the 

characteristics of the forest structure being studied (Forzieri, Guarnieri et al. 2009). 

Traditionally, CHMs are a pixelated two dimensional (2D) image created from 3D 

data. The CHM is the underlying model used to identify vegetation canopy height 

values in forest inventories or analytical procedures. Ben-Arie, Hay et al. (2009) 

describe that pixelated CHM’s can reveal unnatural ‘pits’ within the tree canopy, 

which are formed as a result of pixels having a much lower digital value than any of 

the other neighbouring pixels.  

 

Furthermore, Ben-Arie, Hay et al. (2009) also describe that the pit formation can be 

as a result of several factors, such as errors in data acquisition or in post processing, 
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although it is difficult to precisely define where these errors arise from. The impact 

of the data pits is a noisy data structure in the subject canopy, which Ben-Arie, Hay 

et al. (2009) describes impacts on the success rate of ITC delineation. A new 

methodology outlined by Khosravipour, Skidmore et al. (2016) can successfully 

remove the CHM data pitting. This solution requires that the LiDAR points are altered 

to be disc shaped, or ‘splatted’ to represent a known area within the canopy, the 

benefits of which are twofold. Firstly and most importantly, the data pits are removed 

from within the tree crown shape where the LiDAR pulse has penetrated deeply within 

the tree crown, and secondly, the splatted CHM has an outer appearance that is 

visually representative of an expected tree shape when viewed from above. Figure 1 

compares two CHM’s of the same field plots that were created using the two 

techniques.  
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Figure 1  A visualisation of CHM’s from LiDAR data, using two different 

techniques. a. The outline of four woodland survey plots. b. typical 

pixelated CHM as used in many RS studies, with data pitting that 

causes analysis errors (Ben-Arie, Hay et al. 2009) (circular inset i, 

poor tree canopy resemblance with data pits as black pixels). c. a novel 

“splatted” CHM, closely resembling tree canopies, with data pits 

eliminated (Khosravipour, Skidmore et al. 2016) (circular inset ii., 

tree-like canopy edge with no data pits). The four conjoined square 

shapes are four separate field survey plots, with each plot measuring 

20x20 metres (400m2) on the ground.  

2.7.2 Data Threshold Manipulation 

To manage the complexity of dealing with the wide range of data in the ALS LiDAR 

acquired point clouds, several studies will frequently use arbitrary threshold levels as 

cut off points or data filters. For example, Kandare, Ørka et al. (2017) describe the 

removal of all data points below 1.5m for the removal of the lower strata vegetation, 

and to horizontally slice the remaining data at three additional threshold levels. 

Strîmbu and Strîmbu (2015) use a graph based approach to define the data cut-off 

threshold, and eliminate ground data and lower vegetation by analysing the height 

a. 

b. c. 

i. ii. 
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histogram for the LiDAR points, however, Strîmbu and Strîmbu (2015), do not 

provide further explanation of how the thresholds are determined. In the study 

described by Ayrey, Fraver et al. (2017) overlapping segmented horizontal layers 

from ALS LiDAR and identifying the areas of highest point density were used to 

locate tree tops, along with a localised maxima algorithm. However, where there were 

minimally overlapping data clusters, <5 overlaps, these were considered to be 

frequently representative of undesirably small trees for this study. The smaller 

overlapping trees were described as being typically representative of trees less than 

5m in height, and therefore a combined threshold of data point density and height 

were used as cut-off thresholds to exclude these trees from the study.  

 

Swetnam and Falk (2014) use the application of metabolic scaling theory (MST) and 

applying variable limit maxima (VLM) to achieve ITC delineation. In an approach 

guided by observations of maximal tree crown radii of the largest trees as found in 

their field data Swetnam and Falk (2014), apply an exhaustive searcher routine to 

identify potential neighbouring trees within a specified distance threshold of a target 

tree. The k-nearest neighbour (kNN) search determined that potentially neighbouring 

trees had to be located within <21m of the target tree. The field observed GR data 

showed that the largest trees within the field study area had a tree crown radii of ≤7m, 

hence, using a justification based on field acquired GR data, and the distance search 

area was limited to an area within three times the biggest known tree crown radii.  

2.7.3 Weighting as a Data Filter 

Weighted hierarchies are used to define edge properties and in attempt to quantify 

levels of cohesion between corresponding properties in a directed acyclic graph 

(DAG) based attempts to segment trees from ALS LiDAR Strîmbu and Strîmbu 

(2015). This method looks for corresponding properties between a grey-level raster 
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height image, and a LiDAR point cloud. Through applying a weighting to data 

properties considered to be of greater significance, tree segmentation is achieved. The 

segmentation algorithm identifies the number and location of cells that span a 

potential tree hierarchy (location), and identifies the number of corresponding cells in 

the tree top area between the two datasets. Through creating a higher level DAG using 

the spatially rich data, a root and node patch is created. Where the corresponding 

elements of the patch agree on weighted elements of a predetermined cohesion score, 

i.e. logical, quantitative, spatial relationships between the patches, the edge weight is 

calculated and ITC delineation is assigned (Strîmbu and Strîmbu 2015). Strîmbu and 

Strîmbu (2015) conclude that the use of a weighted mean for quantified cohesion 

scores increased the potential to have a ITC delineation method that can be adapted 

to suit the complexity of different RS or LiDAR data sets.  

2.8 Aerial Laser Scanning 

Within the RS and environmental management communities, there is a general 

confidence in the potential of the use of ALS LiDAR to assist in the management of 

the environment, and in the scientific challenges and research opportunities that this 

presents (Lu, Guo et al. 2014, Zhao, Suarez et al. 2018). Particular to the 

characterisation of forest resources using ALS LiDAR methods, Vauhkonen, Ene et 

al. (2012) state that LiDAR investigations fall in to one of two main categories. 

Firstly, area based investigations that use ALS LiDAR for capturing data at the forest 

stand level, or individual tree assessments method, where single trees are scrutinised 

as the focus of the investigation. A review by Koenig and Höfle (2016), describes that 

in the majority of studies that classify trees from LiDAR isolate and extract individual 

trees as an initial phase, predominantly from CHMs. Data filtering commonly 

focusses on pulse returns and the index of returns with some biophysical tree 
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properties such as height. Hierarchical and non-hierarchical rules are also applied, 

along with measures used to exclude data noise (Koenig and Höfle 2016). The review 

also describes that in the majority of ALS LiDAR research, “species-specific feature 

behaviour” and “single feature performance” of individual trees are typically 

considered in general classification terms, while the ALS LiDAR studies tend to focus 

on geometric, radiometric or pulse waveform features to aid classification (Koenig 

and Höfle 2016).  

2.8.1 ALS Tree Investigation 

ALS LiDAR has been used to locate and classify trees in largescale environments, 

such as forests or woodland. Recent works conducted in in southern Finland by Yu, 

Hyyppä et al. (2017) tested the suitability of three spectral ranges (532nm, 1064nm 

and 1550nm) for the ALS in the ability to identify three different species of boreal 

trees. The experimental process included establishing 22 GR plots and acquiring 1903 

direct measurements of trees over 5cm DBH, for validation of the RS data. Yu, 

Hyyppä et al. (2017) show that the best accuracy results for identifying trees (85.9%, 

Kappa = 0.75), were achieved using a point cloud and single tree features as a data 

filter. The GR trees were categorised into four categories, which showed that maidens 

and the healthiest dominant trees were the most accurately classified trees using the 

ALS LiDAR techniques with detection rates at 91.9%, and overall accuracy of 90.5%. 

Furthermore, the research also states that ALS used at 1064nm contain the most 

information for determining features between the different trees.  

 

In the review by Koenig and Höfle (2016), it was shown that several species of 

broadleaved trees were successfully classified from ALS LiDAR using filtering 

methods on the pulse return index. Overall accuracies of 95% for leaf on and 94% for 

leaf off for the upper canopy layers, and at lower canopy levels, the accuracy is better 
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in leaf off conditions at 95%, while leaf-on investigations achieve classification 

accuracies of 86%. It is understood that this drop in performance in leaf-on conditions 

is a consequence of the upper crown shadowing out the lower sections of the crown. 

The significance of the pulse return order is also described in Murray, Blackburn et 

al. (2014) where an analysis of the standardised and unstandardized regression 

weighting of the four return pulses (r 1-4) used within their ALS LiDAR dataset, 

showed the r2 pulse (second return) has the most overall influence on the independent 

(canonical) variables, used to describe tree structure. Further investigation for 

correlations showed that data relationships between pulses r1-3 are the most reliable 

as a group, and again, that the “frequency and distribution of r2 exerts the greatest 

influence” in investigative metrics of tree structure.  

2.8.2 Individual Tree Crown Delineation 

The use of ALS LiDAR investigations for the mapping of individual tree locations is 

considered extensive, as the resulting ITC delineated location maps are a fundamental 

element of a “broad field of applications and users” (Eysn, Hollaus et al. 2012). 

However, observations within the RS community identify that there are several 

limiting factors with LiDAR ITC delineation due to the many technical challenges of 

achieving the precise co-alignment of aerially acquired data with GR measured 

locations (Lee, Cai et al. 2016). This situation is compounded by the reporting efforts 

of scientists and researchers on their ITC delineation methods and precise geometric 

descriptions of their criteria used in automated ITC delineation (Eysn, Hollaus et al. 

2012). An operational complication with ITC delineation is the need to achieve 

vertical separation of overstory and understory trees from the 3D point cloud. The 

complex vertical arrangement of forest or woodland canopy strata frequently prevents 

understory trees from being accounted for (typically <60% detection rate), due to the 
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ITC delineation methods predominantly detecting the top of overstory trees or first 

return, surface points (typically >90% detection rate) (Hamraz, Contreras et al. 2017). 

Importantly, a study conducted over a ten year period by Zhao, Suarez et al. (2018) 

showed that parameters of trees calculated from LiDAR, specifically tree height, 

showed good correlation with field measurements, however, noticeable tree height 

underestimation bias increased, as the pulse density for the measurement sites 

decreased.  

 

A key factor is the shadowing effect of the upper canopy that significantly decreases 

the penetration range of the LiDAR pulse to the lower vegetation levels (Hamraz, 

Contreras et al. 2017). However, Hamraz, Contreras et al. (2017) identify that by 

increasing the 3D cloud point density to ~170 pt/m2, that the point density increase 

enables the successful ITC delineation for understory canopy trees. This is a view that 

is further supported by Vauhkonen, Ene et al. (2012) who state that the successful 

performance of ITC algorithms was dependent on tree density and data clustering. 

Not all studies require such high point cloud densities for successful ITC delineation. 

Swetnam and Falk (2014), cite the requirement as at least one LiDAR pulse return per 

pixel for successful CHM creation, which for a three by three pixel tile equating to 

one metre on the ground, is a density of only 9 pt/m2, where uniform distribution is 

assumed. Within this study, Swetnam and Falk (2014), achieved an average density 

of 25 pt/m2 and exceeded 45 pt/m2 where LiDAR flightlines of the same area, taken 

on different acquisition years, were overlaid for analysis purposes.  

 

The suitability of ITC delineation for the estimation of tree canopy biomass 

components was undertaken by Popescu and Hauglin (2014), where ALS LiDAR was 

the primary means of data capture. Popescu and Hauglin (2014), examined two of the 
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most frequently used tree delineation methods used. The area based approach (ABA), 

where the characteristics of the vertical vegetation and distribution of the biological 

material is identified through analysis of the LiDAR pulse returns that occupy a 

known area, e.g. a plot or forest area. In this method the horizontal distribution of the 

return pulses is not considered significant but the height distribution of the data is 

assessed, thereby allowing the calculation of data point density to identify tree 

locations (Vauhkonen, Maltamo et al. 2014). The ITC method utilises an allometric 

approach to identify individual tree biomass components, and subsequently the 

delineation of single-tree crown locations.  

 

Popescu and Hauglin (2014) state that the ITC method has several advantages over 

ABA, specifically that with ITC delineation, once the trees have been located, 

allometric models and investigative metrics can be run to further determine individual 

tree characteristics. Additional improvements to the ITC methods were proposed in 

the work of Swetnam and Falk (2014) who identify that by using their variable limit 

maxima, corrected by metabolic scaling theory method (ITCMST), there is an increase 

in precision mapping and ITC delineation of LiDAR surveyed trees. However, the 

authors also report that there remains discrepancies relative to tree heights and point 

densities. In higher canopy cover areas, i.e. >60%, the ITCMST delineation method 

was less accurate in segmenting trees >16m tall. In areas of lower canopy cover, i.e. 

<50%, the ITCMST was found to be the most ‘generally accurate’ method. Kandare, 

Ørka et al. (2016) investigated the effects of tree structure and LiDAR point cloud 

density on ITC delineation and observed that tree structure effects the level of 

increased omission errors, while commission rates are only slightly effected by tree 

structure.  
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Kandare, Ørka et al. (2016) also observed that ITC delineation accuracy increases in 

line with higher LiDAR point density and they propose a methodology for 

undertaking ITC delineation of LiDAR point clouds. This research aims to test the 

efficacy of delineation methods and gives an indication on commission error, 

omission error and an accuracy index for the pairwise matching between aerially 

delineated tree crown locations and GR observations (Kandare, Ørka et al. 2016). 

However, the construction of the accuracy index is based on an example of an 

oversimplified data matching methodology, where a match was considered successful 

where trees with similar crown dimensions between the ITC delineation and the GR 

data, and were matched on the basis of being the closest in terms for geospatial 

location and height. However, despite the fact that these matches were being used as 

a basis for the measurement of accuracy and that commission and omission values 

were influenced by a high accuracy score, as with other studies, Kandare, Ørka et al. 

(2016) neither made or reported a quantification of the suitability of the match 

proposed. The methodology of Kandare, Ørka et al. (2016) indicates that a match 

between the two datasets will still be excepted as an ‘accurate’ match even if the 

probability of the match remains unlikely. For instance, should two trees, one from 

each data set, be over 10 metres apart and 10 metres different in height, they would 

still be matched as a pair as long as the match was the best available of the other 

potential matches to other trees.  

2.9 From the Past to the Future  

It is recognised that RS has contributed greatly to the understanding of the landscape, 

and in particular within forest and landscape management (Takao, Priyadi et al. 2010). 

The use of the high-end RS technologies and methods; specific software, specialised 

equipment, and unique analyses, have been applied widely at the research or strategy 
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level. Yet there remains a significant difference between the gathering and creation 

of sophisticated data, and the tactical application of RS generated insights to aid the 

end user at the practical, operations level (Takao, Priyadi et al. 2010). In an earlier US 

report for the White House Office of Science and Technology Policy, Peterson, 

Resetar et al. (1999) recognised that although existing monitoring and surveying 

capabilities existed, specifically programs that relied upon a combination of ground 

and aerial RS observations, they failed to meet the ever more complex operational 

requirements that large-scale environmental management needs. This was particularly 

so for end-user managers who were attempting to meet environmental policy 

requirements in an increasingly complex policy framework.  

 

Peterson, Resetar et al. (1999) state that although RS technologies, in particular SLS, 

were not the all saving panacea that could solve all operational requirements, there 

were some elements of RS, such as the ability to capture low-cost imagery, that were 

operationally beneficial. However, further drawbacks were identified as being the 

associated increased in costs with the subsequent requirement for RS data processing 

and analysis, which were perceived as being prohibitively expensive for forest 

management operations. Nevertheless, the Peterson, Resetar et al. (1999) report 

concludes that should these requirements be met, then there would be a wide desire 

to develop an appropriate strategic vision for the use of RS across the US forest 

management industries. Subsequently, Wulder, Hall et al. (2005) report that the use 

of RS in the forest management sector has progressively increased, principally due to 

the better integration of optical elements of RS (e.g. aerial imagery, aerial LiDAR), 

improved database repositories and the wider use of GIS technologies. Furthermore, 

there has also been a sector wide implementation of technology that meets the needs 

of forest managers (Wulder, Hall et al. 2005). While the initial vision of the Peterson, 
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Resetar et al. (1999) requirements appear to be slowly being met, there remains the 

need to keep the development of RS techniques, methodologies and applications 

relevant for the specific needs of the end user. An additional benefit of RS approaches, 

is that RS is widely seen as a valid alternative to traditional destructive investigations 

where in order to fully account for biomass increment trees were frequently felled, or 

had parts of the tree removed and modelled, and plant material was collected and 

measured (Jonckheere, Fleck et al. 2004) 

2.9.1 Predicted Remote Sensing Trends 

Accurately predicting the future with any amount of certainty is an impossible task. 

Nevertheless, horizon scanning forecasts generally anticipate an increase in the use 

of RS techniques and methodologies worldwide, and in particular an exponential 

growth in the use of LiDAR in its varied forms; SLS, ALS, TLS, MLS etc. (Tehrany, 

Kumar et al. 2017). Within recent years there has been a shift towards the 

development of LiDAR techniques and scanning equipment focussing on improving 

measurement techniques, instrument function, accuracy and precision (Telling, Lyda 

et al. 2017). However, there is also the desire to enable the longer-term installation of 

LiDAR sensors for automated or semi-automated remote monitoring of 

environmental change. Unfortunately, the unavoidable problem of accessing high cost 

equipment is largely prohibitive. However, as a result of recent and ongoing 

developments in the automotive and MLS sectors, the availability of hard wearing 

scanners with the potential for permanent or semi-permanent installation is expected 

to be available within the near future (Telling, Lyda et al. 2017).  

 

Concurrently, there are indications that different methodological approaches to 3D 

investigations are becoming more prevalent over studies that utilise LiDAR as the 

main data capture method. Image processing that utilises Structure from Motion 
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(SfM) can create 3D models that are comparable to TLS LiDAR, and, that have the 

advantage of generally being more cost effective and easy to use. Therefore, for some 

3D vegetation modelling investigations, it is believed that SfM would have more 

potential future applications (Fonstad, Dietrich et al. 2013). A significant limitation 

of SfM, however, is that this image-based approach cannot penetrate vegetation 

canopies due to shading, and can only produce a surface 3D model. It is expected that 

future developments in this area would likely see a fusion between TLS and SfM 

approaches, where high resolution models can be created using the most advantageous 

features from both systems (Telling, Lyda et al. 2017).  

 

Until relatively recent technological developments, LiDAR research has most often 

used satellites, fixed or rotary wing aircraft, mobile or terrestrial platforms to conduct 

data collection. A study by Jaakkola, Hyyppä et al. (2017) suggests that there is an 

opportunity to further develop the use of UAVs with lightweight laser scanners, such 

as the Puck LITE, for the acquisition of LiDAR data in a forest environment. This is 

largely due to the ongoing miniaturisation of this type of scanning technology and 

additional payload capability of UAV platforms (Wargo, Church et al. 2014).  

 

Once operational problems such as errors in the direct estimation of tree parameters 

i.e. DBH, or sensor issues such as high levels of beam divergence and range issues 

can be overcome, Jaakkola, Hyyppä et al. (2017) suggest that there is the opportunity 

for the UAV scanning of the inside of tree canopies. There will also be the potential 

for the calibration of UAV scans with other larger scale airborne RS data acquisition 

campaigns. This future vision includes operations where UAV LiDAR forest data 

collection is completed with the integration of UAVs and automated piloting systems 

(Jaakkola, Hyyppä et al. 2017). At the time of writing, Jaakkola, Hyyppä et al. (2017) 
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assert that this technology is currently under development with a leading robotic 

systems company. These ongoing developments suggest that it is accepted that there 

is great potential in the remote sensing of trees, and that the research community will 

continue to develop new methods and technologies for the investigation and 

classification of trees in the environment. Ultimately leading to more informed and 

data driven environmental management.  

2.10 Summary 

From this review, it can be seen that there are many opportunities for the use of RS in 

the management of trees, and that RS can offer solutions to resolve long-term 

operational issues in both tree management and research. Traditional methodologies 

that remain widely used, have seen limited development in the last 100 years, 

however, these methods remain the basis for the majority of modern tree assessments. 

These traditional methods are widely used to complete tree assessments for a range 

of purposes, from environmental studies, to protection of the public for health and 

safety surveys or the collection of data for forest inventory. A key limitation of these 

largely manual methods, are that they are both time and, financially costly techniques 

that only provide a limited amount of information about the subject trees.  

 

These techniques are also limited by the physical capacity of the surveyor. Simply 

due to the limitations of where a surveyor can access a tree, there is a tendency to rely 

on the same, ground-based perspective for data capture and to measure only what the 

surveyor can physically touch. Either this means that large areas of the tree are not 

measured, or there has to be elements of data extrapolation to fill in missing 

information. In addition, with the continued use of the traditional methods, there is 

also a disproportionate reliance on the skills, knowledge and experience of the 
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individual surveyor for qualitative observations. This has been shown to introduce 

operator bias or subjectivity into the field data, upon which all subsequent 

measurements and calculations are based. It is recognised that there is a need to 

improve upon these traditional methods, and indeed, tree managers indicate the 

potential acceptance of new techniques and methodologies, predominantly where 

these new approaches can directly aid the management of the environment. However, 

there frequently remains some disconnection between the theoretical exploration of a 

problem, and the translation of the theory into practical solutions that can be employed 

in any real operational sense.  

 

For successful tree management and academic research, there is often a need to record 

information about trees over time, in particular for capturing an evidence base for the 

quantification of change. This review shows that there are several RS solutions that 

can be employed to fill the requirements of tree managers and researchers in capturing 

accurate, repeatable and objective environmental data. This RS approach is valuable 

for investigations that will look at trees across a range of scales, from individual tree 

assessment, up to wider landscape applications of trees in woodland or forest settings. 

RS is shown to be able to provide opportunities to investigate elements of tree 

structure that otherwise would be unobtainable to the traditional surveyor, and 

furthermore, allows the capture of data that will lead to more insightful investigations 

and conclusions reached about the tree’s condition. This review identifies more than 

one RS method that can be employed in this manner, specifically, the use of proximal 

hemispherical imagery for individual tree assessment and recommends the use of 

ALS LiDAR for the investigation of trees in their wider landscape setting.  
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This review has identified that there are particular requirements for the successful 

application of these RS methods. These range from ensuring that hemispherical 

images are captured from beneath tree crowns looking towards the zenith viewpoint, 

to identifying a recommended method for the reduction of data noise in LiDAR 

investigations and considerations for successful ITC delineation and the classification 

of trees using analytical metrics. Moreover, this search of the literature on the subject 

also indicates there are opportunities to improve on the current practice of traditional 

methodologies and provide a technique that is readily accessible for a field operative 

to be able to classify tree structure. Similarly, previous research involving ITC 

delineation has frequently relied upon the acceptance of arbitrary thresholds for 

resolving pairwise matching problems, and again, this provides the prospect for a new 

method for the identification of tree locations and extents, with a quantification of 

successful matching between two ITC datasets. Furthermore, the review also shows 

a need to develop a combined technological solution used for identifying and 

characterising tree structure, which utilises techniques that are transparent, repeatable 

and will indicate the amount of confidence in the application of the data for tree 

managers or researchers. Ultimately enabling the end-user to gain new insights on the 

overall condition of the trees under assessment, as a prelude to informing the decision 

making process for tree management or further academic research.  
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3 Field Sites, Methods & 

LiDAR Data Specification 

For this research project, a substantial amount of field-based data collection was 

undertaken to provide a robust GR data set to be used in the validation of RS data. 

This necessitated the use of a series of different field methodologies, each with unique 

specifications and operational requirements. The fieldwork relates to a series of both 

direct and indirect measurements of the subject trees, using several data capture 

methods. These methodologies are essential for the completion of the experimental 

elements of this investigation, and are not covered elsewhere within this thesis. 

Hence, these methodologies are described to provide transparency, and, when read 

with the methodologies in later chapters, to enable other investigations to repeat the 

procedures used. These field-methodologies drawn from a variety of sources, and are 

either based on forestry and arboricultural industry specific best practice, or are 

techniques from the academic research community.  

 

Several of these field data collection methods were used in combination in order to 

achieve the required objective. For example, a tree may be manually surveyed and 

proximally photographed. As such, each of the subsections of this chapter should not 

be considered isolated methods completed in sequential order, but a general record of 

field methodologies and data collection techniques, used concurrently where required. 

The trees used within the investigation were recorded across a series of different field 

sites each with unique combinations of tree species, age, geolocations and 
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topographic exposure, and in a range of differing physical conditions. Therefore, an 

overview of typical land use and local environmental conditions at each field site is 

also described.  

3.1 Field Sites 

The fieldwork was undertaken across three separate locations within northwest 

Lancashire, UK. The sites contained varied tree stocking densities, landscape 

character and diversely aged and structured tree communities. The remit for the 

subject trees located within these sites were that the trees were accessible from 

beneath the crown, and were considered to be within the ‘mature’ phases of tree 

development, which includes; early-mature, mature, late-mature, old/veteran and 

senescent phases (Fay and de Berker 1997).  

3.1.1 Eaves Wood, Lancashire, UK 

Eaves Wood is located to the north of Silverdale, Lancashire, UK (54°10'43.2"N, 

2°49'13.9"W), and has a total area coverage of 51.5 hectares. Eaves Wood can be 

described as secondary woodland, predominantly with closed or co-dominant canopy 

trees, with infrequent areas of individual maiden trees located in canopy gaps.  
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Figure 2  The approximate location of Eaves Wood, Silverdale, Lancashire, 

UK. 

The woodland has a typical composition as is commonly found in the region. Eaves 

Wood is a mixed species, semi-natural forested area, with areas of ancient semi-

natural woodland (ASNW) and plantation on ancient woodland sites (PAWS). The 

woodland composition is varied with the main tree species including; beech (Fagus 

sylvatica (L.)), small-leaved lime (Tilia cordata, (Mill.)), Lancaster Whitebeam 

(Sorbus lancastriensis (E.F. Warb.)), yew (Taxus baccata (L.)), ash (Fraxinus 

excelsior (L.)), sessile oak (Quercus petraea (Matt., Liebl.)), sycamore (Acer 

pseudoplatanus (L.)), spindle tree (Euonymus europaea (L.)) and scots pine (Pinus 

sylvestris (L.)). Notably the pine is not locally provenant and an indicator that the 

woodland also includes introduced tree stock. The woodland structure contains much 

vertical and horizontal variation, with clearly defined vegetation strata, including a 

mixed vegetation understory containing many large areas of hazel (Corylus avellana 

(L.)). 
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3.1.2 Potter Hill Fields and Park Fields, Silverdale, Lancashire, UK. 

Potter Hill Fields and Park Fields are both located within the area to the north of 

Silverdale, Lancashire, UK (54°10'23.7"N 2°48'54.9"W and 54°10'35.5"N 

2°48'55.7"W respectively). Currently in use as informal silvopasture, the grassland is 

used for animal grazing under local farming management. The overstory tree 

canopies, all oaks, are not currently under any active tree management. Typical of 

trees in lapsed management, there are several examples of trees with notably altered 

structure or form, due to their exposure to local environmental stresses. Such as, 

branch loss from storm winds or crown dieback caused by complications arising from 

the impact of the grazing animals.  

3.2 Tree Survey Methodology 

Throughout all phases of this fieldwork, each tree surveyed was either located in a 

survey plot and was over 5cm DBH or, was selected and individually investigated for 

this study. These trees had a survey conducted to record the observable condition, 

identify structural characteristics and biophysical properties e.g. height, crown spread 

etc. and other essential GR data. The tree survey required the majority of 

measurements to be taken using manual procedures; therefore, in order to ensure 

standardisation and repeatability, a technical field manual was used for reference in 

the field (Appendix A). A data form was used to record the data in a standardised 

format, using the following conventions: 

  



Remote Sensing Tools for the Objective Quantification of Tree Structural Condition  

from Individual Trees to Landscape Scale Assessment 

54  

Table 2  Categories of manual tree measurements taken during field capture 

of ground reference data. Examples of the data recorded are also 

shown.  

Data Types  Example 

 Plot ID and tree number  Plot 9, T27 

 Tree species  Q. petraea  

 XY co-ordinates  15.9, 12.3 

 DBH  40 

 Tree height  18.2m 

 Stem lean and direction of lean  15°, NW 

 Crown area (measured along two axis 
from the ground level) 

 L10.2, S8.3 

 Orientation of the crown area   L-NW/SE, S-NE/SW 

 Observable condition  Gooda 

 Structure type   Dominantb  

 Other general comments about the 
tree, site or location 

 

20% canopy loss, 
heavy epicormic 
growth etc. 

 Ground cover assessment  1=10%, 2=35% etc.c 
Notes: T27 - Tree ID 27, m - metres, NW – northwest, SE – southeast, SW - southwest, a). Observable 

condition is classified on a four point scale (good, moderate, poor, and dead), using traditional 

arboricultural techniques. b). Structural descriptions include dominant, co-dominant, understory, field 

layer, monolith, stag-headed etc. c). Ground cover assessment technique from FCIN45 (Kerr, Mason 

et al. 2002)  

 

In total, 1210 trees were surveyed across three field sites (see Site and Data 

Summary), over 135 calendar days, totalling 1080 fieldwork hours. Importantly, this 

extensive GR dataset was collected during the same time frame (October 2012 – 

March 2014) that the natural environment research council airborne research & 

survey facility (NERC ARSF) undertook ALS LiDAR data collection flights over the 

defined research area. Therefore, this GR data is considered highly important for the 

calibration and validation of the ALS LiDAR data (Hladik and Alber 2012, 

Jakubowski, Li et al. 2013). The GR data was initially stored in a Microsoft Excel 

spreadsheet format (.xlsx), to facilitate the use of the data in later analysis across a 

range of software platforms, data storage and programming languages employed 
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within this study; MATLAB, Python, SQL, Ubuntu/Bash, ArcMap, ArcScene, QGIS, 

PostgreSQL, PDAL and GDAL.  

3.3 Photogrammetry Field Methodology 

Where a tree crown is to be photographed for use in the crown structure analysis (see 

Using Fractal Analysis of Crown Images to Measure the Structural Condition of 

Trees), a dSLR camera with a hemi-spherical lens adapter and standard tripod was 

used to capture the tree crown images (Chianucci and Cutini 2012). The equipment 

required for this procedure is identified in Figure 3:  

 

Figure 3  Equipment required for taking beneath crown hemispherical 

photographs for use in crown structure analysis 1. dSLR camera with 

a hemispherical lens adapter, compass and level 2. Standard camera 

tripod, 3. Surveyors measuring tape, 4. GPS/data logger, 5. Tree 

survey data sheets, 6. Sunnto clinometer, 7. DBH tape (not shown).  
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To take the image, the southern axis of the crown was identified and the surveyors 

tape was run from the central stem to the full extent of the crown, maintaining the 

southerly direction of travel by reference to the compass. The crown length was 

measured to the nearest whole metre, and the centre point along the southern axis was 

identified again to the nearest whole metre, where the camera and tripod were set up. 

The camera is positioned with the camera lens pointing vertically upward, checked 

against a bubble level which is secured to the lens cover where the pitch 

(forwards/backwards movement) and roll (left/right movement) are levelled (Origo, 

Calders et al. 2017). The camera lens is situated at ~0.5m from the ground, level as at 

all of the sites and trees used, ensuring there was no understory vegetation to obscure 

the lens (Figure 3). After photographic capture, each image was proofed in the field 

for quality and suitability using the dSLR camera’s 2.7-inch screen. Following this, 

other field observations and measurements were recorded on the survey sheet.  

3.4 ALS Survey Plot Location and Establishment 

Prior to capturing the fieldwork data for the ALS LiDAR investigation at Eaves 

Wood, a walk-over survey was undertaken, considering many locations for control 

plots where the trees within the plot would be individually surveyed. The sites were 

identified by assessing the canopy cover at each location through photographic 

imaging and calculation of gap fraction in the free software CAN_EYE as described 

by Weiss and Baret (2010). No detailed surveying of the tree’s structural condition 

was undertaken during this process. The intention was to have a mixture of canopy 

cover conditions, ranging from ~10% to ~100% tree cover (Table 3). Two potential 

transect lines were identified; with many plots along each transect. The chosen 

transect was selected based on the potential location range across the woodland and 

types of tree cover available.  
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Table 3  Calculation of vegetation cover at 26 survey plots. Images were 

captured at each location and amount of sky or vegetation that 

occupies the image was calculated using CAN_EYE.  

Plot 
Sky 
(%) 

Vegetation 
(%) 

Plot 
Sky 
(%) 

Vegetation 
(%) 

1 5.54 94.46 14 15.65 84.35 

2 9.51 90.49 15 14.92 85.08 

3 8.48 91.52 16 9.65 90.35 

4 2.26 97.74 17 11.8 88.2 

5 17.77 82.23 18 11.68 88.32 

6 5.13 94.87 19 12.06 87.94 

7 7.07 92.93 20 17.54 82.46 

8 7.85 92.15 21 16.88 83.12 

9 36.04 63.96 22 7.01 92.99 

10 20.55 79.45 23 23.22 76.78 

11 15.33 84.67 24 6.21 93.79 

12 8.49 91.51 25 38.32 61.68 

13 8.37 91.63 26 8.57 91.43 

3.4.1 Real Time Kinematic GPS and Total Station Surveying 

Twenty-six tree survey sites were identified for use as control sites, during the ALS 

LiDAR investigation (see STRUCTURAL: Categorising the Structural Condition of 

Individual Trees at Landscape Scale using LiDAR Data). To establish the 20 x 20m 

plots, the plot centre was geolocated and a manual tree survey of all the trees within 

the plot area was conducted. The exact coordinates of the plot centres had to be 

identified to facilitate the accurate geolocation of the trees within each plot. Achieving 

reliable GPS signal beneath tree canopies is problematic due to the frequent 

interruption of the radio signal. Therefore, a combined first-order triangulation and 

back sighting survey using real-time kinematic (RTK) GPS and a robotic total station 

(electronic theodolite), was conducted. This survey required the following equipment: 
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 Trimble R4 (x2) RTK GPS (GNSS) 

o GPS receivers (2 x R4 receivers)  

o GPS antenna 

o Base station radio 

o Tripod and monopod 

o Power supply 

o Ancillary cables, aerials and equipment 

 

 Trimble S6 Total Station 

o Total station instrument 

o Trimble control unit (CU) 

o 360° prism 

o Tripod and monopod 

o Ranging pole 

o Power supply 

o Ancillary equipment 

 

Established ground control points (GCP), such as gateposts, wall structures or other 

features denoted on standard topographical maps, were geolocated using the RTK 

GPS. The GPS is used to capture in field satellite signals, which were corrected in 

real-time by simultaneously receiving data from a local ‘reference station’. This 

procedure has the potential to achieve sub 5-centimetre accuracy.  
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Figure 4 Geolocation of ground control points (a), and undertaking a first 

order triangulation survey (b), to locate survey plots within woodland 

to aid data processing in an investigation gathering LiDAR data of 

Eaves Wood, Silverdale, Lancashire, UK.  

To obtain an optimised GPS signal, as all subsequent co-ordinates were collected in 

reference to the base station. The RTK GPS base was stationary, receiving a signal 

with clear line of sight to the sky for a minimum of two hours before commencing the 

survey. Once the co-ordinates of the GPS location were recorded, the total station 

(TS) was used in a line-of-sight relay procedure. This is where the ‘rover’ monopod 

was moved to an area beneath the surrounding tree canopy, and the location of the 

reflective prism was identified by the automated laser rangefinder in the TS. Where 

the line-of-sight could not be maintained, due to the closeness of the canopy or dense 

understory, the TS was moved to the last location that the rover was recorded, and the 

new location coordinates for the TS were entered. This required that the back sight 

surveying procedure was repeated from the new location; therefore permitting the 

capture of the location coordinates beneath the tree canopy without problems 

associated with the loss of GPS signal. The process of back-sighting and triangulation 

was repeated over many iterations moving deeper under the woodland canopy until 

a. b. 
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the desired location for a survey plot was reached, and the plot centre identified and 

recorded.  

3.4.2 Survey Plot Establishment 

Each plot centre was marked with a wooden ground stake affixed with a surveyor’s 

benchmark in the top, which remained in-situ until the entire ALS investigation was 

complete. This enabled the ability to return and resurvey each site if required. The 

equipment required for plot establishment was: 

 

 8 x 30-50 metre surveyors tapes 

 Surveyors benchmarks 

 Field or sighting compass 

 Plot co-ordinates  

 Data recording equipment 

 

From the benchmark, a 30m surveyors tape oriented along a north/south axis was 

placed over the plot centre. This procedure was repeated with a surveyors tape 

oriented along the east/west axis. Both tapes each had their 10m mark in the plot 

centre, with 10m of tape extending to each of the four cardinal points, thereby making 

the shape of a ‘positive’ sign. Subsequently, this was bordered with four other tapes 

to demark the boundary of the plot, in a ‘box’ shaped configuration around the initial 

two tapes. Again, where the north/south tape touched either of the top or bottom 

boundary tapes, this occurred at the 10m mark. This procedure was repeated for the 

east/west boundary. The effect of this arrangement was to create a boxed grid around 

the plot centre, with graduated measuring points on all sides, and a plot origin location 

(0,0) in the south western corner (Figure 5).  
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Figure 5 A survey plot layout for capturing data in an ALS LiDAR 

investigation undertaken in Eaves Wood, Lancashire, UK. The plot 

centre has geolocated coordinates (e.g. X=346642.5, Y=476232.5), 

while the plot origin at (0,0) would have coordinates -10m less than 

the plot centre (e.g. X=346632.5, Y=476222.5). The recording of a tree 

location along the X axis, would be taken from left to right, and for 

the Y axis would be taken from the bottom to the top.  

Once the plot outline has been set up, it becomes clear which trees fall within or 

outside the survey plot. On occasions where a tree straddled the tape boundary, the 

location of the centre of the tree stem, i.e. where, as a seedling, the tree would have 

first emerged from the ground, was taken as the central reference point. If the 

‘seedling centre’ was considered to be within the tape boundary, the tree was 
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surveyed. Correspondingly, if the seedling centre was outside of the tape boundary, 

the tree was not surveyed. If the seedling centre was aligned exactly on the tape 

boundary, the tree was considered to be within the plot and surveyed.  

 

Following surveying of the plots, an assessment of the stocking density was calculated 

for each of the plots. At 20 x 20 metres, each plot represents 4% of a hectare. A density 

count of the tree population per plot was taken and transposed up to the hectare scale. 

As shown in Figure 6, the population density follows the preferred ‘reverse-J’ 

distribution, an ideal distribution of the tree population, and is considered indicative 

of a complex, structurally diverse woodland (Kerr, Mason et al. 2002). 

 

Figure 6 An assessment of structural diversity of a tree population in Eaves 

Wood, Lancashire, UK. The data follows an ideal ‘reverse-J’ 

distribution, which indicates a structurally complex and diverse 

population (Kerr, Mason et al. 2002).  

3.5 Site and Data Summary 

Following the data collection of 1210 trees across four field sites, totalling ~1080 

fieldwork hours, a unique dataset has been created. The use of characteristically 

different field sites, each within unique local environments, provides the opportunity 
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to investigate a range of heterogeneous tree communities with widely differing tree 

structures. Similarly, changes in tree stocking densities and different environmental 

locations, provides a distinctive mix of tree structures, which were manually 

measured and recorded. The full extent of the dataset is summarised at Table 4: 

Table 4  Summary record of ground reference field and research sites used 

within a remote sensing investigation, and the number of trees for the 

types of data recorded at each location. 

 

Site 

N 
Trees 

ALS 
Hemispherical  
Imagery 

Tree 
Survey 

Eaves Wood 1183  29 1183 

Park Fields 12  3 12 

Potter Hill 
Fields 

15  15 15 

Notes: Numbers e.g. 1183, refer to the number of trees per method.  Indicates method completed.  

 

Through the creation of this dataset via extensive fieldwork, a unique, valuable 

resource has been created that is to be used for cross-reference, calibration and 

validation of the findings from the analytical phases of this research. Any subsequent 

interpretation of observations from the RS data can, therefore, be cross-referenced 

against known GR field observations further increasing confidence in the findings of 

the RS analysis.  

3.6 LiDAR Data Specification 

NERC ARSF collected the DR aerial LiDAR data (project code GB12.04), which was 

supplied in ASCII format and as LAS 1.0 point clouds, using a Leica ALS50 (phase 

II) LIDAR (radiation wavelength 1064nm), with a 39 megapixel [7216x5412, 12bit] 

digital camera (RCD) and an IPAS event controller to extract GPS data. A calibration 

flight was conducted in May 2012, prior to the Eaves Wood data collection in October 

2012. The LiDAR sensor acquisition altitude range is between ~650 and ~2000m, 
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with the LiDAR data for these flightlines being acquired at ~1000m. Preliminary 

processing includes a calculation of georeferenced accuracy where each flightline is 

compared with its neighbouring flightline and assessed for elevation overlapping and 

horizontal planar shift. GCP’s are used to correct for elevation errors. Classification 

of the LiDAR data is completed following the American Society of Photogrammetry 

and Remote Sensing (ASPRS) standard LiDAR point classification system, primarily 

to identify data ‘noise’ which enables the removal of the noisy points. The LiDAR 

point cloud contains returned pulse points (r) that are recorded as points 1-4 with the 

minimum distance between returned points being 2.7m which identifies the points as 

being independent (Figure 7). The intensity values of the returned points is only 

calculated for R1-R3, and gives an indication of the reflectivity of the returned surface 

ranging from 0 (dark) to 255 (white) (Figure 8). The ASCII data provides a range of 

descriptive statistics and measurements used within the analysis (Table 5).  

 

 

Figure 7 Individual trees delineated from ALS LiDAR data of Eaves Wood. a) 

a tree in good crown condition, b) a tree in moderate crown condition, 

c) a tree in poor crown condition, d) a monolith of a dead tree (no 

crown) and ground points removed for visual clarity.  Return (r) 

pulses R1-3 can be seen as yellow, red and green respectively.  

a. b. 

c. d. 
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Figure 8  Intensity image of Eaves Wood, UK, with intensity values ranging 

from 0 (dark) to 255 (white). The image also shows the boundary of 

Eaves Wood, outlined in red. 

Table 5   LiDAR data types and description provided in ASCII format for 

LiDAR flightlines over Eaves Wood, UK.  

ASCII Data Description ASCII Data Description 

Time GPS time (seconds) Classification ASPRS standard 

Easting Cartesian coordinate* Return No. Return echo (1-4)^ 

Northing Cartesian coordinate* No. of Returns 
Times echo returned 

relative to return no. 

Elevation Height ASL Scan Angle 
Degree integer of  

laser firing 

Intensity 
Return pulse strength  

(0-255) 
  

* = Horizontal Datum: OSGB36 (OSTN02), Vertical Datum: Newlyn, Projection: British National 

Grid. ^ = Expectation of returns (R): R1 ~100%, R2 ~10%, R3 ~1%, R4 ~0.1%.  
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4 Using Fractal Analysis of 

Crown Images to Measure 

the Structural Condition of 

Trees 

4.1 Preamble 

Tree crowns are used as a signpost for indicating a tree’s overall physiological 

condition. In simple terms, when assessing tree condition, a particular emphasis is 

placed upon considering the visual condition and physical structure of the crown, 

relative to the expected condition and typical structure for the species. Resultantly, 

crown condition is a proxy for the overall tree condition. However, existing 

techniques for assessing tree crown structure frequently depend upon assigning broad 

qualitative categories to describe the tree crown condition. Yet, these broad categories 

cannot account for subtle differences between similar trees within the same category.  

Furthermore, the qualitative approach also doesn’t answer the key question, ‘are there 

quantifiable differences in tree structure that can be used to characterise overall tree 

condition?’ 

 

This chapter describes a proximal capture, photogrammetric technique that quantifies 

tree crown complexity and objectively measures the overall condition using tree 

crown complexity as a proxy for categorical methods. 
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Observations of tree canopy structure are routinely used as an indicator of tree 

condition for the purposes of monitoring tree health, assessing habitat characteristics 

or evaluating the potential risk of tree failure. Trees are assigned to broad categories 

of structural condition using largely subjective methods based upon ground-based, 

visual observations by a surveyor. Such approaches can suffer from a lack of 

consistency between surveyors; are qualitative in nature and have low precision. In 

this study, a technique is developed for acquiring, processing and analysing 

hemispherical images of sessile oak (Quercus petraea (Matt.) Liebl.) tree crowns. We 

demonstrate that by calculating the fractal dimensions of tree crown images it is 

possible to define a continuous measurement scale of structural condition and to be 

able to quantify intra-category variance of tree crown structure. This approach 

corresponds with traditional categorical methods; however, we recognise that further 

work is required to precisely define interspecies thresholds. Our study demonstrates 

that this approach has the potential to form the basis of a new, transferable and 

objective methodology that can support a wide range of uses in arboriculture, ecology 

and forest science. 
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4.2 Introduction 

Traditionally the assessment of tree structural condition, as used in general tree 

surveys, relies upon simple methodologies and ground-based observations due to the 

physical complexities of directly measuring tree crowns. However, these traditional 

techniques are time consuming, manual and largely subjective. Subjectivity has been 

shown to prevent the same conclusions being reached during independent tree 

surveys, including surveys of the same trees by different, experienced tree surveyors 

(Norris 2007). Predominantly these assessments rely on a tree surveyor’s knowledge 

of ideal tree form, tree health, their ability to identify pests and disease, and the 

consideration of potential hazards and targets that are at risk of harm. Blennow, 

Persson et al. (2013) state that when managing trees or woodlands the use of 

subjective tree condition observations are not ideal, particularly where objective tree 

assessments would provide greater insights in the tree management decision process. 

Ultimately, traditional tree assessment procedures can result in subjective and 

potentially biased, field observations of tree condition, irrespective of how 

knowledgeable and experienced the surveyor is (Norris 2007, Britt and Johnston 

2008).  

 

Trees are self-optimising organisms that respond to a range of recurrent 

environmental demands and employ strategies to alter their form to minimise 

potential negative effects or optimise their structure for the greatest physiological 

benefit (Zimmerman and Brown 1971, Mattheck and Breloer 1994, Fourcaud, Dupuy 

et al. 2004, Pollardy 2008). In most angiosperms, the lateral branches grow almost as 

fast, or in some instances faster, than the terminal leader. This process results in the 

characteristic broad crown structure common in this tree type (Pollardy 2008, 

Burkhart and Tome 2012). Tree form is typically the result of various influences 
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combining the genetic potential, the demands of physiological processes, spatial 

competition in the crown and the effects of other environmental conditions, such as 

thigmomorphogenic change caused by repeated wind force effects. The shedding of 

branches through responsive self-pruning driven by abscission, is a characteristic 

found in many tree species which has a direct effect on the shape of the crown 

(Pollardy 2008).  

 

There are many additional reasons for trees to shed branches, or parts thereof; which 

are accelerated by the effects of colonising pathogens e.g. fungal infestation, or 

external forces such as gravity or wind force. Indeed, the tree’s own physiology also 

increases the potential for crown dieback as trees age (King 2011). Despite many 

potential stimuli affecting overall tree structure, the growth habits of trees are 

fundamentally controlled by the genetic predisposition of individual species 

throughout different tree growth stages. Therefore, the characteristic structure and 

form of differing tree species remain visually recognisable even after the external 

impacts are considered (Zimmerman and Brown 1971). When trees reach late-

maturity, there is a combined slowing down of both the stem diameter increment and 

extension growth in the crown, as a response of the influence of the tree species, 

genotype or its local environment (King 2011). It is the recognition of these types of 

biotic and abiotic structural changes that tree surveyors use to aid the classifying of 

trees into discrete categories, ultimately aiming to gain insights into the tree’s 

condition.  

 

There have been many studies of tree crown structure in recent years, many of which 

utilise high-end technology such as light detecting and ranging (LiDAR) as the main 

method of data capture (Ørka, Næsset et al. 2009, Ferraz, Saatchi et al. 2016). 
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Specifically with LiDAR data investigations, it is understood that the success of tree 

investigation algorithms for location detection or height estimation is strongly 

correlated to the type of tree structure under analysis (Vauhkonen, Ene et al. 2012). 

Through analysis of aerial LiDAR data, boreal tree species have been identified at a 

species level due to differences in their tree structure signatures (Lina and Hyyppä 

2016), or through LiDAR waveform analysis which identifies structural features 

within the LiDAR wave (Hovi, Korhonen et al. 2016). Aerial LiDAR investigations 

are often supported with aerial imagery which is captured simultaneously as image 

based investigations also provide opportunities for tree canopy structure analysis 

(Dash, Watt et al. 2016). Furthermore, photogrammetric techniques such as digital 

stereo imagery and radar imagery have been used in tree canopy structure 

investigations (Holopainen, Vastaranta et al. 2014). For many researchers or 

environmental managers, a restrictive element of these types of investigations is the 

requirement for expensive, specialised research equipment that is often mounted on 

an aerial platform, such as an unmanned aerial vehicle (UAV), aeroplane or satellite.  

 

The use of hemispherical photography to undertake proximal tree crown assessments 

has a field history of more than 50 years, with forest ecologists, Evans and Coombe 

(1959) using the technique to investigate the available light climate under woodland 

canopies with an early prototype ‘Hill’ (fish eye) camera. This has remained a readily 

used, accessible and repeatable method for the investigation of tree canopy structure 

(Hale 2004, Chianucci 2016). Researchers have also previously used hemispherical 

imagery to assess canopy gap fraction or provide leaf area index assessments (Weiss, 

Baret et al. 2004, Beckschäfer, Seidel et al. 2013), as it is understood that images 

captured by hemispherical, or fisheye, lenses provide opportunities for 

photogrammetric measurement (Schwalbe, Maas et al. 2009). Conducting 
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photogrammetric analysis on hemispherical imagery falls within the remote, or 

indirect, methods of measurement which enable rapid, non-destructive determination 

of crown properties (Chason, Baldocchi et al. 1991, Weiss, Baret et al. 2004). Modern 

advancements in digital cameras, coupled with readily available hemispherical lenses 

or lens adapters, provide the opportunity for an off-the-shelf approach to 

photogrammetric research (Leblanc, Chen et al. 2005).  

 

When tree crowns are viewed from directly beneath, looking upwards towards the 

zenith viewing point (90° from the horizontal elevation), holes can be observed within 

the crown structure. The tree crown area is a complex arrangement of tree branches, 

combined with observable unoccupied areas between the different parts of the tree 

crown. This upward looking view provides a visual separation between the tree 

structure and the sky, which when photographed can be converted into a binary image 

with the occupied and background regions of the image coded ‘1’ and ‘0’ respectively 

(Beckschäfer, Seidel et al. 2013, Sossa-Azuela, Santiago-Montero et al. 2013). Image 

analysis techniques for pattern recognition in tree structures have identified features 

of lacunarity (the size and distribution of holes), complex spatial distributions or other 

morphologic features (Zheng, Gong et al. 1995, Frazer, Wulder et al. 2005).  

 

Due to the unique geometry found in nature, the dimensions of natural, physical forms 

cannot readily be described in simple, integral terms (Mandelbrot 1982, Dimri 2000). 

Mandelbrot (1982) argues that more insightful measurements are required to measure 

pattern complexity, such as quantifying the degree of complexity in a structure. As 

trees exhibit natural structural variance, Mandelbrot (1982), also notes that it is the 

frequently anomalous nature of tree structure whose form is sculpted by, “chance, 

irregularities and non-uniformity”, that provides the opportunity for statistical 
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investigation. Rian and Sassone (2014) demonstrate that the crown structures of trees 

are unique in their self-affine and highly irregular branching patterns. It has been 

stated that fractal dimensions (Df) can be used to quantify structural complexity in a 

continuous measure, theoretically ranging from 0 to infinity, which can be expressed 

as a single value (Mandelbrot 1967, Kaye 2008). Although tree crown structures are 

complex shapes, there are various examples of Df being used as a predictor variable 

for the classification of forest canopies (Zeide and Pfeifer 1991, Zeide 1998, 

Jonckheere, Nackaerts et al. 2006, Zhang, Samal et al. 2007).  

 

The aim of this study was to develop an objective methodology to assess the structural 

condition of broadleaved tree crowns (Quercus sp.) by quantifying the complexity of 

the tree crowns through hemispherical images taken under leaf-off conditions. This 

approach was designed to overcome the limitations of current subjective field 

methodologies. The first objective was to develop an in-field data capture technique 

that was suitable for a range of subject trees across a variety of structural conditions. 

The second objective was to develop image processing methods for the assessment of 

crown structural condition. The third objective was to propose a new and objective 

means of evaluating tree structural condition on a continuous scale.  

4.3 Methodology 

Throughout three study areas across northwest Lancashire, England, 64 Sessile Oak 

trees (Quercus petraea (Matt.) Liebl.) were individually photographed using 

hemispherical imagery obtained from beneath subject tree canopies, looking towards 

the zenith viewpoint (Figure 9). The trees used in the study were either individual 

maiden trees, or trees that were located in closed canopy, woodland conditions. The 

trees were photographed over a single winter season in leaf-off condition, thereby 
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allowing an unobscured view of the tree crown structure. To minimise potentially 

confounding variables, this method was applied to trees of the same species that were 

in the mature phases of tree development, specifically: early-mature (28%), mature 

(25%), late-mature (25%), veteran and senescent (22%) (Fay and de Berker 1997). To 

achieve a suitable sample size, a locally prolific species was used in this study.  

 

Figure 9  A schematic of the field method for taking a hemispherical picture 

from beneath a tree canopy. The camera is situated on a standard 

tripod, and is levelled and pointing towards the zenith viewing point 

(90° from the horizontal elevation). In this example, the full extent of 

the crown is four metres along the southern axis, and the image is 

taken at the two metre mid-point.  
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4.3.1 Field Methodology Development 

Reference data on the trees structural condition was collected using a four-point 

categorical system, as is common in arboricultural assessments using traditional field 

techniques. The four-point method used in this research is not based upon a single 

specific method, but broadly upon several arboricultural tree survey methods (e.g. 

BS5837:2012 surveys which use a four level condition hierarchy, the ISA tree hazard 

evaluation, which uses four classification categories to generate an accumulative 

hazard score (Matheny and Clark 1994, BSI 2012), and is also comparable with a 

qualitative tree condition category assignment as described in Swetnam, O’Connor et 

al. (2016). Consequently, this approach is representative of similar tree survey 

methods where the assessment of trees leads to an empirical categorisation of tree 

condition (Figure 10).  
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4. Good  

 

Dominant trees. Full crown, good 

extension growth and form. Typical 

for age and species. High number of 

buds. Healthy reaction growth to any 

injuries. Acceptable levels of 

colonisation. ERC: >40+ years 

3. Moderate  

 

Some signs of stress, crown dieback 

or retrenchment. Deadwood. Other 

signs of stress likely to be present. 

Remedial work may have previously 

taken place. Cavities, rot or early 

disease may be present. ERC: ≥10-40 

years 

2. Poor 

 

Obvious signs of dieback. Frequent 

deadwood. Clear signs of disease and 

decay. Overwhelming of the trees 

natural defences. Colonisation by 

fungi, wood boring insects and other 

decay biota highly likely. ERC: ≤10 

years 

 

 

1. Dead 

Physiological processes have ceased. 

Lack of active photosynthetic area. 

Colonisation of fungi, wood boring 

insects and other decay biota highly 

likely. Extensive crown retrenchment, 

bark slough, brittle or collapsing 

structure. ERC: ≤ 0 years 

Figure 10 Classification descriptors for the subjective arboricultural assessment 

of trees. Estimated Remaining Contribution (ERC) refers to a 

methodology used to consider the health, condition and structure of 

the tree and aids in classifying the tree in to the different categories 

adapted from (Barrell 1993, Lonsdale 1999, Barrell 2001, NTSG 2011, 

BSI 2012). Note: The images show trees in leaf-on condition to enable 

ease of comparison for the condition types. 
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4.3.2 Camera Set-up 

A high-resolution digital single-lens reflex (dSLR) camera (Canon EOS 550D 

DS126271) was used with an 18mm lens and a hemispherical lens adapter (Opteka 

Super Wide Fisheye Lens 0.20X). The lens adapter permits focal length conversion 

into a 3.6mm circular lens. The wide angle of the hemispherical lens enabled as much 

of each tree crown to be captured within each image as possible. The dSLR was placed 

on a standard photographic tripod, adjusted at each image capture location ensuring 

that the dSLR was positioned and levelled with the camera lens pointing vertically 

upward at ~0.5m from the ground level. To account for variability in solar 

illumination, the images were taken during uniform sky conditions. These conditions 

occur predominantly when the sky is overcast, although this technique can also be 

used just before sunrise or just after sunset, should bright daytime conditions be 

expected (Song, Doley et al. 2014).  

4.3.3 Image Acquisition and Spatial Sampling Strategy 

Initially, the number of images captured per subject tree was influenced by the overall 

length of the crown along the southern axis. Early trials with image capture involved 

taking images at 1m intervals along the southern axis, to the full extent of the crown. 

However, this produced a high number of replicates with large amounts of image 

content overlap. Inspection of these images identified two problems with this 

approach. Firstly, that there was ~90% replication of content between the overlapping 

images (Figure 11a), and secondly, that additional tree features that were not required 

for the analysis were also captured.  

 

For example, additional stem wood was photographed in the images closest to the 

base of the tree (e.g. at 1m and 2m intervals), while large amounts of ‘sky’ was 
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captured towards the canopy edge. Neither of these image components was required 

in the analysis. It followed that many of the repeated images was not within the 

optimal range for representing the fullest area of tree crown within an image. 

Repeated testing indicated that the optimal location for image capture was around the 

mid-point of the crown axis (Figure 11). Where there was no mid-point location on 

an exact 1m interval of the southern axis mid-point, the distance was rounded up to 

the next whole metre. The southern axis was used for standardisation purposes as the 

subject trees are located in the Northern hemisphere and our preference was to capture 

images on the non-shaded, south facing side of the trees.  
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Figure 11  A schematic showing the optimised range for image capture (a), and 

the area of tree canopy structure analysed within this study (b). The 

area of interest is specifically the structural elements of the canopy. 

Too much ‘sky’ within the image reduces the amount of structure that 

can be analysed (a). Stem wood and other elements not required, are 

removed from the image by only analysing the structure inside a user 

selected bounding box area (b). The use of a bounding box allows 

images of both individual trees and trees within closed canopies to be 

analysed.  
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Immediately after acquisition, the quality of each image was visually assessed. This 

step was taken to ensure the images were suitable for later analysis and to allow 

additional images to be captured should the original image be unusable. The process 

of identifying the southern axis, setting-up the camera and completing image 

acquisition took between ~45 seconds to ~1.5 minutes, depending on the complexity 

of the local topographic environment.  

4.3.4 Image Preparation 

Upon return from the field, the images were re-examined on a desktop computer to 

check for image clarity, suitability in showing the area of interest, and for the presence 

of key features (Jones and Vaughn 2010). A limitation of the in-field image proofing 

was that this was completed on the dSLR camera’s 2.7-inch screen; therefore it was 

conducted at a very coarse resolution. Of the original 247 images, 87 were removed 

for blurring or distortion errors, 96 images were removed as duplicates, leaving the 

sample size reduced to 64 images of individual trees, with a single image representing 

each tree.  

 

Pre-processing interventions removed errors from the images that could affect the 

measurement of image metrics. Chromatic aberration (CA) is the misregistration of 

red, blue and green (RGB) channels causing interference with the dSLR Bayer-pattern 

sensor, leading to image deterioration and interference with pixel-based classification 

techniques (Schwalbe, Maas et al. 2009). In this study, CA was corrected by removing 

the red and blue channels, and converting the image to the green element of the RGB 

channels only. Quadratic or ‘barrel’ distortion is also associated with images captured 

using hemispherical lenses. A distortion correction algorithm (de Vries 2012) 

transformed the images from the distorted barrel extension to replicate an image 

captured at a normal focal length. This perspective distortion effect is influenced by 
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the relative distances between the lens and subject canopy at which the image is 

captured, therefore, it is important that the relative distance was maintained during 

image capture. In order to reduce the effects of blurred images caused by contrast 

errors between colour ranges, an image sharpening algorithm was used. This 

algorithm was based upon un-sharp masking, where the image is sharpened by 

removing a blurred negative copy of the same image. The copied mask was laid over 

the original, resulting in a combined image that is visually sharper. Where there were 

instances of unsuccessful pre-processing, the affected images were not used in the 

investigation.  

 

The images were analysed in Matlab (2015a), where each image pixel was indexed 

and converted into binary form. This was achieved through applying uniform 

quantization where limited intensity resolution breaks the image colour space into 

individual pixels, which are indexed, and the pixel locations are mapped. A process 

of dithering corrects any potential quantization errors and limits the greyscale range 

of the image. This binarization procedure allows differentiation between the tree 

structure and other parts of the image, as optimum image analysis conditions are best 

achieved where there is high contrast between tree structure and the sky (Chen, Black 

et al. 1991). 

4.3.5 Defining the Image Analysis Area 

Chianucci and Cutini (2012), describe that it is beneficial in image processing to 

reduce the field of view by masking some elements of the full hemisphere, thereby 

achieving greater spatial representation of heterogeneous tree crowns i.e. the inclusion 

of both dense and sparse crown regions in the analysis. At Figure 11b, image analysis 

is restricted to the part of tree canopy contained within the black bounding box, 
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created on a per image basis. The analysis extent is influenced by standard forestry 

measurement conventions (West 2009), with the lower bounding box edge originating 

at the point of estimated timber height. In decurrent trees, this is where the main stem 

bifurcates to such a degree that the main stem is no longer discernible. From here, the 

analysis area is bordered by the upper bounding box at the edge of the tree crown and 

avoids the image’s vignette region caused by the visible inner walls of the camera 

lens. The left and right boundaries of the image analysis area are demarked by 

adjoining lines between the upper and lower bounding box extents maximising the 

crown analysis area, while again, also avoiding the vignette region at the edges of the 

image.  

4.3.6 Predictor Variable Creation 

Multiple indices were generated from the tree images that were developed into image 

metrics which were tested, both individually and in combination, for their suitability 

in describing the tree structural character. A description of the metrics is shown at 

Table 6. 

Table 6   Descriptions of analytical metrics used in an investigation to quantify 

tree structural condition.  

Name Description 

Convex Hull 

Area 

An area value of the smallest potential convex polygon used to 

envelop the indexed region in a p-by-2 matrix. 

Equivalent 

Diameter 

A scalar value for a computed circle with the same area as the 

indexed image. 

Euler 

Number (32) 

A scalar value that specifies the frequency of indexed objects in 

the image region. The Euler number subtracts porosity values 

(holes) representative of crown porosity using 32-bit imagery. 

Euler 

Number (48) 

A scalar value that specifies the frequency of indexed objects in 

the image region. The Euler number subtracts porosity values 

(holes) representative of crown porosity using 48-bit imagery. 

Euler 

Number (64) 

A scalar value that specifies the frequency of indexed objects in 

the image region. The Euler number subtracts porosity values 

(holes) representative of crown porosity using 64-bit imagery. 
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Filled Area 

A scalar count identifying the number of pixels used to ‘fill-in’ 

the indexed image (removal of image/crown porosity), with the 

count extending to the full perimeter of the structure using a 

logical test of the region index. 

Fractal 

Dimension 

A continuous, scaled measurement of self-affinity, where 

repeating x and y curves are magnified by different factors and 

a logarithmic mean is calculated. 

 

Euler numbers represent the amount of tree crown occupied by solid tree structure 

through quantifying connected pixel components, holes and vertices within the image. 

Initially an RGB image is indexed and an inverse colour map algorithm restricts the 

number of possible RGB colour values to a predetermined range, e.g. 32, 48 or 64 

colours, to refine the image resolution. Each pixel is then matched to the closest colour 

in the colour map, and the image is subsequently binarised for analysis purposes. 

Euler numbers are then used to measure image topology through the frequency and 

area occupancy of ‘holes’ within the binarised image. These holes are subtracted from 

the total number of objects that occupy the image region, therefore the Euler value 

represents pixel occupation in the image (Chen and Yan 1988). The creation of the 

Euler number is defined as:  

 

 𝐸 = 𝑁 −𝐻 (4.1) 

 

where N is the number of connected image components (region), and H is the number 

of image holes identified as separate from the region (Sossa-Azuela, Santiago-

Montero et al. 2013).  

 

Convex hulls are used to delineate a computed shape edge; therefore in this 

application, region convex hulls are considered representative of the tree crown edge 

extent and provide the opportunity to quantify the area covered by the hull shape. 
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Region convex hulls were created demarking a polyhedron boundary in the Euclidean 

plane around a known distribution of data points (X). This process defines a 

measurable boundary where the polygon is considered convex if all of the dataset X 

lie within the boundary, and any two points in X can be joined using a straight-line 

segment that also remains within the boundary. A limitation of convex hulls is that 

the outer bounds of the polygon may extend beyond the data range in order to maintain 

convexity, thereby potentially adding additional area to the generated polygon. 

Successful convex hull algorithms however, provide the smallest convex contour area 

within a given region (Gargano, Bellotti et al. 2007).  

 

A similar method used in photogrammetric analysis is the calculation of equivalent 

diameters. The projections of equivalent diameters are frequently used in RS 

investigations to model the spatial distribution of tree crowns. Within this study the 

equivalent diameter metric represents the area occupied by the tree crown structure in 

each image, while also providing a potentially continuous index of equivalent circle 

areas. A scalar value is defined that is the equivalent area of the irregular shape within 

the image (Kara, Sayinci et al. 2013), and is compared to the area of a known shape, 

e.g. a circle, using the equation;  

 

 𝑑𝑒 = √(4𝑎/𝜋) (4.2) 

 

where 𝑎 is the area of the irregular shape, and 𝑑𝑒 is the equivalent diameter.  

 

Finally, in order to quantify the complexity of the tree crown structure, a fractal 

geometric analysis approach was used to assess each image for self-affinity by 

calculating the logarithmic mean for the Df of each image. Df is used as a measure of 
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complexity as Mandelbrot (1967) recognised the merits of using Df to quantify 

complex change in pattern detail relative to scale. Fractal dimensions should be 

considered an approximation of the Kolmogorov capacity, driven by a recursive 

process where small elements of the image are analysed individually, before the 

overall Kolmogorov capacity for the image is calculated. Equation 4.3 describes the 

Df calculation: 

 

 𝐷𝑓 =  𝑙𝑖𝑚𝑅→∞ ln  𝑁(𝑅)/ln (𝑅) (4.3) 

 

Where N is the number of boxes needed to cover the fractal shape where it is present, 

R represents the unit size of the boxes, and N(R) is the number of boxes required to 

fulfil the fractal element for the image region. Lim refers to the limit of R, as R 

approaches infinity (Bonnet, Bour et al. 2001, Moisy 2008). In order to generate an 

individual Df model, a box-counting function (Moisy 2008) is applied that derives a 

local Df at each box size, integrated with the power law: 

 

 𝑁(𝑅) = 𝑁0 ∗ 𝑅−𝐷𝑓
 
 (4.4) 

 

where N0 is the expected value when R equals one. As this approach is dependent on 

both R and Df the result is a logarithmic mean of all the Df values generated for the 

fractal region of the image, and is interpreted as a quantification of the structural 

complexity of tree crowns. The steps required to process the tree images and compute 

individual tree metrics are summarised at Figure 12 
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Figure 12 A procedural workflow showing how tree structure images are 

processed for the computation of image metrics 

4.3.7 Calculating Statistical Probabilities  

The suitability of the predictor variables in quantifying tree structure was tested via 

multinomial regression, where the observed tree conditions are categorical responses, 

given as: 
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 log (
𝜋𝑖
(𝑗)

𝜋𝑖
(0)
) = 𝛼(𝑗) + 𝛽1

(𝑗)
𝑋1𝑖 +⋯+ 𝛽𝑘

(𝑗)
𝑋𝑘𝑖 (4.5) 

 

where Xki is the kth predictor variable for i, the imaginary unit. 0 is the reference 

standard, j is the non-reference standard, and 𝜶(𝒋)  and 𝜷𝟏
(𝒋)
, … , 𝜷𝒌

(𝒋)
 are the various 

unknown population parameters. The predictor variables are used to discern where a 

response, i.e. the tree structure, relates to the same tree characteristics that are 

indicative of an observed condition. Multinomial regression therefore, creates a 

proportional odds model where a single category of trees is specified as the reference 

standard and is used as a comparative measure against which all other tree categories 

are compared. Probability (P) estimates are calculated for all trees, to quantify the 

likelihood that they share the same structural characteristics as the reference standard 

trees. For the purposes of this study, ‘Good’ category trees, are used as the reference 

standard. The probability that the non-reference standard trees share the same 

structural characteristics of the reference standard is expressed as a P estimate 

percentage. 

4.3.8 Outlining Classification Thresholds 

To allow the comparison of continuous and categorical data, several predictor 

variables were used to create quantified indices to represent the structural character 

of the individual trees (Table 6). These variables were analysed to discriminate 

between the structural characteristics of individual trees and to determine how well 

the indices represented the field-observed classification. The predictor variable 

indices were grouped and analysed as individual indices, i.e. all Df values grouped as 

one data set, all Euler (64) values as another data set etc.  
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An empirical data mapping test was undertaken where homogeneity traits were 

observed in the predictor variable indices. Data mapping is achieved where the 

categorical data is plotted over the ordinal data using the two available values for each 

tree image e.g. categorical: Good, ordinal/predictor value: Df 1.875. The tree images 

were grouped by their field-observed classifications; Good, Moderate, Poor and Dead. 

For each of these four groups, the minimum and maximum predictor indices values 

showed the threshold value extent for each classification.  

4.4 Results  

At Figure 13a, the Df predictor variable quantifies the structural characteristics of all 

the assessed trees with individual Df values on a continuous scale, and displays 

homogenous clustering of the field-observed condition types. The group threshold 

extents are demarked as horizontal classification lines for the Df predictor variable in 

Figure 13a, where there are four separate groups of Df values consistent with their 

given field classifications; Good, Moderate, Poor and Dead (Table 7). In instances 

where heterogeneity was observed in the predictor variable indices, the data mapping 

could not be applied and it was not possible to define threshold extents (Figure 13b-

d).  

Table 7   Threshold limits of tree condition categories, expressed in fractal 

dimensions (Df). 

Field Categories Df Threshold 

Good ≥1.6021 

Moderate 
≤1.6020 to 

>1.4815 

Poor 
≤1.4814 to 

>1.3423 

Dead ≤1.3422 
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At Figure 13b-d, there are heterogeneous clusters of field classifications as denoted 

by the mixed colouring and absence of threshold lines. All sub-plots in Figure 13 

show similarities with generally decreasing indices, suggesting a continuous nature to 

the data, and implying that the trees included in the study possessed a varying range 

of structural conditions. In Figure 13b, c and d, all field-observed conditions are 

shown in heterogeneous grouping for the different predictor variable indices, 

therefore demonstrating inconsistency with the field-observed classification for each 

predictor variable (Table 6). It follows that the remaining predictor variables (Table 

6 and Figure 13b-d) do not provide a suitable mechanism to discriminate between 

different structural characteristics.  

 

Euler (64) (Figure 13b.) is the only variable to output negatively skewed data, and 

repeatedly quantified a number of individual trees with a Euler value of ‘1’, thereby 

also providing limited information on potential structural differences in these trees. 

Figure 13a shows the validity of Df as a continuous measure of tree structure 

complexity. We further demonstrate the relationship between the categorical 

classifications and the probability that Df values are representative of these categories 

in Figure 14. Within the good category, there is a ~99% probability that the trees share 

the same structural characteristics as the trees in the reference standard. Within the 

moderate category, the probability that the trees show the same structural 

characteristics of a good tree structure has fallen to ~89% at the median, thereby 

identifying a probability shift between good and moderate structural characteristics. 

There is a further, large median shift between the moderate and poor categories, as 

the median reduces to ~29% for poor category trees when compared to the reference 

standard. Where trees were field-observed as belonging in the dead category, there is 
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a decrease in probability to <1% that these trees show the same structural 

characteristics as the reference standard. 

 

Figure 13  Sample subset of predictor variables used to define the characteristics 

of different tree structures (n64). The annotations Good, Moderate, 

Poor and Dead refer to the field observed condition of the individual 

trees. Only with the measure of fractal dimension (a.), provides 

homogeneous clustering of field observed conditions as identified by 

the threshold lines. Not all predictor variables used in this study are 

visualised in this plot 

Also in Figure 14, it is noticeable that there is no overlap between the overall visible 

spread (OVS) in the good field-observed population and any of the other potential 

categories, due to the OVS separation between all other field-observed categories. 

Similarly, this trend of OVS separation continues for each field-observed category 

when compared to any other category. Trees quantified as having structural 
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characteristics of either the moderate or poor groups have a larger interquartile range 

then trees observed to be in either good or dead condition. This indicates that there is 

a greater degree of uncertainty in characterising the moderate or poor groups of trees, 

particularly as the trees with the good or dead characteristics, are assigned to their 

relative categories with a high degree of precision. In order to identify potential 

subgrouping effects, where similar classification probabilities may be clustered 

around specific probability values, a linear regression model was calculated which 

identified that there was no evidence of subgrouping and that the probability data 

range is randomly spread (r2 = 0.86, P-value 0.01).  

 

Figure 14 A proportional odds model to indicate the probability (P) that tree 

structure images, quantified in fractal dimensions (Df), are indicative 

of an observable tree structure condition and known reference 

standard (n64). Tree images were measured for structural complexity 

in Df. The box plot extents identify the P that the structures show 

characteristics of the reference standard. 
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4.5 Discussion 

This study presents a methodology for the objective assessment of tree crown 

structure, through analysing tree crown structure in hemispherical images. The 

underlying aim of this study is to reduce the degree of subjectivity currently accepted 

within tree surveying and assessment, and to provide opportunities for high resolution 

intra-category assessment of tree structure. Mandelbrot (1967) states that the question 

of how to accurately measure tree crowns, with the inherent complexity of objectively 

assessing various shapes, forms, structural porosity, all of varying sizes, is not a 

simple task that can be solved with classical geometry. Following the findings of this 

study, it is possible to quantify tree structural complexity using Df as an objective 

predictor variable using a relatively proximal photogrammetric method and 

computational analysis (Figure 13), thereby increasing the objectivity and 

repeatability of structural assessment, whilst also reducing the potential for bias from 

field measurements.  

 

Through quantifying tree structure in Df and creating a proportional odds model, the 

probabilities that field-observed, ‘good’ classified trees displayed the structural 

characteristics of structurally sound trees, was found to be statistically very high at P 

~99%. Due to the way the proportional odds model functions, achieving this high 

level of probability is essential for the reliable characterisation of the remaining 

structural condition types. It is suggested that this method of analysis could be 

transferred to many other investigations of tree structure where the model is trained 

on a species-specific basis across differing structural architectures.  

 

Following the creation of the model, the probabilities of trees with moderate, poor or 

dead observed classes reduce at the median to P ~89%, P ~29% and P <1% 
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respectively when compared to the reference standard images (Figure 14). These 

changes in median levels reflect a measured reduction of the tree crown structure 

complexity. The continuous nature of the Df scale provides a unique measurement of 

individual tree structure characteristics, as opposed to individual trees being 

arbitrarily grouped into coarse-resolution, homogenous categories where intra-

category differences cannot be easily identified. This insight provides the researcher 

or practitioner with the opportunity to further sub-divide each classification group, 

and to monitor intra-category variance over time. This methodology has the potential 

for the long-term monitoring of pest, disease or pathogen progression, or for the 

quantification of structural decline, particularly with trees of high conservation, 

landscape or heritage value. This could include the monitoring of naturally occurring 

veteran trees, to quantify their rate of structural decline, particularly in areas where 

there is potential conflict with the public. Furthermore, this method could also be used 

to guide and inform the process of tree veteranisation, where pre-veteran, mature trees 

are intentionally injured and receive structural alterations to mimic the structure of 

naturally occurring veterans with the aim of providing valuable habitats that would 

otherwise only be found on the most mature trees (Bengtsson, Hedin et al. 2012). 

 

As shown in Figure 13a there is a wide range of Df values, homogenous grouping of 

field-observations, and no clustering of the P ranges for each potential category. 

Therefore, it can be stated that tree structure is more accurately quantified in a 

structural condition continuum than with traditional categorical classification 

methods. Tree structure measurably degenerates the more trees senesce; tree crown 

structures change as branch death and limb shedding occur, which ultimately leads to 

a general decrease in the fractal nature of tree crowns (Mäkelä and Valentine 2006 ). 

Through understanding phenotypic tree structures and the biological response of trees 
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to environmental stress, there is the potential to relate tree structure complexity to an 

overall indication of tree health or general condition. Tree crown structures are 

indicative of the amount of photosynthetically active area in the tree required for 

homeostatic equilibrium, and therefore is considered to act as a reliable indicator of 

tree health (Burkhart and Tome 2012). 

 

An advantage of this method is the potential to measure intra-category differences in 

tree structure complexity and with the computerised storage and easy retrieval of this 

data, the same analysis can be repeated over time, allowing the accurate tracking of 

tree structure change. Sudden catastrophic damage to a tree crown is readily 

recognisable, such as when following a strong wind event. However, more subtle or 

prolonged tree crown degeneration as a result of biotic or abiotic stress; such as 

pathogen ingress, or sudden death as a result of heavy, late frosts, could be measured 

and identified over repeat iterations of surveying. It is recognised that in the 

immediate period after the sudden death of a tree via these more subtle means, that 

the structure will likely not have changed significantly, and although potentially dead, 

a tree could still be classified as good due to the immediate retention of its ‘good’ 

structure, further reinforcing the requirement for temporal studies to monitor the 

subtle changes of the tree crown. Further developments of this method should include 

a refinement of the methodology to accurately measure more subtle structural change 

in the finer structures of the crown edge.  

 

The traditional coarse categorical classification methods do not provide a clear 

mechanism for measuring subtle structural degeneration as the thresholds for the each 

potential category are poorly defined and only provide generalised categories for the 

tree classification. For tree-risk managers such as local government tree officers or 
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utility company infrastructure managers, a structural condition continuum can be used 

to objectively quantify the probabilities that their tree stock is in a suitable condition. 

Through quantifying tree structure in a continuous Df scale, specific, measurable 

thresholds for remedial intervention may be defined. With a categorical approach, 

tree-risk managers have the limitation of allocating broad categories such as ‘poor’ or 

‘dead’ as the triggers for remedial intervention. This limitation greatly increases the 

number of trees that will be designated as requiring remedial work, compounded by 

the additional costs and labour requirements. As a higher resolution method, our new 

approach has the potential to limit unnecessary remedial works, lowering tree 

management expenditure, and would facilitate limited resources being used in more 

focussed interventions. We acknowledge that additional work is required to quantify 

the extent of these improvements, particularly in respect to health and safety related 

tree management.  

 

This investigation used a single broadleaved tree species, and we recognise that 

further work is required to determine where categorical thresholds exist for other tree 

species. This would follow the work of Morse, Lawton et al. (1985), who observed 

that there are differences in the structural complexity of varying vegetation species 

when they are measured in Df. During a pilot study phase, we identified that there are 

different thresholds for condition categories in different tree species. The other 

broadleaved species photographed in various quantities prior to this investigation, 

were; Acer pseudoplatanus (L.), (Fraxinus excelsior (L.), Quercus rubra (L.), Fagus 

sylvatica (L.), Betula pubescens (Ehrh.), Crataegus monogyna (Jacq.), and Pinus 

sylvestris (L.). Initial observations suggest that there are likely to be interspecies 

differences from the small sample numbers used, therefore, this research could also 

be extended to consider other tree species.  
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In training the reference category for the proportional odds model, trees that are 

observed as being in a sound structural condition and are representative of trees in 

good condition for that species, are identified as the reference category trees. These 

become the standard against which the remaining trees of the same species are 

compared. In the process of developing the model, a small degree of user intervention 

is required to define the parameters of the model and to interpret the model efficacy. 

Similarly, a user defined bounding box is created to identify the area of interest for 

the image analysis. This method ensures the procedure can be applied across the full 

range of tree crown images. The creation of the bounding box is governed by the user 

following a set of standards that are influenced by standard forestry conventions 

(West 2009), and the simple requirement to only identify the tree crown of interest 

and no other elements, such as the image vignette region. An important distinction to 

highlight is that the procedure remains a dependable and independent methodology, 

despite the user intervention as the image analysis, statistical querying and 

computation of the Df value are all autonomous and therefore, remain objective. This 

methodology does not purport to entirely remove the requirement for practitioner 

intervention. We also recognise a potential limitation of this methodology is the 

reliance on the southern axis for capturing crown images. During methodology 

development, the southern axis was used to standardise fieldwork when capturing tree 

crown images. It is recommended that additional field trials should be undertaken to 

determine the sensitivity of capturing images from differing cardinal points or 

multiple locations per tree.  
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4.6 Conclusion 

The methodology described in this study for assessing the structural condition of trees 

is commensurate with traditional techniques. The development of a proximal, 

hemispherical image field methodology enabled the data capture of many trees in a 

range of different physical conditions and locations, and satisfies the first objective of 

this study. The second objective was met with the analysis and objective measurement 

of hemispherical tree structure images. Finally the ranking of individual trees by the 

automated calculation of the continuous Df values, satisfies the third objective. It can 

be stated that the traditional techniques which identify broad categories of structural 

condition are very coarse, as they do not account for intra-category structural 

variability and are highly subjective. Our approach enables the assessment of tree 

condition to be completed with a greater level of precision than was previously 

possible due to the continuous nature of the Df measurement. Fundamentally, this 

concept provides a repeatable and objective way to characterise tree crown structure, 

which can be used to improve the objectivity of tree surveying and inform the specific 

management of trees with high amenity value. We recognise that further work is 

required to define the sensitivity of the image acquisition protocol, and to gain further 

understanding of the full extent of intra-species differences. Nonetheless, it is 

envisaged that this methodology could form the basis for a new range of analytical 

measures that will enable tree, environmental or ecological managers to gain greater 

insights and make more informed decisions about the tree stock under their 

management. 
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4.8 Supplementary Information 

The following supplementary material is available at Forestry online: Statistical 

analysis of the image pre-processing effect on the predictor variable, Df, and a 

recommended workflow for field operations, data collection and processing. 
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5 ARBOR: A New Framework 

for Assessing the Accuracy 

of Individual Tree Crown 

Delineation from Remotely-

sensed Data 

5.1 Preamble 

A frequent problem within RS studies that assess trees in the environment, is 

quantifying the amount of agreement when identifying the same tree that is 

represented in two datasets e.g. a tree in aerially acquired RS data and the same tree 

in GR data. This agreement problem also occurs when comparing two RS datasets. In 

whichever dataset is used, the spatial location of a tree will be identified and the extent 

of the crown defined though a process of crown delineation. The delineation process 

can be completed via various methods, including manual or computational 

delineations, which describe the spatial and biophysical properties of the tree crown 

when viewed from a (2D) plan perspective. For validation purposes, it is important to 

achieve a high level of agreement between the two datasets. However, as the 

individual trees are described in two unique datasets, each tree could potentially have 

differences between the two locations, two crown extents and two tree heights, 

leading dataset disagreement and uncertainty in the identification of each tree when 

compared to the reference dataset.  
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Currently, the published literature describes a range of techniques that use arbitrary 

thresholds to suggest a level of agreement between the RS and GR data. Frequently, 

these methods do not provide adequate quantification when accounting for 

biophysical differences between the crowns, or the assessment of spatial differences 

in (3D) Euclidean space. The literature identifies the regular use of simple linear-

distance agreement, which fails to fully consider various data alignment issues present 

in the tree crown delineations.  

 

Following from quantifying the observable structural change within tree crowns, this 

chapter answers the fundamental questions of, ‘exactly where are the trees within the 

data?’, and ‘what level of agreement is there between two datasets that is used to 

describe the same trees?’  
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To assess the accuracy of individual tree crown (ITC) delineation techniques the same 

tree needs to be identified in two different datasets, for example, ground reference 

(GR) data and crowns delineated from LiDAR. Many studies use arbitrary metrics or 

simple linear-distance thresholds to match trees in different datasets without 

quantifying the level of agreement. For example, successful match-pairing is often 

claimed where two data points, representing the same tree in different datasets, are 

located within 5m of one another. Such simple measures are inadequate for 

representing the multi-variate nature of ITC delineations and generate misleading 

measures of delineation accuracy. In this study, we develop a new framework for 

objectively quantifying the agreement between GR and remotely-sensed tree datasets: 

the Accuracy of Remotely-sensed Biophysical Observation and Retrieval (ARBOR) 

framework. Using common biophysical properties of ITC delineated trees (location, 

height and crown area), trees represented in different data sets were modelled as 

overlapping Gaussian curves to facilitate a more comprehensive assessment of the 

level of agreement. Extensive testing quantified the limitations of some frequently 

used match-pairing methods, in particular, the Hausdorff distance algorithm. We 

demonstrate that within the ARBOR framework, the Hungarian combinatorial 

optimisation algorithm improves the match between datasets, while the Jaccard 

similarity coefficient is effective for measuring the correspondence between the 

matched data populations. The ARBOR framework was applied to GR and remotely-

sensed tree data from a woodland study site to demonstrate how ARBOR can identify 

the optimum ITC delineation technique, out of four different methods tested, based on 

two measures of statistical accuracy. Using ARBOR will limit further reliance on 

arbitrary thresholds as it provides an objective approach for quantifying accuracy in 

the development and application of ITC delineation algorithms. 

Keywords 

LiDAR, Individual Tree Crown (ITC), Delineation, Error Detection, Data Matching, 

Accuracy.  
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Highlights 

1. ARBOR answers the need for a standardised ITC delineation accuracy assessment  

2. Similarity of RS-derived and reference trees assessed using biophysical properties  

3. Optimised algorithm applied to matching RS-derived and reference tree 

populations 

4. ARBOR quantifies accuracy using biophysical data and data population size 

5. ARBOR is a modular framework for the objective assessment of ITC delineations 

5.2 Introduction  

Individual tree crown (ITC) delineation is an important technique for many 

environmental remote sensing (RS) studies. These types of investigations include data 

driven activities such as forest inventories and management, carbon and biomass 

accounting, tree growth modelling and many other geo-spatial data applications. The 

ability to accurately delineate individual trees from remotely sensed data is essential 

for many forest monitoring applications (Eysn, Hollaus et al. 2012, Jakubowksi, Guo 

et al. 2013, Duncanson, Dubayah et al. 2015, Wu, Yu et al. 2016, Zhen, Quackenbush 

et al. 2016). ITC delineation, sometimes referred to as tree segmentation, is typically 

associated with the analysis of high resolution optical imagery or 3D point clouds 

captured from light detection and ranging (LiDAR). ITC delineation is a process 

where different methods, often computational and automated, identify high peaks in 

canopy data as the first step in locating individual trees. This phase is followed by a 

segmentation procedure, such as watershedding, valley formation or other similar 

methods, to determine the locations and crown perimeters of individual trees. 

Typically, to assess the validity of ITC delineation a comparison is made with ground 

reference (GR) tree data. The comparison requires that individual trees are matched 

between the two datasets and this pairing is used to assess accuracy of the ITC 
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delineation. In many studies, Euclidean distance is used to pair trees from the different 

datasets. This has the effect of considering the tree-to-tree matching problem only 

from a plan perspective, and does not account for tree height or crown area (Yu, 

Hyyppä et al. 2006, Kwak, Lee et al. 2007, Hladik and Alber 2012, Lu, Guo et al. 

2014, Zhen, Quackenbush et al. 2016, Yu, Hyyppä et al. 2017).  

 

Additional insights can be obtained through the combination of ITC delineated trees 

and other spatial data. For example, canopy height models (CHM) characterise the 

upper surfaces of the delineated tree crown area and provide opportunities to calculate 

biophysical properties such as tree height or crown area (Rahman and Gorte 2009). 

Zhen et al., 2016), note that validation is a key issue in ITC delineation studies. 

Typically, validation involves assessment of the outputs of ITC delineation 

procedures in terms of the precision and accuracy of tree locations and biophysical 

properties (Leckie, Walsworth et al. 2016). However, there are other issues that 

complicate the match-pairing ITC delineation, such as the self-optimising growth 

habits of trees in woodlands (see supplementary information – Appendix C). Any 

resulting ITC delineation anomalies can subsequently lead to the spurious 

identification of tree crowns (Kwak, Lee et al. 2007), causing the pairing of trees that 

should not be present in the dataset, or otherwise, through the generation of false-

positive matches.  

 

Problems that occur in the match-pairing process are further compounded when 

analysing data population sizes. A significant consideration when matching pairs of 

trees is the directionality of the match that is made. Essentially this is the matching of 

data A to data B in the matching sequence, or, matching data B to data A. Errors that 

arise from directionality differences can result in the same matches not being achieved 
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in both directions, influenced by the data that is used first as the primary dataset. A 

solution is bidirectional matching, i.e. matching A-B then B-A, and selecting the best 

agreement (Singh, Evans et al. 2015). However, this approach reduces the data 

population as the unmatched trees are unassigned, leading to losses from the dataset. 

An additional problem is that sorting the order of the data effects match-pairings, as 

does the order sequence that the algorithm attempts the pairings (Holmgren and 

Lindberg 2013), for example, matching the tallest trees first. Some data preparation 

methods sort data by size as part of the processing steps (Kandare, Ørka et al. 2016), 

however, within tree-to-tree matched-pairing, this may block later trees in the dataset 

that would have been a more suitable pairing, as the primary tree is already allocated 

to a corresponding tree. GR data frequently contains many smaller and lower canopy 

trees that are readily assigned to pairings that are not a suitable match (Holmgren and 

Lindberg 2013). Trees that are observed in the GR data and not seen in the ITC 

delineation are data omissions as a product of the data population A, not being the 

same size as the population B or vice-versa. Similarly, commission errors occur where 

trees are incorrectly assigned to a match-pairing, or assigned to the wrong tree 

(Holmgren and Lindberg 2013). Typically these errors are related to the ITC 

delineation method used.  

 

Despite the recognised importance of data validation, in a meta-analysis of 210 

studies, only 14.3% validated ITC delineation at a forest stand level, 30% validated 

ITC delineation on individual trees, and 23.3% at both levels Zhen, Quackenbush et 

al. (2016). Significantly, in 32.4% of the studies, no ITC validation was attempted at 

all. This suggests that there is a pressing need for a standardised method for evaluating 

the accuracy of ITC delineation techniques, which can be applied widely and 

consistently Zhen, Quackenbush et al. (2016). It is also apparent from the literature 
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that no standardised accuracy assessment procedure currently exists, and where ITC 

delineation techniques have been evaluated this has been on the basis of arbitrary 

metrics or simple linear distance thresholds. Therefore, there is the need for analytical 

metrics to quantify the accuracy with which ITC delineations estimate data population 

size and tree biophysical properties. The research outlined in this paper describes a 

repeatable and transparent solution for validating ITC delineation techniques that can 

be applied to individual trees, plots or stands. This paper describes the development 

of the Assessment of Remotely-sensed Biophysical Observations and Retrieval 

(ARBOR) framework.  

5.3 Aim and Objectives 

The aim of this research is to develop a technique for quantifying the accuracy of ITC 

delineation methods. This requires improving tree-to-tree match-pairing with metrics 

that include additional analytical parameters beyond simple location or linear distance 

measurement. Furthermore, metrics are required to find an optimal way in applying 

the match-pairing to, and achieving the best match for, the overall data population. 

This approach needs to be robust to the influence of directionality, data order and data 

omissions. If fulfilled, these requirements allow ITC delineation accuracy in RS data 

to be assessed in an objective manner. This will be achieved by addressing the 

following objectives: 

 

1. Identifying a suitable technique for quantifying the similarity of a tree as 

represented in RS-derived and ground reference datasets, using the biophysical 

properties: tree location, height and crown area. 
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2. Determining an optimal algorithm for matching an entire population of trees 

represented in both RS-derived and ground reference datasets, avoiding 

introduced bias from directionality, data omissions and other similar factors. 

3. Developing metrics for quantifying the accuracy of population size and tree 

biophysical properties  

4. Applying the optimal algorithm and metrics to quantify the accuracy of a variety 

of ITC delineation methods applied to RS data of a woodland study site. 

5.4 Methodology 

The methodology for developing the ARBOR framework directly addresses each of 

the objectives outlined above. Objectives 1-3 will be met by development and testing 

within a synthetic data environment, to establish the validity of the different analytical 

elements that will be used within the ARBOR framework. Following the development 

of the framework and validation of the components that will be used in ARBOR, 

Objective 4 will be met by applying the ARBOR framework to quantify the match-

pairing of real-world data, therefore, providing proof of concept.  

5.4.1 Quantifying the Similarity of a Tree as Represented in RS-derived 

and Ground Reference Datasets 

5.4.1.1 Defining the Biophysical Properties of a tree. 

Jing, Hu et al. (2012) state that differentiation between natural tree crowns is 

influenced by both the width and depth of the inter-canopy space, in addition to the 

computationally delineated, circular crown shape. Correspondingly, each tree crown 

in this study can be considered to have at least a location, height and crown area. To 

quantify correspondence between two trees, or more specifically, a tree represented 

in RS-derived data and the same tree in the GR data, the metric criteria has to consider 

spatial proximity, tree height and overall crown area. Also, for the accuracy 
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comparison to be made on a like-for-like basis, metrics should report successful 

similarity indices with values of between 0 (impossible) and 1 (certain or identical). 

5.4.1.2 Limitations of Commonly Used Tree-to-tree Match-pairing Methods 

Some tree-to-tree match-pairing agreements are based upon the Euclidean distance 

between trees (Yu, Hyyppä et al. 2006), however, this approach has problems that 

may not be adequately resolved. For example, the 2D measurement of the planar 

distance between the tops of trees assumes that each tree only has a singular apical 

point. Kaartinen, Hyyppä et al. (2012) note that additional trees in the lower canopy 

can lead to omission errors between GR and ITC delineated trees. Alternatives 

consider tree-to-tree pairwise-matching from a 3D model perspective, with linear 

distance statistics such as the Hausdorff distance algorithm, used to assess the linear 

correspondence between two points from different datasets (Yu, Hyyppä et al. 2006, 

Yu, Hyyppä et al. 2017, Zhao, Suarez et al. 2018). The Hausdorff algorithm meets the 

metric criteria following rescaling the index between 0 and 1, however, due to the 

distance between the delineated edges of a tree crown, omission errors can occur. 

Hausdorff can be used in data point comparison, but can be influenced by 

directionality. To counter this effect, a geometric shape for the crown, such as a circle, 

has to be used when calculating Hausdorff.  

5.4.2 Gaussian Overlapping and the Jaccard Similarity Coefficient  

The analysis of the overlaps between two Gaussian curves (also known as a Gaussian 

overlap model), measures the comparative distance between the two distributions 

(Nowakowska, Koronacki et al. 2014). This approach uses the curve centre as the tree 

location, with the apex indicating the overall tree height and the area under the curve 

representing the circular crown area. A component overlap analysis of the mixed, 

normal data distributions identifies changes in the curve location, height and crown 
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area between the overlapping parabolas (Nowakowska, Koronacki et al. 2015). A 

Gaussian overlap models where a single tree, identified and described in both datasets, 

can be aligned to a potential match in the opposing dataset and any similarities in the 

biophysical properties compared and quantified. Issues regarding complexities in the 

biophysical properties of trees are discussed further in supplementary information 

(Appendix C).  

 

To satisfy the analysis criteria, the area of overlap between each Gaussian 

representation of the tree’s biophysical properties is assessed. Similar trees achieve 

greater Gaussian overlap than non-similar trees. To quantify the overlap as a 

normalised value, the Jaccard similarity coefficient is calculated. Jaccard is the 

quotient produced by the division of the intersection by the union and measures the 

observable similarities between two finite data sets. Functionally, Jaccard is a simple 

measure of the binary distance between data and describes the presence or absence of 

data, as defined at equation (5.1).  

 

  𝑱(𝑨, 𝑩) =  
|𝑨 ∩ 𝑩|

|𝑨 ∪ 𝑩|
=  

|𝑨 ∩ 𝑩|

|𝑨| + |𝑩| − |𝑨 ∩ 𝑩|
 (5.1) 

 

A perfect match is a Jaccard value of one, while inferior matches decrease Jaccard 

towards zero. Due to the infinite nature of the tails on a Gaussian curve, an absolute 

score of zero cannot be achieved as an inferior score representing a more heavily 

degenerated match always remains mathematically possible.  
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Figure 15 uses some examples to demonstrate the Gaussian overlap method and 

Jaccard coefficient. Figure 15a shows two synthetic trees with a poor match with 

differing locations, heights and overall crown size (Jaccard 0.01). Figure 15b shows 

an improved commission for location and crown size; however, some commissioning 

differences remain (Jaccard 0.25). Figure 15c shows a close alignment in size and 

location, with small commission losses in height, resulting in a close match (Jaccard 

0.9), whilst Figure 15d shows a low commission between height, crown size and 

location (Jaccard 0.15). Figure 15e shows a close match in location, but a low match 

in crown height and size (Jaccard 0.40) and Figure 15f shows an offset in the location, 

similar crown size and minor differences in height (Jaccard 0.74).  

 

   

 

 

 

 

   

Figure 15 Gaussian overlap used for measuring data agreement between two 

data sets, where the difference between the two shapes is quantified 

using the Jaccard similarity coefficient.  

a. b. c. 

d e. f. 
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5.5 Optimal Algorithm for Matching Populations of Trees 

Represented in both RS-derived and Ground Reference 

Datasets  

5.5.1 Meta-study of Alternative Match-pairing Methods   

Following a review of highly-cited papers from peer-reviewed journals, published 

2003-2017, it is apparent that many different match-pairing methods are used when 

evaluating agreement between GR and RS-derived data. These match-pairing 

methods have been consolidated into Table 8, where similar methods are grouped 

together (base matching method, filtered or thresholded, and sorting priority). These 

groups are further subdivided into methodological categories including, for example; 

data filtering by height, area, distance and angle. Table 8 also shows where a threshold 

has been applied either to the base or secondary matching filters. The direction of the 

match for each method is indicated as; 1) matching the GR to the RS-derived data, 2) 

matching RS-derived to the GR data, or 3) attempting a match in one direction, then 

in the other (bidirectionality) and selecting the match with the highest agreement. All 

of these different matching directions can potentially lead to different pairs of trees 

being matched, across the varying permutations. Following the review (Table 8), two 

representative match-pairing (RMP) methods are defined, that replicate common 

match-pairing methods used in the literature:  

 

 RMP 1: Hausdorff Distance Algorithm  

(Trees paired by distance to one another, the closest achieving a pair) 

 RMP 2: Within Neighbourhood, Sorted by Area and within a Height 

Threshold  

(Sort A by area. Define neighbourhood of 21m. Find trees within 5m of one 

another, and closest sized crown areas are matched) 
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These two RMP methods were subsequently compared to a new approach (see 

Hungarian Combinatorial Optimisation Algorithm) in a test using synthetic tree data 

(Testing the Pairwise Matching Algorithms with Synthetic Data). 
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Table 8  A meta-study of several match-pairing methods showing the base matching method, and identifying whether subsequent 

filters or thresholds are applied. The direction of the match is also shown.  

 

Notes: A = Ground reference (GR) data. B = RS-derived (RS) data. A->B = GR matched on to RS. B->A = RS matched on to GR. A<->B@ = match attempted in both directions 

and the best match chosen. AXB = match directionality not described.  
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5.5.2 Hungarian Combinatorial Optimisation Algorithm 

The Hungarian algorithm (also called the Kuhn–Munkres algorithm or Munkres 

assignment algorithm) is described in detail by Kuhn (1955). The Hungarian 

algorithm was originally defined to resolve the “assignment problem” in operations 

mathematics (Kuhn 1955), and has been used widely in data science, but rarely in RS 

or environmental studies. In this approach, the description of the data size and 

suitability of a match available is used in the algorithm, meaning the biophysical 

properties of trees from each dataset; location, height and crown area are also 

analysed, thereby meeting the metric criteria. The Hungarian algorithm attempts all 

possible pairing combinations for each point in data A against each point in data B 

and then vice-versa and outputs the optimal overall match-pairing.  

5.5.3 Quantification of Accuracy with which Delineations Estimate 

Biophysical Properties and Population Size  

Following the completion of match-pairing and Gaussian overlap assessment two 

accuracy metrics were calculated. The match-pairing success is quantified by the 

average match-pairing similarity index (AMPS). This function is the average match-

pairing agreement as measured using the Gaussian overlap method (Gaussian 

Overlapping and the Jaccard Similarity Coefficient) calculated across all tree pairings. 

Higher AMPS values indicate a better overall quality of match for the paired trees. In 

addition to AMPS, the relative dataset sizes are also quantified to identify disparities 

in tree population size in GR and RS-derived datasets, for example, to show the effects 

of pairing directionality. The dataset size similarity index (DSS) is defined as the 

comparison between the total number of trees in the two datasets A and B, against the 

number of match-pairings achieved, expressed as a normalised value. As with AMPS, 
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high DSS scores are preferred as this indicates similar tree population sizes in the two 

datasets.  

5.6 Testing the Pairwise Matching Algorithms with Synthetic 

Data  

5.6.1 Synthetic Data Environment 

A synthetic environment was created to compare the biophysical attributes of RS 

trees, using common tree structure values typically output from ITC delineation. For 

simplicity, the synthetic tree (syTree) attributes used were a known location, a 

predefined crown shape (circle), and a known crown area. During initial testing a 

single tree was modelled, syTree A, where the biophysical attributes of a real-world 

tree was randomly selected from within the 5th to 95th percentile of a broadleaved GR 

tree sample. By taking the biophysical attributes of syTree A, and using randomised 

offsetting of syTree A’s location, changing the height and crown area values, a second 

tree was created, syTree B. The biophysical attribute alterations were recorded as 

‘known changes’ between the two syTree populations. In subsequent testing phases, 

similar to the work of Romanczyk, van Aardt et al. (2013) a synthetic environment 

was used to simulate a complex woodland area containing 500 new syTrees (syTree 

A500).  

 

As before, the syTree A500 population was subject to randomised location, height and 

crown area changes, further creating a secondary population, syTree B500. This 

produced trees ranging from 3 to 14m tall, with crown diameters between 0.75 and 

1.4 times the size of the sampled GR tree average. This procedure ensured that all 500 

syTrees had intra- and inter-population biophysical attribute differences. The recorded 

alterations were used as a known changes index for measuring predicted differences 
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between syTree A500 and syTree B500, against the observed differences. Variation from 

the known changes index identified commission error. Figure 16 depicts 500 syTrees, 

showing a) tree canopies in the predicted reference phase, and b) following data noise 

and population losses. The syTree crowns are organised by height, replicating the 

presentation of the data as though observed in a CHM.  

  

Figure 16  500 synthetic trees representing ground reference (GR), and RS-

derived LiDAR datasets. a) models 500 GR trees, and b) represents 

RS-derived trees with increased noise and tree losses. This replicates 

typically observed effects in aerial LiDAR derived canopy height 

models.  

5.6.2 Introduced Data Noise and Population Losses  

Sensitivity testing between the syTree populations was undertaken by increasing data 

noise levels and population losses, to intentionally imbalance the datasets. The syTree 

A population remained unchanged while the syTree B population received randomised 

changes in location, height and crown area on an incremental scale (1-5). Each 

randomised variable used an individual set of Gaussian curves replicating the 

common commission problems that occur between RS-derived and GR datasets. 

a. b. 
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Figure 17 illustrates changes in the location variable as each biophysical parameter 

had a unique set of curves. The biophysical properties of the syTree B population were 

modified by +/- of a random sample, within the appropriate distribution, relative to 

the prescribed noise level (Table 9). Data population losses were simulated by 

removing a randomised amount in incremental steps of 10% of the dataset up to a 

maximum of 50% removal. The introduction of data noise and loss from the tree 

populations, was applied across all iterations of match-pairing algorithms, to test the 

robustness of the different pairing methods. 

 

Figure 17  An example of Gaussian curves demonstrating the change on data 

distribution and population density for synthetic tree data. This 

example represents the change in location data with the x axis 

equating to metres offset. This method intentionally introduces data 

noise to a remote sensing dataset of synthetic trees. 

Table 9  Introduction of data noise following modification of the normal 

distribution and standard deviation (SD) effect on the data population 

relative to data noise levels. 

Data Noise Level Population (%) by Standard Deviation (SD) 

1 SD1 = 68% +/-1, 95% +/-2, 99% +/-3 

2 SD2 = 68% +/-2, 95% +/-4, 99% +/-6 

3 SD3 = 68% +/-3, 95% +/-6, 99% +/-9 

4 SD4 = 68% +/-4, 95% +/-8, 99% +/-12 

5 SD5 = 68% +/-5, 95% +/-10, 99% +/-15 
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5.6.3 Results of Pairwise Matching Tests 

To measure the tolerance between the predicted reference (dataset A) and observed 

values (dataset B), normalised root mean squared error (NRMSE) was calculated for 

each match-pairing method; RMP1 (Hausdorff distance), RMP2 (neighbourhood and 

area), and a new method, Hungarian with Gaussian overlap (Figure 18a-f). NRMSE 

describes the distance of the residuals from the predicted 1:1 line on a normalised 

scale (Figure 18a-c). This quantifies the match-pairing performance against the 

expected known changes index. Low NRMSE scores are preferable to high scores, 

hence within Figure 18a-c the scale bar is inverted. Each match-pairing method was 

tested with incremental data noise (level 0-5), and data population losses (0-50%). A 

ratio of matched-pairs was calculated for each data population (Figure 18d-f). For 

example, if 50 trees from 500 is paired, this achieves a paired ratio of 0.1, while 

pairing 450 trees achieves a paired ratio of 0.9.  

 

Figure 18a establishes that RMP1, the Hausdorff distance match-pairing method, at 

noise level 0.25, achieves ~0.6 NRMSE. Furthermore, a small increase in the noise 

level to 0.5, significantly reduces the efficacy of the RMP1 method in achieving 

match-pairing to ~1.0 NRMSE. This is a uniform response across all additional levels 

of noise and all combinations of data population losses. In Figure 18d, the paired 

achieved measure for RMP1, shows a paired ratio score of 1.0 across all combinations 

of noise and loss. This unidirectional method demonstrates a complete data population 

pairing between the A and B datasets, where the matching is completed in the 

direction of B-A.  

 

Figure 18b & e shows the RMP2 match-pairing method (neighbourhood and area). In 

comparison to Figure 18a & d, there is an uplift in results, with ~0.0 NRMSE achieved 
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at 0 noise and 0% loss. Within Figure 18b the NRMSE score is maintained across the 

same level of data noise. However, a gradual increase in data noise up to level 1 

rapidly diminished the NRMSE to ~0.6, at the 0% loss level. The trend follows 

throughout that as noise and loss increases, the NRMSE results indicate a worsening 

match-pairing performance. This continues to noise level 1.5, where the NRMSE 

values across all amounts of data loss are between ~0.9 to ~1.0 NRMSE. Figure 18e 

indicates that very low levels of noise is tolerated throughout all permutations of data 

losses (1.0 NRMSE at noise level 0). Only marginal increases in data noise, to 0.25, 

rapidly reduce the pairing ratio to ~0.6. At the point of noise level 1 the paring ratio 

has decreased to ~0.1 across all permutations. At noise level 2, the pairing ratio is 

reduced to 0.0. Figure 18e demonstrates this bidirectional method achieves a full 

pairing ratio of 1.0 across all data losses to 50% at noise level 0. A marginal increase 

in noise to 0.25 reduces the paired matching ratio to ~0.6 across all losses. This rapid 

decrease continues to noise level 1, where only a ~0.2 paired ratio is achieved, and by 

noise level 1.5, the paired ratio further reduces to ~0.0. Therefore, this bidirectional 

routine is demonstrably affected by the data losses applied.  

 

Figure 18c and f shows the new approach of using the Hungarian and Gaussian 

overlap match-pairing method. Within Figure 18c this method maintains 0.0 NRMSE 

across all data loss levels, up to the 0.5 noise level. At noise level 1, the analysis shows 

a low reduction to ~0.1 NRMSE across all data loss levels to 50%, which is a 

significant improvement over the previous two match-pairing methods at the same 

noise level. There is a further increase to ~0.2 NRMSE at noise level 2, again, this is 

broadly spread across all loss levels. Figure 18c shows that from this noise level, the 

metric achieves low incremental rises in NRMSE scores, with the method achieving 

~0.6 NRMSE at noise level 3. This continues up to the highest noise level of all of 
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the match-pairing methods, where at noise level 3.75 a ~1.0 NRMSE is reached. 

Figure 18f identifies that throughout all combinations of increasing data noise, the 

Hungarian and Gaussian overlap match-pairing method maintains the ideal paired 

ratio 1.0, withstanding all effects of data loss up to 50%. This bidirectional, optimised 

method outperforms the RMP2 method in paired ratio results and equals the paired 

ratio output for RMP1.  

 

 

Figure 18 A combination of three data match-pairing methods being tested for 

the ability to achieve predicted data pairings between synthetic GR 

and RS-derived data. Each pixel in plots a-c represents an assessment 

of normalised root mean squared error (NRMSE) at differing levels 

of data noise and loss. Plots d-f represent the effect of the match-

pairing on the data population, expressed as a pairing ratio.  

a.  b.  c.  

d.  e.  f.  
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5.6.4 Summary Observations and Recommendation 

RMP1 (the Hausdorff distance method), for almost all of the possible data noise and 

loss combinations, fails to provide reliable match-pairings against the known changes. 

The method computes ~1.0 NRMSE from very low levels of data noise (Figure 18a). 

The inability to accommodate this noise is due to the way the Hausdorff algorithm 

uses a linear distance measure between the edges of two shapes. In this application, 

this is the outer edges of two ITC tree crowns. Correspondingly, the Hausdorff 

distance score reduces the closer the crowns are to one another, before the crown 

edges touch when reaching a ‘union’.  

 

The situation changes, however, at the point that the crown edges begin to intersect 

(Marošević 2018). Where a smaller crown passes inside a larger crown, as is typical 

when aligning GR and RS-derived trees, the Hausdorff distance increases as the 

crown edges begin to move away from each other and the crowns wholly overlap, 

despite the crown centroids not yet being aligned (Marošević 2018). This makes the 

Hausdorff distance algorithm unreliable in match-pairing using circular crowns. In 

considering the data population, Figure 18d demonstrates a paired ratio of 1.0 for the 

unidirectional method. As the match-pairing runs, the algorithm seeks matches for all 

trees within the response dataset B. When all the matches in B are filled against A, 

the algorithm is completed and returns the ratio 1.0 (100% matched). Achieving the 

paired ratio of 1.0 is maintained up to the 50% data loss, despite there being up to 

50% remaining unmatched trees in the A dataset. This highlights that as the method 

matches in a single direction, false-positive results can be reached when data size is 

not reported.  
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RMP2, the neighbourhood and area match pairing method, demonstrates an improved 

performance when compared to RMP1 (Figure 18b & e). However, there is a rapid 

reduction in the ability of this method to accurately achieve the predicted levels of 

match-pairing after the introduction of very low levels of data noise (Figure 18b). 

This is a consequence of the neighbourhood and area thresholds that limit the amount 

of available matches. As shown in Figure 18b, the threshold effect is compounded 

rapidly with increasing data noise and population loss. Notably, Figure 18e 

demonstrates that despite the bidirectional matching routine, the pairing ratio rapidly 

decreases to ~0.1, (~50 trees) at noise level 1.5. During bidirectional matching, A is 

matched to B, then B to A, and the best match retained (A=B). However, the 

implication is that the match-pairing may not necessarily occur with the same trees, 

for example, A matches to B, but B matches to a third tree (B=C), therefore A≠B, so 

A is discarded without a match. This effect, and the influence of up to 50% data losses, 

means that the bidirectional, RMP2 method, artificially reports acceptable levels of 

matches only with the reduced numbers of trees that remain. Significantly, the number 

of true matches achieved, as demonstrated by the paired ratio is very low (Figure 18e).  

 

The new Hungarian and Gaussian overlap match-pairing method provides the highest 

levels of agreement with the predicted measures, including into the highest levels of 

data noise (Figure 18c). The final NRMSE values are measured at more than twice 

the noise level achieved than RMP2. RMP1 reduced to ~1.0 NRMSE at noise level 

0.5, while RMP2 achieved ~1.0 NRMSE at noise level 1.5. However, the Hungarian 

and Gaussian match-pairing method continues to achieve ~0.6 NRMSE at noise level 

3, and finally reaching ~1.0 NRMSE at noise level 3.75. This indicates that at more 

than double the noise level of the next best performing method, the Hungarian and 

Gaussian method is considerably more robust to the influence of improper matches. 
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The stability of this method is further demonstrated in Figure 18f, where the match-

pairing method returns a paired ratio of 1.0 across all levels of data noise, and data 

losses. This is due to the optimised, bidirectional nature of the Hungarian algorithm. 

The algorithm attempts to pair all possible combinations of each data point in A, with 

all possible combinations of points in B, then similar to the bidirectional approach, 

the process is repeated visa-versa. However, in the Hungarian algorithm, the routine 

searches for a match-pair from the opposing dataset for every individual data point 

within the primary data, considering every possible data point in the opposing dataset, 

and attempting all possible parameter combinations before the best match is achieved. 

Therefore, this method achieves a true-positive match from all available options, and 

a 1.0 paired ratio score for the entire data population.  

 

In summary, within the analysis framework conducted in a synthetic environment, the 

Hungarian and Gaussian curve match-pairing is demonstrated as being the most 

effective in accurately resolving the match-pairing problem between GR and RS-

derived data. Therefore, following the metrics development and analysis phase, the 

Hungarian and Gaussian curve match-pairing method is the recommended approach 

for use in quantifying match-pairing agreement with real-world data.  

5.7 The ARBOR Framework 

Following the findings of the analysis and results above, the final implementation of 

the ARBOR framework is illustrated at Figure 19. This structure defines the 

developmental phase output with a simple, worked example of how the AROBR 

framework would interact with two datasets representing a sample of GR trees 

(n=100), and RS-derived trees for the same area (n=60).  
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Figure 19 A working example of the ARBOR framework workflow for the 

quantification of match-pairing agreement between remote sensing 

derived and ground reference data. Notes: AMPS = averaged 

matched-pairing similarity index, DSS = dataset size similarity index 

5.8 Demonstration of ARBOR for Evaluating ITC Delineations  

To demonstrate the principal of the ARBOR framework for quantifying agreement 

between GR and RS-derived data, the model described in Figure 19, was applied to a 

large, broadleaved woodland study site that had been scanned by a fixed-wing aircraft, 

generating ALS LiDAR and digital photography data, and contained twenty-six, 
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20x20m GR plots, that were manually surveyed with biophysical tree attributes 

measured and recorded (see supplementary information – Appendix C).  

 

The GR plots were identified in the LiDAR data and CHMs for each GR plot was 

created. Each GR plot was delineated using four different methods. A technician 

experienced in both manual tree surveying and remote sensing undertook manual ITC 

delineation (ITCMAN) by digitising vector polygons in ESRI ArcGIS, using a similar 

approach as described in Brandtberg and Walter (1998). The polygon followed tree 

crown edges on the CHM, defining crown outlines, crown areas and location 

centroids. Inverse watershed ITC delineation (ITCIWD) is a frequently used technique 

(Kwak, Lee et al. 2007, Jing, Hu et al. 2014). ITCIWD identifies valleys (gulleys), and 

in a top-down approach, locates tree crowns edges where adjacent tree crowns meet. 

This delineation procedure produces a network of connected valleys with the ITCIWD 

delineated crowns as ‘islands’ between the valleys, and outputs a vector-defined 

crown edge, location and crown area (Kwak, Lee et al. 2007, Jing, Hu et al. 2014).  

 

A variable limit local maxima ITC delineation algorithm, incorporating metabolic 

scaling theory (MST) predictions to remove data noise (ITCMST), was also used 

Swetnam and Falk (2014). The ITCMST method initially uses inverse watershedding 

delineation, but refines tree locations and assignment with MST, outputting individual 

tree locations, crown areas, and tree heights. Finally, a photogrammetric ITC 

delineation technique (ITCPHO) was applied to high resolution optical imagery to 

define tree crown boundaries and locations. For all ITC delineation methods the 

resulting vector polygons provide tree crown location, centralised height points, and 

circular shaped tree crowns. 
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5.8.1 The Results of Applying ARBOR to RS-derived ITC Delineations 

The delineation techniques ITCMAN, ITCIWD, ITCMST and ITCPHO were individually 

analysed against the GR data using the ARBOR framework, where Gaussian overlap 

replicates the biophysical characteristics of trees and defines the AMPS (averaged 

match-pairing similarity index) and DSS (dataset size similarity index) to optimise 

pairwise matching and to measure data population correspondence. Figure 20 

demonstrates that the four ITC delineation techniques achieved varying levels of 

match-pairing agreement.  

 

Figure 20  ARBOR scores comparing the match-pairing success between four 

different ITC delineation techniques acquired from aerial LiDAR 

data with ground reference data over 26 survey plots.  

ITCMAN and ITCIWD have the highest AMPS values, indicating that these delineation 

techniques have a similar level of accuracy (Table 10). The ITCMST delineation also 

achieved a level of accuracy commensurate with the ITCMAN and ITCIWD methods, 

although this was marginally lower. The interquartile range (IQR) of the AMPS is 

similar for all four ITC methods. All four methods show marginal positive skewing 

in the AMPS values indicating a majority of results are to the upper end of the IQR, 

and that the median result is closely aligned to the first quartile (1Q) results. 
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The ITCMAN achieved the highest DSS values indicating the highest overall level of 

accuracy in measuring biophysical tree attributes. For the automated delineation 

techniques, ITCIWD, ITCMST and ITCPHO achieved lower DSS values of 0.26, 0.29 and 

0.1 at the median respectively. The ITCMAN indicates a large third quartile (Q3) range 

to the maximum (~10%). Overall, ITCIWD, ITCMST and ITCPHO show largely balanced 

distributions in their respective DSS IQR. The ITCPHO achieved the lowest overall 

ARBOR scores in both AMPS and DSS, when compared against the other delineation 

techniques.  

 

In all of the results for both AMPS and DSS values across all four delineation 

techniques show the mean, visualised as a circle, is greater than the median line 

(Figure 20). This indicates there is a longer upper tail, showing a positive skew to 

these results. This also shows that the median result is closely aligned to the 1Q. The 

only exception is the DSS mean for the ITCMST where both the mean and median are 

closely aligned (Figure 20). 

 

Table 10 Quantification of ARBOR framework scores for four individual tree 

crown (ITC) delineation techniques, when compared to known tree 

location, height and crown areas of ground reference tree data.  

   ARBOR Framework (%) 

  AMPS  DSS 

Delineation Q1 Med Mean Q3 Min Max Q1 Med Mean Q3 Min Max 

ITCMAN 0.51 0.56 0.57 0.61 0.46 0.66 0.25 0.34 0.38 0.43 0.21 0.69 

ITCIWD 0.52 0.56 0.58 0.61 0.43 0.68 0.22 0.26 0.29 0.30 0.11 0.38 

ITCMST 0.46 0.52 0.53 0.56 0.42 0.68 0.23 0.29 0.30 0.35 0.09 0.46 

ITCPHO 0.36 0.42 0.43 0.47 0.26 0.56 0.07 0.10 0.12 0.15 0.02 0.25 

Notes: AMPS = averaged matched-pairing similarity index, DSS = dataset size similarity index, MAN 

= manual, IWD = inverse watershedding, MST = variable limit maxima with metabolic scaling theory, 

PHO = photogrammetric method. 
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The application of ARBOR to RS-derived ITC delineation and GR data, demonstrates 

how the framework can quantify differences in ITC delineation techniques, and 

allows a discriminatory assessment for identifying the ITC delineation technique 

which would achieve the highest levels of accuracy for the data user.  

5.9 The Significance of the ARBOR Framework 

Culvenor (2002) states that achieving the successful delineation of trees is 

problematic. Outlining trees from homogenous groups, without explicitly quantified 

GR data can lead to repeated errors. The aim of this study was to develop a framework 

for objectively quantifying the agreement between two datasets, focussing on 

common commission errors in RS data, with increased data noise and data population 

differences. The ARBOR framework was developed and then applied to real-world 

data to quantify the commission agreement between four different ITC delineation 

techniques and GR datasets (Figure 20). This type of analysis is frequently absent 

from RS studies that utilise ITC delineation techniques, which instead, rely upon 

arbitrary height or other cut-off thresholds to infer the level of agreement (Næsset 

2002, Listopad, Drake et al. 2011, Hyyppa, Yu et al. 2012). However, the findings 

from this research indicates that simple measures, thresholding and not accounting for 

the biophysical parameters of trees leads to low levels of true-positive match-pairing 

between GR and RS-derived data (Figure 18). 

 

Throughout Figure 18a-f, there is a general tendency of higher match-pairing 

performance at lower noise levels, with a diminishing of NRMSE as noise levels 

increase. Concurrently, increasing data loss, from 0 to 50%, further impacts on the 

efficacy of the match-pairing. In all cases, noise affecting the data has the greatest 

effect, while data loss, less so. What is clear is that introducing data noise alters the 
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biophysical parameters that the trees are being matched on, and therefore, assessment 

of these parameters should always be included as variables when seeking ITC 

delineation agreement with GR data. Figure 18a-c shows that match-pairing methods 

are sensitive to shifts in the biophysical tree structure under analysis. The data losses, 

or differences in tree population numbers between the two datasets, has a different 

effect.  

 

Where data in the observed dataset B (e.g. LiDAR) has fewer trees, poorer matches 

are achieved as the limited tree population will have greater tree numbers available 

for matching in the opposing dataset A (e.g. GR). Using some methods, such as 

Hausdorff distance, unmatched tree data is discarded from the analysis when all trees 

in dataset B are matched. Without measuring the dataset size, the match-pairing 

analysis declares a successful match even where there are fewer trees in one set than 

the other. This creates a false positive result, where changes in the data population 

and quantification of the unmatched pairings is not reported (Figure 18d-e). 

Furthermore, this analysis has shown that the frequently used match-pairing method, 

Hausdorff distance, significantly underperforms in reaching agreement between GR 

and RS datasets, particularly when exposed to increasing data noise and losses, as 

readily occurs in real-world RS data (Figure 18a & d). However, through the creation 

of the ARBOR framework, a demonstrably robust framework has been established to 

quantify agreement between GR and RS-derived data.  

 

The approach used to develop the ARBOR framework was similar to Ole Ørka, 

Næsset et al. (2009) where a synthetic testing environment was used to replicate 

complex RS tree datasets, with naturally occurring variations in tree size, shape and 

location. During early iterations of metric testing, it was recognised that each tree in 
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the two datasets must achieve a bilateral matching agreement. However, this was 

problematic as it was observed that this lead to ‘hugging pairs’ within the data 

assignment. Specifically, where once assigned a matched pair, e.g. SYTree A1 to 

SYTree B1, the assignment excluded any other potential match even where a 

subsequent potential match was better suited. Further analysis showed that the order 

of the match-agreement process is a relevant factor in achieving high agreement 

match-pairing. To overcome this problem, the Hungarian combinatorial optimisation 

algorithm was used to search through all the potential combinations in the parallel 

dataset. An advantage of the Hungarian algorithm is the optimising nature of the 

routine where the algorithm cannot reach completion with an unsuitable data 

assignment. Therefore, the algorithm attempts all possible data combinations between 

the two datasets and completes only when the fullest level of agreement is reached.  

 

The AMPS index quantifies the similarity between the datasets as a measure of the 

biophysical tree properties agreement, represented as Gaussian overlap (Figure 15), 

while the DSS index provides a measure of population size estimates from ITC 

delineations. Contrary to the views of Kaartinen, Hyyppä et al. (2012) who state that 

the comparison of delineation results between different datasets cannot be achieved 

due to the variability in crown structures of different species, this research 

demonstrates that by using GR representations of trees as simple objects (with 

location, height and area), and matching these objects to ITC delineations using a 

Gaussian curve model and the Hungarian algorithm, accuracy assessment becomes 

possible (Figure 20). Therefore, the ARBOR framework provides a new opportunity 

for quantifying the confidence of ITC delineation techniques in RS investigations. 

Figure 20 and Table 10 demonstrate that recommendations can be given about the 

efficacy and suitability of different ITC delineation techniques applied to remotely-
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sensed data. We can define optimal ITC delineation methods, as shown by the AMPS 

and DSS values calculated within the ARBOR framework.  

 

The principal emphasis of this work was to enable the quantification of pairwise 

match agreement between GR and RS-derived datasets. However, we also recognise 

there are opportunities for the ARBOR framework to quantify other types of data 

agreement, for example, tree delineations derived from aerial photography matched 

with those from aerial or terrestrial LiDAR. Due to the modular nature of the ARBOR 

framework, it can be adapted, as is required in future studies, to include a range of 

different match-pairing metrics not incorporated into this study and to generate 

alternative statistical measures of ITC delineation accuracy. Furthermore, in this study 

the ARBOR framework was used for quantifying the accuracy of ITC delineation in 

a complex semi-natural temperate broadleaved woodland. Given the demonstrable 

robustness of the tree matching technique and sensitivity of the accuracy metrics, the 

ARBOR framework holds potential as an objective and transferable tool that can be 

applied across the full range of forest types.  

To enable the distribution and further application of the ARBOR framework, a portal 

has been developed to allow the uploading and analysis of match-pairing data, to 

provide objective quantification of the accuracy of ITC delineations.  

5.10 Conclusion 

It is recognised that achieving accurate ITC delineation is a difficult task, particularly 

in broadleaved tree crowns. Currently there are no standardised techniques or 

measures of the amount of agreement between RS-derived and GR datasets. Many 

potential errors arise in the alignments of these data, however, a common approach to 

addressing these errors is to apply arbitrary cut-off thresholds. These thresholds are 
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intended to determine whether the same individual tree is identified within the two 

different datasets, but there are limitations in these approaches, particularly as some 

match-pairing methods can lead to false-positive results. Furthermore, the reporting 

of ITC delineation accuracy is limited in general. Through the use of a synthetic test 

environment, an optimised algorithm was identified for matching RS-derived and GR 

tree populations and statistical metrics were developed for quantifying ITC 

delineation accuracy based on biophysical attributes and data population size. These 

methods were incorporated into the ARBOR framework which provides a practical 

approach for achieving and quantifying match-pairing agreement between RS-derived 

and GR datasets. Therefore, the ARBOR framework is proposed as a standardised 

solution for future ITC delineation accuracy assessment. 

5.11 Supplementary Information 

Supplementary information is included with this submission.  
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6 STRUCTURAL: 

Categorising the Structural 

Condition of Individual 

Trees at Landscape Scale 

using LiDAR Data 

6.1 Preamble 

Within tree management, forest science and environmental management, there is 

frequently the need to identify specific features in trees, or to identify trees that are 

representative of a particular condition. Although technologies already exist for the 

rapid acquisition of environmental data, current tree surveying practices still relies 

upon historic surveying techniques. Functionally, this often means that many trees 

would have to be manually surveyed by operatives in the field. A key element of these 

traditional surveying methods, is the unguided or reactive nature of the survey. 

Essentially, the tree surveyors go into the field only with limited knowledge of the 

area needed to be surveyed, aided by following a transect line on a map or similar. 

The surveyors have no prior understanding of the expected tree condition within a 

specific area, and cannot optimise their survey efforts by focussing on a specific area 

of interest.  

 

The earlier research chapters have identified that there are quantifiable changes in tree 

structure that can be used to give an indication of tree condition (Chapter 4). Also that 
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the extent of data agreement between two datasets used to describe the spatial and 

biophysical and structural properties of the same tree, can be quantified using a novel 

methodology that aids in defining surveyor confidence in the available data (Chapter 

5). Following on from these findings, this chapter answers the question; ‘is it possible 

to use technology to assess individual tree structure remotely?’, and, ‘can this 

assessment be used to aid the decision process in tree management?’  
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Trees are an environmental resource that offer a range of benefits in both rural and 

urban contexts. Trees are however, subject to a wide range of environmental stressors 

that interfere with their structure, which can lead to catastrophic structural failure in 

the worst cases. The tree management, or arboricultural, industries often manage 

trees from the perspective of risk reduction where trees are in close proximity to 

members of the public or property, such as critical infrastructure, that are considered 

worthy of protection. However, there are operational difficulties for tree managers, 

in that no current assessments of risk are truly objective, and remedial management 

works is typically reactive in nature. Using a combined approach of ground reference 

(GR) data with light detection and ranging (LiDAR) data captured from an aerial 

laser scanning (ALS) platform, this paper introduces an objective means of 

quantifying tree structure. A population of 9094 individual tree crowns that are 

automatically delineated were assigned into four condition categories using 

analytical metrics derived from LiDAR data, using a medium K-nearest neighbour 

(kNN) classifier with principal components analysis (PCA) activation. This data-

driven tree condition categorisation is validated against the GR data to a high level 

of confidence. This paper demonstrates that the Structural Condition of Trees Using 

Remote Assessment by LiDAR (STRUCTURAL), is a valid development in digital 

forestry, and provides a definitive proof of concept that enables tree managers to 

remotely quantify and categorise the structural condition of tree stock under their 

care, leading to more informed decision making and proactive management 

interventions.  

 

Keywords - LiDAR, Metrics, Data Classification, Tree Assessment, Airborne Laser 

Scanning.  

6.2  Introduction  

Trees are complex, dynamic structures, subject to a variety of external forces which 

elicit biophysical responses in tree structures through adaptive morphology, a strategy 

that minimises the negative impacts of the external forces (Mattheck 1998, Lonsdale 

mailto:foresj@oup.com
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1999, Niklas 2001). Healthy trees use adaptive morphology to accommodate exposure 

to repeated structural stresses, such as; gravitational force, wind drag in storm or high 

wind events, fungal pathogens effects, frost, drought, internal growth stress and 

intentional damage by humans. All of these can affect the tree structure, which 

initiates a range of unique biophysical responses through structural self-optimisation 

(Niklas 1992, Mattheck and Breloer 1994, Mattheck 1998). Many of the stressors that 

trees are exposed to are prolonged, interact with one another, and lead to accumulated 

impacts on the tree morphology (Niinemets 2010). As a consequence, trees can 

structurally fail for a variety of reasons. 

  

Amongst tree-risk managers it has long been acknowledged that analysing risk is a 

highly subjective process which can on occasion, expose tree risk managers to 

litigation (Lonsdale 1999, Redmill 2002). Traditional tree surveying commonly relies 

upon a fieldwork operative using visual tree assessment methods from the ground 

level (Mattheck and Breloer 1994). These operatives rely upon individual judgements 

for key variables, for instance, the tree part most likely to fail, the mass of the tree 

part and the impact potential, while also speculating on the effects on potential targets 

that may or may not be present (e.g. International Society for Arboriculture Tree Risk 

Assessment method, Visual Tree Assessment method, Quantified Tree Risk 

Assessment method, Bartlett Tree Survey method etc.). The quality and consistency 

of these assessments depend on the observation skills, individual interpretation, and 

prior experience of the observer who provides a holistic assessment on the day of the 

survey. The tree-risk industry has attempted to standardise manual tree assessment 

methodologies, aiming to quantify tree failure potential. However, the findings of 

Norris (2007) suggest great variation in the responses throughout the industry. In this 

study, 12 experienced tree surveyors each assessed eight ‘hazardous’ trees using eight 
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common tree assessment methodologies. Norris (2007) identified there was low 

correlation between the expert’s findings, using each assessment method, with the 

observations of the hazardous subject trees. Furthermore, Sankarana, Mishraa et al. 

(2010) state that traditional tree-risk assessment methodologies are frequently 

inadequate for their intended purpose, and both labour intensive and prohibitively 

costly.  

 

Remote Sensing (RS) methods are used in tree management to record individual tree 

characteristics which are analysed using relatively simple methods (Holmstrőm 

2002). Many previous RS investigations focus on tree assessment at the stand or 

landscape level, particularly from aerial laser scanning (ALS) platforms using light 

detection and ranging (LiDAR), but assess tree cover as a single unit area, rather than 

as a series of individual tree crowns, for example, the general assessment of forest 

cover, the identification of forest parameters or the derivation of vegetative properties 

(Andersen, McGaughey et al. 2005, Maltamo, Packale´n et al. 2005, Suarez, 

Ontiveros et al. 2005, Henning and Radtke 2006, Ustin and Gamon 2010, Swatantran, 

Dubayah et al. 2011). Bortolot and Wynne (2005), recognised the potential of using 

LiDAR for "individual tree-based management". Suarez, Ontiveros et al. (2005) have 

also noted that ALS LiDAR can provide additional layers of information about 

canopy structure, beyond the reach of manual tree assessment methods. ALS LiDAR 

can also be utilised in-situations wherein easy access is not possible or in instances 

where large amounts of data need to be captured in a single attempt. Whilst it is 

unlikely that RS techniques will ever entirely replace visual tree inspections, it is 

expected that they will provide opportunities to enhance larger scale surveys by 

directing practitioners towards the areas of the highest management interest, enabling 

proactive interventions to be applied, an ideal that is notably absent from many of the 
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current, reactive tree assessment practices. As described in Murray, Blackburn et al. 

(2018) due to the unique differences in individual trees, there is the need for 

objectively classifying tree structural condition, therefore, this paper describes the 

development of the Structural Condition of Trees Using Remote Assessment by 

LiDAR (STRUCTURAL) method. 

6.3 Aim and Objectives 

The aim of this research is to develop a methodology for categorising the structural 

condition of individual trees from discrete return (DR) LiDAR data captured via an 

ALS platform. This will be fulfilled by meeting the following objectives:  

 

1. To visualise LiDAR returns for different tree structural conditions as the 

basis for developing metrics 

2. To define predictor variables used for the development of LiDAR metrics 

and for conducting supervised learning and classification 

3. To complete a validation of the classification model response and classified 

tree data  

4. To demonstrate a procedural workflow, from data processing, through to 

data analysis and procedural output 

 

6.4 Methodology 

6.4.1 Fieldwork, Site Selection and Manual Operations 

6.4.1.1 Woodland Character 

The woodland used as a study site is of a typical nature found in north-west England. 

Described as a mixed species, semi-natural woodland, containing distinct areas of 
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Ancient Semi Natural Woodland (ASNW) and Plantation on Ancient Woodland Site 

(PAWS). The woodland includes areas under a variety of different woodland 

management practices and canopy cover types, ranging from individual, open grown 

trees (maidens) through to areas of total canopy closure. The woodland is described 

in further detail in Field Sites, Methods. During the fieldwork phase, it was noted that 

the horizontal and vertical strata of the woodland varied on an east to west basis, with 

trees in the west being predominantly smaller, understory trees with a sporadic 

overstory and large areas of canopy gaps, and trees to the east being predominantly 

mature overstory trees, creating a complex upper canopy with fewer understory trees 

(see Eaves Wood, Lancashire, UK).  

6.4.1.2 Plot Selection  

A transect line (and buffer zone) was established to help identify areas of homogenous 

tree cover. During the site identification process, no formal assessment of individual 

tree condition was taken, but to measure differences between potential survey sites, 

hemispherical photographs were taken of the underside of the canopy over the 

proposed plot centres. These images were subsequently processed to quantify the 

canopy cover found at each site using CAN-EYE software, e.g. canopy closure at 40% 

cover (see ALS Survey Plot Location and Establishment). 26 survey plots were 

identified that were situated along or within 30 meters of the transect line as the local 

conditions and canopy cover directed. At the centre of each survey plot a geolocated 

ground marker was placed.  

 

Lu, Guo et al. (2014) state that achieving accurate GPS signals beneath tree canopies 

is problematic, and when considering the effects of dense woodland canopies, 

acquiring location by GPS alone cannot be assured. Consequently, an extensive back-
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sighting procedure using a combined (differential) dGPS and total station robotic 

survey was used to improve accuracy in geolocating the survey plots beneath the tree 

canopies. Each tree ≥5 DBH within the survey plot was manually geolocated and 

several variables were recorded e.g. species, DBH, height, crown spread etc. using 

readily available arboricultural equipment, for example, clinometer, surveyors tape, 

DBH tape, laser hypsometer. In addition to this base field data, the condition of each 

tree was assessed at the time of the survey. This manual assessment conforms to the 

current best industry practices used in the arboricultural industry in the UK, and is 

based upon the principles as described by Lonsdale (1999) and BS5837:2012 (BSI 

2012). These field methods were also informed by the Forest Inventory and Analysis 

program (Schomaker, Zarnoch et al. 2007). 

6.4.2 Data Preparation and Preliminary Observations 

6.4.2.1 Data Merging, Point Classification and Study Area Definition 

To ensure the greatest LiDAR data distribution throughout the survey area, the 

woodland site was flown with ~85% swath overlap between six flight lines. This 

returned 29,435,261 LiDAR pulses, creating the point cloud for the woodland (Table 

11). The flightlines were centred above the transect line and GR plots where a smaller 

flightline area achieved 100% overlap. Through a process of data merging and 

clipping to the flightline overlap area coordinates, the periphery of the point cloud 

(<100% overlap) was excluded from the study area (Figure 21). This process reduced 

the point cloud to 8,829,963 data points, covering 38.4ha of the site. All LiDAR 

returns within this zone achieved an average ground point density of 23.02m2 (Table 

11 & Figure 21). 
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Table 11 LiDAR pulses returned for a combination of six flight line passes of 

Eaves Wood, Lancashire, UK. Point data 1 is unconsolidated results 

of all flightlines, while point data 2 is an optimised area of overlapping 

flightlines.  

 Point Data 1 Point Data 2 

Return (r) Number Percentage Number Percentage 

1 24,386,772 82.85% 6,864,595 77.74% 

2 4,538,672 15.42% 1,703,915 19.29% 

3 496,169 1.69% 248,474 2.81% 

4 13,648 0.05% 12,979 0.1% 

 

 

Figure 21 Outline of Eaves Wood, Lancashire, showing locations of the transect 

line and ground reference plots. The grey boxes indicate the 

overlapping LiDAR flightlines, while the black box identifies the 

flightline area that achieved 100% overlap, corresponding with the 

central transect and ground reference plots. 
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Following the clipping and merging of the flightlines, a point classification algorithm 

was used to discriminate preferred data points from non-essential data. This followed 

the standard specifications of ASPRS (2013), with LiDAR point classes assigned as; 

2 – ground, 3 – low vegetation, 4 – medium vegetation, 5 – high vegetation, and, 7 – 

low point (noise). Other point classes for buildings, water, rail etc. were not assigned 

as the woodland does not contain these features, and are not of interest in this study.  

6.4.2.2 Data Processing for Training Data 

When processing GR individual tree locations it was considered important to adopt a 

consistent method when extracting LiDAR data for selected plots for a training 

dataset. Although several ITC delineation techniques exists for the identification of 

individual trees from within larger datasets (Chen, Baldocchi et al. 2006, Bian, Zou 

et al. 2014, Swetnam and Falk 2014, Ayrey, Fraver et al. 2017), these frequently 

underestimate the overall tree population (Hamraz, Contreras et al. 2017). Therefore, 

these approaches were not used to define the training dataset. Following the guidance 

of Lu, Guo et al. (2014) individual tree locations were manually digitised using XY 

coordinate (centroid) and crown areas of the GR data (Figure 22).  
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Figure 22  Tree canopies as drawn as circular shapes in ArcGIS at 1:125 scale. 

The canopies are created with scaled measurements and orientated in 

the direction as they were found in data collection at Eaves Wood, 

Silverdale, Lancashire, UK. Also shown in the image is the transect 

line (red) and plot area (green) used in the investigation.  

6.4.3 Visualisation of LiDAR Returns for Different Tree Structural 

Conditions  

A pilot investigation was undertaken using maiden control trees (see Potter Hill Fields 

and Park Fields, Silverdale, Lancashire, UK.). Easy access to these trees facilitated 

taking precise GR measurements, and the trees were readily identified in the LiDAR 

data. The control trees were categorized as; good, moderate, poor and dead (Figure 

23). Point cloud observations indicated apparent differences in the LiDAR and tree 

structure interaction, particularly the pulse return frequencies within different areas 

of the tree structure (Figure 23).  
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The tree structure and LiDAR return pulses were further investigated in a modest trail 

of 238 randomly selected trees, reported as Murray, Blackburn et al. (2014). This 

analysis shows that structural character can be inferred through the occurrences of 

return pulses, where both standardized and unstandardized regression weightings 

were defined as discriminant function coefficients for the return pulses 1-4 (Table 12) 

Table 12  Standardized and raw discriminant function coefficients as 

unstandardized regression weights for LiDAR return (r) variables 

(Murray, Blackburn et al. 2014) 

Variable Raw Stadardized 

r1 -0.00429 -1.71796 

r2 0.00780 1.64426 

r3 -0.03895 -1.46073 

r4 0.42858 0.81466 

 

Table 12 shows that r2 influences the canonical variable as a discriminate function to 

the largest amount (r2 - 1.64426), suggesting the r2 pulses have the greatest 

descriptive value (Murray, Blackburn et al. 2014). Furthermore, the positive 

correlation shows that r1-3 exerts the greatest influence in describing tree structure 

(Table 13). This observation can be used to aid the development of tree structure 

metrics (Murray, Blackburn et al. 2014), and is supported by the observations of 

Hamraz, Contreras et al. (2017), who also support the view that LiDAR points are 

denser from first to third r points respectively.  

Table 13  Correlations between the dependent (return (r)) and canonical 

variables (Murray, Blackburn et al. 2014). 

Variable Correlation 

r1 0.87948 

r2 0.74750 

r3 0.68438 

r4 0.34560 
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Field Image LiDAR Observations 

  

A high density of r1 
(yellow) occur around 
the outer edge of the 
canopy with fewer r1 
within the crown. r2 
(red) appear within 
the central mass of 
the crown and 
ground. There are 
distributed 
occurrences of r3 
(green) in the lower 
crown and on the 
ground. 
  

  

Frequent r1 on the 
outer edge of the 
crown, with higher 
porosity than a1-2. 
Some r1 combining 
with r2 in the central 
mass in lower 
frequency. Sporadic 
and low numbers of 
r3 on the stem 
occurring on the 
ground.  
 

 
 

Low frequency of r1 
on the outer canopy, 
with more r1 
occurring in the 
central mass and on 
the ground beneath 
the tree. r2 registers 
in the lower central 
mass and the ground, 
with r3 predominantly 
detected at lower 
stem to ground level. 
 

  

Predominantly r1 
distributed 
throughout the stem 
area, lower position 
r2 and r3, with r1 on 
the ground if in an 
open ground position. 
Note: Subject tree is a 
model where LiDAR 
ground points have 
been removed from 
LiDAR image 

Figure 23 Subject trees in manually observed conditions: a, b, c, and d = 

good, moderate, poor and dead conditions respectively. Trees 

marked with 1 are photographic representations of the subject 

trees. Trees marked with 2 are visual representations of trees 

scanned using DR ALS LiDAR, with pulse returns shown: r1 

(Yellow), r2 (Red), r3 (Green). 

a.1 a.2 

b.2 

c.1 

b.1 

c.2 

d.1 d.2 
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6.4.3.1 Quantification of Tree Delineations with the ARBOR Method 

The merged LiDAR flightline (Figure 21) was used to delineate all trees that were 

modelled during the ALS LiDAR data acquisition. This process defines the location 

and biophysical parameters of all trees including those that are within the flightline, 

and both inside and outside of the 26 GR survey plots. It follows that these 

unsurveyed, ITC delineated trees (Figure 24) are the subject of supervised 

classification. The quality of the ITC delineation method was quantified within the 

ARBOR framework to assess the accuracy of matching the ITC delineated trees with 

the surveyed GR data. The ITCMST delineation method uses inverse watershedding 

delineation and incorporates metabolic scaling theory (MST) predictions to remove 

data noise Swetnam and Falk (2014), and in an analysis comparing the efficacy of 

four ITC delineation methods using the ARBOR framework, the ITCMST delineation 

method was shown to have a comparatively high match-pairing agreement (0.52 

AMPS) and, achieved the highest dataset similarity size following the matching (0.29 

DSS) of the automated ITC delineation methods tested (see ARBOR: A New 

Framework for Assessing the Accuracy of Individual Tree Crown Delineation from 

Remotely-sensed Data).  
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Figure 24  ITC delineations of individual trees across the full study site flightline. 

These unsurveyed trees will be classified using their biophysical 

characteristics as observed in ALS LiDAR data.  

6.4.4 Defining Variables for Supervised Learning & Aerial LiDAR 

Metrics 

6.4.4.1 LiDAR Measurement Variables 

A series of measurements were computed from the LiDAR point cloud to describe 

the subject area. These relate to common investigative themes, for example; inventory 

(e.g. number of trees), areas and surfaces (e.g. fitted surface area), heights (e.g. 90th 

quantile of point heights), intensity (e.g. maximum intensity) and other measures (e.g. 

principle component elements). Table 14 describes 51 measurements calculated from 

the ALS LiDAR data to be used as predictive variable measurements.  

  



Remote Sensing Tools for the Objective Quantification of Tree Structural Condition  

from Individual Trees to Landscape Scale Assessment 

146  

Table 14  Description of measurements calculated from LiDAR point cloud 

data, grouped into themed areas of inventory, intensity, area, height 

and other. Adapted from Parkan (2018) 

 Measure Description Measure Description  

In
v

e
n

to
ry

 

X Longitude HeightQ90 90th Quantile of Point Heights 

H
e

ig
h

ts
 

Y Latitude HeightQ75 75th Quantile of Point Heights 
Z Height HeightQ50 50th Quantile of Point Heights 

NPoints Point number HeightQ25 25th Quantile of Point Heights 
LRFrac Last Return Fraction HeightSkew Height Skewness 
FRFrac First Return Fraction HeightKurt Height Kurtosis 
SRFrac 

Single Return Fraction 
HeightCV Coefficient of Variation of Point 

Heights 
OpacityQ50 Opacity Value 50th 

Quantile 

HeightSD Standard Deviation of Point 
Heights 

TotHeight Total Height HeightMed Median of Point Heights 
AspRatio Aspect Ratio HeightMean Mean of Point Heights 

In
te

n
s

it
y

 

IntSRQ50 Single return 50th quantile ConvArea Convex Area 

A
re

a
 &

 S
u

rfa
c

e
s

 

IntLRQ50 Last return 50th quantile ConvVol Convex Volume 

IntFRQ50 First return 50th quantile ConvSuArea Convex Surface Area 

IntSkew Skewness ConvSpSurf Convex Specific Surface 

IntKurt Kurtosis ConcVol Concave Vol 

IntCV Coefficient of variation ConvLacuna Convex Hull Lacunarity 

IntSD Standard deviation ConcSuArea Concave Surface Area 

IntMax Maximum Convexity Convexity 

IntMean Mean average CrownDiam Crown Diameter 

IntQ90 Values to 90th quantile ConcSpSurf Concave Specific Surface 

IntQ75 Values to 75th quantile ConcArea Concave Area 

IntQ50 Values to 50th quantile ConvDens Convex Point Density 

IntQ25 Values to 25th quantile ConcDens Concave Point Density 

O
th

e
r 

PCVar3 Principle Component 
Variance 1 

ConvFrac 
Convex Boundary Fraction 

PCVar2 Principle Component 
Variance 2 

ConcFrac 
Concave Boundary Fraction 

PCVar1 Principle Component 
Variance 3 

  

6.4.4.2 Supervised Learning Routines 

To undertake supervised learning, individual tree samples were chosen at random 

from 21 of the 26 GR survey plots. These trees were assigned to train the initial 

predictor models, while 5 survey plots were retained for later model validation. The 

training trees were grouped by their arboricultural survey categorisation (good, 

moderate, poor or dead categories, Figure 23), and then randomly selected from the 

groups. These four categories were used as the ‘response’ variable for a supervised 

learning analysis conducted in MATLAB (vers. 2017a), where several different 

training and classifier models were used in order to define the highest predictive 

model accuracy (Table 15). To reduce the impacts of dimensionality and the potential 
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influence of random variables, principle components analysis (PCA) was applied 

where the reduction criterion explained variance to 95%. In considering the number 

of predictor variables and model combinations, the learning routine repeated over 

2500 training iterations, fivefold cross-validation supports the predictive strength of 

the model.  

Table 15 Description of a range of classifier models used in assessing the 

accuracy of trained models in a supervised learning analysis.  

Classifier Models 

Decision Trees 
Discriminant 

Analysis 
Regression 

Support Vector 
Machine (SVM) 

Nearest 
Neighbour (kNN) 

Ensembles 

Type Info. Type Info. Type Info. Type Info. Type Info. Type Info. 

Coarse 

Few 
leaves 
(max 4) 

Linear  
Linear 

inter-class 
boundaries  

Logistic 

Simple 
function of 
predictor 

combination 

Linear  
Simple 
linear 

separation 

Fine 

Fine 
distinction 

(1 N) 
Boosted 

Max. 
learners & 

splits 

Medium 

Moderate 
leaves 

(max 20) 
Quadratic  

Non-linear 
inter-class 
boundaries 

  Quadratic  
Non-linear 
separation 

Medium  
Moderate 
distinction 

(10 N) 
Bagged 

Random 
Forest with 

learners 

Fine 

Many 
leaves 
(max 
100) 

    Cubic 
Non-linear 
separation 

Coarse 

Coarse 
distinction 

(100 N) 

Subspace 
Discriminant 

Subspace 
with 

discriminant 
learners 

      
Fine 

Gaussian 

Fine class 
distinction 
(sqrt(p)/4) 

Cosign 

Cosign 
distance 

metric (10 
N) 

Subspace 

kNN 

Subspace 
with nearest 
neighbour 
earners 

      
Medium 

Gaussian 

Moderate 
class 

distinction 
sqrt(p) 

Cubic 

Cubic 
distance 

metric (10 
N) 

RUSBoost 
Trees 

Skew data 
boost with 

decision tree 
learners 

      
Coarse 

Gaussian 

Coarse 
prediction 
sqrt(p)*4 

Weighted 

Medium 
distinction, 
weighted 
distance 

(10 N) 

  

Notes: SQRT = square root, P = predictor variables, N = neighbour.  

6.4.4.3 LiDAR Metric Development 

To define LiDAR metrics that will inform the description of the tree structure and 

condition for analysis, several predictor variables were generated using the Digital 

Forestry Toolbox (Parkan 2018) (Table 14). These measurements were combined in 

many ways, attempting to demonstrate tree features and achieve high model accuracy 

in the output model. For example: 

 

 Inventory (NPoint, FRFrac, TotHeight, CrownDiam)  

Number of pulse points, by first return fraction, total tree height and crown 

diameter 
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 Height (HeightQ90, TotHeight, HeightCV, HeightSD)  

Height of points in the 90th quantile, by total tree height, height standard deviation 

and height coefficient of variation 

 Intensity (IntFRQ50, IntSD, IntCV,)   

Intensity values of the first returns in 50th quantile, by intensity standard deviation 

and intensity coefficient of variation 

 Area and Surface (ConvVol, ConvSuArea, ConvSpSurf, ConvLacuna, 

ConvFrac, Convexity, CrownDiam)  

Convex volume, by convex surface area, convex specific surface, convex 

lacunarity, convex fraction, convexity measure and crown diameter.  

 Other (PCVar1, PCVar2, NPoint)  

Principle component variance 1, by principle component variance 2 and number 

of pulse points 

(List not exhaustive) 

While many combinations of predictor measurements were used, it was observed that 

many combinations of these variables had a negative impact on the model accuracy. 

In the worst combinations, six or more combined predictor variables achieved a 

maximum of only 17% model accuracy per training iteration. Reducing the number 

of predictor variables had the corresponding effect of increasing model accuracy 

(Figure 25). 
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Figure 25  Response of model accuracy levels during model training with 

different numbers of predictor variables 

6.4.4.4 Testing Metrics and Classification Model Accuracy 

During the training phase 25 training trees in each of the four response categories 

were used to train the model (n=100). The training data population was governed by 

the number of trees in the response categories with the lowest population numbers, 

e.g. 25 dead trees observed within 21 training plots, therefore the remaining 3 

response categories also had 25 in their training populations. The measures concave 

surface area, which is the area of a concave hull or alpha shape (Edelsbrunner and 

Ernst 1994), and concave density, the number of LiDAR points divided by the total 

volume of the concave hull (Shi, Wang et al. 2018), were used as a classification 

prediction metric achieved 46.8% accuracy scores over the model training iterations, 

using the medium kNN classifier with principal components analysis (PCA) 

activation.  

 

Figure 26a-c, shows the results of the classification process. Figure 26a shows the 

distribution of correctly classified points, grouped by categories, verified by the 
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trained model. Figure 26b shows the receiver operating classifier (ROC) curve which 

indicates both true and false positive values. A perfect ROC curve is represented as a 

right angle to the upper left corner, poor ROC results plot closer to a 45° line. The 

area under the curve (AUC) quantifies the classifier quality, with the classifier model 

achieving 0.7 AUC (Figure 26b). The confusion matrix (Figure 26c) identifies the 

model efficacy in achieving true-positive classifications for each category. In this 

model, dead and moderate classifications achieve 60% and 56% respectively, while 

the good and poor categories achieve 32% and 36% true-positive classifications.  
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Figure 26 Trained model results for the predictor variables Concave Surface 

Area by Concave Density as a tree classification metric using a 

medium kNN classifier model and 100 training trees from ALS 

LiDAR data. a) scatter plot of assigned categories, b) receiver 

operating classifier (ROC) curve for the dead category, and c) 

confusion matrix of all categories true positive classifications. Overall 

model accuracy is 46.8%.  

6.4.4.4.1 Model Retraining 

Within the original training data, the categorical data distributions were observed as; 

good 70%, moderate 20%, poor 5%, and dead 5%. Therefore, in the initial training 

a

. 

a

` 

b c 
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phase, all the categories were under-represented in the training data, at 25% for each 

category. Additional trees from the plot survey areas were added to the training data, 

aiming to replicate the original category distributions, thereby increasing the training 

dataset to 235 trees. The redistributed data population became; good 48%, moderate 

30%, poor 11%, and dead 11%. The classification models were retrained using the 

previous routines and measures (Table 14 and Table 15). 

6.4.4.4.2 Medium kNN Classifier Model 

The retrained data was used with the prediction metric, concave surface area by 

concave density, and achieved 41% model accuracy with the medium kNN classifier 

and PCA activation. Figure 27a shows the point distribution, grouped by classification 

and verified by the trained model. The new data showed a minor ROC curve change 

in the dead category 0.69 AUC (Figure 27b). The confusion matrix changed across 

all categories when compared to Figure 26c, with true positives as; good 65%, 

moderate 43%, poor 4% and dead 20%. This is a true positive increase in the largest 

data categories, i.e. good and moderate, however, the change also shows a reduction 

in true positives for dead and poor, which are now weak model learners due to the 

training model population data imbalance (Model Retraining). 
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Figure 27 Trained model results for the predictor variables Concave Surface 

Area by Concave Density as a tree classification metric using a 

medium kNN classifier model and 235 training trees from ALS 

LiDAR data. a) scatter plot of assigned categories, b) receiver 

operating classifier (ROC) curve for the dead category, and c) 

confusion matrix of all categories true positive classifications. Overall 

model accuracy is 41%.  

6.4.4.4.3 RUSBoost Classifier Model 

Seiffert, Khoshgoftaar et al. (2010) recognise the impact of training class imbalance 

can lead to the formation of “suboptimal classification models”. The RUSBoost 
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algorithm is a model classifier that can overcome the problems of skewed data 

modelling (Seiffert, Khoshgoftaar et al. 2010). RUSBoost conducts random 

undersampling (RUS) of the dominant classes until achieving a balance in the 

classifier data. Simultaneously, the minor dataset is boosted further improving model 

learning with the weaker predictor variables. The technique, advantages and 

disadvantages are explained further in Seiffert, Khoshgoftaar et al. (2010). Figure 27a 

shows the point distribution, grouped by categories, and verified by the model. The 

ROC curve is identical to the medium kNN model, at 0.69 AUC (Figure 28b). The 

confusion matrix has the true positive classifications as; good 26%, moderate 40%, 

poor 36% and dead 44% (Figure 28c). The RUSBoost accuracy is 33.6%.  
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Figure 28 Trained model results for the predictor variables Concave Surface 

Area by Concave Density as a tree classification metric using an 

Ensemble RUSBoost classifier model and 235 training trees from ALS 

LiDAR data. a. scatter plot of assigned categories, b. receiver 

operating classifier (ROC) curve for the dead category, and c. 

confusion matrix of all categories true positive classifications. Overall 

model accuracy is 33.6%. 
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6.4.5 Validation of the Trained Model Response and Tree Classification 

6.4.5.1 Validation by Chi-square (χ2) 

The model validation was undertaken by running each classification model, in turn, 

on an unclassified dataset. The unclassified dataset is a mirrored duplicate of the GR 

dataset (GRD) used during the training of the classification model, however, the 

dataset intentionally contains no tree classification values. The models classify each 

tree within the data, either N=100 or N=235, as required by the test parameters. 

Hereafter, this data set is referred to as model classified data (MCD). To establish the 

If there is independence between the MCD and GRD datasets, the Chi-square statistic 

(Χ2) and p-values are calculated for each model classifier (medium kNN(a), medium 

kNN (b), or, RUS Boost). As described by Ringuest (1986), this is an optimal method 

for validating predictive models using categorical data. The classification models 

have been trained under two different training regimes (N=100 and N=235), therefore, 

require separate validation to reflect the two levels of training data (Table 16). 

Expressed as hypotheses for this test: 

 H0: Ground referenced data (GRD) and model classified data (MCD) are 

independent  

 H1: Ground referenced data (GRD) and model classified data (MCD) are 

dependent  
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Table 16 Chi-square (χ2) validation of two classification models (medium kNN 

and RUS Boost) that were trained using different training data 

populations (N=100 and N=235).  

MCD 
Medium kNN (a) 

χ2(p) 

Medium kNN (b) 

χ2(p) 

RUSBoost 

χ2(p) 

N=100 
60.5 (p=1.0756e-
09) 

- 
96.5 (p=7.8828e-
17) 

N=235 - 
70.5 (p=1.1868e-
11) 

136.0 (p= 
6.7713e-25) 

Note: MCD = Model Classified Data. Medium kNN = k-nearest neighbour, with 10 neighbour 

distinctions. RUSBoost = Alleviates class imbalance with random undersampling and boosted 

learning.  

 

Table 16 identifies the trained model medium kNN(a) are the least independent, 

therefore, the H0 can be rejected under the medium kNN (N=100) classification model 

at a very highly significant level (p=1.0756e-09). The very small p value suggests that 

the model output result is very unlikely to have arisen by chance under the context of 

the null hypothesis (H0), that the two classifications are independent. Further 

investigation to determine if there is repeated misclassifications favouring particular 

categories is shown at Table 17. Here an even spread of misclassifications is shown 

and no particular category dominates the table, therefore, the classification model is 

not introducing a consistent bias.  
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Table 17  A cross tabulation validation results of a ground reference dataset 

(GRD) that has been classified using a trained model, becoming model 

classified data (MCD). The table shows no influence of bias in any of 

the classification categories.  

 

6.4.5.2 Validation by Plot Level Assessment 

In addition to the model validation, 5 GR survey plots were withheld from the model 

training for validation of how well the ITC delineated tree crowns represented the 

physical characteristics of the GR trees. The Jaccard similarity coefficient was 

calculated for the five sites, resulting in a 0.30 Jaccard similarity for the sites (1.0 

indicates 100% similarity). The low Jaccard score reflects the dissimilarity in crown 

area size between the two datasets. Within this validation step, the GR tree crowns 

are the dominant area within the union across all sites, and all crowns.  

6.4.6 Summary Recommendation 

Despite a large number of LiDAR derived measured being analysed for suitability as 

predictor variables (Table 14), the metrics concave surface area by concave density, 

consistently achieved higher overall model accuracies when used with several 

classification models. Following several iterations of analysing different measures 

and various training models, many analyses returned very low model accuracy results 
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which precluded them from further consideration as classifier models (Figure 25). 

However, the medium kNN classifier model consistently achieved high model 

accuracy results within the developmental phases. When training the classifier model 

using the initial concave surface area and concave density, with PCA activation 

(n=100), model accuracy 46.8% was achieved. It was believed that the model training 

would be influenced by not having the same data distribution as observed in the GR 

data, therefore the training dataset was increased to n=235, attempting to rebalance 

the data distribution (Model Retraining). However, this resulted in a negative impact 

on the model accuracy, reducing to 41% as a response to the additional, imbalanced 

training data distribution (Medium kNN Classifier Model). To counter the imbalanced 

data, the classifier model RUSBoost was used with the same increased population 

dataset (n=235), as this classifier is the preferred option for imbalanced datasets 

containing one or more weak training categories. However, the analysis also returned 

a low model accuracy; 33.6% (RUSBoost Classifier Model).  

 

Statistical validation of the strength of these metrics were tested for both χ2 test of 

independence and plot level dataset equivalence using the Jaccard similarity 

coefficient (Validation of the Trained Model Response and Tree Classification). In 

both validation phases for independence (Table 16 & Table 17), it can be seen that 

the medium kNN classifier model is the least independent from the training data 

(p=1.0756e-09), and further, that the classifier does not introduce a consistent bias. 

Therefore, resulting from achieving the highest levels of model accuracy and 

statistical validation, the measures concave surface area and concave density (n=100), 

with the medium kNN classifier and PCA activation are recommended as the 

classification metric to be used in STRUCTURAL, for classifying a large, previously 

unclassified, ITC delineated data set (n=9094). 
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6.5 STRUCTURAL Output  

The geo-spatial output from STRUCTURAL identifies trees that are categorised using 

the selected trained classifier (medium kNN with PCA, concave surface area by 

concave density), and applied to the unclassified data, that have not been previously 

subject to manual GR classification. Trees are subsequently assigned into one of four 

categories: good, moderate, poor and dead, akin to the same process as the GR 

classification (Figure 29). This output dataset can then be integrated into either a 

desktop or mobile GIS (Figure 30).
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Figure 29 Individual tree crowns delineated from continuous data (LiDAR) and assigned into good, moderate, poor and dead categories 

using the STRUCTURAL method (n=9094). 
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Figure 30 A combined approach of using ground reference data, and using descriptive metrics on previously uncategorised remotely sensed 

tree data.
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From an empirical assessment of the STRUCTURAL output (Figure 30), it can be 

seen that the dispersal of the predicted tree conditions throughout the woodland 

follows the expected distribution, and reflects the condition of the woodland (see 

Field Sites). Within the GIS map at Figure 30, it can be seen that in the areas of smaller 

sporadically spaced trees to the west of the woodland there is a larger proportion of 

moderate and poor condition trees (yellow and red), particularly in areas that relate to 

the underlying karst landform (Figure 31a & b). Similarly, in the areas of ANSW and 

more structurally complex overstory trees to the east of the woodland (Figure 31c), 

there is a higher proportion of trees that have classified as belonging to the good 

category. Intermixed within the eastern end of the woodland are a number of poor 

trees, which suggests the identification of trees in the lower-overstory are suppressed 

by the dominant overstory. 
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Figure 31  Empirical observations of tree condition categories and their spatial 

distribution throughout the study woodland. a) shows smaller, young 

trees to the northwest of the site. b) shows stressed trees on karst 

landform in the central region of the woodland, while c) shows 

mature, overstory trees in the east of the woodland.  

6.6 Discussion 

The aim of this study was to develop a method that could be used to conduct woodland 

or landscape scale tree surveying and classification of structural condition, by 

employing RS techniques. The accuracy levels of all STRUCTURAL classification 

models can be attributed to overall accuracy of the input data. Following the 

delineation assessment methods described in ARBOR: A New Framework for 

a. b. 

c. 
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Assessing the Accuracy of Individual Tree Crown Delineation from Remotely-sensed 

Data, the GR and RS-derived ITC delineations have ARBOR scores of 0.52 AMPS 

and 0.29 DSS. AMPS is the quantification of the match-pairing success between the 

two datasets, and DSS is the measure of similarity in the two dataset sizes, therefore, 

the success of the classifier models are limited by the low agreement levels of the 

input data. Nonetheless, STRUCTURAL classifications were statistically validated as 

a proxy for determining a level of confidence in the classifications made in the wider 

dataset (n=9094). Due to the ordinal nature of the tree condition category data, only a 

limited range of statistical tests may be applied. Nonetheless, the statistical validity 

of the categorisation of unclassified data was defined at Validation by Chi-square 

(χ2), where the test of independence identified that the chosen model metric for 

STRUCTURAL; medium kNN with PCA activation and concave surface area by 

concave density (n=100), expressed the lowest levels of independence to a highly 

significant level (p=1.0756e-09). Avoiding a false-positive statement, it cannot be 

said that there is dependence between the two datasets, GR and RS-derived data, but 

the tests indicate that the H0 was rejected, and further, Table 17 indicates that there is 

no dominance of any particular category or introduced bias from the classifier model. 

It is recognised that a further phase of validation is also possible, where the mapped 

output (Figure 34) is used to direct surveyors to unsurveyed woodland areas and are 

subjected to the same GR surveying routines as used in the initial field work, and the 

correlation between the two procedures is calculated. However, it is not possible to 

conduct this additional phase of fieldwork within the timeframe of this project.  

 

As described in the results (Testing Metrics and Classification Model Accuracy), the 

training models are not predominantly influenced by higher data population numbers 

in the training model. The greatest influence is the quality of the reference trees used 



Remote Sensing Tools for the Objective Quantification of Tree Structural Condition  

from Individual Trees to Landscape Scale Assessment 

166  

in the model training and the impact of skewness in this data. It was expected that as 

the GR data was dominated by trees in the good category (70%), this should also be 

reflected in the training data (Model Retraining). However, having modified the data 

distribution to include more good category trees, model accuracy reduced to 41%. To 

counter the impact of the underrepresented categories of poor and dead skewing the 

training data, the RUSBoost classification model was applied. The reduction of 

dominant training data populations by random undersampling, and boosting the 

subordinate data, achieved a more even distribution of true-positives, going from; 

good 65%, moderate 43%, poor 4% and dead 20% (Figure 26c), to; good 26%, 

moderate 40%, poor 36% and dead 44% (Figure 28c). The use of RUSBoost as a 

classifier model provides a solution to the problem of training a model with weakened, 

or underrepresented, training data. A drawback to applying the RUSBoost method, as 

highlighted by Seiffert, Khoshgoftaar et al. (2010) is that as the method manipulates 

the loss of data in an intelligent randomized process, some information will be lost 

from the training process.  

 

The impact of this on classifying trees with ALS LiDAR, despite achieving model 

classification across all tree categories, and relatively high ROC assessment (0.69 

AUC), is a reduction in model accuracy to 33.6%. In this application the negative 

effect precluded the continuance of this classification method for this application. 

However, it is envisaged that sensitivity testing of RUSBoost with smaller data 

population differences, e.g. 5% 10%, could demonstrate that RUSBoost is a valuable 

tool for refining marginal tree classification data issues in STRUCTURAL. Other 

models may have achieved higher model accuracies, in one case, a model accuracy of 

57.4% was achieved with the medium Gaussian SVM classification model, however, 

these higher accuracies come at the cost of not classifying any of the weak learners 
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i.e. poor and dead, due to their lower numbers. The medium Gaussian SVM was able 

to achieve true positive rates of 82% and 60% respectively for the good and moderate 

categories. Many iterations of the different potential models generated high 

classifications using the SVM Medium Gaussian model classifier, which achieved 

100% categorisation of the good category, although, this classifier scored 0% for all 

other condition categories. This suggests that further investigation could identify 

positive relationships with specific metrics, training models and classifiers for 

favouring the identification of specific tree condition categories.  

 

A limitation of the technique is the influence of RS-derived data in reflecting the 

observed GR measurements. As identified in the validation phase, Validation by Plot 

Level Assessment, the LiDAR delineations are geometrically smaller than the GR 

delineated crowns. This is an effect of the relative height above ground (HAG) level 

that the delineations are made. The GR crown delineation is made at ~1.3m from the 

ground i.e. the approximate chest height of the field surveyors, sighted upwards 

towards with the crown measured at the widest point that the surveyor can discern 

from this location. Conversely, the RS-derived ITC delineations are created from a 

top down perspective, starting at the highest pixel in a LiDAR generated CHM. The 

crown edges are developed where the CHM indicates a similarity between two 

adjacent heights in the model, or simply, where two crowns abut at a similar height 

location in the upper canopy. This means that tree crowns are delineated at two heights 

above the ground, making the GR delineations larger than the ITC delineations in 

most circumstances, with the exception of ITC delineation errors where several 

smaller crowns are conjoined into an artificially larger group. The impact of this is 

that with two datasets of differing crown area sizes, one of the key variables in training 

the model classifier, that sub-optimal model training can occur thereby further 
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reducing model accuracy. Future improvements could be made through the 

development of a ‘height acquired’ metric, where the height level of the ITC 

delineated crowns is extrapolated to the computed live crown height or the same HAG 

as the GR crown measurements.  

 

Conversely, an additional benefit from STRUCTURAL is the identification of trees 

that are in the poor to dead categories. Many woodland conservation efforts require 

the creation of woodland habitat that benefits decomposers, or mammals that require 

specific woodland habitat e.g. woodpeckers and standing dead trees. Some 

management interventions used in conservation deliberately veteranise or even 

intentionally kill healthy trees in order to provide this required habitat (Bengtsson, 

Hedin et al. 2012). Veteranisation of trees is also included within the Higher Tier 

Countryside Stewardship scheme in the UK, where landowners are required to include 

specific management practices when in receipt of government grants (NE 2018). 

STRUCTURAL has the potential to be used in countrywide conservation and grant 

work monitoring, a time and resource costly practice that is currently undertaken by 

approved grant-aid monitors physically travelling between sites to conduct 

assessments. For the large scale adoption of STRUCTURAL, it is acknowledged that 

full, or semi-, automation of the classification process would be required for 

additional end-user benefits. Significant investment in the development of new 

programming would be required to integrate these approaches with auto-detection 

methodologies, although this was beyond the means and scope of this modest study. 

Furthermore, it is recognised that the development of a dataset containing a range of 

trees of different species, ages, sizes and conditions would generate additional 

improvements in classification. Currently, STRUCTURAL does not discriminate 

between tree species due to the nature of LiDAR only assessing the upper canopy, 
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however, if the method was scaled up to include large scale surveys of prominently 

maiden trees, such as are typically found in a cityscape, then an improvement to the 

method would be the integration with a computational species identification phase, 

that would also draw upon the subsequent condition dataset.  

 

It is important to state that this method is not intended as a tool to predict tree failure, 

nor will it remove risk-exposure for tree managers or landowners. What 

STRUCTURAL does achieve, through the provision of classified spatial data (Figure 

34), is to identify key areas where resources should be directed to, allowing the 

commencement of proactive remedial interventions, thereby reducing the overall 

liability exposure as a result. This would be of specific value to managers of critical 

infrastructure, such as the highways and rail networks, or by boosting the resilience 

of power distribution networks to outages caused by the failure of trees. Furthermore, 

the STRUCTURAL method provides a significant developmental step in moving 

away from simple models of ‘lollipop’ trees based on photogrammetry, to the 

assessment of LiDAR derived objects, with the potential for the assessment of 

multiple attributes, in particular, the assessment of tree structural condition.  

6.7 Conclusion  

Classifying trees from analysing aerial LiDAR, as demonstrated in this work, is 

another phase in the move towards the wider application of digital forestry, where 

advanced technologies provide tree resource managers with increasingly detailed 

information about the tree stock under their management, and allowing the adoption 

of an informed, proactive management style. Whilst the different training models used 

in this study had a reduced validation accuracy, this work provides the proof of 

concept that these methods are tangible for achieving higher levels of accuracy. This 
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will require improvements in the data preparation phases to increase the classification 

accuracy of the output maps, used to guide resources towards individual trees that 

require prioritised management intervention.  
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7 Discussion 

7.1 Overview 

The experimental phases of this study have been addressed throughout chapters 4, 5 

and 6, where new methods and experimental results have been presented. The 

Synthesis describes the link between the research in this thesis, and describes its 

potential for future applications. This discussion will also draw together the key 

themes of the literature review and reflect on how the experimental phases of this 

thesis contribute to the wider knowledge within the framework of the Thesis Aim and 

Objectives. In particular, the Key Contributions from this Research section reflects 

on how this research relates to the issues raised in the individual sections of the 

literature review. Also considered in this summary, are the Limitations of the 

Research and recommendations for Potential Research Opportunities within this 

subject area. 

7.1.1 Procedural Workflow  

The final procedural workflow of the required steps to categorise trees at the 

woodland scale using STRUCTURAL is shown in Figure 32. The model has a manual 

phase for fieldwork data collection, which is used to train the classifiers, which is then 

combined with the computational phases which include data processing, model 

training in parallel mode and classification of data. STRUCTURAL ends with the 

production of geospatial outputs that represent the classification of trees at landscape 

scale.  
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Figure 32 The full workflow required for classifying trees at landscape scale 

using aerial LiDAR, field data and trained classifier models. This 

method uses a combination of both manual and automated techniques 

to produce a location map of trees that are classified from the training 

model. 
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7.2 Synthesis 

The methods defined within this research have been developed based upon sound 

empirical observations, independent analysis and statistical justification, and function 

as individual, stand-alone tools for quantifying tree crown complexity (chapter 4), 

optimising match-pairing (chapter 5), and remotely categorising the structural 

condition of trees (chapter 6). However, the greatest impact from the development of 

these methods is the potential to use these tools in a multi-scale, investigative method 

for assessing tree structural condition using combined, high-resolution investigation 

methods that foresters, arboriculturists, environmental managers and researchers 

would not have previously achieved using traditional investigative methods. Figure 

33 demonstrates the potential application of this combined approach: 

 

Figure 33  A model defining how the operational relationship between the 

findings of this research can be used in a large-scale, optimised and 

high-resolution tree structural condition investigation. 

The tree investigation could begin with an ALS survey of the landscape and, 

following the LiDAR data-collection, STRUCTURAL and ARBOR are used to 

identify and define to reportable levels of accuracy, where trees are located and 
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calculate a series of tree measurements used to define the tree structural condition. 

The next phase is the assignment of personnel and resources to the predetermined 

locations, as indicated by the STRUCTURAL mapping, where a proposed work 

schedule would be refined by analysing trees using the proximal photogrammetric 

method. This would further improve field information about which trees are in the 

highest need of remedial intervention using the analysis of intra-category variance, 

expressed in Df on the structural condition continuum. The potential for achieving 

this level of optimised working, and the data driven prioritisation of resources, was 

not realised before the development of the techniques described in this thesis.  

It is known that the alignment between GR and LiDAR data is difficult to quantify 

particularly in complex, semi-natural temperate broadleaved woodland, which within 

the United Kingdom there is an estimated 3.16M hectares of woodland (Table 18). 

Approximately half of this area is under broadleaf cover (Donohue 2016). Therefore, 

the potential for quantifying the structural condition of trees using the methods 

developed in this study is significant in the UK alone. 

Table 18 Area of woodland cover in the United Kingdom (2016), by country 

and tree classification (Donohue 2016).  

 
Share of Land 
Mass 

Conifer* Broadleaf*  

England 10% 340 966  

Wales 15% 150 156  

Scotland 18% 1,059 377  

Northern Ireland 8% 66 46  
* Area in thousands of 

hectares  Totals 1,615 1,545  
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7.3 Key Contributions from this Research 

7.3.1 The Influence of Subjectivity 

Ghiselin 1982), suggests that foresters, tree managers and surveyors are typically lone 

workers and subjective thinkers when considering tree management interventions. By 

conducting typical operational duties where scientific-based observations are applied 

to investigate trees with the intention of reaching an evidence-based decision, a large 

degree of subjectivity is included in the decision-making process. In attempting to 

move towards impartiality and minimising subjectivity from the decision-making 

process, the development of methods that a lone-worker could undertake without 

assistance, is preferred. The Methodology in chapter 4 only requires the field 

operative to manually set up the camera equipment, take the image and proof this 

image in the field. Crucially with this method, any individual physically able to access 

the location of the base of the tree and take a picture will be able to capture data, 

consequently, removing the need for expert intervention. Subsequent analysis is 

automated, therefore, this approach removes individual interpretation and subjectivity 

from quantifying the tree crown structure and removes “subjective reasoning” effects 

(Dana, Jeschke et al. 2013). In addition, the Methodology in chapter 4 demonstrates 

that it is possible to achieve fine resolution assessment when determining 

intracategory variance, by utilising the analysis of self-affinity in Df using a structural 

condition continuum; a tree characterisation metric that did not exist prior to the 

completion of this research.  

 

As shown in chapter 5, there are quantifiable differences within tree populations when 

GR data is compared to ITC delineation data. It is understood these differences can 

be a product of data shadowing, where ALS LiDAR does not achieve the full 

penetration of the canopy depth, thereby, not all of the understory trees will be fully 
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delineated in all circumstances (Wallace, Lucieer et al. 2014). To quantify this effect, 

the ARBOR framework utilises the Jaccard similarity coefficient as the basis of the 

DSS index (Quantification of Accuracy with which Delineations Estimate 

Biophysical Properties and Population Size), takes the union of two datasets and 

quantifies the intersectional area. Where there is an element of directionality in an 

analysis, there will always be an inferior dataset that reduces the overall accuracy of 

the match-pairing. Assessing this problem and providing a mechanism for quantifying 

this effect is a significant development for RS research in this area, as to the best of 

current knowledge, this level of information has not been reported in any similar ITC 

delineation research.  

7.3.2 The Development of Tree Surveying 

Throughout tree management operations, particularly at landscape scale, there is the 

requirement to capture tree data to inform timely, and appropriate, interventions 

(Jennings, Brown et al. 1999, Wulder, Hall et al. 2005). In particular, Strahler, Jupp 

et al. (2008), highlight the importance of measuring tree structure. These requirements 

are the fundamental basis for the paradox of the successful, data-driven management 

of trees. The paradox is that tree management typically has to be conducted over a 

wide variety of scales influenced by the unit area of management (e.g. individual tree, 

copse, orchard, shelterbelt, woodland or forest and with many unit size combinations 

in-between). However, in traditional tree management, trees are surveyed on an 

individual basis and observations are scaled up using allometric equations. 

Unfortunately, allometric equations have been shown to be unreliable for this purpose 

(Dassot, Constant et al. 2011, Ahmed, Siqueira et al. 2013, Mugasha, Mwakalukwa 

et al. 2016). As shown in chapter 6, applying the classifying metrics to ITC crowns 

delineated from LiDAR, provides the opportunity for remotely classifying the tree 
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population (Figure 30), allowing management operations to be directed straight to the 

areas where remedial interventions are most required. The main benefit of 

STRUCTURAL is the potential for removing retrospective analysis and classification 

as is the current practice, to a predictive analysis and categorisation phase, before tree 

surveyors undertake surveying in predefined areas (see STRUCTURAL Output). The 

application of STRUCTURAL enables prior understanding of the tree stock structural 

condition to be determined, which will in turn optimise in-field surveying efforts. This 

approach will enable predictive management strategies to be enacted, as is expected 

in tree management, despite current methods predominantly being reactive or based 

on best-guess allometry. 

  

Many studies indicate that despite the long reliance on the traditional methods for data 

capture, there are inconsistencies and inaccuracies in the measurement and calculation 

of tree and forest parameters (Dassot, Constant et al. 2011, Ahmed, Siqueira et al. 

2013, Mugasha, Mwakalukwa et al. 2016). This suggests that in the face of few known 

alternatives, the combined approaches of manual surveying and allometric scaling 

will continue to be the accepted status-quo for the majority of the tree management 

industries. It follows therefore, that there is a pressing need for novel solutions to 

overcome the issues associated with the tree management paradox. How can 

individual tree assessment be accurately and successfully conducted over large scales, 

with only limited operational resources? Hauglin, Lien et al. (2014) state that ALS 

LiDAR is becoming an invaluable tool for forest inventory data collection. With the 

high level of data achievable through RS data acquisition, particularly when 

conducted across a range of scales relative to the scale of the unit area of management, 

the question arises what RS methods will offer the potential to overcome the tree 

management paradox? Through the development of the techniques described in 
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chapters 4, 5 and 6, it is clear that all methods have a role in forming a cohesive 

approach to address the tree management paradox, where resources can be focussed 

on the required areas (see STRUCTURAL Output), confidence in the ITC delineation 

methods can be quantified (chapter 5), and individual trees can be rapidly and 

objectively assessed (chapter 4).  

7.3.3 The Potential for Decision Support Systems (DSSy) 

Dana, Jeschke et al. (2013) describe the pressing need for improving the limited suite 

of management tools with additional DSSy, highlighting that the development RS 

techniques are directly aligned to the needs of industry. Providing enhanced 

information about tree stock for inventories, across forests or other similar unit areas 

of management, are a direct improvement to the available tools for tree managers, and 

would enable the focussed deployment of limited forest management resources, 

specifically to where the interventions are most needed (see STRUCTURAL Output). 

Segura, Ray et al. (2014) identify that the main problems of using DSSy to aid large 

scale tree management relate to temporal and spatial scales. Additionally, forest 

managers frequently use statistically supported analysis, and 90% of forest managers 

within their investigation were prepared to integrate analytical methods and other 

associated technologies. This finding shows a willingness to integrate technological 

developments enabling more informed environmental management decisions to be 

reached. A fundamental element of this thesis study justification was provide 

solutions to industry related resource constraints in an environmentally sympathetic 

and viable way. Although specific cost-benefit analyses was beyond the scope of this 

study, the development of new methods for understanding tree structure (chapter 4), 

reducing ITC delineation problems (chapter 5) and remotely classifying tree structural 
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condition (chapter 6), provides new mechanisms that tree managers can exploit to aid 

operational decision making.  

 

While the ARBOR framework is proposed as the solution to the delineation problem, 

it is recognised that this is not a static problem that can be fully resolved with only 

one approach. This is why the ARBOR framework is a flexible, modular system that 

can be manipulated to suit different circumstances (Figure 32). This addresses a 

significant issue in RS research that has been under-reported in many peer-reviewed 

publications. The development of the ARBOR framework is in response to this gap 

in scientific knowledge where flawed procedures lead to the acceptance of 

conclusions based on the use of arbitrary thresholds or poorly matched data. 

Furthermore, analysis of the published methods shows that reported successful match-

pairings of ITC delineated trees were subject to the influence of directionality, leading 

to false-positive results. Taken as a completed solution, the ARBOR framework can 

immediately by used by other researchers to quantify, and importantly, report the 

success of their ITC delineation efforts, therefore, increasing transparency in the 

method. It is understood that different researchers will use a variety of ITC delineation 

techniques to achieve specific goals (Table 8). Such as, in forest inventory or tree 

classification studies, however, accuracy issues in the inventory or classification 

phase may have resulted from improper match-pairing that previously had not been 

accounted for. By not accurately quantifying the match-pairing process, valid 

inventory or classification procedures may be discounted from use due to low 

accuracies that are not directly attributable to the classification method. The ARBOR 

framework provides a quantified solution to this problem, and will facilitate the future 

optimisation of ITC delineation studies. The STRUCTURAL method categorises 

trees using RS at a woodland scale, with LiDAR remotely measuring many trees at 
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the same time (Figure 21). To aid transparency and increase the potential for adoption 

of STRUCTURAL, the method has been modelled as an operational workflow 

(Figure 32). Furthermore, the process outputs a categorised, geospatial dataset that 

can be used operationally and integrated into predicted management planning to direct 

resources to lower categorised trees (Figure 30).  

7.3.4 Tree Structure Effects 

It is well documented that trees have dynamic structures that are subject to internal, 

external, biotic and abiotic forces, leading to alterations in form and structure (Niklas 

1992, Mattheck and Breloer 1994, Mattheck 1998, Lonsdale 1999, Niklas 2001, 

Niinemets 2010). What is less well documented, is how those many structurally 

altering effects are used by tree mangers attempting to understand the tree stock 

structural condition and drawing meaningful conclusions about the significance of the 

observations. The method from chapter 4 provides a clear mapping of changes in 

observable structural condition with traditional arboricultural observations, and it is 

believed, provides for the first time data that has been quantified to the level of intra-

category variation, a resolution level that has previously been absent from coarse 

categorical methods (Figure 14).  

 

Modelling of tree structures, particularly 3D investigations or reconstruction, is said 

by Bournez, Landes et al. (2017) to require clear line of sight with the structure. This 

reasoning provides justification for the use of leaf-off investigative methodology, as 

is used in chapter 4 and a separate strategy is used in chapter 5 where the trees were 

in leaf-on conditions. Furthermore, as supported by the views of Further, White, 

Arnett et al. (2015) using the discreet approach of applying different investigation 

types relative to the seasonal tree growth stage in broadleaves, i.e. leaf-off or leaf-on, 
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reduces bias. This emphasis has been an underlying consideration throughout this 

study, where proposed methods lead towards impartiality, and away from the 

introduction of subjectivity.  

7.3.5 Environmental Remote Sensing 

As supported by many environmental studies, RS is considered a developmental tool 

that aides greater understanding of the environment for a range of applications, 

notably, in the management of trees, woodland or forests (Vauhkonen, Maltamo et al. 

2014). RS provides many opportunities for investigation, using a range of tools and 

at a variety of scales (Jones and Vaughn 2010, Westoby, Brasington et al. 2012, 

Vauhkonen, Maltamo et al. 2014). In order to support the capture of RS data, it is 

necessary to establish GR plots to enable validation of observations made on RS data 

(Mitchard, Feldpausch et al. 2014). Bournez, Landes et al. (2017) state that the 

complexity of tree structure, with many varying sized branches in all possibilities of 

convoluted arrangements, increases in leaf-on conditions. This increasing complexity 

was important to the establishment of chapter 4, where it was a requirement to show 

that tree structure changed relative to observable structural condition, as was always 

assumed but not proven or quantified by tree managers. Similarly, knowing that the 

complexity of tree crowns changes when in leaf-on condition also influenced where 

the individual trees are in the LiDAR data chapter 5, and the creation of area and 

density point distribution focussed metrics in the chapter 6 that were validated against 

directly measured GR plots. Therefore, within the framework of this study, it was 

considered important to consider what part of the tree structure, crown or canopy is 

being investigated, the time of year the investigation would take place (due to seasonal 

changes, particularly in deciduous tree populations), and to have viable GR data 

available to cross-validate against 
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An unintended advantage of STRUCTURAL is the determination of broader 

environment characteristics around the trees, coinciding with the tree structural 

condition categories (Figure 30 and Figure 23). As described in Field Sites, there is 

an approximate west to east division of the woodland character, which is reflected in 

the soil and bedrock distribution. Informal soil profiling was conducted during plot 

establishment fieldwork across the woodland where, in the west, trees were 

predominantly on top of limestone pavement and thin soils to ~5cm depth (Figure 30 

and Figure 31). Similarly, within the western and central woodland there are a notable 

number of moderate to poor trees, which correspond to these macro-environmental 

conditions. Although the soil profile to the east of the woodland is only marginally 

deeper, to depths of ~20cm, it here that higher numbers of good category trees are 

observed. Additional good trees are observed to the east, it is believed that the 

influence of dominant trees are obscuring the understory of supressed, poorer 

structural condition and that the distribution of the poor tree (red) in this spatial zone, 

is indicative of upper canopy gaps which show lower to middle canopy trees that are 

in poorer conditions (Figure 30 and Figure 31).  

7.3.6 Unique Remote Sensing Programming Challenges 

Several phases of data processing have been used in preparation for the analyses used 

in this study, which is typical with many forms of RS data. Due to the data volumes 

involved, data preparation prior to analysis requires an optimised approach (Yan, 

Shaker et al. 2015). In preparation for chapter 5 and 6, following Otepka, Ghuffar et 

al. (2013) all LiDAR data was classified allowing the identification of ground and 

non-ground points, vegetation and other scene features (ASPRS 2013). This LiDAR 

processing also included the removal of non-essential data outside of the area of 

investigation (Figure 21) and data noise removal.  
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7.3.7 Photogrammetry 

Photogrammetric methods have been long available to practitioners as a research tool 

(Evans and Coombe 1959). When considering a suitable solution for the rapid 

characterisation and quantification of tree structure, the potential for transferability to 

operational use was also considered. This led to the use of easily accessible equipment 

(dSLR camera and tripod), avoiding cost prohibitive or specialist RS equipment such 

as terrestrial LiDAR (Leberl, Irschara et al. 2010). Liang, Jaakkola et al. (2014) also 

state that hand-held dSLR cameras can be used in individual tree investigations and 

can capture data comparable to terrestrial LiDAR. This photogrammetric approach is 

also supported by Westoby, Brasington et al. (2012) who consider that modern 

photogrammetry facilitates high-resolution portable data acquisition, enabling the 

field practitioner ready access to difficult field sites, unencumbered by heavy RS 

equipment. Boosting accessibility is required to encourage tree and forest managers 

to adopt a new photogrammetric technique which improves upon traditional 

categorical methods, as it is understood tree managers embrace the use of supportive 

technologies when given the opportunity (Segura, Ray et al. 2014). It is within this 

ethos that the field method described in chapter 4 was devised, to provide a practical 

and portable solution to assessing the complexity of tree structural condition.  

7.3.8 Aerial Laser Scanning 

In a review by Koenig and Höfle (2016), it was stated that most ALS LiDAR 

investigations isolate individual trees and extract data via delineation from CHMs, 

and apply data filtering to create an index of biophysical properties. These are the 

methods used in both chapter 5 and chapter 6, which focus on individual tree 

assessment at differing landscape scales. Within chapter 5, developing a new 

methodology for locating trees within LiDAR data was not a research objective, 

moreover, the focus was on working within the framework of what methods the 
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research community currently use during ITC delineation and quantifying the 

effectiveness of these methods. Furthermore, the use of ALS is shown to provide 

opportunities for the creation of investigative metrics to understand tree structural 

condition as is conducted in chapter 6. Murray, Blackburn et al. (2014) discuss the 

significance of different pulse return values, and the potential influence on canonical 

variables that are used to describe tree structure. This approach was used in chapter 6 

where a metric was defined that reflects the interrelationship of point densities and 

crown surface structure (Table 14), as a proxy for enabling the classification of tree 

crowns from an ALS LiDAR perspective. Kandare, Ørka et al. (2016) describe an 

increase in accuracy within ITC delineation methods in line with increasing point 

cloud density (Figure 21). 

7.3.9 The Future of Technological Approaches 

The research chapters of this thesis, chapters 4, 5 and 6, have all focussed on 

improving the objective quantification of tree structural condition. As is commonly 

the case with technology, there is a general movement towards the miniaturisation of 

equipment meaning that more RS equipment will be available for regular operational 

use, leading to more data driven environmental investigations (Jaakkola, Hyyppä et 

al. 2017). This move suggests that there will be ongoing opportunities for the 

integration of new techniques and methodologies in the environmental sector, and in 

particular, increasing the use of RS in tree and forest management through the 

adaptation of “precision forestry”, where novel tools and technologies are used to 

improve forest management, as shown at Table 19 (Kovácsová and Antalová 2010).  
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Table 19 The activity fields of precision forestry (Kovácsová and Antalová 

2010). 

Precision Forestry 

Activity Description 

1. Surveying 
Terrestrial laser scanner, GPS, INS and digital 
surveying equipment 

2. Remote Sensing CIR, Airborne laser scanner 

3. Contact-free 
measuring 

Materials testing, measuring, computer tomography, 
ultrasound, video 

4. Monitoring 
Radio frequency identification (RFID), electronic 
nose (aroma) 

5. Decision Support Decision-making and harvest planning 

6. Information 
Systems 

GIS, DSS and visualisation software 

7. Hardware Computer hardware 

 

The new methods for assessing tree structure using proximal hemispherical imagery 

described in chapter 4 meets 1, 3, 5, 6 and 7, while chapter 5 fulfils the activity fields 

2, 3, 5, 6 and 7. The landscape scale classification of trees with ALS LiDAR in chapter 

6, aligns with 1, 2, 3, 5, 6 and 7 of the precision forestry activity fields (Table 19). 

Therefore, it can be stated that all of the developmental methods described in this 

thesis are closely aligned with expected trends in future tree and forest management.  

7.4 Limitations of the Research 

Throughout this research project the focus has remained on developing techniques 

that will improve the remote sensing of trees for different applications, but 

predominately, to develop methods or processes that can be used in further studies or 

in an operational capacity for the management of trees. Several additional lines of 

research were identified during the research and development phases, but were 

discounted from further consideration on the basis of not being within the immediate 

scope of this research.  
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Within the method described in chapter 4, it was perceived that the use of the southern 

axis only for capturing the tree crown images was both beneficial in demonstrating 

that the method worked using a standardised approach, but also potentially limiting 

as not all cardinal points of the tree crown were imaged (Figure 11). While this 

method was chosen for proving the concept based on replication and the growth habits 

of trees, it is expected that there will be inter-crown differences relative to the cardinal 

point that the tree has been photographed from (for example, where the subject tree 

may be next to a wall or building, or unsuitable access to the area). It was recognised 

that additional time should have been taken in capturing images from all the cardinal 

points i.e. north, west and east, considering these as individual Df measures, and 

subsequently calculating the probabilities in the proportional odds model and ranking 

the trees by the average of the combined Df measurements.  

 

However, following the completion of chapter 4, the image capture methods were 

applied to a new, externally funded project which compared Df values from 

photogrammetry with TLS data to quantify the structural complexity of orchard trees 

as a proxy for defining top-fruit yield. The significance of this application, is that 

these were dwarf orchard trees and subsequently, at the limits of what could be 

achieved from the photogrammetry method. Furthermore, the field method was 

altered by changing the axis location, placing the camera (body) height at ground level 

and capturing images from different cardinal points. Similar to a pilot study, this 

demonstrated that the chapter 4 method adapted to new operational parameters, and 

further, supports the proposal to assess the potential extent of the chapter 4 method in 

a range of different uses or field applications (Appendix B).  
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A limitation of chapter 5 was that it was not directly tested across a range of different 

tree mosaics and populations, such as ITC delineated trees in a regularly-spaced, 

coniferous plantation, or extensive parkland with individual maiden trees. While it is 

expected that there will be differences in how these datasets perform within the 

ARBOR framework, it was considered important to establish that the methodology 

behind the function of the ARBOR framework was sound. Therefore, by developing 

ARBOR to quantify the ITC delineated tree populations in the most complex tree 

canopy data, specifically temperate broadleaved deciduous woodland, it was believed 

that this would enable later testing of the framework across a range of less complex 

tree populations. Furthermore, that this approach would increase the prospects for 

transferability of the framework, as it was developed to accommodate the nuances of 

the most challenging data available.  

 

Within chapter 6, the training dataset was initially limited by the number of dead 

category trees in the model. All other categories had significant numbers in the data 

population, as expected in the order of good, moderate, poor (see Model Retraining). 

However, while there were more dead trees within the woodland, these trees were 

often not within the survey plots and therefore were not surveyed. This arose from the 

survey plots being initially established for a parallel study where dead category trees 

were not within the study remit, therefore, they were discounted where they occurred 

(in the parallel study). To achieve a larger representative sample of dead trees, 

additional dead trees should be singled out from other locations within the woodland. 

This course of action was not followed during GR data capture due to the extensive, 

additional fieldwork required in locating, and completing the RTK GPS back-sighting 

survey. Furthermore, dead trees could also be measured where they are located in 

easily accessible areas, such as in maiden tree locations. In addition, trees categorised 
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as ‘poor’ were also typically smaller and less developed than the overstory trees. This 

made it difficult to assign the correct LiDAR dataset to the GR data, as poor trees 

were frequently overtopped and were not immediately noticeable in the peaks of the 

CHM on visual inspection. On several occasions within the training data, manual 

cross-checking ensured match-pairing between the GR and RS-derived data was 

appropriate, and that the auto-generated pair was not to an overstory tree from within 

the data. These developmental problems also highlight the need for further 

exploratory work in matching the GR and RS-derived data, in particular reference to 

Z-values or heights when extracting data for analysis.  

 

As discussed by Hamraz, Contreras et al. (2017) there is a significant underestimation 

of understory trees (typically 90% overstory detection and only 60% understory 

detection) due to the shadowing effect of the overstory. Hamraz, Contreras et al. 

(2017) propose a solution where a higher density of points/m2 enables increased 

understory tree detection, which was enacted within the data preparation phase in 

chapter 6,. However, after following this advice the ground point density was on 

average, 23 points/m2, while other studies report higher levels of ground point density 

to 40-60 points/m2. Therefore, it was accepted that there will be some understory trees 

that are shadowed out of the dataset by the dominant overstory, and tree structural 

condition categorisations are likely only being stated for the overstory in the east of 

the study site (Figure 30). The solution to this study limitation would be to develop a 

data training procedure, leading to the categorisation of individual tree structure that 

does not require the generation of CHMs as part of the analysis, and that computes 

data relationships directly from the delineated point clouds of individual trees  
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7.5 Potential Research Opportunities  

Further to the findings of this thesis, it is believed that additional research should 

focus on the relationship between tree structure and the potential for tree failure in 

high wind or storm events (Gullick, Blackburn et al. 2017). There is the well-known 

phenomenon of increased tree sail area having a larger surface area for wind to exert 

force upon. This suggests that trees in fuller crown vigour are at higher risk of branch 

or limb failure, or potentially whole tree failure where other factors such as 

insufficient ground anchorage is a factor (Mattheck and Breloer 1994). However, it 

should also be recognised that strong wind events can lead to a reduction of the crown 

sail area through the loss of leaves, therefore, the wind force will exert directly upon 

the (smaller surface area) structure of the tree. RS techniques using LiDAR can be 

used to classify tree species and therefore define the relationship between the general 

strength of the species, the complexity of the tree structure and the amount of wind 

force being applied that will be able to be modelled (following combined 

meteorological experimentation) and used to improve tree failure measurement ant 

prediction models, based on the assessment of biophysical tree properties (Henry, 

Palmer et al. 2017).   

 

An inevitable consequence of surveying is that the data represents a single moment 

in time when the subject was observed, therefore, the data generated will only reflect 

the subject structural condition as observed on that specific day. Therefore, it follows 

that there is an opportunity to gain greater insight into the development of tree 

structural conditions with the use of temporal studies of the same woodland site area. 

With historic ALS LiDAR data of the study site, there is the opportunity to quantify 

tree structural condition change over time, and in a validation step, identify the 

potential of the metrics and classification model to map the progressive change of the 
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tree structural conditions (Figure 32), potentially identifying change from a good 

structural condition, with a tree degenerating through the structural condition 

continuum and ending in full decline and the dead category. The wider implications 

of temporal LiDAR studies is that this approach could also be used to monitor the 

outbreak and progression of tree disease, such as the recent Chalara fraxinea outbreak 

across Europe (Goberville, Hautekèete et al. 2016), following the prior collection of 

base data and initial categorisation of ITC delineated trees in the landscape.  

 

An ambition for this work has been to develop methodologies and practices that can 

be used operationally, however, there also remains the opportunity to undertake 

development of this research to bring it up to full distribution potential. Within this 

project, there has been the reliance on bespoke computer programming languages and 

platforms e.g. Matlab, that would in its current form, prevent the majority of lay 

people from being able to implement these methods operationally, without specific 

programming experience or training. Further work therefore, could concentrate on 

creating a web-based, front-end graphical user interface (GUI) for the uploading and 

automatic analysis of hemispherical images for Df analysis, the creation of the 

ARBOR portal and a web GUI for the STRUCTURAL method. At the time of writing, 

the development of the ARBOR portal is underway, however, the remaining GUI’s 

are not within the timeframe or resources of this study and therefore, will remain an 

opportunity for follow-up work on GUI development to increase the potential for 

operational take-up.  
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8 Conclusion 

The aim of this research was to develop novel RS methods for the quantification of 

tree structural condition, which can be used for the observation and classification of 

trees in complex, semi-natural temperate broadleaved woodland. This endeavour was 

undertaken with the emphasis on the development of objective, technology-rich 

solutions that would offer an improvement over traditional tree surveying methods. 

The traditional methods have been shown to be influenced by subjectivity either as a 

result of the survey methodology, as a result of data processing or by the unintentional 

influence of the surveyor. To achieve this aim, the research objectives were to 1) 

develop an objective methodology for assessing tree structure using proximal 

hemispherical photography, 2) develop a technique for quantifying the accuracy of 

ITC delineations of RS data, and 3) to develop a methodology for categorising the 

structural condition of individual trees at landscape scale from ALS data. As such, 

these research objectives have been met through the completion of the work described 

in chapters 4, 5, and 6.   

 

This research produced several key findings that will contribute to the wider 

knowledge of this subject area. Chapter 4 described a new method to classify tree 

structural complexity using proximal photogrammetry, in a way that minimises 

introduced subjectivity or bias. By utilising a simple, repeatable field method and 

through conducting independent, computational analysis of the tree crown images, a 

very-high statistical probability classification of the tree structure can be achieved. As 

a field surveyor is only required to identify the tree on the ground, set up a camera 
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and take a photograph, while the analysis and classification is conducted 

independently by the program, therefore, the objectivity and repeatability of the 

classification method is significantly increased. Furthermore, the assessment of tree 

crown structure using Df as a continuous measure provides the opportunity for much 

greater insights into the unique features within individual tree crowns. This is a 

significant improvement over arbitrary grouping and provides a new approach for the 

measurement of intra-category variance, and at a level of precision that was not 

previously available. 

 

Further to the classification of tree structure, a novel approach for objectively 

quantifying the amount of agreement between two RS datasets, is described in chapter 

5 as the ARBOR framework. This is a significant contribution to the RS community 

as it is shown that recurring alignment errors in RS data has been widely under-

reported throughout the available literature. Further, it is acknowledged that prior to 

the development of ARBOR, no other standardised accuracy assessment procedure 

for quantifying commission errors in RS delineation data existed. ARBOR was 

rigorously tested on both synthetic (with varying levels of data complexity and noise) 

and real-world data, therefore, can be considered a robust method that can be adopted 

as the RS specific method to be used in quantifying the commission agreement in RS 

delineations. This development is a substantial improvement over the reliance on 

arbitrary height or other variable thresholds that were previously used to infer levels 

of data agreement.  

 

Furthermore, chapter 6 describes a new RS method for the remote analysis and 

classification of individual trees at the landscape scale, using aerial LiDAR. The 

STRUCTURAL method utilises analytical metrics that quantify the tree structure (as 
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it is represented in the LiDAR point cloud data), to provide a novel approach to 

classifying trees from a remote perspective. The STRUCTURAL method also utilises 

the RS data agreement method ARBOR, which is the first real application of this 

method in an operational survey of this type. The STRUCTURAL method is shown 

to be statistically robust as a consequence of the extended training data analysis that 

provided machine learning inputs, which also increased the method’s validation 

accuracies. This makes the STRUCTURAL method a viable, technology-rich solution 

to a real-world tree management problem that was both time and logistically costly 

for field operatives.  

 

The main contribution of this research to the advancement of digital forestry, is that 

this work provides the opportunity to utilise the suite of methods described in this 

thesis, to undertake informed, predictive management of tree stock (Figure 33), with 

additional potential insights for researchers or practitioners gained by monitoring tree 

structural change over time, allowing detailed, long-term monitoring of trees that are 

of prominent standing or are considered high value for amenity, conservation or 

ecological purposes. In addition, the contribution of ARBOR to experimental RS 

research is that other RS practitioners can now quantify the level of agreement in their 

data, and publish these values, thereby increasing the transparency and confidence in 

the wider experimental RS research.  

 

It is recognised that there remain future research priorities from this body of work. 

Particularly, the Df analysis of tree structure could be used to define intra-species 

differences, and the development of a structural Df index for the classification of 

individual tree species. In addition, further work is required in the STRUCTURAL 

method for individual species identification, and to operationalise the method, which 
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would enable the implementation of the method within regular tree management 

surveying protocols.  

 

By developing novel procedures and tools within this thesis, a new suite of methods 

have been produced that can be used to provide greater levels of tree structural 

condition information than was achievable previously. Therefore, this development 

represents a significant contribution to RS science and the emerging discipline of 

digital forestry.  
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Appendix A - Ground Reference Field Guide 

Tree Surveying Conventions 

For this investigation you will need to record various information about the woodland 

survey plots. In order to facilitate this several pieces of equipment are required, this 

will include: 

• Data Sheets/Data logger 

• DBH tape 

• Survey Tape 

• Clinometer 

• Binoculars 

• Identification books 

Along with other vital equipment like wet weather gear/boots, mobile phone etc. 

Forest inventory description 

1. Plot description 

 

1. A 20m X 20m square plot will be set-up at each sampling point. 

 

 (20, 20) 

        Distance tape 

 

 

 

        Ground target 

  (10, 10)   

 Plot origin 

     (0, 0) 
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2. Sampling plot is set-up by laying distance tapes across the ground target point, 

extending from East to West and from North to South. So the ground target 

point is at (10, 10) coordinates of the sampling plot. 

3. The origin of the sampling plot is at the lower left corner with coordinates (0, 

0). 

 

2. Tree location (X & Y) 

 

1. Tree location (X & Y) is measure from the lower left corner (0, 0) of the 

sampling plot (NOT FROM THE CENTRE POINT OF THE PLOT). 

 

 

 

° 

 

 

 

 

Example data entry: X = 12.1, Y = 13.3 

 

3. DBH (diameter at breast height) 

 

1. DBH is measure using the DBH tapes at 1.3 m above ground.  

2. All trees with height more than 1.3m above ground and DBH equal or greater 

than 5cm will be surveyed. 

3. See Addendum – Measuring Trees for further information.  

 

Example data entry: DBH = 56 

 

4. Tree height 

 

1. Tree height is measured using a Sunnto clinometer to the tree’s highest point. 

X axis 

Y
 a

x
is

 

(X
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2. Use normal Suunto surveying conventions - See Addendum - Take an Optical 

Reading with a Suunto for further information 

3. To save time, don’t calculate in the field, but record the ranges e.g. +80, -10 and 

the distance e.g. 10.2m, so calculations can be completed off site 

 

Example data entry: +80, -10, 10.2m 

5. Tree lean 

 

1. Visually assess whether or not the tree stem has a lean 

2. Standing at the stem/root interface (buttress) use a compass to decide the 

direction of lean 

3. Record the direction if appropriate e.g. NW 

4. Leave column blank if no lean 

 

Example data entry: NW 

 

6. Tree crown 

 

1. Tree crown is measured at the longest and shortest distance of crown outer 

edges. Distance tapes will be applied from underneath the canopy and sighted 

upwards. 
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Example data entry: Crown long – 3, NW/SE, Crown short – 1 NE/SW 

 

7. Tree species 

 

1. Identify the trees within the plot that are over 5cm DBH 

2. Use the tree species table (Addendum – Tree Species Codes) to add the 

identifying code for each tree. 

3. Tree ID books should be used to confirm 

4. If unsure, photograph the tree form, bark, leaves, fruits and record the file 

name of the photographs next to the data entry on the form 

 

Example data entry: SY, OK, HAZ 

8. Health 

 

1. Make an informed estimation on the general health and condition of each 

tree 

2. Look for signs of disease or decay and make a general note 

3. Record your findings in the data sheet using codes P, M, G for Poor, 

Moderate, Good, and Dz, D, Dx, for diseased, decayed, and dead. 

4. It is not important to know the exact disease or decay type 

 

Example data entry: P, Dz 

9. Ground Cover Assessment 

 

1. Assess ground cover within the whole of the plot using FCIN45 conventions 

2. Using the codes at the bottom of the survey sheet, record the percentage of 

each type of ground coverage 

Tree crown (plan view) 

Tree stem (plan view) 

Longest crown diameter 

(in North-West/South-East orientation) 

Shortest crown diameter 

(in North-East /South- West 

orientation) 
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3. Assist your estimation by using the percentage cover guide found at 

Addendum - Chart for Estimating Percentage Cover Composition of 

Ground Conditions by comparing the coverage that you can see with the 

coverage indicated with the blocked images 

4. Totals can run over 100% as cover types may overlap 

 

Example data entry: 1 = 90%, 5 = 30% etc.  

Note: It will be best to record this as the last data entry for the plot 
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Addendum - Measuring Trees 

DBH – Diameter at Breast Height 

The height at which trees have their diameter measured is 

fixed at 1.3m above ground level when undertaking work 

related to forestry or woodland management.  

It is important to ensure that the tape is taut, level and 

perpendicular to the tree and is not twisted or caught on burrs 

or other branches. 

Unfortunately not all trees are nice and straight and equally 

the ground they’re on isn’t nice and flat, so in these instances the way DBH is 

measured differs.  

 

 

 

When a tree is leaning over the DBH 

should be measured on the underside of 

the tree. 

 

 

 

 

 

 

 

 

 

1.3m 

1.3m 
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Where there is an anomaly at 1.3m e.g. a swelling or branch, then the DBH should be 

measured at the thinnest point of the tree below 

the anomaly. 

 

 

Finally, when it comes to trees with more than 

one stem you have a choice. The options open 

are measure the DBH at the thinnest point below 

the stems or measure each individual stem and record them separately. This decision 

would often be made by the instructing party or determined by the aim of the survey.  

1.3m 



Remote Sensing Tools for the Objective Quantification of Tree Structural Condition  

from Individual Trees to Landscape Scale Assessment 

216  

Addendum - Take an Optical Reading with a Suunto 

Measure the horizontal distance from the base of a vertical tree (or the position 

directly beneath the tree tip of a leaning tree) to a location where the required point 

on the tree (e.g. tree tip) can be seen. 

1. Sight at the required point on the tree: 

o Using one eye: Close one eye and simultaneously look through the 

Suunto at the scale and 'beside' the Suunto at the tree. Judge where the 

horizontal line on the Suunto scale would cross the tree. 

o Both eyes: With one eye looking at the Suunto scale and the other 

looking at the tree, allow the images to appear to be superimposed on 

each other and read where the horizontal line on the Suunto scale crosses 

the tree. Note: If you suffer from astigmatism (a common situation where 

the eyes are not exactly parallel), use the one eye approach. 

2. Read from the percent scale and multiply this percentage by the horizontal 

distance measured in step 1. 

3. Site to the base of the tree and repeat steps 2 - 3. 

4. Combine the heights from steps 3 and 4 to determine total tree height: 

o Add the 2 heights together if you looked up to the required point in step 

2 and down to the base of the tree in step 6. 

o Subtract the height to the base of the tree from the height to the required 

point if you are on sloping ground and had to look up to both the 

required point and the base of the tree. 

5. Check all readings and calculations. 

Suunto - Problems 

All these methods have one big problem. When measuring the height of a “normal” 

tree it is usually easy to see the very top of the tree due to its form. However with a 

lot of broadleaved trees their form hinders your ability to see the top unless you are 

stood a very long way from it. Therefore, you have to use your judgment to be able 

to estimate where the top of the tree is and get an accurate angle measurement. 
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Addendum - Tree Species Codes 

Tree Species Other 

OK Oak MB Mixed Broadleaves 

TOK Turkey Oak MC Mixed Conifer 

AH Ash XC Other Conifer 

PO Poplar ha Hectares 

SY Sycamore c.ha  Approximate hectares 

CSY Copper Sycamore P1963 Planting year 

SC Sweet chestnut Pc.1900 Approx. planting year 

HC Horse chestnut nr Natural regeneration 

BE Beech AWS Ancient Woodland Site 

CBE Copper Beech PAWS Plantation on Ancient Woodland 

Site 

BI Birch Cpt Compartment 

FM Field maple m Metre 

CAP Crab apple cm Centimetre 

HAZ Hazel OG Open Ground 

WL Willow PROW Public Right of Way 

PWL Pussy Willow JKN Japanese Knotweed 

CAR Alder HB Himalayan Balsam 

EM Elm   

WRC Western Red Cedar   

HAW Hawthorn   

RW Rowan   

CH Cherry   

WCH Wild Cherry   

HB Horn Beam   

FA False Acacia (Robinia)   

LC Lawson's Cypress   

HOL Holly   

BOX Box   

LI Lime   

ELD Elder   

BTh Black Thorn   

PYR Pear (Pyrus)   

    

HL Hybrid Larch   

BuP Bhutan Pine   

CP Corsican pine   

SP Scots pine   
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Addendum - Chart for Estimating Percentage Cover Composition of Ground Conditions 
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Appendix B - Using Fractal Analysis of Crown Images 

to Measure the Structural Condition of Trees, 

Supplementary Information 

 

Image Pre-processing 

The pre-processing interventions were applied to the raw images and at each phase of 

processing were statistically checked for suitability. This procedure focussed on the 

interventions that were observed to have an effect on the further usability of images 

in this study. Concurrently, the interventions were also statistically tested for 

suitability of use in the study. 

Quantitative Strength of Pre-processing Phases 

In order to establish that the three different pre-processing interventions were having 

a measurable effect on the data, when applying each pre-processing phase, confidence 

intervals were calculated using the following formula where n is the sample size and 

s is the standard deviation: 

 

 X̅ +  Z 
s

√n

 

 (1)  

 

At Figure 34, the pre-processing interventions are represented as one; for the baseline 

or uncorrected image Df values; two, after applying a chromatic aberration correction; 

three, after lens distortion correction; and four, after image sharpening. As shown in 

Figure 34, there is a general positive effect caused by each of the post processing 

interventions on the image Df values. The dataset confidence level at CI95%, suggests 

that each post processing intervention has a reliable and repeatable influence on the 

Df values at each successional stage. 
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Figure 34 Model testing of the impact of image post processing phases on average Df values, demonstrating 

95% confidence interval (CI95%) (n247). Note: Image pre-processing phases applied 1 = raw 

unprocessed images, 2 = applying chromatic aberration correction, 3 = applying lens distortion 

correction, 4 = applying image sharpening. The Df values are a logarithmic scale, demonstrated on 

a truncated axis.  

 

Although the CI bars overlap, potentially suggesting there is no statistical conclusion 

to be drawn; it should be noted that CI are not a test of statistical significance. A 

paired, two sample t-test was used assessing the significance between the uncorrected 

Df data (phase one), and the Df data following the final post processing stage (phase 

four). The result is a p-value of p0.005, therefore that the differences in the effects of 

the post processing interventions on the Df values are considered very highly 

significant.  

Validity Testing of Pre-processing 
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In order to quantify the effect of the before and after the phases of post processing, 

the corrected effect size was calculated using Hedge’s g. This test quantifies the 

effectiveness of the post processing interventions. Hedge’s g, follows as: 

 

 

 

(

 
 
 

ds = 
X1 − X2

√
(n1 − 1)SD1

2 + (n2 − 1)SD2
2

n1 + n2 − 2 )

 
 
 

× (1 −
3

4(n1 + n2) − 9
) 

(2)  

 

Where SD is standard deviation and n is frequency of values for the two variables; Df 

values before and after the pre-processing interventions. As can be seen in Figure 35, 

this results in a large impact on the Df values with the Hedge’s g effect size at 2.4504.  
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Figure 35  The quantification of effect size following image post processing (n247). The value of Hedge’s g 

at 2.4504 with a confidence interval at 95%, suggests that the pre-processing phases have a 

significant effect on Df values.  

 

Due to the combination of the assessment of the effect size (Hedge’s g 2.4504), 

supported with a confidence interval of CI95% and a statistical significance of p0.005, 

the image post processing phases have had a significant effect on the quality and 

usability of the images, thereby enabling the images to be used in subsequent analysis 

within this study.  

Model Fitting 

Following the pre-processing interventions, the corrected images were reanalysed 

through generating a second Df score. These are compared with the original, raw Df 

to identify the extent of residuals between the two data sets in order to estimate the 

extent of potential statistical error. This phase of the investigation also indicates 

whether unwanted data noise has been added in to the Df values, and identifies the 

correlation of remapping the pre-processed Df back to the raw Df values. As can be 
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observed from Figure 36 the sampled standard deviation of the modelled Df very 

closely agrees with the original, unprocessed Df values at 0.07% utilising normalised 

root mean squared error (NRMSE). 

 

 

Figure 36 Regression analysis of fractal dimension values following image pre-processing (n247). The pre-

processed Df, remains a statically relevant representation of the raw Df values with a normalised 

root mean squared error (NRMSE) of 0.07% (y = 0.84*x + 0.26, R2
adjusted = 0.7%).  

 

Recommended Field and Data Processing Workflow 

The development of the techniques used during this research provides an operational 

methodology for the objective classification of tree structure. This procedure has two 

phases split between field and office based work (Figure 37). In phase one, using 

predefined rules for the selection of trees in accordance with the survey requirements, 

a tree would be selected, photographed at the mid-point of the crown and the image 

checked in the field using the same field methodology as described earlier in this 

paper. This process would be repeated for several iterations in order to create a 

reference data set for each tree species within the survey. The second phase also 
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follows the earlier described process of uploading the tree images (to a desktop 

computer with the required code), defining a bounding box for the crown area to be 

analysed and the Df value to be calculated. Finally, to achieve objective classification 

for the individual trees, the Df values of each tree image would be cross-checked 

against the reference data threshold levels of the individual tree species (e.g. Table 2 

of main article).  

  

 

Figure 37  An operational workflow for the field practitioners use of a methodology for the classification of 

tree crown structure in fractal dimensions (Df), using hemi-spherical photography.  
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Appendix C - ARBOR: A New Modular Framework 

for Assessing the Accuracy of Individual Tree Crown 

Delineation from Remotely-sensed Data, 

Supplementary Information 

Crown Delineation and Tree Growth 

In some circumstances, such as coniferous plantations with well-spaced trees, 

delineating tree crowns can achieve a high degree of delineation success (Falkowski, 

Smith et al. 2008). However, not all trees grow in such ideal circumstances. Individual 

tree crown (ITC) delineation methods intended for coniferous trees can be 

problematic when applied to the ITC delineation of deciduous trees, due to the wide 

range of tree crown sizes and interconnecting crowns, and with larger tree canopies 

frequently split in to several smaller crowns during the ITC delineation process (Lu, 

Guo et al. 2014). As tree canopies become more complex, indicative of the intricate 

crown mixes in broadleaved canopies, achieving successful ITC delineation is more 

difficult. Repeated problems to overcome include crown inter-connectivity, increased 

stem density per area, infrequent open spaces or canopy gaps, and high numbers of 

individual tree species each with their own unique crown structure characteristics. 

These issues cause the potential to satisfactorily delineate tree crowns from the 

heterogeneous canopy mix to reduce rapidly (Falkowski, Smith et al. 2008, Yu, 

Hyyppa et al. 2011, Jing, Hu et al. 2014, Lu, Guo et al. 2014, Rybansky, Brenova et 

al. 2016).  

The perspective from which the tree crowns are viewed during data capture also has 

an impact. Valbuena 2014) describes that tree positions differ significantly when they 

are determined from the ground using field techniques, or when the location is 

determined aerially via RS methods. Often field measurements need correcting, and 

a deterministic, systematic method applied to identify which stem locations represent 
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the same tree in both the ground reference (GR) and aerial remote sensing (RS) data. 

Chen, Baldocchi et al. (2006) also note that there are some individual species 

anomalies. The delineation of mature oak crowns is further complicated by the 

tendency of oak trees to produce crown sections, where large branches and sub-

crowns are viewed as individual trees in light detection and ranging (LiDAR) data, 

thereby leading to incorrect crown delineation through overestimating the tree 

population (Bian, Zou et al. 2014).  

Measuring Tree Crowns 

Tree crowns typically grow with a positively phototrophic habit, subject to the 

individual phototropism response for the tree species (Matsuzaki, Masumori et al. 

2006). Trees are therefore, predisposed to grow towards canopy gaps or spaces where 

there is available light (Loehle 1986). As a result of this phenomena, in forested or 

woodland situations, whole canopy movement towards available light occurs leading 

to changes in the tree’s structural form (Loehle 1986). This tree crown movement 

towards available light becomes a notable issue when comparing aerially laser 

scanned (ALS) LiDAR with GR data during tree investigations (Yu et al., 2017). In 

the course of GR data capture, the absolute position of the tree location is typically at 

the tree base, or root/stem interface, by field operatives intending to avoid any 

ambiguous estimation of the central point of the tree crown from the ground (Mills, 

Castro et al. 2010). However, when completing computerised ITC delineation the 

central point of the crown is frequently not immediately above the GR measured tree 

location due to environmental conditions causing ‘sweep’ in the stem, thus offsetting 

the crown, particularly in woodland or forested areas (Eysn, Hollaus et al. 2012) 

(Figure 38). It could be proposed that a simple solution to this problem is to locate the 

stem on the ground and record its geo-coordinates, record the direction of crown 
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offset, the total area of the crown and attempt to locate the central mass of the crown. 

However, this procedure is limited by the biophysical complications of measuring the 

aerial parts of the tree crown from the ground. There is the potential for measuring 

errors; including a subjective assessment when considering where the crown edge is 

located, should the crown be beyond the physical reach of the field operative. This 

field method will also not account for any offset anomalies caused by upper-crown 

branches producing unexpected high-point peaks.  

 
 

Figure 38  A model of typical tree location alignment problems when comparing 

aerial observation data (either aerial images or LiDAR), and ground 

reference measurements (GR). In woodland and forest situations, 

trees subject to their species phototrophic habit will grow towards 

light, potentially causing whole canopy movement away from the 

original root/stem interface location (Loehle 1986, Matsuzaki, 

Masumori et al. 2006). Common tree form observed when collecting 

GR data; a) a tree with the tree crown located immediately above the 

stem, with a broadly equal crown distribution b) a tree with a stem 

lean, causing the crown’s high peak to be away from the root/stem 

interface location. c) as b), but with an elliptical crown distribution 

along a dominant directional axis e.g. north-south. d) as c) with the 

elliptical crown distribution along a different directional axis e.g. east-

west. The directional axis angles are potentially in any direction given 

the immediate environmental conditions around each tree crown.  

 

 

a. c. b. d. 
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Ground Reference Site Description 

A 51.5 hectare woodland in the northwest of England, UK, was used as a study site 

(Eaves Wood, Silverdale, Lancashire, UK. 54°10'43.2"N, 2°49'13.9"W). The site is 

predominantly mixed-broadleaf tree species, with individual coniferous species 

infrequently distributed amongst the broadleaf. Typical for woodland of this 

provenance, there are also mixed-conifer coups where the conifer trees dominate, 

however, these areas are spatially limited and closely relate to the underlying karst 

landform. The woodland has a diverse vertical and horizontal canopy structure 

(Figure 39), ranging from young, small scrubland to areas of well-developed, multi-

strata ancient semi-natural woodland (ASNW). The woodland has heterogeneous 

mixing of species and a varied horizontal spatial arrangement across the site, 

including areas of canopy gaps, woodland rides, and bare earth.  

 

Figure 39  Tree density per hectare, calculated on a per plot basis from 26 survey 

plots. The inset table shows additional descriptive statistics for the 

plots. The population of this woodland follows the reverse ‘J’ 

population distribution, indicitive of a healthy, complex woodland 

(Kerr, Mason et al. 2002).  
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Twenty-six plots were established within a thirty metre buffer zone of a single transect 

line running west to east across the woodland. Each plot was 20 x 20m (total GR 

survey area of 10,400m2), and orientated north south. The canopy cover at each of the 

plots ranged from 10% up to 90%, checked via a process of in-field visual assessment 

(Folk 1951), cross-referenced with photographic imaging analysis. The plot centres 

were geolocated using real-time kinematic global positioning (RTK GPS), with a 

theoretical sub-centimetre location accuracy following post-processing. Biophysical 

tree attributes were recorded where the centre of a tree was located within the plot 

boundary, specifically; tree location (XY), total height (Z), crown extent and area, 

and other ancillary information; species, diameter at breast height (DBH) and general 

observations about tree condition or local environment. This GR data followed 

standard forest measurement conventions (West 2009), and was collected using 

manual tree measurement equipment: clinometer, field compass, surveyors and DBH 

tapes.  
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