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Abstract 

In 2018, De Los Reyes and Langer expanded the scope of the Evidence Base Updates 

series to include reviews of psychological assessment techniques. In keeping with the goal of 

offering clear "take-home messages" about the evidence underlying the technique, experts have 

proposed a rubric for evaluating the reliability and validity support. Changes in the research 

environment and pressures in the peer review process, as well as a lack of familiarity with some 

statistical methods, have created a situation where many findings that appear “excellent” in the 

rubric are likely to be “too good to be true,” in the sense that they are unlikely to generalize to 

clinical settings or are unlikely to be reproduced in independent samples. We describe several 

common scenarios where published results are often too good to be true, including internal 

consistency, inter-rater reliability, correlation, standardized mean differences, diagnostic 

accuracy, and global model fit statistics. Simple practices could go a long way towards 

improving design, reporting, and interpretation of findings. When effect sizes are in the 

“excellent” range for issues that have been challenging, scrutinize before celebrating. When 

benchmarks are available base on theory or meta-analyses, results that are moderately better than 

expected in the favorable direction (i.e., Cohen’s q≥+.30) also invite critical appraisal and 

replication before application. If readers and reviewers pull for transparency and do not unduly 

penalize authors who provide it, then change in research quality will be faster and both 

generalizability and reproducibility are likely to benefit. 
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Is the Finding Too Good to Be True?  

Moving from “More Is Better” to Thinking in Terms of Simple Predictions and Credibility 

Many results are too good to be true. By this, we mean that they should not be accepted 

uncritically; even more, we advocate a mindset that combines curiosity with gentle skepticism. 

Results are too good to be true if they are unlikely to replicate, or if they will not generalize to 

situations with implications in clinical practice or policy. They could be exaggerated by clerical 

error, p-hacking, aspects of the research design, or simply assuming that “more is better” with all 

of our psychometric statistics, as opposed to thinking in terms of trade-offs and balancing of 

competing goals.  

Existing conventions evolved for a reason, in much the same manner as our taste 

preferences served an adaptive function during evolutionary history. The p < .05 criterion grew 

out of a dialog between Fisher and colleagues as he was evaluating the effects of independent 

variables on agricultural production. The pace of research was slow. It took a season to grow a 

crop, and there were physical constraints on the size of the fields and number of plants. Results 

were calculated and checked by hand and compared to published tables of critical values (so .05 

and .01 might be the only options, if those were all that was published in a reference work). 

Cohen’s conventions for small, medium, and large effect sizes were based in large part on 

reviewing a year’s worth of published articles in a leading journal of social psychology and 

another from clinical psychology in the 1970s. It is difficult to trace origin of the rule of thumb 

for Cronbach’s alpha of .80 or higher being “good,” but any reasonable effort to find a source 

discovers instead that there are a range of nuanced and informed opinions about it (Cronbach & 

Shavelson, 2004; Feldt, 1969; Nunnally, 1967).  

But the research climate in which these conventions evolved is very different from the 

environment in which we are using them now. Standards from the era of farming—with analyses 
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done by hand, and figures and manuscripts generated by typewriters (e.g., stem and leaf plot) 

(Tukey, 1977) –- now guide our consumption of results in a world with M-Turk, big data, and 

statistical learning algorithms that will run staggering permutations on variable sets orders of 

magnitude larger than anything Fisher, Pearson, or Tukey saw in their lifetimes (James, Witten, 

Hastie, & Tibshirani, 2013). The shifting research environment does not make all the 

conventions obsolete or maladaptive. Just as perceived bitterness evolved to protect us from 

alkali toxins, and still protects us from contaminated food today, many of the statistical 

principles still function. Others may need some adaptation, though. Salt and sugar taste so good 

because they were vital but difficult nutrients to get for millions of years, so reward circuits 

evolved to motivate days’ worth of hunting and gathering now impel us to binge on salty, fatty, 

sugary junk food that exploits our preferences. Psychometric conventions that were tuned in a 

bygone era, combined with systemic incentives to get significant and surprising results, are 

contributing to the proliferation of a junk food quality of science. Results that seem superficially 

tasty lack sustenance.  

Therefore, we need to learn some healthy habits for quickly appraising research findings, 

whether it is as producers of the literature or consumers of it. The goals of this paper include 

reviewing examples where results that might conventionally be considered excellent (Hunsley & 

Mash, 2018) are instead likely to be too good to be true, inviting deeper inquiry rather than 

celebration as a first response. We first look at four types of psychometric coefficients: reliability 

statistics, effect sizes, model fit statistics, and meta-analytic summaries, and we explore instances 

when high coefficients warrant suspicion more often than enthusiasm. Next, we offer ways of 

developing and specifying predictions and expectations using rules of thumb, standardized 

checklists, as well as formal statistical tests, all to help decide whether results are credible. 

Things that are beyond the scope of this paper are various ethical issues, such as deliberately 
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falsifying data, p-hacking and ways of detecting it (for review, see Head, Holman, Lanfear, 

Kahn, & Jennions, 2015; Ioannidis, 2005), or matching the wrong statistical procedure with the 

research question (“Type III Error”). Even when we assume good faith and appropriate choice of 

model, there is still a surprising amount of room for junk food results. Our closing 

recommendations aim to train our sense of taste to promote a healthier information diet. The core 

idea can be distilled into a single sentence, even a single equation, that would lead to big 

progress.  

Reliability 

Reliability refers to the reproducibility of a measurement, which is essential to the 

reproducibility of the results and conclusions based on it. There are different facets of reliability, 

including reproducibility over sets of items (internal consistency, such as split-half, Cronbach’s 

alpha, omega), over time (retest stability), and over judges (inter-rater reliability) (Hunsley & 

Mash, 2018). Generalizability theory points out that other facets are also possible and provides a 

unifying framework of variance decomposition, dividing the score variance “pie” into slices 

attributable to different factors. Item Response Theory (IRT) approaches (including Rasch, 

graded response, and other models) permit a fine grained look at reliability as a function of trait 

level; for example, telling whether the reproducibility of scores is similarly good at low, average, 

or high score ranges. 

In all metrics, a higher value of the coefficient (closer to 1.0) indicates more reliable 

variance in the measurement. The convention is to treat more as better, and rubrics typically 

proceed in a linear fashion from “poor” to “adequate,” “good” and “excellent” (Hunsley & Mash, 

2007). An uncritical focus on maximizing this metric has a variety of unintended consequences.  

Internal Consistency: Rethink Alpha Coefficients >.90 

The downside of maximizing the reliability coefficient is perhaps best known with 
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Cronbach’s alpha. The coefficient is not only a function of the typical correlation between items 

(which conceptually what we want it to measure), but also the length of the scale, and the 

variation between cases included in the sample. Other things being equal, the longer scale will 

have the higher alpha (Cronbach & Shavelson, 2004). Using the alpha as the guiding criterion for 

selecting a measure will thus be at odds with goals such as reducing the length of a battery or 

rater burden, which are key considerations in progress tracking and measurement-based care 

(Streiner, Norman, & Cairney, 2015). See Table 1 for an illustration.  

An alternative to alpha (or any other coefficient that includes the number of items in the 

formula) would be to focus on the average inter-item correlation, or the average corrected item-

total correlation (Streiner et al., 2015). These take scale length out of the reliability equation. 

They are only a partial solution, though. Maximizing the internal consistency may result in 

narrow coverage of the desired construct. Consider two sets of items focused on depression: 

Does the person feel sad? …feel down? …feel depressed? Versus: Does the person feel down? 

…have less energy than usual? …have more trouble sleeping? The second set has the lower 

inter-item correlations (because each item assesses a distinct symptom), but it also has the better 

coverage of the construct. In a clinical setting, the second measure would provide a better sense 

of the severity of depression, and also whether treatment was helping. If the scale were brief 

enough to be tolerated for repeated assessment, though, then the combination of shorter scale 

length and breadth of coverage typically results in a modest looking internal consistency 

estimate. A scale with items that correlate .35 with each other on average would have an alpha of 

.73 in a 5 item version, and .84 in a 10 item version, whereas a five-item set with average inter-

item r=.50 would have an alpha of .83. Researchers or reviewers focused on maximizing alpha 

would be prone to pick the narrower scale, or push for longer scales that might raise response 

burden to levels that increase biased response sets or missing data (Dillman, Smyth, & Christian, 



TOO GOOD TO BE TRUE  7 

2014).  

A more complete solution would be to use a pair of competing criteria to balance each 

other out. Pairing internal consistency with the correlation with the full length scale is a strategy 

advocated when developing short forms (Smith, McCarthy, & Anderson, 2000). Rearranging the 

Spearman-Brown prophecy formula makes it possible to project the reliability of a typical short 

form based on the alpha of the full length version; we can then look for a scale that has strong 

coverage (high R or R2 with the longer version, or with a criterion variable such as diagnosis or 

interviewer-rated severity) while also maintaining at least that threshold of internal consistency 

(see Youngstrom, Van Meter, Frazier, Youngstrom, & Findling, 2018, for an example). If the 

intended application is progress or outcome measurement, then sensitivity to change (quantified 

as an omega-squared in a generalized linear model) would be a good counterbalancing metric.  

Simply focusing on maximizing alpha risks picking scales that are too good to be true 

when used in many contexts. Reliability estimates are a ceiling for validity, but not an estimate 

of it. Overly narrow coverage will attenuate the correlation with the construct, meaning that the 

validity may actually be much lower than the tasty-looking coefficient implies. The scale with 

broader coverage could have an equal or higher validity coefficient, despite the lower internal 

consistency. In our own work, the full length General Behavior Inventory provides extremely 

high values for Cronbach’s alpha (e.g., alpha>.92 to .96) in parent, youth, and teacher report for 

both depression and hypomanic/biphasic scores. However, one common critique was that the 

scale was onerously long for clinical use, motivating the development of various short forms and 

carved versions that showed identical or improved clinical utility despite more modest internal 

consistency estimates (.88 to .91; Youngstrom, A. Van Meter, et al., 2018). As a result, the short 

forms have been translated into the most languages, used in the most clinical trials, endorsed by 

the PhenX Tool Kit, have the largest effect sizes in meta-analyses of diagnostic accuracy 
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(Youngstrom, Egerton, et al., 2018; Youngstrom, Genzlinger, Egerton, & Van Meter, 2015) and 

are most often requested for use by clinicians. The lower alpha was not a consideration.  

Inter-Rater Reliability: >.85 Is Often Too Good to Be True  

Inter-rater reliability is often the more relevant aspect of reliability for clinical 

applications. If two different interviewers evaluated the case, would they agree about the 

diagnosis? How closely would their estimate of the severity of the problems match? Cohen’s 

kappa is the most widely used metric for agreement about categorical variables such as diagnosis 

or dichotomous estimates of treatment response. Intra-class correlations are the typical metric for 

dimensional scores (McGraw & Wong, 1996a, 1996b). Again, higher coefficients indicate better 

performance, indexed as agreement better than chance, or as variance attributed to differences 

between cases instead of between raters or random error. The prevailing rubrics typically suggest 

that values >.80 are excellent (e.g., Landis & Koch, 1977). Reviewers often are critical of papers 

that report values lower than this, suggesting that the reliability was subpar or worse. 

Investigators are pressed to document that the reliability exceeds that threshold (Brennan & 

Prediger, 1981).  

Fortunately for authors focused on the short term, due to pragmatic issues like tenure and 

promotion, or getting a grant renewed, there are many ways to whip up a batch of tasty looking 

coefficients without resorting to fraud. One is by judiciously selecting the choice of statistic. 

There is a family of intra-class correlations that use different definitions of the numerator (the 

desirable variance) and the denominator (the error variance). Two conceptual differences are the 

fixed versus random effects estimation, and consistency versus absolute agreement (McGraw & 

Wong, 1996a, 1996b). Fixed effects are appropriate when we have observed all of the possible 

levels of the variable (e.g., both biological sexes, those with or without a particular treatment 

exposure). Random effects are the better conceptual choice when we are sampling from a larger 
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universe of possibilities (e.g., gender identity, or clinical sites or therapists): They generalize 

beyond our specific raters to the larger population of potential interviewers. The random effects 

estimate will almost always be smaller than the corresponding fixed effect estimate; they could 

be tied when the variance attributable to the random factor is precisely zero. The random effects 

model would usually be the more realistic match to our research designs: We have not often 

comprehensively represented all possible variations in clinic or therapist, for example. However, 

the fixed effect model produces the larger coefficient. The typical practice is to report it, without 

clearly labeling the intraclass correlation as a fixed effect model. Ambiguously labeled ICCs are 

almost always the larger consistency value (Gruber & Weinstock, 2018).  

The agreement versus consistency distinction hinges on whether we want to track 

differences in calibration as well as differences in how we rank cases. Consistency coefficients 

focus on whether the raters rank the cases in the same order, ignoring whether there is a 

discrepancy in the average scores across raters. Spearman’s rho and Pearson’s r are examples of 

consistency metrics, and one variant of consistency intraclass correlation is identical to r. In 

contrast, absolute agreement measures include the variance between raters in the denominator, 

penalizing the coefficient for the raters being calibrated differently. Again, the best-case scenario 

would be when the variance between raters is exactly nil, and then the absolute agreement and 

consistency coefficients would be identical. Otherwise, the consistency coefficient will always 

be higher, and that is why it is the one almost always reported instead.  

If the statistic is calculated and reported accurately, is there any harm in using 

consistency instead of absolute agreement? Imagine students taking two sections of a class. The 

grades assigned by two teaching assistants have a consistency coefficient of .95 – excellent! But 

one TA’s scores average 10 points lower than the other. The consistency coefficient ignores this 

as an uninteresting source of variance. The students are not likely to agree. They would have a 
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vigorous preference for a measure of absolute agreement instead. In clinical trials, having raters 

not well calibrated contributes to differences in whom gets enrolled across raters or sites, 

reducing power to detect treatment effects by increasing error variance, and potentially adding to 

placebo response rates. When test authors only report consistency coefficients, they are 

implicitly describing a best-case scenario where differences in rater anchoring and calibration are 

nonexistent. These are rarely realistic assumptions, and they underestimate the challenges 

involved in using the assessment with new raters or in new settings.  

 There are ways that investigators can craft the research design to yield more optimistic 

reliability estimates, as well. Two examples include selecting extreme cases for the reliability 

analysis and minimizing sources of error variance much more than would be feasible in typical 

settings. Stacking the sample with extreme cases maximizes the variance between cases, 

maximizing the numerator in the reliability estimate. Judges will have an easier time 

distinguishing between severely depressed cases and healthy controls than trying to grade 

degrees of depression among a set of cases all drawn from an outpatient clinic. Similarly, if the 

goal is to maximize the reliability estimate, then having two judges code the written transcript of 

an interview will yield a higher estimate of agreement than watching a video recording, which in 

turn would be higher than if the two judges independently interviewed the same person. In all 

three scenarios, the judges would be considering the information provided verbally, but the video 

adds variance due to nonverbal behavior, and the re-interview adds variance due to differences in 

phrasing of questions, as well as interpersonal dynamics, changes over time (re-interview is 

confounded with retest stability), and a plethora of other facets. It is easier to publish the estimate 

based on coding transcripts, even though the re-interview scenario is probably the more helpful 

benchmark for how the interview would perform when generalized to another client or setting. 

Published reports do not clearly disclose the design choices, as we have learned in our efforts to 
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code these features in several meta-analyses: Fewer than 20% of published reports included the 

reliability of the scale or of the diagnostic interview (Youngstrom et al., 2015). It is safest to 

assume that when we read an inter-rater reliability coefficient value >.85 without clear details to 

the contrary, it is probably not “excellent,” but rather based on a fixed-effects, consistency 

model, and using transcripts, case notes, or audio recording rather than richer inputs, perhaps 

with selected cases. If the researchers did something else, they probably are aware that the model 

is more conservative, and definitely would know if it was more work (as a re-interview or video 

coding would be), and they would be sure to make the reader aware accordingly.  

Item Response Theory Reliability, Information Values and Theta 

Item Response Theory (IRT) models are gaining popularity because of several technical 

and practical advantages for scale building and evaluation. However, presenting and interpreting 

IRT presents its own set of challenges. Depending on the purpose of the measure and how it was 

developed, IRT reliability (information) estimates might be considered low or unacceptable by 

many researchers or reviewers. Knowing the purpose of the measure matters: Measures of 

psychopathology are particularly likely to show a pattern of fit that does not match generic 

expectations. If the measure is intended to assess the construct across the entire population and 

generate fine gradations in ability or severity, then it may be realistic to expect reliability levels 

to be >.80 from theta of -3 to +3 (where theta is the level of the underlying trait, scaled roughly 

as a z-score). However, for diagnostic measures this standard would be unrealistically harsh. 

Diagnostic measures need to have strong reliability in the region of the latent trait where the 

clinical group meets/overlaps the non-clinical group. This is often at theta ≥+1.5 to theta ≤+2.5 

or 3 (assuming higher scores indicate more pathology). Reliability levels in the .4s or .5s at 

thetas of -3 to -0 will not significantly change measure performance measure for its intended 

purpose. When the goal is detecting pathological anxiety, precise measurement of “degree of 
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relaxation” at the low end is not crucial. Similarly, if a measure is designed to differentiate at 

average levels of the trait – say a normal personality measure like the Big 5 – drops in reliability 

at the ends of the distribution may not impact utility enough to warrant lengthening. A 

contrasting scenario might occur when an author is trying to develop a scale for measuring 

change and reliability drops precipitously at theta=0 or lower. For measures of pathology, this 

would correspond to low accuracy about levels of the trait as the person nears remission.  

Adaptive testing approaches that use computers to choose calibrated items from a larger 

pool can obviate some of these problems. However, some measures are not suited for adaptive 

testing. For others, the necessary resources may be unavailable for development or 

implementation of adaptive frameworks. IRT reliability based estimates and changes in 

reliability across the latent trait need to be interpreted with reference to the intended use. 

Validity and Effect Sizes 

 Effect sizes provide a helpful way of thinking about findings. They move us away from 

the dichotomous thinking of null hypothesis significance testing, changing the question from yes 

or no significance to “how big is the effect?” Focusing on the size of the effect immediately 

makes things less abstract, and we are more likely to consider whether the size is plausible, and 

whether it has practical significance. The plausibility of the effect size becomes a sort of face 

validity for the finding, and often will quickly raise questions about the appropriateness of the 

research design, analyses, or reporting. We use three common effect sizes – correlation, 

standardized mean differences (SMD), and diagnostic accuracy – to illustrate when results might 

be too good to be true (Kelley & Preacher, 2012).  

Correlation 

Correlation coefficients are among the most widely used effect sizes in social and clinical 

psychology, and they are widespread in other areas as well. It is well understood that most forms 
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of correlation coefficient are bounded by values of 1.0 and -1.0, with a coefficient of zero 

indicating no association between the variables. Cohen (1988) suggested values of r ~.1, .3, and 

.5 as rough benchmarks for small, medium, and large Pearson correlations based in part on 

reviewing a year’s worth of articles in a leading journal. He stated that these were descriptive, 

not value judgments or indicators of practical significance. They were pegged to perception 

thresholds, with small effects being at the limit of what might be perceived (such as the 

difference in average height between 15 and 16 year old girls, about half an inch, expressed as a 

point-biserial correlation, p. 27), medium being .3 (about the difference between height in 14 

versus 18 year olds, or the taste of name brand products and the “no frills” substitutes my mother 

kept trying to sneak past us as kids), and large being obvious (r~.5, such as the difference in 

average intelligence between those starting college and those finishing doctorates, or the height 

again – 2 inch difference between ages 13 and 18; Cohen, 1988). He also noted that on the one 

hand, he was feeding his perceptions via a diet of peer reviewed articles that had been through 

the kitchen of peer review before appearing on the menu of the Journal of Abnormal and Social 

Psychology – most research fare would not be so carefully prepared or refined through such 

rigorous critic reviews. On the other hand, the majority of the studies still had inadequate 

statistical power, even though they had been published (Cohen, 1962). Despite Cohen publishing 

this exposé about power in psychological research, and the paper being cited more than 1,500 

times, power remained essentially unchanged decades later (Cohen, 1992).  

“Big data” has accomplished what Cohen’s exhortations could not. Survey Monkey, 

Qualtrics, and REDCap have automated survey delivery and scoring, much as agribusiness 

automated farming. Survey panels and M-Turk took the “psychology subject pool” recipe and 

scaled it to nation-sized and always in season. Data archiving and open data policies made 

curated datasets worth hundreds of millions of dollars available for secondary analysis. Google, 
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Facebook, and web scraping changed the scale of the data by several orders of magnitude yet 

again, and the Internet of Things and wearables are adding yet more huge and deep data streams 

to the broth. With N=10,000, roughly the size of a typical epidemiological study in one of the 

repositories, power would be 90% to reject the null if the true correlation were .032 or larger 

(Faul, Erdfelder, Buchner, & Lang, 2009). Google is making data freely available with 

N>100,000 or millions of observations (Stephens-Davidowitz, 2017). These sample sizes make 

statistical significance trivial. Machine learning is making it possible to test larger sets of 

variables to identify the most interesting sets of predictors. This is stepwise model building 

raised on steroids, making nominal p values meaningless. Gourmands of statistical learning refer 

to this as “the curse of dimensionality,” where the computer can obligingly search through store-

fulls of model ingredients, dutifully reporting the best fit (often now operationalized as predictive 

accuracy or bias reduction). The challenge is deciding which predictors are robust and likely to 

work again in other samples (showing low variance in the coefficient, in the parlance of 

statistical learning; James et al., 2013).  

Does the size of the correlation match what was found in a prior study with the same 

variables? With data less expensive and available on unprecedented scales, a healthy research 

regimen needs to build on a pyramid of validated measurement ingredients, combined in recipes 

that make conceptual sense, with results compared to expectations at least qualitatively, although 

there are a variety of formal tests available. Steiger (1980) provided the formula for direct tests 

of two correlations or regression coefficients, either drawn from the same sample or two 

independent samples. The inputs are the two coefficients, the sample size, and the nuisance 

correlation if the coefficients are based on the same rather than the independent sample. 

Significant differences indicate that the coefficients are further apart than would likely be 

explained by sampling error. If the new coefficient is significantly higher, that would motivate 
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some careful contemplation about factors that might make it too good to be true. Differences in 

the reliability of the measures (Schmidt & Hunter, 1996), restriction of range attenuating the 

correlations (or over-dispersion amplifying them), and variations in sample composition all are 

worthy candidates that can quickly be tested via applications of simple formulae or examination 

of the enrollment procedure and sample demographics. Steiger’s test and similar methods are 

powerful complements to Cohen’s enjoinder to look for published effect sizes as the basis for 

interpretation.  

Benchmarking Results. Some topics have an extensive literature available. Agreement 

across informants is an example. Two large meta-analyses compared agreement between parents, 

youths, and teachers about the youths’ emotional and behavioral problems (Achenbach, 

McConaughy, & Howell, 1987; De Los Reyes et al., 2015), summarizing almost two thousand 

effect sizes from almost 500 samples—as ubiquitous as pizza! —both found average r=.28 

across all informants. Informant type moderates agreement. Youth ratings tended to correlate 

r~.2 with parent and teacher ratings of internalizing and about .3 about externalizing problems; 

parents and teachers agree in a similar range, and two parents rating the same child agree at the 

.5 to .6 level. The covariation across raters is a small fraction of the reliable variance in all of the 

ratings, which suggests that there might be a lot of situational specificity, dyadic patterns, or 

other systematic differences in perspective.  

The robustness of the pattern – it holds across measures, countries, and decades – means 

it provides a helpful baseline prediction. It is not a physical constant: It is possible for an 

observed correlation to be higher, especially if the scales involved are more reliable (longer) and 

or similar in terms of situation and behaviors observed. However, when correlations fall outside 

of sampling error from these benchmarks, that should spark a search for possible explanations. 

Readers and reviewers often forget how low typical agreement is about behavior, and 
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coefficients matching naïve expectancies actually would be too good to be true (see regression 

prediction formula). Conceptualizing parent-youth agreement as an inter-rater reliability task 

might lead to expecting an r~.8, or thinking that agreement should meet Cohen’s rule of thumb 

for a large effect, would create a sense of cognitive dissonance when confronted with empirical 

data. Not remembering or understanding the implications of the modest correlation has led to 

heated debates, such as discounting one perspective or another as invalid or wrong (cf. De Los 

Reyes & Kazdin, 2005), or proposing that clinical diagnoses should only be made when 

clinically significant symptoms are observed by different informants in multiple settings 

(Carlson & Dyson, 2012). 

Cohen (1988) went so far as to suggest a new effect size specifically to compare 

correlations. Cohen’s q is the difference between the Fisher’s z’ transformation of two 

correlations. The z’ transformation “stretches” the correlation so that it is not bounded at ±1.0, 

and makes it so that differences between z’ values have an interval level scaling. Cohen (1988) 

devoted a chapter in his power recipe book entirely to q.  

Method variance. When two measurements are made using the same method, then the 

scores will be correlated even if they were evaluating different constructs. Some of the variance 

in each score is due to the method of assessment, and because the two scores share the method, 

they have “shared method variance” (Campbell & Fiske, 1959; Podsakoff, MacKenzie, & 

Podsakoff, 2012). The multitrait-multimethod matrix provides a framework for thinking through 

the variance sources, which often have an additive effect. If two scales both measure depression, 

they should share variance; if they both are measured by caregiver report, then they will have a 

second helping of shared variance. When correlations look surprisingly large, shared method 

variance is often the culprit. It often is possible to ignore the labels, look at the pattern of 

correlations, and tell which informants provided subsets of scores. If the table is arranged by 
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informant, then there will be a block diagonal pattern. In situations where converging measures 

of the same trait show only moderate correlations, as is the case with cross-informant agreement 

about youth behavior, or neurocognitive and physiological measures with behavior ratings 

(Owens, Evans, & Margherio, 2020; Youngstrom & De Los Reyes, 2015), it is possible for the 

shared-method contribution to be larger than the shared-trait portion. This creates substantial 

challenges in confirmatory factor analysis, especially because large numbers of indicators are 

required for identification models specifying both method and trait factors.  

Standardized Mean Difference (Cohen's d) 

Cohen’s d, or the standardized mean difference (SMD) between two groups, is the natural 

effect size for t-tests, single degree of freedom contrasts in ANOVA, and other ways of 

comparing two groups on a continuous measure. It is scaled as a z-score, which brings with it a 

certain set of conventions. A d of zero indicates that the means were identical. A d of 1 would be 

a one standard deviation difference between the groups. Cohen used this logic to develop a set of 

non-overlap alternate effect sizes--U1, U2, U3. A d value of 1 means that the average score in 

one group fell at the 68th percentile for the other group, for example.  

By extension, this means that d values of 2 would be unusually large (2.5% of a normal 

distribution would be that extreme or more), and d>3 would be a one in a thousand event by 

chance. When we are studying psychological treatments or psychopathology correlates, effect 

sizes this large are more likely to signify a computational error, or perhaps falsification, than a 

replicable finding. We have seen these published, though. A common scenario is for authors to 

accidentally use the standard error of the mean in place of the standard deviation of the scores. 

The configuration of the output tables in SPSS make this an easy mistake to make. In a meta-

analysis, we had a couple studies reporting effect sizes of d>5.55 in a content area where the 

average effect size was 1.05 (Youngstrom et al., 2015). Even without having a meta-analysis 
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available, the d values were a red flag on their own. Checking the descriptive statistics in the 

articles revealed that they were reporting “SDs” of 3.9 and 4.9 on Achenbach T-score scales, 

where the population SD is 10. Quick algebra using the sample size confirmed that they, too, 

were reporting SE values as SDs. A quick rule of thumb: If the metric is a T (SD=10) or standard 

score (SD=15), and that effect size is greater than what would be expected from the literature, 

double check the source of the SD values.  

Cohen provided benchmarks for d, with values of .2, .5, and .8 suggested as small, 

medium, and large. These correspond to Pearson correlations of .1, .3, and .5 (after applying a 

correction for attenuation to point-biserial correlations; Rice & Harris, 2005). These were 

intended as a first approximation when published benchmarks are not available. When prior 

work provides a meaningful estimate, we can compare results in the present study to prior work 

either via confidence intervals, or a direct formal test. The N, M, and SD are sufficient statistics, 

meaning that readers and reviewers can apply the test using free online calculators. In many 

cases, getting a significant result may be cause for reflection; after analytic error and design 

artifacts are ruled out, then potential moderating variables become interesting contenders. 

Diagnostic Accuracy 

Tests of diagnostic accuracy represent a special case of bivariate statistics where the 

predictor is often continuous and the criterion is categorical. Logistic regression and receiver 

operating characteristic (ROC) analysis are methods of choice for analyzing these data, and the 

Area Under the Curve (AUC) from ROC analysis is a frequently used effect size, calibrated so 

that .50 indicates chance performance and 1.0 is the maximum, combining perfect accuracy for 

true cases (sensitivity) with perfect accuracy for true non-cases (specificity). A common rubric is 

that AUC values of .90 or higher are “excellent,” .80 or higher are “good,” .70+ are “fair”, and 

.60+ are poor, and below .60 is a “fail” (Swets, Dawes, & Monahan, 2000). However, especially 
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in the area of clinical assessment, values greater than .90 are usually too good to be true when the 

goal is generalizing to a clinical setting.  

Kraemer also pointed out that our criterion diagnoses are not perfectly reliable, and this 

imposes a ceiling on the AUC values that we can expect to observe in data. If the diagnostic 

interview is not perfectly accurate, then a good predictor will identify cases that the diagnostician 

missed, and it will correctly rule out some cases that the diagnostician mistakenly labeled. 

Students will remember the frustration of having errors on the key when their exam was marked. 

Kraemer provides the formula for estimating the ceiling. For diagnoses with kappa of .85 (an 

optimistic but plausible scenario), the upper bound AUC will be .925. Once again, observed 

AUC values above .90 look too good to be true – they would be performing near the upper limit 

of feasible accuracy given the reliability of our diagnostic tools. When seeing values in this 

range, three design features often are involved: (a) stacking the deck for a large reliability 

estimate, using extreme cases, transcripts, and consistency models as described above; (b) using 

fully structured interviews, maximizing reliability at the potential cost of clinical validity, and (c) 

maximizing the similarity of the predictor and criterion in terms of content coverage and source 

variance. A paper that had patients read the BDI questionnaire and then compared it to a doctor 

reading them similar questions (the “structured interview”) found >98% accuracy (Steer, 

Cavalieri, Leonard, & Beck, 1999), which obviously is too good to be true as an estimate of how 

the questionnaire administration would predict more clinically valid and generalizable diagnoses.  

Design issues that inflate the effect size are often the culprit. Including healthy controls in 

the sample will add a lot of cases with extremely low scores on measures of psychopathology. 

These cases will all score below a reasonable threshold on the measure, boosting the diagnostic 

specificity with cases that are easy to identify (Youngstrom et al., 2015). A similar source of bias 

would be exclusion of comorbid cases or diagnostic groups that would produce overlapping 
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neurocognitive or behavioral patterns. Studies that compared cases with bipolar disorder to cases 

with ADHD but no comorbid mood disorder or healthy age-mates produce much larger AUCs 

estimates (well in excess of .90; e.g., Tillman & Geller, 2005) for many scales, only to shrink 

precipitously when applied in more diagnostically mixed samples where everyone is seeking 

treatment (Youngstrom, Meyers, Youngstrom, Calabrese, & Findling, 2006). The more 

conservative scenario is the better representation of how the measure would fare at a clinic where 

everyone is seeking help, and there are many different presenting problems and variations of 

comorbidity all in the sample. Most papers currently touting imaging, gene, or blood tests as 

diagnostic measures hinge on comparing healthy controls to well defined target groups, not a 

clinically generalizable design (e.g., Rocha-Rego et al., 2014; Woodruff, El-Mallakh, & 

Thiruvengadam, 2011; see Zeier et al., 2018 for review). The simple heuristics are to be 

suspicious when we see AUC > .90, and to ask, does the sample look like the people with whom 

I would want to use the measure (Jaeschke, Guyatt, & Sackett, 1994)? The more clinically 

complex the setting, and the more different the demographics, the more that we should expect 

the effect size to shrink (Konig et al., 2007). Internal cross-validation is not a substitute for 

finding data that closely resemble where we will need to use the measure (Youngstrom, 

Halverson, Youngstrom, Lindhiem, & Findling, 2018). 

Comparing AUCs. With time and motivation, we can use more formal methods to 

decide whether the result differs from expectation. There are methods for comparing the AUC to 

published results, as well as more powerful methods for head-to-head comparison when the data 

are available. Web sites and R packages make it possible to use many of these tests even when 

the raw data are not available. It also is easy to convert AUC to Cohen’s d, and vice versa. 

Converting Cohen’s d benchmarks into AUC values provides a more realistic rubric for 

evaluating test performance in applied contexts (Rice & Harris, 2005). In addition, there are 
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techniques to test the difference in the AUC values drawn from different samples, as well as 

more powerful options when comparing predictors in the same sample (e.g., (DeLong, DeLong, 

& Clarke-Pearson, 1988; Hanley & McNeil, 1983; Venkatraman, 2000). It also is simple to 

convert d to r, and thence to z’. These are available in free software, including R packages (e.g., 

Robin et al., 2011) and web sites with programmed spreadsheets 

(https://en.wikiversity.org/wiki/Evidence_based_assessment/ROC_Party/Ready_to_ROC). The AUC 

and the standard error are sufficient statistics to be able to get a formal comparison of the new 

estimates with the old benchmark.  

Reflections on Quality Checklists. There are a variety of checklists that are now 

available for assessment, treatment, and various other research designs, as well as corresponding 

lists to evaluate the quality of the reporting in published reports. The first are intended for the 

chef who wants to prepare a competent offering that will pass inspection. The second type is 

more built for the reviewer, auditor, or a food critic to check systematically that the standards are 

met. Both tend to be more detailed than could easily be used by general consumers, who need 

something more concise and focused on the information that would change validity to the point 

that it changes choices. The STAndardized Reporting of Diagnostic tests (STARD) guidelines 

list 25 items (Bossuyt et al., 2003), one of which we have not yet seen reported in any 

psychology article, and many of which are rarely reported. In our meta-analyses to date, total 

quality score has been unrelated to the effect size (Youngstrom, Egerton, et al., 2018; 

Youngstrom et al., 2015). However, several of the key ingredients independently do predict the 

validity coefficient. Using “distilled” samples that include artificially purified test groups has 

been a robust predictor tainting the results (Youngstrom, Egerton, et al., 2018; Youngstrom et al., 

2015; Youngstrom et al., 2006), much like finding a bug in the soup. Rather than expecting 

readers to routinely conduct a 25 step review on every meal, focusing attention on some key 

https://en.wikiversity.org/wiki/Evidence_based_assessment/ROC_Party/Ready_to_ROC
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indicators may lead to faster improvements. We also have noted no change in the quality of 

designs or reporting in the decades before versus after the introduction of the STARD guidelines, 

with average scores hovering in the high 70s (passing, but unimpressive), suggesting that there 

may be a problem of implementation.  

Model Fit Statistics 

Confirmatory models offer an opportunity to compare the fit between the parameter 

estimates implied by the model versus what is observed in the data. Much effort has been 

focused on creating and evaluating different fit statistics (Maydeu-Olivares, 2013). There are 

absolute fit measures, such as the Goodness of Fit Index and Adjusted GFI, which are scaled so 

that 1.0 is the maximum; we can think of these as multivariate analogs to R-squared in terms of 

describing covariance reproduced by the model. The RMSEA is another measure of absolute fit, 

albeit scaled so that lower values indicate better fit, and zero would be perfect (Kelley & 

Preacher, 2012). There also are model comparison fit statistics, either anchored to a conceptual 

null model (e.g., CFI, TLI), or designed to compare empirical models to each other in terms of fit 

and parsimony (e.g., Akaike Information Criterion, Bayesian Information Criterion, and 

derivatives; see Raftery, 1995). 

We need these to compare competing models, and to decide whether a model provides a 

good balance between parsimony and fit. Because of sampling variability, even a correctly 

specified model that holds in the population will not fit perfectly in a sample (Burnham & 

Anderson, 2016; Preacher & Merkle, 2012). It is helpful to remember that global fit statistics 

indicate only average model fit, and they do not also indicate the model’s explanatory power, nor 

person-level fit and the accuracy of predictions for individual cases (Preacher & Merkle, 2012).  

Often we focus almost exclusively on global model fit, treating the statistics as if there 

were a cutoff for good fit (e.g., CFI>.95; Hu & Bentler, 1995), or we report a suite of fit statistics 
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and focus the attention on the ones most favorable to our preferred model. We develop “fit 

statistic tunnel vision,” where we do not go outside staring at the fit indices to see where the 

model is miss-specified, or even whether the parameter estimates make sense (Kline, 2016). 

When authors or reviewers focus first on fit, that can create conundrums where reasonable 

models get rejected in favor of those that are overfit – introducing bias in parameter estimates, 

and also increasing the likelihood of future replication efforts failing. A high profile example of 

this is the WISC-5, where the model selected based on fit indices produces a factor loading 

higher than 1.0 – as reported in the technical manual! (Wechsler, 2014).  

Remedies include having a strong foundation of exploratory models before moving to 

confirmatory mode, testing across different sets of indicators as well as samples to improve 

understanding of the concept space as well as the measurement models. Newer approaches to 

evaluating models also look at piecewise fit, rather than focusing solely on global fit, and 

emphasize the interpretability of the parameter estimates. This is true in IRT (Maydeu-Olivares, 

2013; Thissen, 2013) as well as covariance structure modeling (Kline, 2016).  

Meta-Analysis and Credibility 

Meta-analysis is well-suited for identifying results that are too good to be true. Cohen 

(1992) called it one of the few bright spots he had seen develop in the field during his career. The 

simplest versions gather the effect sizes, convert them to a consistent metric, and then test them 

for homogeneity. Cochran’s Q statistic and funnel plots are examples of well-established 

statistical and graphical ways of looking for outliers. Estimates that fall outside the confidence 

interval for the meta-analytic summary are outliers likely to have different factors influencing 

their result.  

Meta-analysis also can model variables that might explain heterogeneity in observed 

effect sizes. The most general model would be meta-regression, which can incorporate 



TOO GOOD TO BE TRUE  24 

continuous or categorical predictors (referred to as “moderators” in the meta-analytic parlance, 

because they are changing the size of effect sizes that usually summarize a relationship between 

two other variables). When doing a meta-regression, sample values that fall outside the 

residualized funnel plot, or that have large Studentized deleted residuals, would be outliers that 

warrant detailed scrutiny (Viechtbauer, 2010).  

In our own efforts to test moderators, we generate two sets of candidates. One is a list of 

substantively interesting, often hypothesis driven variables, such as differences in informant 

(Youngstrom et al., 2015) or content coverage (Youngstrom, Egerton, et al., 2018). The other is a 

set of design features, including ones mentioned above. Using distilled samples and having 

shared source variance between the predictor and the criterion are two that often have a big 

impact on the flavor of the result. In contrast, the influence of p-hacking (Head et al., 2015) or 

differences in reference time period for scales tends to be relatively subtle.  

When conducting a meta-analysis, we encourage the authors to review and discuss the 

outliers and identify potential contributing factors. At a minimum, such speculation could inform 

future studies and reviews. It may be possible to find enough similar studies to code the 

suspicious variable as a new candidate moderator for a supplemental or exploratory analysis. For 

consumers of the literature, meta-analyses provide a valuable sense of the typical distribution of 

effect sizes, helping us recognize when new results fall more in the realm of skepticism than 

credibility.  

Recommendations 

 In keeping with the Evidence Based Updates series, we provide recommendations for 

next actions as well as re-calibrated expectations for evaluating assessment tools and practices 

(De Los Reyes & Langer, 2018).  

Researchers 
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When we are in the mode of designing a new project, we can select high quality 

ingredients. These include investing in better assessments – picking the ones likely to have high 

validity, investing as much as possible in training and adherence, and using planning checklists 

to look for opportunities to enhance quality and report it accurately. The results are likely to be 

more sustaining when built around a simple recipe with a priori goals. Cohen’s (1992) 

admonition to focus on fewer variables is worth remembering as a counterbalance to present 

enthusiasm for statistical learning models. Curating the candidate predictors on the basis of prior 

literature, theory, and psychometrics will be a good fusion of styles.  

Authors can choose their effect size to improve consumption by the intended audience. 

Effect sizes can be converted between each other. The choice should combine familiarity (e.g., r 

and d are staples in psychology; NNT and LHH are more exotic imports from evidence-based 

medicine; Straus, Glasziou, Richardson, & Haynes, 2011), match with purpose (e.g., AUC for 

diagnostic studies, SMD for group comparisons, and r for regression-type analyses), and ease of 

interpretation. Effect sizes that have an asymptote and non-interval scale properties can be hard 

to compare. Odds ratios are well known case in point (e.g., 0.1 and 10 are of the same 

magnitude, and the distance from 2.0 to 4.0 means considerably more than from 102.0 to 104.0), 

but correlation and AUC also are harder to compare as they get larger, and it also can be tough to 

judge the practical importance of smaller values (Rosenthal, 1991). Cohen’s d has many 

advantages as a metric, and may often be worth using as the primary or supplementary 

presentation format (Rice & Harris, 2005).  

Authors can also be clear when doing effectiveness work or selecting more conservative 

and generalizable models. It is legitimate to suggest that the reader apply a different rule of 

thumb, e.g., “Because we are using clinically realistic comparison groups, we believe an AUC of 

.80 (or d=1.2) is a good target, rather than a .90 that usually has only been achieved by studies 
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with distilled cohorts in this content area” (e.g., Salcedo et al., 2017). This is not the same thing 

as lazily using convenience samples and whatever variables are laying around. There can be skill 

applied to archival and big data; a good chef can use principles to work with the ingredients at 

hand to deliver a memorable and satisfying meal. Efficacy paradigms are testing whether we 

could get the hypothesized result with the premium ingredients and intensive resources; 

effectiveness is adapting and improvising based on principles, and picking ingredients that are 

essential and can scale. Like a good army cook, dissemination and implementation research 

pushes for thinking about how to feed hundreds quickly, keeping them working under 

challenging conditions.  

 Researchers should consider generalizability and replication, even when doing 

exploratory research. The better the documentation and the more that the methods are selected 

with an eye towards reproducibility, the better the odds of replication. The Open Science 

Framework (OSF.io) is a free option for posting the code to run the analyses, or a detailed 

supplement with the technical specifications of the models (see also Code Ocean, and badges for 

open materials, code, or data from the Association for Psychological Science). The resulting 

research is likely to have more utility, as validity is a prerequisite, and it will have a longer shelf 

life and citation history.  

Peer Reviewers 

Embracing the perspective that we advocate also has several implications for peer 

reviewers. Reviewers are positioned to push authors for better reporting. Ask for more details 

about the reliability methods and analyses. Nudge authors to report more clinically useful effect 

sizes, and to compare them to benchmarks based on prior work, meta-analyses, or reasonable 

predictions from conceptual models. Consider the implications of design features such as shared 

method variance or reliance on healthy controls as a comparison group, and encourage authors to 
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mention the implications in the discussion section. Know rules of thumb for statistical analyses 

(van Belle, 2002) and benchmark values for the relevant literature, or make a habit of looking for 

them (e.g., search for meta-analyses). Fact check the results, especially if they seem improbable, 

using free software to estimate power or effect sizes, or to recalculate statistics. 

At the same time, progress will likely be faster if reviewers complement the push for 

better reporting with recalibrated standards that acknowledge the trade-offs inherent in more 

generalizable designs. Effectiveness work fundamentally involves less internal validity than 

efficacy designs, and it also provides a more realistic sense of how the findings are likely to 

translate into practice. It would be helpful to explicitly match the calibration of the review with 

the intended audience. It would be absurd to conduct a James Beard review of the food 

preparation and presentation of a corner stand burger, whereas a simple five-star rating system, 

perhaps combined with key indicators about cleanliness and price, are often enough to make 

informed decisions. From a dissemination perspective, more people will get fed via burgers than 

Michelin-rated meals, too. Methodologists will be able to offer more balanced and useful 

critiques when they consider generalizability, calibrate their review appropriately, and nudge 

authors to be equally frank and realistic in evaluating the generalizability.  

Requiring conventional rules of thumb paradoxically creates incentives to use weaker 

designs and statistical methods with unrealistic assumptions (e.g., consistency and fixed effects 

models). When sketchy results flood the market, it becomes harder for stronger designs and more 

accurately labeled reports to get accepted. Reviewers can help by not penalizing papers that are 

using more conservative and generalizable methods. Remembering that reliability is necessary 

for validity, do not penalize a paper for reporting a lower reliability coefficient based on a more 

generalizable model, especially if the paper still produced significant and meaningful results. 

Reliability is a prerequisite, not the end goal in most studies.  
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Readers and Consumers 

Balance is key: On the one hand, exceptional results require exceptional support, and we 

should need to be persuaded; on the other hand, well executed and generalizable clinical studies 

will require a different calibration for evaluation. If the results amount to a miracle cure, or an 

assessment that will bring crystal clarity where all was fog before, then the results are probably 

too good to be true. We need to be familiar with key ways of deciding quickly whether the 

research is valid and likely to apply to the cases where we would need to make choices based on 

the results. Not all that is gold will glitter, and a lot that appears shiny fades rapidly in practice. A 

wry joke in Evidence Based Medicine is, “hurry and use the new drug before the next research 

studies come out” and the effect size shrinks (Silverman, 1998). We need to retrain our tastes to 

prefer more humble but realistic results. 

General Conclusion: Think in Terms of Prediction 

A powerful heuristic that all stakeholders can use is to make a prediction about the effect 

size or result ahead of time, write it down, and then compare the prediction to the finding. The 

act of making the prediction and expressing it in the form of an effect size (or an expected value 

for the test statistic) refines our thinking into a precise operational definition of the expectancy. It 

organizes our consideration of design and sample characteristics, as well as external benchmarks 

from prior studies and reviews. Writing it down takes but a moment, and it prevents any lazy, 

“Oh, yes, that is about what I expected” HARKing (Hypothesizing After the Results are Known) 

(Kerr, 1998). Comparing the prediction and the observation provides feedback that helps us learn 

and calibrate for the future (Meehl, 1973), as well as stimulating critical thinking about the case 

in point. It is possible to formalize the process, using Bayesian methods to combine the prior 

estimate with the new information (Etz & Vandekerckhove, 2018; Kruschke, 2011); but even 

leaving that aside, making a quantitative prediction and then comparing it to potentially 
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confirming or disconfirming data is a fast and free cognitive heuristic that will improve our 

interpretation of findings and decision making in general (Croskerry, 2003; Jenkins & 

Youngstrom, 2016).  

Because effect sizes are convertible, it is possible to combine multiple ones in the same 

report, pairing a familiar one with another that facilitates comparison. Thinking in terms of effect 

sizes also moves us away from black and white thinking and towards focusing on the application 

of the results and how context might influence generalization. Cohen laid out a formal process 

for testing for differences between effect sizes, where q = z’(observed) – z’(expected). Our suggested 

rules of thumb would be that (a) if the effect size converted to a z’ is greater than .8 (see Table 

2), it is probably too good to be true for a diagnostic test (e.g., AUC ~.9), a clinical outcome 

(d~1.8), or a convergent correlation (r=.67); and (b) if the q>.30 comparing the observed result 

to a reasonable benchmark, then it again may be too good to be true. A discrepancy this big 

would mean finding a large effect when a medium would have been expected, or a medium 

effect when a small would be plausible. Cohen (1988, p. 115) chose q ~.3 as a “medium-sized” 

discrepancy, so our rule of thumb translates to “When an analysis shows a result that is better 

than expected to a medium or larger degree, pause and reflect.” 

Healthier research reporting will be more nourishing but will be an acquired taste. 

Bayesian enthusiasts often offer a radical reworking of how we approach statistical analysis built 

around prediction. It definitely would address many of the short comings of our current practices, 

but it is a vegan cleanse or a ketogenic diet, so different that most consumers are unlikely to be 

able to switch quickly and sustain the change, even though it delivers results. We offer a 

pragmatic emphasis on making smarter choices one meal at a time, and encourage peer-to-peer 

support and accountability. As we wean ourselves from sugary kappas, distilled AUCs >.9, and 

high-sodium alphas, we will need to remind ourselves and each other that the results will be 
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better for the field in terms of both generalizability and reproducibility.   
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Table 1 

Association between scale length, average inter-item correlation, and Cronbach’s alpha.  

 

 Number of Items on Scale (k) 
Average 
Item r 50 40 30 25 20 15 10 5 

.10 .85 .82 .77 .74 .69 .63 .53 .36 

.15 .90 .88 .84 .82 .78 .73 .64 .47 

.20 .93 .91 .88 .86 .83 .79 .71 .56 

.25 .94 .93 .91 .89 .87 .83 .77 .63 
.30* .96 .94 .93 .91 .90 .87 .81 .68 
.35 .96 .96 .94 .93 .92 .89 .84 .73 
.40 .97 .96 .95 .94 .93 .91 .87 .77 
.45 .98 .97 .96 .95 .94 .92 .89 .80 
.50 .98 .98 .97 .96 .95 .94 .91 .83 
.55 .98 .98 .97 .97 .96 .95 .92 .86 
.60 .99 .98 .98 .97 .97 .96 .94 .88 
.65 .99 .99 .98 .98 .97 .97 .95 .90 
.70 .99 .99 .99 .98 .98 .97 .96 .92 

 
 
Note. “Excellent” values of alpha >= .90 (bold line) could be achieved by long scales with even 
though they might include items measuring heterogeneous constructs, and would require inter-
item correlations > .6 for short forms often used in applied settings.   
*The italicized row shows how picking a moderate target for item correlation, such as average r 
~.3, would produce a sliding scale of alpha values depending on scale length. 
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Table 2 

Comparison of four common effect sizes and conventions.  

r d AUC Fisher z' 

.000 .000 .500 .000 

.100 S .200 S .556 .100 

.200 .408 .614 .203 

.243 .500 M .638 .248 

.300 M .629 .672 .310 

.350 .747 .700 S .365 

.371 .800 L .714 .390 

.400 .873 .731 .424 

.500 L 1.155 .793 .549 

.514 1.198 .800 M .568 

.600 1.500 .856 .693 

.670 1.805 .900 L .811 

.700 1.960 .917 .867 

.800 2.667 .970 1.099 

.900 4.129 .998 1.472 

.950 6.085 1.000 1.832 

.990 14.036 1.000 2.647 

Note. Boldfaced coefficients represent common rules of thumb for small, medium, and large 
effects. Coefficients above z’ values of .8 may be too good to be true, and warrant critical 
evaluation in most clinical applications, unless they are reliability coefficients. Similarly, 
coefficients with z’ values more than .3 higher than expected also deserve scrutiny of the design, 
analyses, and reporting. 
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