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Abstract 
Protozoan parasites of the genus Leishmania are the causative agents of a wide 

spectrum of diseases from self-healing cutaneous leishmaniasis to visceral 

leishmaniasis. The parasites undergo a complex life cycle including motile and non-

motile cell types within the insect vector and vertebrate host. Within the insect vector, 

promastigotes generally migrate anteriorly along the gut as they undergo 

morphological changes from procyclic to nectomonad and later to metacyclic form of 

promastigotes. In order for the insect vector to transmit infective stage Leishmania 

promastigotes to the mammalian host via a blood feed, metacyclic promastigotes need 

to be located within the foregut. The study of the elicitors of migration within the sand 

fly alimentary canal have to date been fragmentary with no exploration of the different 

promastigote forms and the effects of the vast array of potential chemoeffectors 

present. Two Leishmania species were selected based on their migration properties in 

the sand fly gut. This study focussed on understanding the chemotaxis of different 

morphotypes of posterior migrating reptilian- pathogenic Leishmania tarentolae 

compared to the anterior migrating human pathogenic Leishmania mexicana within 

the biochemical gradients of the sand fly alimentary canal.  

 

This study explored the movement of both L. mexicana and L. tarentolae 

promastigotes towards a gradient of urea that may be found emitting from Malpighian 

tubules in the hindgut, the novel morphologies of L. tarentolae, the migration of 

procyclics, neptomonads, leptomonads and metacyclics, and the development of a 

novel microfluidic device for the study of chemotaxis in Leishmania.      

 

The results from the chemotaxic assays suggested that the migration of promastigotes 

occurred through the attraction towards cues such as the urea gradient from the 

Malpighian tubules and hindgut, and the sugars gradient from the diverticulum. These 

assays showed that  L. tarentolae had a significantly higher attraction to urea and L. 

mexicana to sugars; confirming the species-specific differences between suprapylarian 

and hypopylarian parasites. Using different populations of L. mexicana and L. 

tarentolae promastigotes, a significant difference in migration between population 

based on age was observed. The results also suggested that a population rich in 

leptomonads and nectomonads had a higher migration and therefore a higher 

attraction towards the chemical cues. The results shed light on parasite migration that 
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is dependent on the developmental stage of promastigotes as well as the species-

specific cues. The role that the cues play in determining which Leishmania species 

can be transmitted via the bite of a sandfly are discussed. 
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CHAPTER ONE: GENERAL INTRODUCTION 

1.1  Leishmaniasis 

 
Leishmaniases are a group of vector-borne (Gillespie et al, 2016) neglected 

tropical disease (NTD) with a wide geographical distribution globally (Spotin et al, 

2015; Alvar et al, 2012) and great impact in magnitude of morbidity and mortality 

(Alvar et al, 2012). It is transmitted by the bite of an infected sandfly with the 

protozoan parasite Leishmania (Figure 1).  

 

 
 
Figure 1. Leishmania life cycle within a sandfly. Amastigotes are taken up in a bloodmeal by female sandflies. 
Within the midgut, the amastigotes transform into the procyclic promastigotes which can further replicate into 
more procyclics or differentiate into nectomonad promastigotes which migrate anteriorly and replicate into 
leptomonad promastigotes and further into haptomonad or metacyclic promastigotes. Image from Bates, 2018 

1.1.1 Epidemiology  

 

Leishmaniasis is endemic in 88 countries (Alvar et al, 2013; Alawieh et al, 

2014) and is prevalent in areas in tropical and subtropical regions, and the 

Mediterranean Basin (Alawieh et al, 2014; Gillespie et al, 2016). It has an estimated 

incidence of 1.6 million new cases annually (Rezvan, Nourain and Navard, 2017); 

causing over 50 thousand deaths annually (Gillespie et al, 2016; Rezvan, Nourain 

and Navard, 2017), 3.3 million disability-adjusted life years (DALYs) lost annually 

(Gillespie et al, 2016) and 350 million people at risk of infection worldwide (Rezvan, 

Nourain and Navard, 2017). These factors have led to leishmaniasis to be considered 

a public health problem worldwide (Costa et al, 2013) and categorized as a class I 
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disease (emerging and uncontrolled) by the World Health Organisation (WHO) 

(Rezvan, Nourain and Navard, 2017).  

 

Leishmaniasis is known to have strong associations with poverty (Alvar et al, 

2013) and environmental changes (Rezvan, Nourain and Navard, 2017), leading to 

the burden of this NTD falling disproportionally on the poorest global population. 

Poverty is associated with poor nutrition, housing conditions and sanitation, as well as 

migration; all of which brings nonimmune hosts into close proximity to domestic 

animals (potential reservoir), other infected persons and sandflies. This in addition to 

the lack of access to healthcare, delays in diagnosis and treatment increases the risk of 

disease progression, leading to an increase of the clinical manifested disease (Alvar et 

al, 2013). The costly diagnosis and treatment of leishmaniasis leads to further 

hardship for the families involved, reinforcing the cycle of the disease and poverty. In 

the poverty stricken prevalent areas, periodic epidemics are known to occur (Ethiopia 

(2005, 2006), Kenya (2008) and Sudan (2009-2011) (Gillespie et al, 2016). 

 

Epidemics have also emerged due to conflicts and war where public health has 

broken down and housing conditions have fallen, leading to the proximity to untreated 

patients decreasing and the migration of immunologically naive migrants from 

nonendemic to endemic areas (Alvar et al, 2013; Alawieh et al, 2014).  An example 

of this was seen in 2013 when an outbreak of Leishmaniasis in Lebanon occurred 

following the migration of Syrian refugees from endemic Syria (Alawieh et al, 2014). 

 

The high burden of leishmaniasis is linked to the great impact in magnitude of 

morbidity and mortality that it has (Alvar et al, 2013). However, with symptomatic 

cases taking months to show clinical manifestations after exposure (Alawieh et al, 

2014) representing 5-16% of all cases and the lack of proper reporting, the actual 

burden of leishmaniasis could be exceeding its estimations.  

 

1.1.2  Clinical Presentation 

 

The various species of Leishmania parasites and the wide distribution of insect 

vectors allows for numerous interplay leading to various clinical manifestations of the 
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disease (Rezvan, Nourain and Navard, 2017). The clinical manifestations have been 

classified into three (3) main forms of leishmaniasis dependent on characteristics and 

are later further divided; cutaneous leishmaniasis (CL), visceral leishmaniasis (VL) 

and mucocutaneous leishmaniasis (ML) (Alawieh et al, 2014).  

Cutaneous Leishmaniasis  

CL is typically not life threatening and presents as changes in the skin’s 

appearance, such as papules that may ulcerate forming lesions at the site of bite 

(Bañuls et al, 2011) and multiple nodules. This form of leishmaniasis is caused by 

Leishmania amazonensis, Leishmania mexicana, Leishmania braziliensis, Leishmania 

panamesis, Leishmania peruviana and Leishmania guayanensis (New World CL) 

(Figure 2A), Leishmania infantum, Leishmania chagasi (Mediterranean and Caspian 

Sea regions) and Leishmania major, Leishmania tropica, Leishmania aethiopica (Old 

World CL) (Figure 3A) (Rezvan, Nourain and Navard, 2017). These ulcers heal 

spontaneously after 2-10 months dependent on lesion severity, unless a secondary 

infection occurs at the site of lesion. CL is further subdivided to Anthroponotic CL, 

Zoonotic CL, and Diffuse CL making CL the most complex form to diagnose 

(Bañuls et al, 2011). 

 

Mucocutaneous Leishmaniasis 

ML occurs following chronic CL (Reithinger et al, 2010) in a metastatic 

manner, where CL lesions act as a primary site and dissemination occurs through the 

lymphatic system or blood vessels (Bañuls et al, 2011). This usually causes 

destruction to the oronasal and pharyngeal cavities in 90% of cases (Bañuls et al, 

2011), causing eating and breathing problems (Rezvan, Nourain and Navard, 2017).  

ML infections leave life-long disfiguring scars leading to social stigma and in the 

worst cases leads to mortality. This form of leishmaniasis is mostly caused by L. 

brazilensis, however rare forms have been associated with L. panamensis, L. 

guyanensis in the New World and occasionally L. infantum and Leishmania donovani 

(Rezvan, Nourain and Navard, 2017; Bañuls et al, 2011).  
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Visceral Leishmaniasis 

VL is the most severe form of leishmaniasis affecting internal organs, leading 

to systemic infection (Rezvan, Nourain and Navard, 2017) and high fatality (Alvar 

et al, 2013; Gillespie et al, 2016). It is also known as kala-azar, black fever and 

Dumdum (Rezvan, Nourain and Navard, 2017). This form of leishmaniasis is 

caused by L. donovani complex which is composed of 3 species; L. donovani, L. 

infantum and L. chagasi, however the composition of complex has been challenged 

(Mauricio et al, 1999; Rezvan, Nourain and Navard, 2017; Lukes et al, 2007; 

Bañuls et al, 2011). The distribution of VL in the Old World and New World is 

similar to that of CL (Figure 2B & 3B). In VL, the symptomps vary in severity from 

fever, skin pigmentation, anaemia, hepatosplenomegaly and a depressed immune 

response.    

Clinical presentation does not always occur. Over 90% of L. donovani and L. 

infantum human infections are asymptomatic (Rezvan, Nourain and Navard, 2017). 

This leads to asymptomatic carriers such as dogs in Brazil acting as the ideal 

reservoirs as they escape culling programmes becoming vital in infection propagation 

(Bañuls et al, 2011).  

Figure 2. Reported distribution of cutaneous (A) and visceral (B) leishmaniasis in the New World. Evidence 
consensus for presence of the disease ranging from green (complete consensus on the absence: −100%) to purple 
(complete consensus on the presence of disease: +100%); blue spots indicate occurrence points or centroids of 
occurrences within small polygons. Image adapted from Pigott et al, 2014 
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Figure 3. Reported distribution of cutaneous (A) and visceral (B) leishmaniasis in the Old World. Evidence 
consensus for presence of the disease ranging from green (complete consensus on the absence: −100%) to purple 
(complete consensus on the presence of disease: +100%); blue spots indicate occurrence points or centroids of 
occurrences within small polygons. Image adapted from Pigott et al, 2014 
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1.1.3  Causative Agent and Vector 

 

The causative agent of leishmaniasis is the protozoan parasite of the genus 

Leishmania (Gillespie et al, 2016), a kinetoplastid (Spotin et al, 2015) which is 

transmitted by the bite of an infected female phlebotomine sandfly (Alawieh et al, 

2014), its insect vector. There are over 20 Leishmania species that are pathogenic to 

humans (Gillespie et al, 2016; Rezvan, Nourain and Navard, 2017). The correlation 

between the occurrence of human leishmaniasis and high rates of infected dogs shows 

the important role dogs play as reservoirs to maintain the propagation of parasites and 

transmission (Costa et al, 2013; Gillespie et al, 2016). The presence of reservoir 

hosts depends on the type of Leishmania species (Alawieh et al, 2014). 

Anthroponotic species such as L. tropica in Turkey (Zeyrek et al, 2007) are restricted 

to human hosts therefore the human population is used as the main reservoir for 

infection (Reithinger et al, 2010), whereas zoonotic species such as L. mexicana in 

Brazil (Pimentel et al, 2015) have animal hosts (Alawieh et al, 2014). Although 

Leishmania species such as L. tropica are known to be anthroponotic in areas such as 

Kabul in Afghanistan (Reithinger et al, 2010) and Sanliurfa Province in Turkey 

(Zeyrek et al, 2007), these species can be zoonotic in other areas such as in central 

and northern Isreal where Rock Hyraxes are reservoirs (Talmi-Frank et al, 2010), 

suggesting that anthroponoticity is dependent on area.   

 

1.1.4  Interventions 

 

Controlling the disease is dependent on early diagnosis and treatment 

(Rezvan, Nourain and Navard, 2017). Diagnosis has advanced over the recent years, 

however there is a lack of a ‘gold standard’ test in place for effective control and 

eradication (Rezvan, Nourain and Navard, 2017). Diagnosis is based on clinical 

criteria manifested in humans, histopathology of lesions, detection and isolation of 

parasites from the lesions which can be done by microscopy or culture methods, 

employment of soluble Leishmania protein in enzyme-linked immunosorbent assay 

(ELISA) method tests, and the analysis of the small subunit ribosomal RNA genes 

employing the polymerase chain reaction (PCR) (Rezvan and Moafi, 2015). Within 

diagnosis, the identification of species is necessary for the appropriate treatment and 
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control of the disease within the community. Using microscopic diagnosis, 

leishmanial species cannot be distinguished from one another due to their similar 

morphologies. Therefore, techniques have been employed for the confirmation of 

species including isozyme analysis and molecular techniques as the kinetoplast DNA 

is unique to each Leishmania species (Rezvan and Moafi, 2015).  

 

With the knowledge of the specific causative Leishmania species, the relevant 

environmental control and treatment can be employed. There are a few approved drug 

treatments, however no prophylactic drug is available for visceral and cutaneous 

leishmaniasis due to the biology of the Leishmania parasites in the human body. The 

key aspects to the biology of the Leishmania parasites that affect the development of 

drugs includes the location of the intracellular form of parasite, the varying regional 

species and the relationship of the parasite to the host immunity resulting in different 

results (Croft and Olliaro, 2011).  

 

Chemotherapy (Gillespie et al, 2016; Horn and Duraisingh, 2014)  is the key 

treatment for all three (3) clinical manifestations of leishmaniasis. As chemotherapy is 

expensive and requires a long and complicated treatment regime over a period of time, 

it is not a treatment available to the majority of people affected by the disease. The 

only preventative methods currently used widely are vector and reservoir control 

when infection is anthroponotic. This includes the use of methods such as limiting 

exposure to the vector and reservoir through control: use of insect repellent, culling of 

infected dogs (Costa et al, 2013), use of insecticide-impregnated collars (Reithinger 

et al, 2004) and use of impregnated bed nets (Gillespie et al, 2016; Alawieh et al, 

2014). Despite the implementation of these control mechanisms, a high incidence of 

leishmaniasis remains in many focal areas such as Latin American countries (Costa et 

al, 2013) and India (Gomes et al, 2017). In Brazil, culling of dogs is the main strategy 

used however is ineffective (Costa et al, 2013) due to culling programmes not being 

continuous due to a lack of a structured surveillance system, financial problems and 

the insensitivity of diagnostic testing (Courtenay et al, 2002). This causes the 

continuous cycle of disease. In India, insect repellent containing the neurotoxin 

dichlorodiphenyltricholoroethane (DDT) is used as the main strategy for the control of 

the insect vector, however with continuous use the emergence of DDT resistance has 

resulted in this strategy being ineffective (Gomes et al, 2017).  
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Due to the magnitude in mortality and morbidity, an effective preventative 

measure such as vaccination for leishmaniasis is the most appropriate (Rezvan, 

Nourain and Navard, 2017). Vaccines elicit long lasting immunity which would be 

ideal in controlling or eliminating leishmaniasis (Gillespie et al, 2016; Alawieh et al, 

2014) in a cost-effective manner. The argument for vaccine development is that 

Leishmania immunity is present in the majority of people who recover from 

leishmaniasis. The basis of this was used in the ancient practice of ‘leishmanization’ 

where an immunized individual used a thorn to introduce live parasite to another 

(Gillespie et al, 2016). Currently there is no licensed vaccine available against human 

leishmaniasis (Gillespie et al, 2016), however there are a number of candidates in 

various pre-clinical stages in development, such as LEISH-F2 and F3 based on 

Leishmania antigen epitopes (Rezvan and Moafi, 2015; Gillespie et al, 2016).  

 

With the interplay between distribution of Leishmania species, sandfly species, 

leishmaniasis disease, control programmes in place, asymptomatic and 

immunosuppressed persons, and diagnostic tools available, the full understanding of 

all areas of this NTD is crucial in understanding the disease.     
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1.2  Sandfly – The vector 

 

There are over 800 recognized sand-fly species, which are divided into two (2) 

main classifications of 464 New World species and 375 Old World species and can be 

further subdivided (Akhoundi et al, 2016). Of these over 800 species, only 98 have 

been proven or suspected to transmit Leishmania parasites to humans (Maroli et al, 

2012; Ready, 2013): 42 Phlebotomus species (Old World) and 56 Lutzomyia species 

(New World) (Maroli et al, 2012). Unlike nonhematophagous male sand flies 

(Lestinova et al, 2017), female Lutzomyia and Phlebotomus sand flies (Diptera: 

Psychodidae: Phlebotominae) are hematophagous insects (Telleria et al, 2010). This 

makes them important in the transmission of Leishmania parasites (Lantova and 

Volf, 2014). They are often considered to be the only natural vectors of Leishmania, 

however midges (Diptera: Ceratopogonidae) have also been shown to play a role in 

transmission of leishmanial parasites (Kwakye-Nuako et al, 2015; Dougall et al, 

2011).  Midges are vectors in areas with limited or absent phlebotomine sand flies 

such as in north Australia (Dougall et al, 2011) and in the Volta region of Ghana 

(Kwakye-Nnako et al, 2015).  Leishmania parasites are coinoculated with saliva to 

the vertebrate host during the process of blood feeding (Lestinova et al, 2017), this 

makes the act of blood feeding imperative for the successful transmission of 

Leishmania parasites for disease in humans.  
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1.2.1  Life cycle  

Figure 4. Sandfly life cycle. Adapted from European Center for Disease Prevention and Control: Phlebotomine sand 
flies- Factsheet for experts (https://ecdc.europa.eu/en/disease-vectors/facts/phlebotomine-sand-flies) and 
Lutzomyia longipalpis image by Ray Wilson.  
 

The sandfly life cycle has four (4) distinct life stages: egg, larva, pupa and 

adult fly (Figure 4). Eggs are produced from the adult female sandfly and develop 

through 4 instars where they scavenge before developing into the pupal stage. The 

adult sandfly emerges from the pupa, mates and the cycle continues. Aside from 

mating, feeding is crucial for the development of eggs by the female sandfly therefore 

only females blood feed. However, autogenous species of sandfly are known (Chelbi, 

Kaabi and Zhioua, 2007). If the sandfly survives oviposition, a new gonotrophic 

cycle requires another blood feed hence the transmission of Leishmania parasites 

(Peter J Myler and Nicolas Fasel, 2008).  
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1.2.2  Structure 

 

Compared to other vector groups, the biology of sandflies is poorly known 

(Manson, Cooke and Zumla, 2009). Sandfly gut has a slightly more complex 

structure in which it has compartmentalized regions where specific activities occur 

(Figure 5). This allows for each region to have a unique function and 

microenvironment. For the development of Leishmania and the factors that may affect 

migration, focus is given to the gut, malpighian tubules and the ventral diverticulum 

(crop).  

Figure 5. The anatomy of the alimentary canal of sandflies, showing the compartmentalized regions of the gut 
(midgut, hindgut and foregut), ventral diverticulum (crop), and malpighian tubules. Ilustration from Mansoon, 
Cooke and Zumla, 2009. 
 

Similar to humans, the alimentary canal represents the passage from the mouth 

to anus functioning primarily to convert food into absorbable particles by the actions 

of enzymes and muscular movements. The alimentary tube is segmented into 3 

primary regions; the foregut, midgut and hindgut which are histologically distinct in 

terms of their purpose (Richards and Davies, 1977).  

 

Feeding is essential for the survival of the sandfly in addition to the mode of 

transmission in which disease is spread. The cibarial muscle contraction provides the 

suction that pulls food in fluid form into the pharynx before passing into the 

abdominal midgut or crop (Schlein, Jacobson and Messer, 1992). The crop is a 

foregut organ (Stoffolano and Haselton, 2013) used as a reservoir for carbohydrates. 
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With a series of pumps and sphincters the flow of fluid into the crop and fluid into the 

midgut is regulated dependent on hydrostatic pressure (Thomson, 1975). The rate of 

crop emptying of fluid to the midgut for digestion is based on the metabolic rate of the 

sandfly, temperature (Moloo and Kutuza, 1971), growth of the peritrophic membrane 

(PM) (Harmsen, 1973) and composition of the haemolymph (Stoffolano and 

Haselton, 2013).  

 

The two main segments for parasite development is the midgut and hindgut 

(Figure 5). The midgut is composed of two segments; the narrow anterior (thoracic) 

midgut which follows from the foregut and the wide posterior (abdominal) midgut 

(Adler and Theodor, 1929). This area is lined with a layer of microvillar epithelium 

which has a number of functions; it secretes the PM following a blood meal (Rudin 

and Hecker, 1982), secretes and produces the digestive enzymes required, and 

absorbs nutrients for transport following the digestion process (Soares and Turco, 

2003). Most of the enzyme produced are proteinases such as trypsins which are more 

active in the gut alkaline environment (Figure 8). Enzyme levels increases following 

the bloodmeal and decreases as digestion declines, proportional to the level of protein 

found in the midgut from the blood (Lehane, 2005). The hindgut is cuticle lined 

similarly to the foregut. The pylorus leads directly from the midgut and contains rows 

of posteriorly-directed protrusions possibly to aid the removal of remnants from 

digestion (Warburg, 2008).  

 

The malpighian tubules are located between the midgut and the hindgut; 

playing an important role in insects as the primary excretory system (Ramsay, 1951) 

and perform osmo-regulation (Littau and Smith, 1960).  They are composed of 

bundles of tubes made up of 3 different types of cells (Figure 6) (Littau and Smith, 

1960), the epithelial cells at the distal regions are brush bordered whilst honeycombed 

at the proximal region of the tubules (Littau and Smith, 1960). These narrow tubes 

infiltrate the haemocoel containing hemolymph from which waste is collected into the 

distals of the malpighian tubes. Towards the proximal regions, water is reabsorbed 

back into the haemocoel. The nitrogenous waste remaining in the lumen is converted 

to urea and later uric acid crystals which is eliminated into the hindgut as excreta. 
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Figure 6. Illustration of the 3 cell types in the Malpighian tubules (MT) from I at the distal region in contact with the 
haemolymph within the haemocoel surrounding the midgut, to IV at the proximal region associated to the hindgut. 
Region I contain MT I cells have a loosely packed microvilli brush boarder up to 3ul in length and 0.1 - 0.15ul in 
diameter in contact with the haemolymph with a dense population of granules. Region II and IV contain MT II and 
IV cells respectively which are structurally similar with numerous randomly distributed mitochondria and shallow 
infoldings. Region III contain MT III cells containing numerous granular vesicles used for the main role of excretion.  
Image from (Littau and Smith, 1960) 
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1.2.3  Feeding 

 

Both male and female sandflies require a regular source of carbohydrates for 

energy acquired from honeydew excreted on plants and plant sap as a ‘sugar meal’ 

(Schlein and Jacobson, 1999). Female sandflies require an additional source of 

protein to support the development of eggs which they acquire from the ‘blood meal’ 

(Ready, 1979) known as gonotrophic concordance (Lehane, 2005). Due to the 

specific need of female sand flies to acquire a ‘blood meal’, Leishmania parasites can 

pass to and from the sand fly during a blood feed making them an ideal vector 

(Telleria et al, 2010). The proboscis is used for both feeds, however the blood and 

sugar have separate destinations due to batch digestion. The blood meal travels 

through the stomodeal valve and is kept within the midgut where a PM, a sac like 

structure is secreted by the midgut epithelium within the first couple of hours (Dillon 

et al, 2006). The sugar meal begins by travelling down the stomodeal valve into the 

gut, however is quickly diverted into the crop (Tang and Ward, 1998). This 

separation is important as the sugar meal within the crop may contain proteinases that 

can inhibit blood digestion (Stoffolano and Haselton, 2013). 

 

Sugar meal 

 

The sugar meal is the most important for the survival of the sand fly; in the 

wild sand flies feed on plants as their source of sugars. Whilst feeding, sandflies can 

adopt a ‘sugar feeding mode’ where they have raised palps (Tang and Ward, 1998). 

This sugar meal is kept completely separate from the blood meal in the crop. 

Carbohydrate digestion is initiated here due to the presence of salivary glands 

enzymes before it is slowly released into the gut where digestion by (alpha)-

glucosidases continues. This gradual release is possibly to avoid significant body fluid 

osmolarity fluctuations (Stoffolano and Haselton, 2013).  The pH of solely sugar fed 

sandflies has a slightly acidic pH of 6 which is the optimum pH for (alpha)-

glucosidase activity. This enzyme is membrane bound and involved in the breakdown 

of disaccharides to simple sugars for digestion by hydrolyzing the terminal non-

reducing 1-4 bonds.  
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 Blood meal 

 

The blood meal ingested is contained in the midgut surrounded by the PM, 

confining the early stage development of Leishmania to within the PM (Pruzinova et 

al, 2015). For the initial infection of the sandfly, amastigote forms of Leishmania are 

ingested within the blood meal. These parasites multiply and morphologically 

transform for the establishment of infection. Before the establishment of infection in 

the midgut, the parasites encounter 3 main handicaps (Pruzinova et al, 2015; Telleria 

et al, 2010; Shaden Kamhawi, 2006); enzymatic activities, midgut peristalsis and the 

PM.  

 

The first hindrance is the activities of digestive enzymes, particularly the 

activity of trypsin. Trypsin is the most abundant digestive enzymes within the gut of 

hematophagous insects, confined to the midgut lumen (Dillon and Lane, 1993; 

Telleria et al, 2010). There are other enzymes that affect Leishmania in the midgut 

such as aminopeptidase found in the midgut wall (Dillon and Lane, 1993). These 

enzymes are produced by the midgut epithelial cells post blood-meal with distinct 

peak times dependent on sand fly species (Dillon and Lane, 1993).  Along with 

digesting the blood serum, the activities of these midgut proteases select for 

‘compatible’ Leishmania to sand fly species combination (Pruzinova et al, 2015). 

This is done by the natural vector parasite Leishmania species having the ability to 

modify the midgut environment to favour its development by interfering with trypsin 

production and subsequently pH and enzyme efficiency (Santos et al, 2014). The 

survival to this proteolytic attack is the first essential step for the parasite development 

and the establishment of infection within the vector (Pimenta et al, 1997).   

 

The second hindrance is the type I PM formed in response to blood feeding 

(Lehane, 1997). Following a blood meal, the PM is developed rapidly and fully 

formed by 6-24 hours post blood-meal dependent on sand fly species (Pruzinova et 

al, 2015). The PM acts as a physical barrier for the protection of the midgut 

epithelium to damage from pathogens found in the midgut lumen (Lehane, 1997) and 

conversely protects the Leishmania parasites by compartmentalizing them from the 

hydrolytic activities of the midgut (Pruzinova et al, 2015; Secundino et al, 2005). 

This remains intact until digestion finishes and the disintegration of the PM occurs. 

The absence of PM is associated to the loss of midgut infections due to the lethal 
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conditions of the sand fly midgut (Pimenta et al, 1997). However, this prevents the 

escape of the parasites into the ectoperitrophic space and as the remnants of the blood 

meal is defecated following digestion can lead to the loss of parasites.  As 

intraperitrophic Leishmania parasites are not able to traverse the PM prior to its 

disintegration (Sádlová and Volf, 2009), escape from the blood meal occurs in the 

period between PM disintegration and defecation. L. major infections showed sandfly 

derived chitinases disintegrate the PM from the posterior end, therefore escaping the 

PM to the ectoperitrophic space requires the high densities of parasite found at the 

anterior area of the PM to migrate to the posterior end (Sádlová and Volf, 2009). This 

however may be species-specific.      

 

The third hindrance is the action of midgut peristalsis (antegrade)- the motor 

pattern of the midgut to propel contents in the direction towards the anus for excretion 

of the blood meal remains following digestion (Figure 7) (Shaden Kamhawi, 2006). 

Here parasites are exposed to possibly being expelled if they have not escaped the 

PM. Therefore strategies have been employed by Leishmania parasite to slow down 

excretion such as the secretion of a myoinhibitory neuropeptide relaxing the midgut 

(Vaidyanathan, 2004). This leads to the sandfly being less efficient in expelling the 

blood meal remains, increasing the time period in which parasite can escape the PM.  

 

Following the escape from the PM, parasites can still be removed from the 

midgut by peristalsis and defecation; they therefore need to colonize and attach to the 

midgut epithelium to prevent this.  
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Figure 7. The digestion of the blood meal within the sandfly midgut. A-D shows the formation of the PM in S. 
schwetzi (A) and P. papatasi (B), P. orientalis (C) and in P. argentipes (D). The arrow indicates the thin PM 
separating the blood bolus (BB) from the midgut epithelium (ME). Following digestion, the remnants remain within 
the PM through its disintegration. E shows the PM intact with no leak of remnants into the ME. F-H shows 
degradation occurring in the PM causing a leak of remnants into the ME. Image from (Pruzinova et al, 2015). 
 

From the changes of diet, the physiology of the midgut of female sandflies 

modifies to support the digestion of both sugars and blood. These modifications 

requires the changes of enzymes as well as the changes of pH needed for the 

appropriate activities (Figure 8) (Santos et al, 2008). Following the blood meal, the 

slow release of sugars from the crop to the midgut is interrupted by the presence of the 

blood meal and the modifications (such as changes in enzymes) present for the 

digestion of blood. These changes: presence of enzymes such as trypsin and 

chymotrypsin along with the change of acidic pH 6 to alkaline pH 7-8 (Figure 8) 

allows for protein digestion and potentially favours Leishmania development within 

the gut before an acidic environment is reintroduced post-blood meal.  
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Figure 8. The anatomy of Lu. longipalpis gut and the pH of the midgut during the first 10h (a) and 24 hours (b) after 
blood ingestion shows the returning of an acidic pH from alkaline following the digestion of the blood meal. The 
thoracic midgut (TM) and diverticulum (D) filled with sugar solution shows an acidic pH (5.5-6). (AM) abdominal 
midgut. Image from (Santos et al, 2008). 
 

The initial development of Leishmania parasites within the gut plays within 

the fine balance of pH favouring it’s development along with the hindrances of the 

presence of the enzymes, midgut peristalsis and the PM development. 
 

1.2.4 Microbiota  

 
Within the gut, Leishmania parasites join the symbiotic resident microbial 

community within the alimentary canal of the sandfly (Pumpuni et al, 1996). The 

microbiota is said to have a major role influencing the induction, maturation and 

function of the host immune system (Telleria et al, 2018) along with the development 

of Leishmania parasites (Fraihi et al, 2017); making the interactions between the 

parasite and sandfly microbiota important in understanding the migration and 

transmission of Leishmania. The life cycle of the sandfly (Figure 4) reflects where 

resident and pathogenic microbes found in the sandfly’s microbiota originates from. 

This includes disease causing bacteria (Herrer and Christensen, 1975) and viruses 

(Depaquit et al, 2010).  
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There is little known about viruses found in sandflies (Depaquit et al, 2010) 

however, there are a few phleboviruses transmitted by sandflies that cause disease in 

humans such as Toscano viruses (TOSV) (Depaquit et al, 2010) and Sand fly fever 

Sicilian Viruses (SFSV) (Ayhan et al, 2017). There have been fewer reports of 

sandflies with the presence of a virus and a Leishmania infection. A study using 

Phlebotomus papatasi infected with cytoplasmic polyhedrosis virus (CPV) showed a 

resistance to the Leishmania infection, possibly due to the pathological modifications 

by the virus preventing the attachment of Leishmania to the epithelium and the early 

exposure to the digestive enzymes found in the gut during blood digestion (Warburg 

and Ostrovska, 1987). Considering other studies of infections of Leishmania 

parasites with various viruses (Faucher et al, 2014, Ergunay et al, 2014) it can be 

determined that there is a complex relationship between the two which differs 

between Leishmania species and specific viruses. Apart from human pathogenic 

viruses, there are novel viruses of Lu. longipalpis; Lutzomyia Piaui reovirus 1 

(LPRV1), Lutzomyia Piaui reovirus 2 (LPRV2), Lutzomyia Piaui nodavirus (LPNV) 

(Aguiar et al, 2015).   

 

The life cycle (Figure 4) shows the egg stage and larvae stage from which 

adult sand flies emerge. Their resident microbiota originates from the diverse and 

undefined environments in which each stage develop and the food they ingest. This 

creates a complex network of overlapping bacteria found within the gut of sandflies 

species which can be seen in Figure 9. This can be dependent on developmental stage 

and country of origin (Telleria et al, 2018). 
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Figure 9. Network analysis showing the shared bacteria species between sandflies species. Phlebotomus sand flies 
are identified by squares surrounded by green and bacteria found in Lutzomyia sand flies identified with squares 
surrounded by blue. Coloured circles represent bacteria species that are shared between sand flies species. White 
circles represent bacteria species that are unique to each of the sand flies species and are listed inside large 
rectangles. Image from Fraihi et al, 2017 
 

Ingested food can influence the gut microbiota in both larvae (Vivero et al, 

2016) and adult sandflies (Oliveira et al, 2000). The microbial diversity of adult 

female sandflies changes with blood feeding (Figure 10) with the resident microbiota 

present in non-blood fed females altering when sandflies are blood fed and return 

following blood digestion and excreta removed (Endris et al, 1982, Monteiro et al, 

2016, Kelly et al, 2017, Pires et al 2017). After a blood meal, bacterial diversity 

decreases and overall bacteria numbers increase due to the nutrient-rich environment 

provided by the blood (Volf, Kiewegova and Nemec, 2002). This shows how 

substantial a role feeding has on the microbiota of sandflies as Leishmania 

development primarily occurs during blood digestion when the resident microbiota of 

the gut differs as seen in Figure 10.  
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Figure 10. Lutzomyia longipalpis gut microbiota. Network analysis showing bacteria found in Lu. longipalpis 
dependent on feeding conditions. Image from Telleria et al, 2018 

 

 

There is a stark difference in bacteria found in ‘blood and infected flies’ and in 

‘blood fed flies only’, however as the data used has been acquired from different 

publications it represents the wide range of variation of gut microbiota and reflects the 

conditions of diet and habitat of sandflies globally (Figure 10) (Mukhopadhyay et al, 
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2012). Bacterial diversity of Leishmania infected midguts decreases over time post 

infection to an Acetobacteraceae family rich microbiota (Kelly et al, 2017). The 

largest evidence suggesting that the interaction between the microbiota of the sandfly 

gut and Leishmania parasite is important was showed by Kelly et al; antibiotic 

suppression of gut microbiota resulted in the arrest of parasitic replication and 

development (metacyclogenesis) without affecting the health of both the sandfly and 

the Leishmania present in the gut showing the huge influence of the microbiota to 

infection establishment. 

 

The bacteria present in the sandfly gut have not been further 

compartmentalized into foregut, midgut and hindgut. However, it is understood that 

quorum sensing will occur in the midgut between bacteria (Fuqua, Winans and 

Greenberg, 1994). During quorum sensing, extracellular signalling molecules are 

produced to be detected by other bacteria known as autoinducers (AIs). These AIs 

diffuse producing concentration gradients which can be detected by bacteria via 

receptors present on their surface. It may be possible for Leishmania parasites to also 

recognise these molecules, producing a response to their presence.   
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1.3  Leishmania protozoa - The parasite 

 
There are over 900 species and subspecies of female sandflies from two 

Phlebotomine genera (Phlebotomus and Lutzomyia) of which many have been proven 

to transmit the approximately 40 Leishmania protozoa in a zoonotic or anthroponotic 

manner (Sacks and Kamhawi, 2001). The genus Leishmania is made up of protozoa 

belonging to the Trypanosomatidae family, order Kinetoplastida (Sacks and 

Kamhawi, 2001). Leishmania have a dimorphic life cycle, alternating between two 

main morphological forms: intracellular amastigotes which are found in the 

mammalian host and promastigotes which are found in the vector (Figure 11) (Sacks 

and Kamhawi, 2001). The two forms are significantly different in cell shape and 

motility, however have a similar organelle organisation (Figure 12).  

 

 

 

 

 

 

 

 

 

 

 
Figure 11. The two main morphological forms of Leishmania spp.  The red arrow shows the amastigote form is 
ingested by a female sandfly vector during a blood meal, where it undergoes metacyclogenesis through the 
different forms of promastigotes and transforms into a flagellated metacyclic promastigote. Image in figure shows 
a procyclic promastigote. The yellow arrow shows this promastigote is transmitted into the mammalian host during 
the next blood feed where it transforms into the visually aflagellated intracellular amastigote form (amastigotes 
contain a short flagella which is not visible). Female Lutzomyia image from Pete Perkins.  Scanning electron 
microscope images of L. major from Besteiro et al, 2007. 
 

The complex transitions that Leishmania undergoes within different changes in 

environment can be stressful. Each developmental form is adapted to cope with 

environmental stresses, gaining an advantage for survival. These adaptations include 

nutritional requirements, growth rate, ability to divide, expression of surface 

molecules and morphology (Besteiro et al, 2007). Amastigotes are well adapted for 

their intracellular existence within the parasitophorous vacuole in the macrophages: 
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non-motile as migration is not required, reduced size to exist within a small enclosed 

space, flagellum length is reduced significantly that it does not emerge from the 

flagellar pocket (de Souza and Souto-Padron, 1980), are acidophiles due to the 

acidic environment (Antoine et al, 1990) and have a different energy metabolism than 

promastigotes (Coombs et al, 1982).  Interestingly, from all promastigote forms,  

metacyclic promastigotes are pre-adapted for the mammalian survival, expressing 

stage-specific surface molecules and complement-resistant (Besteiro et al, 2007). 

This shows that adaptation occurs not only for the environment they are within but for 

the next anticipated change in environment.   

 

The morphology of a protozoan is one way to cope with the environmental 

stresses they may encounter, gaining a competitive advantage for survival. Therefore, 

observation of the morphology of the cell and their ultrastructures is fundamental to 

understanding the structure and behaviour of the specific protozoa. The main 

organelles here are the flagellum, kinetoplast and cell membrane.  

 

1.3.1  Flagellum 

 

The immobilisation occurring in the absence of an external flagellum in 

amastigote forms demonstrates that flagellum is the essential sole means of motility 

therefore is the key player to migration (Landfear et al, 2001). This shows diversity 

within a singular organism to adapt structure and therefore function for a distinct life 

cycle stage (Wheeler, Gluenz and Gull, 2015). L. mexicana can form two distinct 

flagellum forms; a canonical 9+2 axoneme restricted to motile promastigotes and a 9v 

axeneme (9+0 axeneme with a collapsed radial symmetry with irregular inward 

migration of other doublets) restricted to immobile amastigotes used for sensing and 

signalling (Silverman and Leroux, 2009, Singla and Reiter, 2006). The 9+2 

axoneme form is present in Chlamydomonas reinhardtii a biflagellated green algae 

that uses its flagella for motility and cell-cell recognition in mating (Silflow and 

Lefebvre, 2001), and the 9+0 axoneme form is present in primary mammalian cilia 

acting as immobile sensory antennae to coordinate cellular signalling pathways (Satir 

and Christensen, 2008).  
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Figure 12. Schematic representation of the main intracellular organelles from Leshmania promastigote (left) and 
amastigote (right) forms. The flagellum pocket represents the anterior end of the cell and migration occurs in a 
forward motion.Images adapted from Besteiro et al, 2007 
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The ability to transition between the amastigote and promastigote life stages 

within a change of environmental factors such as pH and temperature, shows that this 

transition also occurs with the flagellum axoneme to remodel between the 9+2 and 

9+0 forms (Wheeler, Gluenz and Gull, 2015). This malleability allows for 

adaptation needed in different environments; motile parasite transmission or immobile 

within a macrophage. Ciliogenesis is the process by which the flagellum is built, 

intraflagellar transport (IFT) increases the flagellar length from the basal body 

(Witman, 2003). IFT decreases during the transition of the 9+2 form to the 9+0 

axoneme structure, and the requirement of paraflagellar rod (PFR) (Langousis and 

Hill, 2014) for normal motility suggests that both IFT and PFR play a key role in the 

flagellum shortening and loss of central pair. For motility, axonemal dynenin motors 

which are attached to the A-tubule of each outer doublet microtubule undergoes 

structural changes powered ATP-dependently. This causes reversible attachment to B-

tubule of the neighbouring doublet, sliding of doublets and resistance causing 

bending, known as the ‘sliding filament’ mechanism (Satir, 1968) causing movement 

by wave-like beating of the flagellum. The flagellum pocket is an invaginated site 

specialized for endocytosis, making it a portal for host-parasite interactions; relaying 

information about the microenvironment to allow changes in the parasite to reflect the 

demands of its environment (Landfear and Ignatushchenko, 2001).    

 

1.3.2  Kinetoplast 

 

As a flagellated protozoa with the presence of a kinetoplast in the 

mitochondrion, Leishmania spp is a kinetoplastid (Simpson, 1968). Other parasites in 

this category such as Trapanosoma cruzi and Trypanosoma brucei responsible for 

serious human diseases such as Chagas disease and African sleeping sickness 

respectively, share the commonality of kinetoplast DNA (kDNA) described by Trager 

as ‘a small spherical or rod-shaped structure lying just posterior to the basal body of 

the flagellum’ (Trager, 1965). Kinetoplastids have similar genomic organization and 

cellular structures, undergoing morphological changes during the progression of their 

life cycle and having 6,000 orthologs (common ancestral genes) out of 8,000 genes 

(Stuart et al, 2008) in their genome in common. They however have very distinct 

properties such as their insect vector and the resulting human disease. These 
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commonalities, allows for the advanced knowledge of kDNA in Trypanosomes spp to 

support and build on that of Leishmania spp.  

 

Along with cell morphological changes observed in development, the 

kinetoplast is useful for pinpointing the progression within the life cycle of 

kinetoplastids. It is therefore used to determine differentiated forms due to its 

positional movement relative to other organelles; particularly the nucleus during cell 

progression. The morphologic forms of flagellates are defined by the position of the 

flagellum pocket, nucleus and kinetoplast which varies along the anterior/posterior 

axis of the cell body. As the kDNA is always posterior to the flagellar pocket and 

remains closely connected to the basal body (Vargas-Parada, 2010), this morphology 

can simply be defined as the kDNA location relative to the nucleus. This simplistic 

categorization results in 4 categories where the position of the kinetoplast changes 

relative to the nucleus; trypomastigote, epimastigote and promastigote having a 

long/slender body with a protruding flagellum, and amastigote having a round/oval 

shaped with no protruding flagellum (Figure 13). The flagellum emergence dictates 

the anterior end of the cell body. In trypomastigotes, the kDNA and flagellar pocket is 

located at the posterior end of the parasite relative to the nucleus. Epimastigotes have 

a close centralized kDNA, anterior to the nucleus; and due to the flagellum spanning 

along the cell body an undulating membrane is formed in a similar manner to that in 

trypomastigotes. In Trypanosomes spp., the posterior flagellum emerges from the 

flagellar pocket however is not free as it attaches to the cell body creating 

morphological forms (trypomastigotes and epimastigotes) with undulating membrane.  

Promastigotes have the kDNA located furthest anterior to the nucleus resulting in the 

flagellum being completely free and without an undulating membrane.  

 

The morphologies present for each flagellate life cycle are restricted and 

dependent on specific species; Trypanosoma brucei only having trypomastigote and 

epimastigote forms (Field and Carrington, 2009)  and L. mexicana only having 

amastigote and promastigote forms. 
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Figure 13. Kinetoplast repositioning in relation to other organelles during the life cycle of a flagellate. FP flagellar 
pocket, kDNA, kinetoplast DNA. Image from Field and Carrington, 2009. 
 

With the kinetoplast location being one of the key observations to pinpoint 

progression of life cycle, understanding the kinetoplast movement is important. The 

kinetoplast is attached to the basal body which is adjacent to the flagellar pocket; the 

flagellum is formed by extension from the basal body (Wheeler, Gluenz and Gull, 

2015). This relation between the three different components (nucleus, flagellum 

pocket and kDNA) results in differences between the length of unattached flagellum 

at the anterior end of the cell affecting the motility of the cell.  

 

1.3.2.1  Cell cycle 

 

Within an asynchronous population of Leishmania promastigotes, dividing cells can 

be identified through morphological changes by phase contrast microscopy (Ambit et 

al, 2011). With the use of DAPI (4′,6-diamidino-2-phenylindole) staining the nucleus 

(N) and the kinetoplast (K) with the visualisation of the cell body and the flagellum, 

the cell cycle position of the individual cell can be given. A cell in G1 phase has the 
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configuration of 1N1K1F and a cell in cytokinesis has the configuration 2N2K2F 

configuration.  

 

 
Figure 14. The cell cycle of promastigote L. mexicana by light microscopy. Micrographs of major cell cycle stages; 
cells were ordered based on number of kinetoplasts (K), nuclei (N) and flagella (F). The kinetoplast and nucleus are 
indicated in (A). Arrow in D shows the emergence of the new short flagellum. The scale bar represents 5 µm. Image 
from Wheeler, Gluenz and Gull 2010 
 
 

During the cell cycle, the Leishmania cell initially grows in length with the DNA 

content remaining constant (Figure 14 A). DNA synthesis begins with the duplication 

of  DNA content while cell length remains constant (S phase) (Figure 14 B and C). 

Finally, the cell length reduces (G2 phase and mitosis) (Figure 14 D and E) and 

cytokinesis divides (Figure 14 E and F) the cell from daughter cell, returning to the 

start of the cell cycle (Wheeler, Gluenz and Gull 2010). 
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Figure 15. Illustrations showing the properties of each cell measurement: cell body length and width, kinetoplast 
and nucleus DAPI intensity, flagellum length, kinetoplast-anterior (K-A) length, nucleus-kinetoplast (N-K) length, 
and nucleus-anterior (N-A) length. Image from Wheeler, Gluenz and Gull 2010 
 
 
The kinetoplast of L. mexicana is positioned at a constant distance of approximately 

2.5 µm from the anterior end of the cell (Wheeler, Gluenz and Gull 2010). Nuclear 

position within the cell varies but has a relationship with the cell length defined as n ≈ 

2.5 + 0.2l where n = anterior–nucleus distance and l = cell length in micrometres 

(Figure 15) (Wheeler, Gluenz and Gull 2010). 

 

1.3.2.2   Morphometrics 

 

There are different morphological changes that promastigotes undergo during 

metacyclogenesis from the initial procyclic promastigote to the metacyclic 

promastigotes. These developmental forms are defined according to their cell body 

length, cell body width and flagellum length (Figure 16) (Rogers et al, 2002):  
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Figure 16. Illustration of promastigote morphologies categorisation.  L. mexicana morphological categorization 
(Rogers et al, 2002)  
 

 

1.3.3  Plasma membrane  

 

The contiguous surface membrane (Figure 17) of kinetoplastid protozoa are 

divided: the flagellar membrane, the flagellar pocket and the pellicular plasma 

membrane each unique to each other (Landfear and Ignatushchenko, 2001).    

 

The flagella pocket is the deep invagination at the base of the flagellum, 

responsible for uptake of large nutrients by endocytosis and secretion of proteins. L-

haemoglobin is seen to be internalised from the flagella pocket membrane (Landfear 

and Ignatushchenko, 2001). Filamentous acid phosphatase (sAP) and filamentous 

proteophosphoglycan (fPPG) is secreted into the extracellular medium here.   

 

The flagellar membrane covers the flagellum. Specialised membrane proteins 

are found in the flagella membrane and serve in sensing and signalling such as 

LmjAQP1 (Figarella et al, 2007), ISO1 (Snapp and Landfear, 1999), LmGT1 
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(Burchmore et al, 2003), receptor-adenylate cyclases (Sanchez et al, 1995). 

LmjAQP1  is a aquaglyceroporin channel involved in detection of extracellular 

osmotic gradients and osmotaxis (Figarella et al, 2007). LmGT1 is a  glucose 

transporter also found in flagella pocket membrane. Receptor-adenylate cyclases have 

been expressed and may function as an adenylate cyclase (Sanchez et al, 1995). ISO1 

is also found in the flagella pocket (Landfear and Ignatushchenko, 2001).  This 

shows the flagellum pocket and flagellum membrane allows for the detection of 

signals through the membrane proteins located here.  

 

The pellicular plasma membrane covers the entire of the cell surface and is 

covered with densely packed microtubules and glycolipid lipophosphoglycan (LPG) 

coat and contains many permeases for nutrient uptake (Landfear and 

Ignatushchenko, 2001), such as LmGT2 and LmGT3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 17. A electron micrograph through the flagellar pocket of a kinetoplastid (T. brucei) showing the contiguous 
surface membrane. Image from Landfear and Ignatushchenko, 2001. 
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Nutrition of all protozoa is holozoic, therefore they require organic materials 

(Johnson, 1941). Parasitic protozoa such as Leishmania, acquire nutrients from the 

hosts by using transport proteins located on their plasma membrane known as 

permeases. Due to the intracellular parasitism nature of the life cycle, there are 

obstacles that the parasite needs to overcome to acquire the nutrients required for 

growth (Landfear, 2011). These are described by Landfear as competition with the 

sandfly and mammalian host for essential nutrients required and the distinct 

environmental stresses in the sandfly and the macrophages. These distinct 

environments lead to stresses such pH, temperature and available nutrients found in 

each of the host. These can be solved by the parasite having an nutrient uptake system 

which can be modified to accommodate the alternate environment each host; 

alteration in the uptake in accordance to available nutrient and developmental stage of 

parasite.  

 

Amastigotes remain within the parasitophorous vacuole (PV) in the 

macrophage of the mammalian host, there are two main ways in which amastigotes 

may obtain nutrients; vesicular transport and transporters. Vesicular transport from the 

macrophage plasma membrane of phagolysosomal degradation products present in the 

PV lumen or from the host cell cytosol. Nutrients such as hexoses, purines, iron and 

polyamines are imported through transporters on the cell surface membrane (Table 1) 

into the amastigote by transporters located in the parasite plasma membrane 

(Landfear, 2011). 
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Table 1. Transporters in Leishmania species and the nutrients they provide. FM flagellar membrane PPM Pellicular 
plasma membrane FPM flagella pocket membrane (Landfear, 2011). 
 

 

Hexose transporters  

 

Hexose sugars include glucose, fructose, galactose and mannose. Plant nectar 

is an important part of sandfly diets. Therefore these sugars are readily found in high 

concentrations within the thoracic midgut of the sandfly following a sugar meal 

(Schlein, 1986). Hexose transporter genes LmxGT1, LmxGT2 and LmxGT3 are 

encoded in L. mexicana genome by single copy genes that are clustered together at a 

single locus (Burchmore and Landfear, 1998) and homologous to mammalian 

glucose transporter (GLUT) family. There is a significant downregulation of these 

genes in amastigotes, reflecting the lower glucose concentration within the 

macrophage (Cairns, Collard and Landfear, 1989). Glucose is metabolised  by 

promastigotes as a source of energy that is readily available, using the glycosome 

organelle to contain and metabolise the glucose (Opperdoes, 1987).  

 

Nutrient (s) Parasite Transporters  (location) 
Hexoses L. mexicana LmxGT1 (FM, FPM) 

LmxGT2 (PPM) 

LmxGT3 (PPM) 

Purines L. donovani 

L.major 

LdNT1 to LdNT4  

LmaNT1 to LmaNT4 

Iron L. amazonensis LIT1 

Polyamines L. major LmaPOT1 

Amino acids L. donovani LdAAP3 

Polyols L. donovani LdMIT 

Folates Leishmania species FT1 to FT14 

Nucleotide sugars L. donovani 

L. major 

LPG2 

LPG5 

Phospholipids L. donovani 

 

LdMT 

Water, glycerol, osmolytes L. major LMAQP1 

Cations L. amazonensis Lmaa1 
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LmGT1, LmGT2 and LmGT3 proteins transport glucose, fructose, galactose 

and mannose, and LmGT2 and LmGT3 transport ribose (Naula et al, 2010). The 

LmGT1 membrane protein acts as a glucose sensor, null mutants of LmGT1 growth is 

rapid without entering stationary phase, therefore may ensure that parasites know 

when glucose has been exhausted (Burchmore et al, 2003). 

 

Purine transporters  

 

Leishmania lack a de novo biosynthetic pathway to synthesize purines, 

therefore as an essential nutrient these need to be salvaged from host (Hammond and 

Gutteridge, 1984). In this process preformed purine nucleosides or nucleobases are 

salvaged and transported into the parasite, followed by interconversion or metabolism 

to phosphorylated nucleotides which can be used (Landfear, 2011). Identified 

nucleoside transporters for specific purine includes; LdNT1 (substrates adenosine and 

the pyrimidine nucleosides) (Vansudevan et al, 1998), LdNT2 (substrates inosine, 

guanosine, xanthosine) (Carter et al, 2000), LmaNT3 and LmaNT4  (the substrates 

hypoxanthine, xanthine, adenine, and guanine). These purine transporters are active 

proton-coupled symporters therefore can use their high affinity to compete with host 

tissues effectively. Interestingly, NT3 and NT4 have differing transport optimum pH. 

NT3 has an optimum neutral whilst NT4 has an optimum acidic pH. This suggests that 

NT3 is designed to function optimally in the insect vector whilst NT4 is designed to 

function optimally in the phagolysosome (Ortiz et al, 2009). Low levels of purines 

are detected by Leishmania and responded to by the upregulation of mRNA encoding 

purine transporters for the salvaging (Carter et al, 2010). 

  

Iron transporters  

 

The phagolysosome is a kept free of iron by a Fe2+ pump, therefore 

Leishmania are in an area lacking iron. This is done as Fe2+ is toxic in high levels, 

however iron is taken up by Leishmania in the form of Fe2+ (Wilson et al, 2002).  

Holotransferrin, a complex of two Fe3+ ions and transferrins protein is however pesent 

in phagolysosome. The iron in these complexes are utilised by Leishmania however 

needs to be reduced prior to internalization (Wilson et al, 1994). A membrane-bound 

NADPH-dependent iron reductase converts Fe3+ bound to protein to Fe2+ at the 

extracellular surface of the parasite (Wilson et al, 2002); Leishmania iron transporter 
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LIT1-1 and LIT1-2. These are however only expressed in environment lacking iron, 

therefore not expressed in promastigotes (Landfear, 2011) and could possibly be a 

trigger for the differentiation of amastigotes (Mittra et al, 2013). 

 

Amino Acid transporters  

  

 Amino acids have multiple functions and this is showed by amino acid 

transporters representing the largest families of permeases (except for ABC 

transporters) encoded within the genome, with about 35 in Leishmania major (Aslett 

et al, 2009). AAP3 arginine carrier from L. donovani (LdAAP3) (Shaked-Mishan et 

al, 2006) transport arginine an essential amino acid in protein synthesis and used a s a 

precursor for polyamines synthesis, and LdAAP7 transport lysine (Inbar et al, 2010).  
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CHAPTER TWO: LITERATURE REVIEW 

2.1  Leishmania Sand fly Interactions 

 

Leishmania parasites need sand flies to complete their life cycle and to 

propagate (Kamhawi, 2006). Parasites are transmitted by the bite of an infected insect 

vector. To achieve the status of being a vector, there are criteria that need to be 

fulfilled. This includes the vector showing anthropophilia, the vector being found in 

nature infected with the same Leishmania species as found within human and 

reservoir infections in the same area, the vector fully supporting the development of 

parasite after the digestion of the blood meal and the ability to transmit the parasite by 

a bite (Killick-Kendrick, 1990). Therefore, parasite vector interactions important for 

the possibility of transmission includes the ability to survive defecation by attaching 

to the midgut epithelium, and the migration of infective forms of the parasites to the 

stomodeal valve and anterior midgut (Maia and Depaquit, 2016). 

 

2.1.1  Metacyclogenesis of suprapylaria Leishmania  

 

Within the sand fly, Leishmania parasites undergo a complex development 

process that occurs exclusively within the alimentary canal. This begins in the midgut 

where macrophages infected with amastigotes  are introduced to the digestive tract 

with the ingested bloodmeal which goes through the digestion process. During the 

digestion, parasites multiply and their morphology changes from the amastigote form 

to the flagellated promastigote motile from.  The blood meal arrival to the midgut 

induces the production of the peritrophic matrix (PM), therefore Leishmania present 

in the blood meal is further confined within the PM. To establish infection, surviving 

parasites need to escape defecation and successfully attach to the midgut epithelium 

(Pruzinova et al, 2015). This process from introduction to the digestive tract of the 

sandfly to the establishment of infection in the midgut has many hindrances that need 

to be overcome for establishment of infection. These includes successful development 

and morphology changes of parasite, surviving digestion, escaping from the PM and 

successful attachment to the epithelium before defecation occurs.  
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Surviving digestion and escaping the PM 

 

Infected blood containing amastigote Leishmania passes into the abdominal 

midgut (Kamhawi, 2006) where the PM is secreted by the midgut epithelium within 

the first couple of hours of blood ingestion (Dillon et al, 2006). However before the 

PM is fully formed, enzymatic activity is the first hinderance that parasites need to 

overcome for successful infection (Telleria et al, 2010). Enzymatic activity includes 

aminopeptidase, chymotrypsin, carboxypeptidase, alpha-glucosidase and trypsin 

activity which occurs during the digestion process of sandflies (Sacks and Kamhawi, 

2001). Aminopeptidase activity is associated with the midgut wall. Trypsins are 

digestive enzymes abundant in most insects (Telleria et al, 2010), with activity 

associated with the midgut lumen. The blood meal is entirely contained in the PM 

within 4 hours of ingestion (Kamhawi, 2006), here the digestion of the blood meal 

occurs (Dillon and Lane, 1993). The formation of the PM, protects the parasites from 

the hostile digestive enzymes as the diffusion from the lumen into the space within the 

PM is slower (Pimenta et al, 1997) allowing for differentiation to occur. However 

this decreases the chance of parasite escape from the blood bolus and being defecated 

(Sacks and Kamhawi, 2001). Leishmania parasites differentiate into distinct 

morphological stages which aids in the migration and therefore survival in the sandfly 

alimentary canal (Kamhawi, 2006).  

 

The first morphological change that occurs following the release of 

amastigotes from macrophages into the blood is the transformation to a procyclic 

promastigote form. Most Leishmania parasites are killed by the actions of the 

enzymes early on as the transitional stage between amastigotes and procyclic are 

susceptible to the proteolytic attack (Pimenta et al, 1997). Procyclic promastigote has 

a small fat ovoid body and a short flagellum limiting its motility (Sacks and 

Kamhawi, 2001). This form is resistant to the initial digestive enzymes in the blood 

meal and undergoes rapid replication for 24-48 hours. Following this replication 

period, the procyclic promastigotes undergo the second morphological change to 

nectomonads which are longer, slender and highly motile (Sacks and Kamhawi, 

2001). This differentiation occurs concurrently to the degradation of the PM by 

midgut-secreted chitinase, allowing nectomonads to initiate the escape from within the 

blood meal to the gut lumen (Kamhawi, 2006). Nectomonads accumulate at the 
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anterior of the blood bolus as the PM degradation initiates from the anterior (Sacks 

and Kamhawi, 2001).   

 

 

Attachment to the matrix wall- hindrance  

 

Within the gut lumen, nectomonads may attach to the midgut epithelial wall 

using LPG on the surface of their flagellum to the glycoconjugates on the microvilli in 

the midgut; this allows parasites to escape defecation. Attachment of Leishmania 

nectomonads to the microvilli on the surface of the midgut epithelium is important for 

successful development of parasites within the sandfly midgut (Dillon et al, 2006). 

 

These nectomonads also initiate migration towards the anterior midgut and 

some nectomonads undergo another differentiation into leptomonads, a shorter form 

of nectomonads. Due to migration and rapid replication, both nectomonad and 

leptomonad forms are found to colonize the thoracic midgut where they undergo the 

transformation into metacyclic and haptomonad promastigotes (Rogers et al, 2002). 

Within the stomodeal valve, leptomonads secrete parasite secreting gel (PSG) which 

contains a large number of metacyclic promastigote (Stierhof et al, 1999) and the 

leptomonads that are continuously replicating and differentiating into metacyclics. 

Metacyclic promastigotes have slender bodies and the longest flagellum advancing 

their motility and haptomonad promastigotes bind to the cuticle-lined surface of the 

valve via the insertion of the flagellum into the hemi-desmosome-like structures. The 

metacyclic promastigote form is known widely as the infective stage parasite 

(Kamhawi, 2006). This whole process which is dependent on the Leishmania species, 

roughly takes 6-9 (Kamhawi, 2006) days 
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Figure 18. Metacyclogenesis of suprapylarian Leishmania. The development of Leishmania in a permissive vector in 
a time dependent manner, showing the morphological changes that occurs from procyclics to haptomonads within 
the sandfly midgut. A) Procyclic promastigotes transform to nectomonad promastigotes which migrate to the 
anterior of the blood bolus as PM disintergration initiates at the anterior. B) Nectomonads escape from the blood 
bolus. Digested blood begins to be excreted. Nectomonads attach to the midgut epithelium and transform to 
leptomonads which rapidly replicate. C) Some nectomonads remain attached to the midgut. Leptomonads migrate 
to the thoriac midgut where they secrete PSG and transform to motile metacyclics and haptomonads. The PSG 
damages the cardia and some parasites escape to the foregut. Image from Sacks and Kamhawi, 2001. 
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2.1.2  Developmental cycles in the sand fly 

 

Metacyclogenesis within sand flies can vary depending on the Leishmania 

species. However, in literature, most of the illustrated metacyclogenesis is based on 

suprapylarian Leishmania species such as L. mexicana, L. amazonensis and L. 

chagasi.  Through the section of gut in which development occurs, Leishmania 

species can be divided into 3 groups as suggested by Lainson et al.  (Lainson et al, 

1979): hypopylaria, peripylaria and suprapylaria (Figure 19).  

 

Hypopylarian species develop in the hindgut and are assigned the subgenus 

Sauroleishmania such as L. tarentolae (Lainson et al, 1979). These species are not 

transmissible to mammalian hosts but have a lizard host and natural vector 

Sergentomyia sandfly. There is little known about the transmission of 

Sauroleishmania, however it is hypothesized that reptiles get infected by consuming 

infected sandflies (Wilson and Southgate, 1979). Possible reasons for the inability of 

transmission has been associated to the thicker PM formed around the BB by 

Sergentomyia compared to Lutzomyia and Phlebotumus sandflies. This does not 

support anterior migration or metacyclogenesis as parasites cannot escape the thicker 

PM and development is therefore arrested at procyclic promastigotes (Lawyer et al, 

1990). However when a L. tarentolae, a hypopylarian species develops within 

Lutzomyia longipalpis, development is seen and attachment to the hindgut epithelial is 

viewed however anterior migration does not occur and parasite is lost (Dillon and Liu, 

unpublished work). Possible reasoning for this includes the inability of metacyclic 

lipophosphoglycans (LPG) to reattach, flagellum attachment overcome due to 

abrasion from excreta released from the malpighian tubules and midgut peristalsis, 

and the possible lack of positive chemoeffectors.   

 

Suprapylaria develop in the midgut and attachment of Leishmania 

nectomonads occurs in the abdominal midgut. Suprapylaria species are assigned the 

subgenus Leishmania such as L. mexicana. Peripylorian parasites initially develop in 

the hindgut where their nectomonads may attach and later migrate anteriorly. 

Peripyloria species are assigned the subgenus Viannia such as L. braziliensis. Their 

ability to migrate further without expulsion similar to hypopylaria species is due a 

modification in metacyclic LPG, enabling reattachment (Soares et al, 2005). Both 
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suprapylaria and peripylaria migrate to invade the foregut and are therefore able to be 

transmitted for disease causing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19. Diagrammatic representation of Leishmania development sections within a sandfly as proposed by 
Lainson and Shaw (1979). Structural features of the sand fly includes the proboscis (pr), stomodeal valve (sv), 
cardia (c), thoracic midgut (tm), abdominal midgut (am), malpighian tubules (mt), pylorus (py) and rectum (r). 
Figure shows the sections of Hypopylaria (development confined to the hindgut, with the parasites not able to be 
transmitted due to loss during defecation), Suprapylaria (development confined to the midgut and foregut, with 
the parasites able to be transmitted) and Peripylaria (development occurs throughout the gut and the parasites 
can be transmitted). Black shows the sections of Leishmania development, with the yellow arrows showing the 
migration of parasite following metacyclogenesis . Image from Kaufer et al, 2017. 
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2.1.3  Leishmania manipulation of the Phlebotomine host interaction 

 

Some species have been shown to manipulate the action of their sandfly vector 

in order to benefit their survival (Kamhawi, 2006). Defecation is the main approach 

by which sandflies potentially expel parasites. Defeating this is therefore one of the 

ways in which Leishmania manipulates its interaction with sandflies to enhance 

survival. The PM containing the blood undergoes degradation by chitinases before 

expulsion occurs. Leishmania is shown to secrete chitinases to encourage earlier 

degradation of the PM to allow nectomonads to escape into the lumen (Ramalho-

Ortigão et al, 2005). Genes coding secreted chitinases has been identified in many 

Leishmania species with L. mexicana showing an overexpression of LmexCht1 (Joshi 

et al, 2005), therefore nectomonads escape the PM quicker, a higher parasite load 

occuring and infection is established faster (Rogers et al, 2008). This chitinase 

activity may also aid in transmission by damaging the chitin-covered stomodeal valve 

(Rogers et al, 2008). L. major secretes a myoinhibitory neuropeptide that successfully 

inhibits midgut peristalsis, therefore sandfly parasite loss through defecation is 

reduced (Vaidyanathan, 2004, Vaidyanathan, 2005).   

 

Secretion of phosphoglycans by leptomonads causes the build-up of PSG, a 

filamentous proteophosphoglycan (fPPG)-rich gel that accumulates in the anterior 

midgut and stomodeal valve leading to blockage in these parts (Sacks and Kamhawi, 

2001). fPPG is expelled from promastigote flagellar pockets, and can be found in the 

center of rosettes in culture where flagella aggregate (Stierhof et al, 1999). This 

manipulation causes a change in the nature of the feeding of the sandfly, multiple 

feeding due to incomplete feeding, and the regurgitation of promastigotes to aid 

sandfly feeding (Rogers et al, 2002, Rogers et al, 2004). This along with the 

production of chitinases by haptomonads for valve degeneration (Schlein, Jacobson 

and Messer, 1992) impairs feeding for increased efficiency in transmission of 

metacyclic promastigotes during feeding (Rogers et al, 2004, Kamhawi, 2006). This 

supports for efficient transmission.  

 

Leishmania parasites interfere with digestive enzyme activities. Promastigotes inhibit 

proteolytic activity in the midgut (Borovsky and Schlein, 1987) and amastigotes 

cause delays in trypsin and aminopeptidase activity (Dillon and Lane, 1993).  
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2.1.4  Important features of  Leishmania for transmission 

 

The main feature of Leishmania parasites that allows for transmissibility is the 

flagellum but the surface receptors and LPGs play a role in transmission.  

LPGs are the most abundant glycoconjugates of promastigotes expressed on 

the entire surface of promastigotes (Sacks and Kamhawi, 2001), playing a large role 

in adhesion to the midgut epithelium via galectin on the sand fly following escape of 

nectomonads. They play a role in enabling competent Leishmania species able to 

develop within Phlebotomus species, known as ‘permissive’ and ‘restricted’ vectors 

(Kamhawi et al, 2000). Permissive vectors allow the survival and/or development of 

several Leishmania spp within them, whereas restricted vectors allow the survival of  

specific Leishmania spp. Change occurs in the LPG during differentiation of the non-

infective promastigote form to the infective promastigote form. All LPGs are 

composed of a conserved  glycan core region of Gal(α1,6) Gal(α1,3) Galf(β1,3) 

[Glc(α1)-PO4] Man(α1,3) Man(α1,4)-GlcN(α1) linked to a 1-O-alkyl-2-lyso-

phosphatidylinositol anchor, and a conserved (Gal(β1,4)Man(α1)-PO4 backbone of 

repeat units and the oligosaccharide cap with a branching variable sugar which is 

responsible for the polymorphism amongst Leishmania species (Soares and Turco, 

2003).   

Metacyclogenesis results in increasingly more sugars getting masked and LPG 

elongating during promastigote development (Soares et al, 2002). In suprapylaria 

species which develop in the midgut, metacyclic LPG does not bind to the midgut 

microvilli (Soares et al, 2002) due to structural changes caused by metacyclogenesis. 

This permits the release of infective stage promastigotes during transmission 

(Pimenta et al, 1992).  Compared to suprapylaria species, peripylaria species differ in 

midgut attachment (Soares et al, 2005); peripylaria metacyclics make less LPG than 

procyclics in which glucose residues are added. This is possibly due to their 

development in the hindgut therefore to avoid defecation, they migrate to the midgut 

to reattach before migrating further anterior.  There are however no studies on LPGs 

in hypopylarian Leishmania species which develop in the hindgut.  

 



Yasmine Precious Kumordzi 
 

 57 

Figure 20. Schematic diagram of LPGs from representative procyclic and metacyclic Leishmania species. The 
structure of the glycan core is Gal(α1,6)Gal(α1,3)Galf(α1,3)[Glc(α1-PO4)-6]-Man(α1,3)Man(α1,4)GlcN(α1,6) linked 
to the 1-O-alkyl-2-lyso-phosphatidylinositol anchor. The repeat units are 6-Gal(β1,4)Man(α1)-PO4. The diagram 
shows the result of metacyclogenesis on LPG- elongation and downregulation of glucose resulting in the loss of 
epitope for binding to midgut epithelium. Arabinosyl (Ara). Image from Turco and Sacks, 2003.  
 
 

Flagellum is important for motility for escape, allowing the parasite to propel 

forwards. Due to the position of the flagellum at the anterior of the promastigote, it is 

the first structure of the promastigote to explore the environment it is moving towards. 

This allows the opportunity for flagellum to be the main sensory organ through the 

mitogen-activated protein (MAP) kinases pathway (Rotureau et al, 2009). The length 

of flagellum continuously increases throughout metacyclogenesis. The length of 

Leishmania has been showed to be important in the adhesion to the midgut, with 

shorter flagellated promastigotes being more readily excreted due to not binding to the 

matrix epithelium following escaping the PM (Cuvillier et al, 2003).  
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2.1.5  Transmission 

 
Metacyclogenesis of Leishmania ends with highly infective metacyclic 

promastigotes within the cardia of the sandfly. As pool feeders, sandflies cut the skin 

of their host damaging dermal capillaries to create a pool of blood on the surface of 

the skin which they can suck into the pharnyx and is later diverted into the midgut 

through the one way cibarial valve (Rogers, 2012). This presence of PSG 

accumulation and pathology caused by the accumulation such as the damage to the 

cibarial valve affects the manner in which the sandfly feeds, infected sandflies have 

multiple feeding attempts by increasing probing, feeding time increases and 

incomplete blood meal usually occurs (Beach, Leeuwenburg and Kiilu 1985) 

showing that there is difficulty in feeding. This enhances the chances of transmission 

during feeding (Killick-Kendrick et al, 1977). 

 

During the blood meal of an infected sandfly, metacyclic promastigotes can be 

transmitted to the mammalian host. The mechanism falls within two hypothesis: the 

regurgitation hypothesis and the inoculation hypothesis. The inoculation model 

proposed that only promastigotes in the proboscis are involved in transmission due to 

infection occurring when sandflies were observed to probe skin however no blood 

feeding taking place (Killick-Kendrick et al, 1977, Beach, Leeuwenburg and Kiilu, 

1985). The regurgitation model was initially reported by Short and Swaminath 1928. 

This proposed that the physical obstruction caused by PSG along with the pathology 

caused by chitinase damage causes a regurgitation of the PSG including promastigotes 

into the pool of blood before feeding can occur (Schlein, Jacobson and Messer, 

1992).   
 
Efficient transmission requires the movement of promastigotes to the anterior of the 

sandfly midgut (Leslie, Barrett and Burchmore, 2002), however the exact stimulus 

that allows this process to occus is not well established. Killick-Kendrick 

hypothesized the sugar gradient created by the sugar released from the crop provided 

an stimulus for migration (Killick-Kendrick, 1978). This has later been supported by 

chemotaxic assays.  
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2.2  Chemotaxis 

 
Chemotaxis is the migration of cells directionally when exposed to gradients 

of chemoeffector molecules (Englert, Manson and Jayaraman, 2009). Naturally 

there will be multiple chemoeffectors in an area, creating multiple coexisting 

overlapping gradients of specific chemical sensors in which chemotaxis occurs.  

 

For microbes, it is advantageous to move away from unfavourable conditions 

towards favourable environments such as those containing a source of food (Adler, 

1966), making chemotaxis important for survival. Cells detect gradients of chemicals 

in two ways; directly measuring spatial gradients across the cell or indirectly 

temporally sensing gradients while motile. Motile bacteria randomly change direction 

regularly however with the detection of a gradient, this behaviour pauses allowing the 

bacteria to modify its movement dependent on how favourable the gradient is 

(Armitage, 1992).  

 

The first step of chemotaxis is the detection of gradient. Understanding of the 

detection method of the molecules used for chemotaxis to occur is thought to be 

through chemoreceptors; chemoeffector molecules binding to the receptors found on 

the cell surface or the detection of their metabolites (Adler, 1969). Ligand molecules 

bind to their specific membrane chemoreceptors, activating them and triggering signal 

transduction pathways downstream.  

 

Chemotaxis has been largely studied in Escherichia coli by Adler (Adler, 

1972), acting as the basis for most of the chemotaxis work on other microbes 

(Keymer et al, 2006). Like E. coli, motile microbes can be attracted or repelled by 

specific chemical stimuli (Adler, 1973) – positive and negative chemotaxis 

respectively. Assays describing measuring this chemotaxis were initially discovered in 

the 1880’s by Pfeffer and Englemann (Adler, 1966) and continue to be improved 

upon.  

 

Chemotaxis studies require a way to deliver chemicals to cells in a controlled 

gradient, for cells to be able to sense and direct their movement according. Earlier 

work presented a variety of techniques. The first described basic chemotaxic assay is 
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the Quantitative Pfeffer method (Adler, 1973) which involves placing motile E. coli 

at one end of a capillary tube containing a source of energy and oxygen. This allows 

the migration of E. coli into the tube resulting in two visible bands; the first containing 

E.coli that has consumed all the sugars and the second band migrating for the 

remainder oxygen (Adler, 1966). This therefore includes the overlap of osmotaxis and 

chemotaxis. This method was slightly altered by Adler and Armitage separately 

resulting in different chemotaxis assays. Adler’s method for measuring chemotaxis 

(Adler, 1973) was based on using a capillary tube with a small chamber. A U-shaped 

tube was bent from a capillary tube, placed on a glass slide and sealed using a cover 

slip forming the chamber in which 0.2ml of bacterial suspension was added as seen in 

Figure 21. Another capillary tube was sealed at one end and used to contain the 

attractant. This was inserted into the chamber containing bacterial suspension. After 1 

hour incubation, contents of the capillary tube were removed and plated for colony 

count the following day (Adler, 1973).  Armitage developed a method similar to the 

Boyden Chamber assay (Boyden, 1962), by using blind well chemotactic chambers, 

quantifying the motile bacteria that migrated from the bacterial suspension well 

through a polycarbonate membrane (2 μm) into the chemotactic chamber (Figure 21). 

The migrated bacteria were collected and counted using a Coulter counter (Armitage, 

Josey and Smith, 1977). 

 

Some assays included the use of agar-plates. One such assay uses the PP 

chamber where there are 2 parallel channels and a connecting channel between the 

parallel channels with small containers on each side; one will be filled with the cell 

suspension and the other with the chemoattractant (Köhidai, 1995) 
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Figure 21. Apparatus used in early chemotaxis assay. A) Illustration of the chemotaxis assay set up of Adler.  
Comprising of a bent capillary tube to a U shape enclosed between a glass slide and a coverslip. This forms a 
compartment for the bacterial suspension. A second capillary tube is sealed and placed in a solution with 
chemotaxic agent which fills the capillary tube by capillary action. This is placed in the bacterial suspension and 
diffuses into the suspension to form a gradient to attract bacteria into the capillary tube containing attractant. 
Counts are done to final the number of migrated cells.  (Image from Adler, 1973). B) Illustration of a Boyden 
chamber assay (Image from Lautenschlaeger, 2011) The insert containing cells is lowered into a chamber 
containing the chemotaxic agent. These two solutions are separated in their respective compartments by the 
presence of a porous membrane from which chemoattractant molecules diffuse through forming a gradient to 
attract the cells to migrate to the area of higher chemotaxic agent. The cells migrated into the chemotaxis agent 
compartment are counted.    
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The conditions in these primitive chemotaxis assays does not allow 

chemotaxis to be considered solo. In Adler’s assay, the result included the effect of 

disturbing E. coli prior to plating, the conditions of growth may alter the final counts 

that are obtained and the processing allows for a lot more human error to affect the 

result. In Armitage’s assay, the vessel was completely sealed allowing outside 

influences such as oxygen and evaporation to be less of a limiting factor compared to 

PP chamber assays and Adler’s assay. The polycarbonate membrane was meant to 

allow a slower diffusion of chemical however this is not the case. The membrane may 

have affected migration of bacteria. PP chamber agar assay would have allowed the 

diffusion of chemoattractant however bacteria that needed fluid to migrate within 

would be limited due to evaporation and the absorption of fluid by agar. These main 

disadvantages make these methods highly insensitive.  

 

2.2.1  Leishmania chemotaxic assay methods 

 

Due to the importance of Leishmania migration in the transmission of 

leishmaniasis, chemotaxic studies have been employed for a better understanding of 

potential chemoeffector molecules that act within the sandfly gut.    

 

Bray (Bray, 1983) was the first to study chemotaxis with promastigote 

Leishmania forms. He used an insensitive method (Oliveira et al, 2000) which was 

composed of a disposable syringe filled with promastigote suspension covered at the 

bottom with 1.2 um pore size Millipore filter and immersed in a solution of 

chemotaxic fluid (Oliveira et al, 2000). This method was recognised as insensitive by 

Oliveira et al who developed an assay based on Adler’s 1973 bacterial chemotaxic 

method. The similarities were the use of capillary tubes for experimental set up and 

the use of a defined media which was first done by Adler. Capillary tubes were filled 

with the defined media washing and incubating solution (WIS) with 0.004% enriched 

bovine serum albumin (BSA) containing the test chemotaxic agent and 0.2% agarose. 

Before the solution solidified, modelling clay was used to push the solution to 1cm of 

the end of the tube and this was covered with Parafilm. To form a gradient, the 1cm 

unfilled end was filled with WIS. 18 capillary tubes prepared in this manner were 

placed in a petri dish, positioning them in place using corrugated plastic support. 50ml 

of WIS was placed in the petri dish for 30 minutes to form a gradient within the 1cm 
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of the capillary tubes; the tubes were removed and the WIS in the petri dish was 

replaced with a Leishmania promastigote solution of 5x105 cells ml-1. The support and 

capillary tubes were replaced back in the petri dish horizontally for an incubation of 1 

hour after which the capillary tubes were removed. Migrated cells were removed from 

the WIS 1cm open end and collected for counting using a haemocytometer.  This used 

L. chagasi and L. amazonensis promastigotes which both showed a chemotaxic 

response to all the carbohydrates tested (glucose, fructose, sucrose, raffinose, 

mannose, galactose, maltose and melibiose) however the absence of a control 

substance which was not attractive to the promastigotes suggests the inclusion of 

osmotaxic movement resulting in an overall positive chemotaxis result (Leslie, 

Barrett and Burchmore, 2002). There was a significant higher chemotaxic response 

in stationary phase promastigotes, this was associated with the greater mobility of 

metacyclic forms that are in higher numbers in stationary phase growth in culture 

(Oliveira et al, 2000).   

 

 
 

 

Figure 22. Illustration of the experimental set up used by Oliveira et al, 2000.  Image from Oliveira et al, 2000 
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The capillary assay from Oliveira et al, 2000 was further developed by Leslie, 

Barrett and Burchmore, 2002 who establish a reviewed method using a similar 

experimental set up. The same WIS was used by Leslie, Barrett and Burchmore 

which was used to fill the capillary tubes. WIS with 0.1% agarose and test chemotaxic 

agent was used to fill the tubes in a similar manner as Oliveira et al, 2000. These 

capillary tubes were vertically placed in bijou tubes containing late-log L. mexicana 

promastigotes 2.5x107 cells ml-1. This was incubated at room temperature for 1 hour 

and cells were collected from the 1cm open end and counted with a haemocytometer. 

This included a control using a capillary tube with no chemotaxic agent included 

(Leslie, Barrett and Burchmore, 2002). Similar to Oliveira et al, 2000, all tested 

chemotaxic agents showed a chemotaxic response compared to the control. 

Interestingly, fixed cells were also used in this assay with the test chemotaxic agent of 

D-glucose. This showed a very low level migration into the capillary tube showing 

that passive movement into the capillary tubes was not an limiting factor in this assay 

and the result was from promastigotes actively migrating into the tubes (Leslie, 

Barrett and Burchmore, 2002). However, the idea that motility was based on an 

osmotic gradient was confirmed in this as in the absence of an osmotic gradient by 

assaying promastigotes in NaCl no significant movement into the capillary tube 

occurred (Leslie, Barrett and Burchmore, 2002).  

 

This revelation by Leslie, Barrett and Burchmore, 2002 brought about a 

study by Barros et al, 2006 which investigated the chemotaxic and osmotaxic 

responses in promastigotes  Leishmania. In this study, the experimental set up used L. 

amazonensis in WIS to measure ‘time of straight line movement’ (TSLM). A mixture 

of promastigotes in WIS added to WIS containing the chemotaxic agent was mixed 

and placed on a slide under a coverslip before promastigotes were observed under a 

microscope. This showed how long promastigotes cultured to the stationary phase 

travelled in a straight line before chaotic angular motion (tumbling) occurs when 

added to a new environment which included the testing chemotaxic agent (Barros et 

al, 2006). Although stated that this method allowed chemotaxic responses to be 

distinguished from osmotaxic responses, the results from this method can only be used 

to conclude on the length of time it takes for ‘adaptation’ to occur within a new 

environment of different concentration of testing chemotaxic agents as the experiment 

occurs in a zero gradient environment. Adaptation is the process by which cells 

particularly bacteria detect a difference in environment using a temporal sensing 
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mechanism representing a form of memory (Macnab and Koshland, 1972), therefore 

TSLM records how long it takes for the cell to stop responding as it has realised the 

signal as constant. 

 

Relatively recently, deYsasa Pozzo publish two studies utilizing optical 

tweezers to measure the directional forces exerted on L. amazonensis under a glucose 

gradient (deYsasa Pozzo et al, 2007, deYsasa Pozzo et al, 2009). The glucose 

chemical gradient was created using two chambers connected by a duct small enough 

for the gradient to be kept constant for over ten hours (deYsasa Pozzo et al, 2007). 

Individual Leishmania were attached to a 9 μm diameter bead connected to a Nd:YAG 

laser  which recorded optical forces and therefore the forces of the flagellum. This 

study showed that unlike bacteria which using straight line movement and tumbling to 

detect gradients, Leishmania uses circular movements and tumbling to detect 

gradients (deYsasa Pozzo et al, 2009). With a higher concentration of glucose, 

Leishmania have a clearer sense of direction and move with greater force.  

 

All methods used to study Leishmania taxis to date show that there is recorded 

taxis which includes both chemotaxis and osmotaxis however the effect of osmotaxis 

is shown to be tiny (Barros et al 2006). Earlier studies required a higher 

concentration of test chemotaxic agents to show results making it insensitive 

(Oliveira et al, 2000, deYsasa Pozzo et al, 2009, Leslie, Barrett and Burchmore, 

2002, Díaz et al, 2011). deYsasa Pozzo’s method  used real time observation of the 

forces exerted and directionality of individual parasites (deYsasa Pozzo et al, 2009) 

whilst allowing direct observation of the behaviour, however did not have a control.     

 

As the capillary assay used by Oliveira and Leslie were easiest and cheapest 

methods for chemotaxis in Leishmania, Díaz explored standardizing this method and 

found 30 minutes incubation and strict osmolarity of solutions were imperative 

parameters to record chemotactic rather than chemokinetic responses of the 

Leishmania promastigotes (Díaz et al, 2011). Díaz went further to show how 

chemotaxis may be useful in vivo by showing that poly-lysine-methotrexate-conjugate 

have some chemotaxtic response, particularly methotrexate conjugates with a terminal 

serine amino acid. This may therefore improve drug-targeting towards the Leishmania 

parasites (Díaz et al, 2013). 
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With the requirement of a more sensitive methodology, it is apparent from the 

literature (Table 2) that away from sugars, other avenues have not been explored as 

chemotaxic agents. The environmental habitat of Leishmania promastigote within the 

sandfly is primarily the midgut which has a differing physiochemical nature 

dependent on the anterior or posterior locations. The migration of some Leishmania 

species towards the anterior region where a sugar gradient emanates from the crop can 

be explained as osmotaxtic and chemotaxtic responses such as that recorded in vitro ( 

Oliveira et al, 2000, deYsasa Pozzo et al, 2009, Leslie, Barrett and Burchmore, 2002, 

Díaz et al, 2011). However, unlike Leishmania promastigotes that migrate anteriorly, 

some Leishmania species escape the PM, attach to the epithelium of the gut and 

migrate posteriorly therefore not being disease causing species. This brings up 

questions about what other chemoeffectors particularly chemoattractants could be 

acting at the posterior of the sandfly alimentary canal.  

 

The importance of motility as well as the presence of chemical sensors 

forming gradients for chemotaxis allows us to understand that specific chemical 

stimuli might play a role in the migration of Leishmania parasites towards the foregut 

and not towards the hindgut (Figure 23). Studying chemotaxis quantitatively acts as a 

method to measuring how effective specific chemicals are as chemoattractants, 

however the cheaper methods employed are not effective as they do not offer a stable 

environment away from outside influences and require a high concentration of 

attractant for chemotaxis to be detected making it insensitive (Oliveira et al, 2000). 

Hence, a more sensitive methodology is required to study Leishmania chemotaxis.  
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Table 2. All the agents that have been showed to have positive chemotaxic responses from literature. 

Tested 

agent 

Study Leishmania 

spp. 
D-Glucose Oliveira et al, 2000          deYsasa Pozzo et al, 2009 

Leslie, Barrett and Burchmore, 2002                     

Díaz et al, 2011 

L. chagasi   

L. amazonensis 

L.mexicana 

Fructose Oliveira et al, 2000                 Díaz et al, 2011      

Leslie, Barrett and Burchmore, 2002 

L. chagasi   

L. amazonensis 

L.mexicana 

Sucrose Oliveira et al, 2000               Barros et al, 2006 L. chagasi   

L. amazonensis 

Raffinose Oliveira et al, 2000 L. chagasi   

L. amazonensis 

Mannose Oliveira et al, 2000               

Leslie, Barrett and Burchmore  2002 

L. chagasi   

L. amazonensis 

L. mexicana 

Galactose Oliveira et al, 2000 L. chagasi   

L. amazonensis 

Maltose Oliveira et al, 2000 L. chagasi   

L. amazonensis 

Melibiose Oliveira et al, 2000 L. chagasi   

L. amazonensis 

L-Glucose Leslie, Barrett and Burchmore, 2002 L. mexicana 

Inositol Leslie, Barrett and Burchmore, 2002 L. mexicana 

Guanosine Barros et al, 2006 L. amazonensis 

Glycine Barros et al, 2006 L. amazonensis 

NaCl Leslie, Barrett and Burchmore, 2002 

Barros et al, 2006 

L. amazonensis 

Mannitol Barros et al, 2006 L. amazonensis 
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Figure 23. Illustration of the alimentary canal of the sandfly showing areas containing sugars (yellow) and urea 
(red). The crop contains sugars (yellow) which are slowly released into the abdominal midgut for digestion. As 
sugars are digested, the gradient of sugar will be continuous yet descending to the hindgut . The malpighian 
tubules process excreta from the haemolyph which is passed into the hindgut as urate crystals (red). This excreta is 
removed from the rectum however the presence of urate crystals in the hindgut will allow some to diffuse and be 
present in the posterior hindgut. With this diffusion gradient, it can be assumed that the posterior midgut will have 
a similar concentration of urea and sugars. Adapted from Schlein, 1993. 
 
 

2.2.2  Microfluidics for studying Leishmania migration 

 

The most-studied model for chemotaxis E.coli (Berg, 2004), has been used as 

a basis to develop methods of chemotaxis studies for Leishmania parasites. 

Manipulation to result in gradient development constraint in a controlled area with 

limited flow has been shown in traditional chemotaxis assays such as capillary assays 

however, precision and reliability in technique is poor.  

For gradient development and investigating gradient sensing in vivo, 

microfluidic technology has developed to be an essential technique as it meets all the 

criteria for precise manipulation (Lin and Levchenko, 2015). Microfluidic devices 

consist of small chips in which microchannels form precise yet complex structured 

patterns appropriate for the controlled manipulation of biochemicals and cells for 

gradient development and gradient sensing (Whitesides et al, 2001).  Advances in the 

application of microfluidic systems have allowed the improvements in studying 

microbes within a defined environment. This allows for a micrometre scale chemical 
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gradients to be created by flow or simple diffusion within a common channel known 

as flow based microfluidic gradient generators and diffusion based microfluidic 

gradient generators respectively, in which taxis can be studied. Flow based 

microfluidic gradient generators use two channels with different concentrations 

merging into a central channel (Brody and Yager, 1997) or branching network of 

serpentine channels (Jeon et al, 2000) for the diffusion of biochemical between the 

streams as they flow together into one channel (Figure 24(A)). Diffusion based 

microfluidic gradient generators use passive diffusion between a source and a sink to 

generate a gradient (Figure 24(B)).  

 

 
Figure 24. Microfluidic gradient generation designs. (A) Flow based and (B) Diffusion based microfluidic gradient 
generators. The green colour represents the distribution of the biochemical used in each device. Image from (Lin 
and Levchenko, 2015) 
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Compared to traditional chemotaxis assays, microfluidics allows a high level 

of control and reproducibility of flows and concentration gradients of volumes similar 

to that of the microenvironments of the microbes (Seymour et al, 2008) with bulk 

forces like gravity, buoyancy and momentum having little effect on flow . The 

transparent chip is also advantageous for easy visualisation using microscopy 

allowing real time assessment.   

Microfluidic chemotaxis assays were proposed as sensitive alternatives for 

Leishmania parasites (Díaz et al, 2011) and have been used to explore the swimming 

dynamics of Trypanosoma brucei  (Uppaluri et al, 2012). This showed that by using 

microfluidic tools, live parasites can be subjected to flow within a defined 

environment for a range of applications such as chemotaxis, whilst meeting the 

sensitivity levels that is not possible with the traditional chemotaxic assays. 

 

2.3 Aims of the project 

 

For successful parasite transmission  from insect vector to mammalian host, 

the flagellated promastigote forms of the parasite need to migrate from the midgut of 

the phlebotomine sand fly to the anterior  part of the digestive tract. This involves 

chemotaxis toward nutritional/chemical cues. There are a number of unanswered 

questions regarding the exact chemical nature of these gradients, how they are 

established, and the parasitic forms able to detect them.  

 

 It was decided to use suprapylarian Leishmania mexicana compared to 

hypopylarian Leishmania tarentolae to find out if they differed in their chemotaxic 

properties. 

 

To address these issues, this project aimed to:  

(1) Produce a morphometric analysis (based on cell body length, width, flagellum 

length, distance kinetoplast- nucleus) of Leishmania tarentolae and Leishmania 

mexicana growth in culture conditions, which can be used to identify the forms of 

promastigotes found in an axenic culture.  
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(2) Perform a pilot chemical screen (sugars, urea, and salts) using two approaches to 

measure Leishmania chemotaxis. The first experimental approach involves an 

established capillary assay based on a single endpoint measurement. The second novel 

approach (in development)  would use a microfluidic imaging setup to monitor in real-

time individual parasite migration towards the chemical cue. 

 

Results from this study should: (1) establish new technologies to finely measure and 

screen Leishmania behaviour such as chemotaxic migration, and (2) provide further 

insight into the chemicals/metabolites Leishmania migratory forms respond to, which 

could lead to effective chemical strategies to reduce the Leishmania vector-host 

transmission rate. 
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CHAPTER THREE: MATERIALS AND METHODS 

 

3.1  General Methods 

 

The present project consists of four parts. A) Leishmania morphometric 

studies of Leishmania tarentolae and Leishmania mexicana in culture. B) Capillary 

assays studies of both L. tarentolae and L. mexicana involving the examination of 

different chemical stimuli. C) The development of a microfluidic method to analyse 

Leishmania chemotaxis in a confined environment. D) Experimental infections of the 

sandfly Lutzomyia longipalpis with L. tarentolae and Crithidia fasiculata for the 

examination of PSG formation in the foregut, midgut and hindgut. 

 

3.1.1 Insect rearing  

 

All sand fly experiments used Lutzomyia longipalpis reared in a closed 

laboratory colony that was established (1980’s) from individuals caught in Jacobina, 

Bahia-Brazil and maintained in Lancaster University according to standard laboratory 

conditions (Modi,1997). The sand flies were kept within incubators (LMS Cool 

Incubators) maintained at 26 ± 2ºC under an 8 hours light/16 hours dark photoperiod 

and humid conditions of > 80%. All sand flies were offered autoclaved 70% v/v 

sucrose solution in cotton wool and females fed on sheep blood via a Hemotek 

membrane feeder (Discovery Workshops-UK) at 37ºC using chicken skin. Freezer 

stored adult chicken skin was prepared by thawing, followed by washing with 70% 

w/v ethanol and washed with deionized filtered water. Excess fat was removed from 

the inner surface of the skin using a single edged razor blade and the intact skin was 

used as the membrane for the Hemotek.  

 

All mosquito experiments used adult Aedes aegypti reared in a closed laboratory 

colony maintained in Lancaster University. For general rearing, mosquitoes were 

maintained at 26°C, 84% relative humidity, under a 12 hr light and 12 hr dark cycle. 
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All adult mosquitos were offered autoclaved 10% v/v sucrose solution soaked filter 

paper and blood fed weekly on anesthetized mice.  

 

3.1.2  Parasites 

 

Leishmania mexicana (WHO strain MNYX/BZ/62/M379 promastigotes, 

Leishmania tarentolae (Green Florescent Protein, GFP), Leishmania mexicana 

(DSRed), Leishmania tarentolae LV101 promastigotes and Crithidia fasiculata 

promastigotes were maintained at 26ºC temperature in culture medium prepared as 

described below.  

 

3.1.3  Preparation of culture medium 

 

The culture medium used was dependent on the nutritional requirements of the 

parasites.  

 

Leishmania tarentolae and Leishmania mexicana were cultured in medium 

199 with Hank’s Salts with HEPES, L-glutamine and 1.4 g/L NaHCO3 (Lonza Cat 

Number BE12-118F) supplemented with 1x BME vitamins (Sigma Cat Number B 

6891), foetal bovine serum (FBS, Hyclone Foetal Bovine Serum SLS Cat number 

HYC85) heat inactivated at 56ºC for 30 minutes and filtered using a 0.2 µm single-use 

filter unit and 25 µg/ml gentamycin sulphate (Sigma G1272 10 mg/ml stock). The 

final concentration of FBS was 10% and 20% for Leishmania tarentolae and 

Leishmania mexicana respectively.  

 

Crithidia fasiculata was cultured in Warrens medium comprised of brain heart 

infusion broth (OXOID CM1135), hemin solution (50x stock solution prepared by Dr 

Micheal Ginger and stored at 4ºC) and 5% FBS (Hyclone Foetal Bovine Serum SLS 

Cat number HYC85) heat inactivated at 56ºC.  
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3.1.4  Growth of parasites  

 

Promastigotes in culture were grown using the appropriate culture medium as 

described above and maintained at culture densities between 1x105 and 1x107 cell/ml-1 

by repeated sub-passaging into fresh medium when cultures reached a late-log phase. 

Passage number remained under 30 for experiments.  

 

The typical cell culture density of each was determined by haemocytometer 

counting every 24 hours to produce a growth curve. Parasites were prepared for 

haemocytometer counting using a 1:1 ratio of 2% paraformaldehyde to promastigote 

medium before counting under a light microscope (MICROTEC LM-1) at 40x 

magnification.  

 

3.2  Part A: Leishmania morphological studies of 
Leishmania tarentolae and Leishmania mexicana in 
axenic culture 

 

3.2.1  Slide preparation 

 

Slides with Leishmania promastigotes from the axenic culture was prepared at 

different time points (approximately 24 hours apart) following sub-passage. A volume 

of 500μl of culture was centrifuge washed 3 times at 2,000rcf for 5 minutes with 

sterile phosphate buffer solution (PBS, Sigma 79382). 100μl of solution containing 

washed promastigotes was smeared on a glass slide, air-dried and fixed with cold 

methanol. These fixed slides were Giemsa stained using10% Giemsa solution (Sigma 

G5637) for 5 minutes before being washed with deionised water and air-dried. For the 

visualisation of the kinetoplast and nucleus, approximately 300ul DAPI stock solution 

(VECTASHIELD Antifade Mounting Medium with DAPI, H-1200) was added 

directly on the Giemsa stained slides. A glass coverslip was used to distribute the dye 

evenly on the slide and absorbent tissue paper was used to remove excess dye around 

the coverslip before the edges was sealed with nail polish. The slides were examined 

under a light microscope at 40x and photomicrographs were taken.  
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3.2.2  Morphological configuration and classification of 
promastigotes 

 

For the classification and quantification of morphological configurations using 

the Image-J software (https://imagej.nih.gov/ij/), approximately 100 randomly 

selected promastigotes from each time point were measured in 3 independent 

experiments using the following parameters: body length, flagellar length, body width, 

and the distance between the kinetoplast and nucleus (position of the kinetoplast in 

relation to the nucleus was also noted). The data for each promastigote was used to 

categorise each as: procyclic, leptomonad, nectomonad and metacyclic as described 

by Rogers et al. (2002) and Čiháková and Volf (1997). 

 

3.3  Part B: Capillary assays of Leishmania challenged with 
an array of chemical compounds 

 

75mm long glass capillary tubes (Richardsons of Leicester ltd, C1330) 

containing chemical stimuli immersed in a suspension of  Leishmania were used to 

produce a concentration gradient contained within the central cavity of the tube 

(method modified from Oliveira et al, 2000). Following an incubation period of 1 

hour, migrated promastigotes were collected from the capillary tube for taxic 

responses of Leishmania to the chemical stimulus to be determined. 

 

3.3.1  Preparation of Washing and Incubation Solution (WIS) buffer 
and promastigote suspension 

 

Washing and incubation solution (WIS) buffer was prepared according to 

Oliveira et al, (2000) with slight alteration comprised of 30mM sodium ß-

glycerophosphate, 87mM NaCl, 27mM KCl, 2mM CaCl22H20, 2mM MgCl2 and 

0.004% FBS with the final solution lowered to pH 6.8 with HCl using a pH meter 

(Hanna instruments HI 2210).  WIS buffer was used for both the promastigote 

suspension and the capillary tube solution to ensure the only differential factor for 

taxis to occur was the specific chemical stimuli.   
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Leishmania promastigotes from early log phase and late log phase were used 

to prepare promastigote suspensions from which taxis will occur. Prior to the 

experiment, a cell count was performed from culture and the volume of cells for 1x107 

cells/ml was centrifuged at 1000g for 5 minutes before washing with WIS buffer 3 

times. This promastigote suspension of 1x107 cells/ml in WIS buffer was kept in 26ºC 

for approximately 30 minutes before aliquoted in 1ml in bijou tubes for capillary 

assays.   

 

3.3.2  Preparation of capillary tube solution 

 

To the WIS buffer containing 0.004% FBS, agarose (Sigma A9539) was added 

making the capillary tube solution of 1% agarose. For each experimental condition, 

specific concentration of substance to be tested was added making the final specific 

testing substance capillary solution. For controlled experiments, no testing substance 

was added. The final solution was microwaved to dissolve the agarose and used to fill 

the capillary tube by capillary action 1cm from the end of the tube. Before the agarose 

set, modelling clay was added to end of the capillary tube containing the testing 

substance to prevent evaporation. This is showed in diagrammatic form in Figure 24. 

An ultra-fine gel loading-tip pipette was used to fill the remaining 1cm open end with 

WIS buffer with 0.004% FBS avoiding air bubbles. This allowed for the diffusion of 

testing substance within the capillary tube into the WIS buffer. Capillary tubes were 

suspended in the bijou tubes containing 1ml of 1x107 promastigote suspension. Each 

bijou tube contained 1 capillary tube and was incubated in a 26ºC incubator for 30 

minutes.          
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3.3.3  Collecting results  

 
Figure 24. Diagrammatic representation of experimental apparatus used for capillary assay. A glass capillary tube 
containing WIS buffer with 1% agarose and test substance was placed in a bijou tube containing promastigotes and 
incubated for 30 minutes. 
 

Following the incubation period of 30 minutes, the capillary tubes were 

carefully removed from the bijou tube and an ultra-fine gel loading tipped pipette was 

used to extract 5μl of suspension from the open end of each of the capillary tube. The 

collected suspension was used for cell counts and slide preparation as explained above 

(2.2.1). Cell counts using a haemocytometer were performed to calculate the number 

of migrated cells as cells per ml. Slides were prepared to analyse the population of 

migrated cells in more detail; the morphology of migrated promastigotes were 

analysed as above (2.2.2) to classify them as procyclic, leptomonad, nectomonad and 

metacyclic accordingly.  

 

The results obtained from each repeat were used to produce a mean result of 

number of migrated Leishmania tarentolae and Leishmania mexicana and the 

classification of migrated population for each test substance after 30 minutes 

incubation period. A chemotaxis index (CI) (equation modified from Oliveira et al. ) 
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was calculated for all results with a positive score indicating attraction towards the test 

substance and a negative index evidence of repulsion.  

 
Migration	Chemotaxis	Index	(MCI)

= 	 (
Number	of	cells	migrated	in	test	– 	Number	of	cells	migrated	in	control

Total	number	of	cells	per	ml	
) 

 

3.3.4  Experimental conditions 

Substances that were tested were used in specific amounts for the known 

concentration of substance in the capillary tubes to be calculated and listed in Table 3. 

L-glutamine, L-leucine, L-methionine, L-cysteine, glycine, L-tyrosine, L-histidine, 

Uric acid and L-aspartic acid were trialled however required a large volume of 

Dimethylsulfoxide (DMSO) for solubilisation.  

Test substances Concentrations tested 

D-glucose (AnalaR) 1.0M   0.5M   0.1M 

Sucrose (Fisher) 0.5M  

Urea (Electran) 1.0M   0.5M   0.1M 

NaCl (Fisher) 0.5M 

Mannose (Sigma) 0.5M 

D-sorbitol (Sigma) 0.5M 

Fructose (Sigma) 0.5M 

Promastigote secretory gel 

(PSG) 

 

Copper Sulphate (Sigma) 0.05M 

Table 3. Summary of test substances and concentrations as used for the capillary assay.  

The PSG used was collected from Lutzomyia longipalpis infection with Leishmania 

mexicana from the foregut and kept in -4°C in 10μl PBS. For use in the capillary 

assay, this was homogenised with a pestle before being centrifuged at 3000g for 5 

minutes. The supernatant was removed without disturbing the pellet and used to 

prepare the capillary tube. For the control, capillary tubes containing no substances 

was used, therefore only 1% agarose, WIS buffer and 0.004% FBS remained in the 

capillary tube.  



Yasmine Precious Kumordzi 
 

 79 

3.4  Part C: Development of a microfluidic method to 
analysing Leishmania chemotaxis  

 

3.4.1  Microfabrication 

  

Computer-aided design of microfluidic chip geometries was done using the 

AutoCAD 2009 software (Auto-desk). The master fabrication was kindly prepared at 

the University College London (UCL) generating the master mould containing the 

central culture chamber and the testing substances channels. For the microfluidic 

device fabrication at Lancaster University, the mould was cleaned and plasma 

activated, immersed in 1% tri-decafluoro-1,1,2,2-tetrahydrooctyl-1-

dimethylchlorosilane (13F; MCC) in toluene for 30 min, washed, dried, and baked at 

55°C for 15 min.  

  

Polydimethyl methylhydrogen siloxane (PDMS) casts were prepared by 

mixing 1:10 parts of curing agent to base Sylgard 184 elastomer (Dow Corning 

Corp.). The PDMS mix was degassed and poured onto the 13F-coated patterned wafer 

and cured at 55°C overnight to harden. The release of the mould obtained a replica of 

the micro-channels on the PDMS block. Individual devices were cut and stored 

covered, feature-side up. For the bonding of the microfluidic device to a glass 

substrate, individual PDMS casts were exposed to plasma for 30s on both side before 

gentle pressure was applied to bond the device to the glass. The assembled chips were 

baked for 15 min at 75°C for irreversible bonding.  
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3.4.2  Cell migration in microfluidic device 

 

The test substances were introduced to the peripheral chambers and 

promastigotes in WIS solution with 0.004% FBS were introduced in the central 

chamber (Figure 25). Once saturated with cells, the fluid streams adjusted allowing 

for a linear gradient of substance spanning from the peripheral chamber to the central 

cells. Upon sensing the substances, cells migrated into transversal channels where 

they were imaged using fluorescence time-lapsed microscopy effected by a scanning 

laser confocal microscope. 

 

Figure 25: Development of a microfluidic device for Leishmania taxis assay. Top view of the radial chip, 
showing 12 inlets along the outer edge and a singular central reservoir for cell culture.  
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3.5  Part D: Experimental infections of the Lutzomyia 
longipalpis with Leishmania tarentolae and Crithidia 
fasiculata, and Aedes aegypti with Crithidia fasiculata  

 

3.5.1  Heat treatment of sheep blood 

 

Sheep blood was heat-treated as follows: 5 ml of sheep blood was centrifuged 

at 3000g for 5 minutes. Serum was removed and incubated at 56 ºC for 45 minutes in 

a water bath. PBS of the same volume as serum removed was added to red cells and 

centrifuge washed 3 times at 4 ºC. Following all washing and given a suitable time to 

cool down, PBS supernatant was removed and serum was returned to the pellet of red 

cells for resuspension. This blood was used for the infection protocol.   

 

3.5.2  Infection protocol  

 

Parasites used for fly infections were cultivated as above (3.1.4). Counts were 

used to determine the volume of culture to wash and pellet to result in 2.0 x 107 cells 

per ml in 2 ml of either decomplemented sheep as above (3.5.1) blood for L. mexicana 

and L. tarentolae, and Warrens medium or 5% autoclaved sucrose solution for C. 

fasiculata. Viability of parasites were checked before and after infection under 

microscope. 

 

Lutzomyia longipalpis  

4-5 day old female Lu. longipalpis were infected with L. tarentolae, L. 

mexicana and C. fasiculata. For L. tarentolae and L. mexicana infections, sandflies 

were fed using infected decomplemented sheep blood containing washed parasites 

whilst C. fasiculata infections used Warrens medium containing washed parasites. For 

infection, Lu. longipalpis fed on the infected blood or medium using the Hemotek and 

chicken skin membrane feeding method held at 37 ºC. 
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Aedes aegypti with Crithidia fasiculata 

4-5 day old female A. aegypti were infected with L. tarentolae and C. 

fasiculata. A. aegypti was infected with C.fasiculata and L. tarentolae in a 5% sucrose 

solution soaked in cotton wool. Feeding with capillary tubes and on a glass slide were 

also trialled.  

 

3.5.3  Dissection 

 

After infecting, visibly fed females were separated to ensure that all dissected 

insects had ingested parasites during infection.  Due to all females normally feeding 

on a sugar meal, it was assumed that all uninfected insects had fed on sucrose.  

 

To verify successful infections, fed females were dissected in the days 

following their infection to observe the presence of live parasites within the gut: 1 

day, 3 days, 5 days and 7 days post infection . The sandflies and mosquitoes for 

dissection were collected in a solution with 15ml PBS and one drop of detergent 

Tween 80 (Sigma) preventing insects using surface tension for escape; solution was 

kept on ice. Singularly, flies were collected with a tweezer and placed on a glass slide 

containing a drop of sterile PBS for dissection in which the full gut was removed. 

Tweezers and needles used in dissections were cleaned with 70% ethanol between 

each insect dissection to prevent anomalous PSG detection.  

 

The results of the dissection were processed in different ways. The whole gut 

was examined under a light microscope to determine the location of the infection. The 

whole gut was later separated into hindgut, midgut, foregut or kept as a whole gut. 

Roughly 20 insects were dissected for each condition, with separated gut sections kept 

in 10μl sterile PBS (pH 7.2) on ice before homogenisation. For the later visualisation 

of parasites, each section was homogenised with a pestle before being used to prepare 

slides. After air drying, these slides were later fixed and stained for analysis as above 

(3.2.1). For the analysis of  PSG, the section of gut homogenate was centrifuged at 

1300g for 10 minutes before the supernatant was removed without disturbing the 

pellet and placed in a fresh microcentrifuge tube for storage in a freezer for further 

analysis.  

 



Yasmine Precious Kumordzi 
 

 83 

CHAPTER FOUR: RESULTS 

4.1  Leishmania mexicana morphometric analysis in vitro 

 

Prior to the establishment of the development profile of L. mexicana 

promastigotes in culture, a growth curve was constructed to examine the growth rate 

of the parasite in vitro. Growth of parasites in 199 medium with 20% FBS as stated in 

the Materials and Methods section was monitored over 168.5 hours with cell density 

calculated using a haemocytometer approximately every 24 hours (27.5, 51.5, 74.5, 

101.5, 120.5, 149.0 and 168.5 hours). An average of 10 counts for each time point was 

used for average results plotted to give the lag, exponential and stationary phases of 

parasite growth within the environmental conditions mentioned.     

 

Figure 26: Growth curve of Leishmania mexicana in vitro. Graph shows the parasite density (y axis) over time (x 
axis) in 199 medium culture containing 20% FBS and BME vitamins. 0 hours represents the initial density of 
parasite immediately following passage of late log stage parasites into a new culture flask. Parasite growth was 
followed for 168.5 hours with the final population density of 6.0 x 106 cells ml-1.  Red line shows the standard error. 
Data presented was from 3 repeated experiments ( n=3). 
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Hours 0 - approximately 25 shows the lag phase with no increase in number of 

parasites, hours 25- 100 shows an exponential increase in the population density 

representing the exponential phase of the parasite growth and hours 100- 

approximately 105 shows a plateau in number of parasites in which cell division and 

cell death rate is equivalent representing the stationary phase (Figure 26). Following 

this at 105 hours, there is a steady decline in the number of parasites representing the 

death phase.  

 

To generate the developmental profile (Figures 27 to 31) of L. mexicana, 

parameters were measured of cells collected daily at the time points (27.5, 51.5, 74.5, 

101.5, 120.5, 149.0 and 168.5 hours) from the axenic culture growth for 5 days. The 

development profile of L. mexicana promastigotes used the measured parameters of 

body length (BL), body width (BW), and flagellum length (FL). However an 

additional parameter of distance from kinetoplast (K) to nucleus (N) was calculated 

from only 1N1K cells (2N1K and 2N2K cells were not included in this data) to 

establish its changes during the development of promastigotes. Using these parameters 

stated, the morphology of parasite in vitro is presented graphically for the variability 

between parameters to be visualised (Figure 27, 28, 29 and 30).    

Figure 27: Scatter plot showing L. mexicana cell body length (x axis) against cell body width (y axis) measured in 
μm. Each point represents a singular cell, with the date collected from culture represented by the colour of dot 
shown in legend. Day 1 n=47, Day 2 n=42, Day 3 n=54, Day 4 n=55, Day 5 n=88. Data presented was from 3 
repeated experiments. 
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Figure 28: Scatter plot showing L. mexicana cell body length (x axis) against cell flagella length (y axis) measured in 
μm. Each point represents a singular cell, with the date collected from culture represented by the colour of dot 
shown in legend. Day 1 n=47, Day 2 n=42, Day 3 n=54, Day 4 n=55, Day 5 n=88. Data presented was from 3 
repeated experiments.   
 
 

Figure 29: Scatter plot showing L. mexicana cell body width (x axis) against cell flagella length (y axis) measured in 
μm. Each point represents a singular cell, with the date collected from culture represented by the colour of dot 
shown in legend. Day 1 n=47, Day 2 n=42, Day 3 n=54, Day 4 n=55, Day 5 n=88. Data presented was from 3 
repeated experiments.   
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Figure 30: Scatter plot showing L. mexicana cell body length (x axis) against distance from kinetoplast to nucleus (y 
axis) measured in μm. Each point represents a singular cell, with the date collected from culture represented by 
the colour of dot shown in legend. Day 1 n=47, Day 2 n=42, Day 3 n=54, Day 4 n=55, Day 5 n=88. Data presented 
was from 3 repeated experiments.   
 
 
Figure 27 shows the distribution of cell body length against cell body width of L. 

mexicana promastigotes is variable. Visualising groupings as days collected from the 

axenic culture, day 1 body length ranges between 5.022 μm and 12.185 μm with the 
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μm and 1.534 μm. Day 5 length ranges increases as normal to between 2.39 μm and 

13.749 μm with the body width increasing to range between 0.683 μm and 1.768 μm. 

These changes in body length and body width are small; however when all the cells 

are visualised as a whole, a potential trend can be seen in the data. With the increase 

in cell body length (BL), there is a decrease in the body width (BW). 
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Figure 28 shows the distribution of cell body length against cell flagella length of L. 

mexicana promastigotes shows a clearer trend than that showed by Figure 27. 

Generally, the increase of cell body length results in the increase of flagella length. 

However, when flagella length is compared with the cell body width (Figure 29), the 

trend is less visible with a variable spread of data.  

 

 Figure 30 shows the distribution of cell body length against distance from 

kinetoplast to nucleus (DKN) of L. mexicana promastigotes. This shows a positive 

correlation of the DKN increase as the body length increases. Therefore as the 

promastigote increases length due to progressing through the life cycle and the 

developmental progression of metacyclogenesis.  

Figure 31: L. mexicana morphological changes of promastigotes in culture using categorization set by Rogers et al. 
(2002).  Combining all cells collected in the 3 repeated experiments, Day 1 n=47, Day 2 n=42, Day 3 n=54, Day 4 
n=55, Day 5 n=88. Following 1 day in culture,  50% of promastigotes are leptomonad promastigotes, 45% are 
procyclics and 5% are nectomonads. Overall, the levels of leptomonads increases to 63% at day 5, procyclics 
decrease to about 16% at day 5, nectomonads increase to 20% and metacyclics start to appear in culture with 
about 3% in day 5. Data presented was from 3 repeated experiments.     
 

The compilation of these measure parameters from photomicrographs allowed 

promastigote morphological changes to be presented in a graphical form (Figure 

31).The criteria used for promastigote to be categorised into procyclic, nectomonad, 

0

10

20

30

40

50

60

70

1 2 3 4 5

Pe
rc

en
t O

f C
at

eg
or

ise
d 

pr
om

as
tig

ot
es

Days In Culture

L. mexicana morphological changes of promastigotes

Procyclic

Leptomonad

Metacyclic

Nectomonad



Yasmine Precious Kumordzi 
 

 88 

leptomonad, haptomonad and metacyclic promastigotes was dependent on 

morphology criteria (Figure 16). For L. mexicana, criteria set by Rogers et al, (2002) 

was used.  This gave a graph that shows the changes in promastigote forms over 5 

days from culture (Figure 31). Day 1 represented 1 day following passage and 

contained 50% leptomonad promastigotes, 5% nectomonad promastigotes and 45% 

procyclic promastigotes. Procyclic promastigotes have a body length between 6.5 to 

11.5 μm, a flagellum length less than the body length and the body width variable. 

This form of promastigotes decreased over the days to 16% in day 5. Leptomonad 

promastigotes have a body length between 6.5 to 11.5 μm with the flagella greater 

than body length.  This form of promastigotes decreased to 40% in day 2, then rapidly 

increased to 59% in day 3 before steadily increasing over the days to 63% in day 5. 

Nectomonad promastigotes have a body length greater than 12 μm. This form of 

promastigotes increased over the days to 20% in day 5. Recovering metacyclics 

showed the onset of metacyclogenesis. This occurred after day 2, however metacyclic 

promastigotes did not dominate the culture in day 5 as presumed, with only 3% of 

cells in day 5 being categorised as metacyclic promastigotes.  
 

4.2 Leishmania tarentolae morphometric analysis in vitro 

 
Prior to the establishment of the development profile of L. tarentolae 

promastigotes in culture, a growth curve was constructed to examine the growth rate 

of the parasite in vitro. Growth of parasites in 199 medium with 10% FBS as stated in 

the Materials and Methods section was monitored over 175.5 hours with cell density 

calculated using a haemocytometer approximately every 24 hours (33.3, 56.0, 76.5, 

101.0, 124.0, 151.5 and 175.5 hours). An average of 10 counts for each time points 

was used for average results plotted to give the lag, exponential and stationary phases 

of parasite growth within the environmental conditions mentioned. 
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Figure 32: Growth curve of Leishmania tarentolae in vitro. Graph shows the parasite density (y axis) over time (x 
axis) in 199 medium culture containing 10% FBS and BME vitamins. 0 hours represents the initial density of 
parasite immediately following passage of late log stage parasites into a new culture flask. Parasite growth was 
followed for 175.5 hours with the final population density of 1.0 x 107 ml -1. Red line shows the standard error. Data 
presented was from 3 repeated experiments ( n=3). 
 

No lag phase is seen as rapid parasite growth occurs. Hours 0- 80 shows an 

exponential increase in the population density representing the exponential phase of 

the parasite growth and hours 80- approximately 130 shows a plateau in number of 

parasites in which cell division and cell death rate is equivalent representing the 

stationary phase (Figure 32). Following this at 130 hours, there is a steady number of 

parasites representing the death phase.  

 

To generate the developmental profile of L. tarentolae, parameters were 

measured of cells collected at 24 hour intervals from the axenic culture growth for 5 

days. The development profile of L. tarentolae promastigotes used the measured 

parameters of body length (BL), body width (BW), and flagellum length (FL). 

However an additional parameter of distance from kinetoplast (K) to nucleus (N) was 

calculated from only 1N1K cells (2N1K and 2N2K cells were not included in this 

data) establish its changes during the development of promastigotes. Using these 

parameters stated, the morphology of parasite in vitro is presented graphically for the 

variability between parameters to be visualised (Figure 33, 34, 35 and 36).    
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Figure 33: Scatter plot showing  L. tarentolae cell body length (x axis) against cell body width (y axis) measured in 
μm. Each point represents a singular cell, with the date collected from culture represented by the colour of dot 
shown in legend. Day 1 n=106, Day 2 n=80, Day 3 n=119, Day 4 n=79, Day 5 n=64, Day 6 n=75, Day 7 n=54. Data 
presented was from 3 repeated experiments.   
 

Figure 34: Scatter plot showing L. tarentolae cell  body length (x axis) against cell flagellar length (y axis) measured 
in μm. Each point represents a singular cell, with the date collected from culture represented by the colour of dot 
shown in legend. Day 1 n=106, Day 2 n=80, Day 3 n=119, Day 4 n=79, Day 5 n=64, Day 6 n=75, Day 7 n=54. Data 
presented was from 3 repeated experiments.   
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Figure 35: Scatter plot showing L. tarentolae cell body width (x axis) against cell flagellar length (y axis) measured in 
μm. Each point represents a singular cell, with the date collected from culture represented by the colour of dot 
shown in legend. Day 1 n=106, Day 2 n=80, Day 3 n=119, Day 4 n=79, Day 5 n=64, Day 6 n=75, Day 7 n=54. Data 
presented was from 3 repeated experiments.   
 

Figure 36: Scatter plot showing L. tarentolae cell body length (x axis) against distance from kinetoplast to nucleus 
(y axis) measured in μm. Each point represents a singular cell, with the date collected from culture represented by 
the colour of dot shown in legend. Day 1 n=106, Day 2 n=80, Day 3 n=119, Day 4 n=79, Day 5 n=64, Day 6 n=75, 
Day 7 n=54. Data presented was from 3 repeated experiments.   
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Figure 33 shows the distribution of cell body length against cell body width of 

L. tarentolae promastigotes is variable. Visualising groupings as days collected from 

the axenic culture, day 1 body length ranges between 5.136 μm and 13.466 μm with 

the body width ranging between 0.711 μm and 2.5 μm. Day 2 length ranges increases 

to between 6.375 μm and 16.152 μm with the body width ranging between 0.925 μm 

and 2.45 μm. This continues to day 3, with the length range increasing to between 

2.583 μm and 18.913 μm, and the body width ranging between 0.44 μm and 2.508 

μm. However in day 4, the length range decreases to between 2.491 μm and 16.496 

μm with the body width reducing to range between 0.55 μm and 2.481 μm. Day 5 

length ranges increases as normal to between 2.361 μm and 17.007 μm with the body 

width increasing to range between 0.575 μm and 2.809 μm. Day 6 length ranges 

decreases rapidly to between 1.69 μm and 7.725 μm with the body width increasing to 

range between 0.911 μm and 2.688 μm. Day 7 length ranges increases as normal to 

between 1.692 μm and 8.574 μm with the body width increasing to range between 

0.828μm and 2.962 μm. These changes in body length and body width are small; 

however when all the cells are visualised as a whole, a slight trend can be seen in the 

data. With the increase in cell body length (BL), there is a decrease in the body width 

(BW) similar to L. mexicana (Figure 27). 

 

 Figure 34 shows the distribution of cell body length against cell flagellar 

length of L. tarentolae promastigotes shows a clearer trend than that showed by 

Figure 33. Generally, the increase of cell body length results in the increase of 

flagellar length. However, when flagellar length is compared with the cell body width 

(Figure 35), the trend is less visible with a variable spread of data.  

 

Figure 36 shows the distribution of cell body length against distance from 

kinetoplast to nucleus (DKN) of L. tarentolae promastigotes. This shows a positive 

correlation of the DKN increase as the body length increases. Therefore as the 

promastigote generally increases length due to progressing through the life cycle and 

the developmental progression of metacyclogenesis similar to that of L. mexicana 

(Figure 30).  
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Figure 37: L. tarentolae morphological changes of promastigotes in culture using categorization set by Rogers et al. 
(2002). Combining all cells collected in the 3 repeated experiments, Day 1 n=106, Day 2 n=80, Day 3 n=119, Day 4 
n=79, Day 5 n=64, Day 6 n=75, Day 7 n=54. Following 1 day in culture,  55% of promastigotes are procyclics, 42% 
leptomonads, 2% nectomonads and 1% metacyclics. Procyclics decreased significantly over the days to 0 found 
after 7 days. Nectomonads increased rapidly to 68% in day 3 to further decreased to 0 at day 6. Leptomonads 
increased to 75% in day 5 and later decreased steadily to 28% in day 7. Metacyclics increase steadily to 5% in day 5 
and rapidly increase significantly to 72% in day 7.  Data presented was from 3 repeated experiments.   
 
 
 

The compilation of these measure parameters from photomicrographs allows 

promastigote morphological changes to be presented in a graphical form (Figure 

37).The criteria used for different promastigote stages was based on morphology 

criteria (Figure 16). To assign promastigote stages in both Leishmania species 

measured (L. mexicana and L. tarentolae), criteria set by Rogers et al, (2002) 

developed for L. mexicana was used.  This gave a graph that shows the changes in 

promastigote forms over 7 days from culture (Figure 37). Day 1 represents 1 day 

following passage and contains 55% procyclics, 42% leptomonads, 2% nectomonads 

and 1% metacyclics. The percentage of promastigotes categorised as procyclics 

decreases significantly to 13% in day 2 and then remained steadily low for the 

remainder of the growth in culture. Nectomonads on the other hand increase rapidly to 

68% in day 3, later decreasing rapidly to 0% in day 6 and remaining at that level. 
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Leptomonads increase on day 2 to 53%, decreased to 28% in day 3 before increasing 

again to 75% in day 5 and decreasing again. Metacyclics increased steadily to 5% in 

day 5 and rapidly increased to 72% in day 7.     

 

The photomicrographs from which these morphometric analyses were 

collected from showed some unfamiliar morphologies that could not be explained or 

properly categorised using the criteria from Rogers et al (2002).  

 

4.2.1  Bulgtomonad promastigotes 

 

These were first described by Dillon and Liu (unpublished) in which a new 

criteria was suggested taking these promastigotes into consideration. Bulgtomonads 

were described as having a body width between 2.3-3.5 μm with the body length 

roughly 15 μm.  

 

Cells that fit the visual description of bulgtomonads promastigotes were found 

in the axenic culture of L. tarentolae on day 4 (Image 1). These cells made up 20.24% 

of cells found in day 4. The bulgtomonad promastigotes all had their nucleus 

contained within the ‘bulge’ of the cell with the kinetoplast adjacent to the flagella. 

11% of promastigotes that visually fit the criteria for bulgtomonad promastigotes did 

fit within the described morphology of bulgtomonad promastigotes by Dillon and Liu. 

Due to the low proportion of cells fitting the criteria, the cells that visually fit the 

description of bulgtomonads from day 4 L. tarentolae in culture have been used to 

give a revised average morphological criteria for bulgtomonad promastigotes (Figure 

38).  
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Image 1: Image shows Bulgtomonad promastigotes from Leishmania tarentolae axenic culture day 4. Left images 
were stained with Giemsa and right images were stained with DAPI. The thick yellow arrow points to the nucleus 
DNA whilst the thin green arrow points to the kinetoplast DNA. Red circles showing regions of visual bultomonad 
promastigotes.  
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Figure 38: Morphology criteria for L. tarentoloae Bulgtomonad promastigotes. Body width across bulge of  around 
1.88μm, distance from nucleus to kinetoplast (DKN) of 2.24μm and cell body length of 9.44μm.  
 
 
 

4.2.2  Kinetoplast Nucleus swapping promastigotes 

 

Both the nucleus and kinetoplast is seen under DAPI staining, with the 

kinetoplast DNA being smaller and brighter when compared to the nucleus DNA. The 

kinetoplast is seen to be anterior to the nucleus in most promastigotes, however in 

some promastigotes seen in the death phase of L. tarentolae the seems to be a change 

in its location (Image 2 and 3). These cells were spherical in cell body shape and had a 

flagellum significantly longer than its cell body. Taking into account all cells that 

presented this morphology, this cell type was categorized; cell body length was 

roughly 2 μm, cell body width was roughly 1.7 μm, flagellum length was roughly 

10.842 and DKN was roughly 0.7 μm.  
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Image 2: Image shows kinetoplast and nucleus swapping promastigotes from Leishmania tarentolae axenic culture 
day 7. Left images were stained with Giemsa and right images were stained with DAPI. The promastigotes of 
interest are circled, with green arrows showing the kDNA. 
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4.3  Analysing chemotaxic migration 

 
Chemotaxic assay mentioned in Materials and Methods 3.3 was used to 

produce all the data. Capillary assay was set up using PSG collected in a L. mexicana 

infection with Lu. longipalpis, 0.5M glucose, 0.5M fructose, 0.5M urea, 0.5M 

sorbitol, 0.5M mannose, 0.5M sucrose and 0.05M copper sulphate. Copper sulphate 

resulted in some migrated cells, however all cells were lysed and therefore could not 

be used for further analysis.  
 

4.3.1  Capillary assay  

Figure 39 shows the migration chemotaxis index (MCI); a positive index 

showed attraction towards the chemoeffector whereas a negative index shows 

repulsion. Visualising the graph, generally all chemoeffectors have a positive index 

for L. mexicana and L. tarentolae for both days (day 3 and day 5). PSG shows positive 

chemotaxic index throughout; with L. mexicana day 5 having the highest MCI of 

2.428,  L. mexicana day 3 having an MCI of 2.285, L. tarentolae day 5 having an MCI 

of 0.804 and L. tarentolae day 3 having an MCI of 0.333. The data shows that L. 

mexicana is more attracted to PSG compared to L. tarentolae, with forms found in the 

late stationary phase/death phase showing higher attraction. Glucose shows a positive 

MCI to all L. mexicana and L. tarentolae day 5 promastigotes. L. tarentolae day 3 

show a slight negative MCI of 0.752. L. mexicana and L. tarentolae day 5 

promastigotes show similar MCIs in fructose between 0.4 to 0.8 and glucose of 

roughly 1.65 (Figure 39). L. mexicana day 3 have the highest MCI to both sugars, 

followed by L. mexicana day 5. Using a 5% two-tailed Mann Whitney U-test 

(appendix II) for L. mexicana day 3 and day 5 glucose recorded cell population of 

migrated cells result, the p value of 0.006233 was calculated showing that the result 

was highly significant.  L. mexicana and L. tarentolae day 5 have MCIs below 1.0 

towards urea, however L. tarentolae day 3 show a high MCI of 2.820. Using a 5% 

two-tailed Mann Whitney U-test (appendix II) for L. tarentolae day 3 and day 5 urea 

results, the p value of 0.000532 showing that the result was highly significant. 

Sorbitol and mannose generally have a low MCI between -1.0 and 1.0, however L. 

mexicana day 3 have a MCI of 1.678 towards mannose. Sucrose generally has 

attractiveness similar to glucose and fructose, with L. mexicana day 3 having a MCI 

of 6.0.  
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Overall, L. mexicana day 3 show a stronger attraction to when compared to L. 

mexicana day 5 towards the sugars glucose, fructose, mannose and sucrose. L. 

tarentolae day 3 show great attraction towards urea, with others not having much of 

an attraction. 
 
 

Figure 39: Movement of Leishmania promastigotes in the presence of potential chemoeffectors. Graph shows the 
migration chemotaxis index (mentioned in Materials and Methods) of 3 (Exponential growth phase) and 5 
(Stationary growth phase) day old culture of L. mexicana and L. tarentolae towards potential chemoeffectors of 
PSG, glucose 0.5M, fructose 0.5M, urea 0.5M, sorbitol 0.5M, mannose 0.5M and sucrose 0.5M. Raw data in 
appendix IV. The date collected from culture represented by the colour of bars shown in legend. Data presented 
for glucose, fructose, sorbitol, mannose, urea and sucrose was from 3 repeated experiments. Data for PSG was 
from 1 experiment consisting of 5 capillary tubes for each condition. Standard error showed by error bars.  
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4.3.2  Capillary assay morphometrics 

 

 Promastigotes from fructose, urea, sucrose, mannose and PSG capillary assay 

were used to generate a profile of the morphology of migrated Leishmania 

promastigotes. Parameters measured were body length (BL), body width (BW), and 

flagellum length (FL), with the additional parameter of distance from kinetoplast (K) 

to nucleus (N) (DKN). Using these parameters, the morphology of migrated parasite 

to the chemoeffectors were presented graphically after categorised according to the 

criteria set by Rogers et al, (2002); Promastigotes were categorised as P (Procyclic), L 

(Leptomonad), M (Metacyclic), and N (Nectomonad). 
 
Sugars 

 

Within the specific species, L. tarentolae and L. mexicana showed little 

difference between proportions of promastigote forms that migrated between day 3 

and day 5. However, between species there is a variety of differences in the forms that 

migrate towards specific sugars. 

 

Fructose  

 

L. mexicana (Figure 40a) shows a high proportion of leptomonad 

promastigotes to have migrated in both days, with 66.7% migration in day 5 and 

58.3% migration in day 3. This is followed by procyclic promastigotes with 16.7% 

migration in day 5 and 29.1% migration in day 3, and nectomonad promastigotes with 

14.4% in day 5 and 12.5% in day 3. The general migration of L. mexicana 

promastigote forms towards a gradient of fructose shows the attraction to be highest in 

leptomonads, procyclics and lowest in nectomonads, especially within the population 

from day 5 culture.     

 

L. tarentolae (Figure 40b) shows a high proportion of nectomonad 

promastigotes to have migrated in both days, with 61.5% migration in day 5 and 60% 

migration in day 3. This is followed by leptomonad promastigotes with 38.5% in day 

5 and 40% in day 3. Interestingly there is no migration of procyclics. The general 

migration of L. tarentolae promastigote form towards a gradient of fructose shows the 
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attraction to be highest with nectomonads followed by leptomonads, however 

procyclic forms are showed to have no migration towards fructose. 

 

The biggest difference in migration towards a gradient of fructose between L. 

tarentolae and L. mexicana is the absence of any migrated procyclic promastigote 

forms in L. tarentolae, and the promastigote form with highest attraction nectomonads 

in L. tarentolae and leptomonads in L. mexicana.   

 

Sucrose 

 

L. mexicana (Figure 41a) shows a high proportion of leptomonad 

promastigotes to have migrated in both days, with 59.6% migration in day 5 and 

55.0% migration in day 3. This is followed by procyclic promastigotes with 23.1% 

migration in day 5 and 30.0% migration in day 3, and nectomonad promastigotes with 

15.4% in day 5 and 10.0% in day 3. The general migration of L. mexicana 

promastigote forms towards a gradient of sucrose shows the attraction to be highest in 

leptomonads, procyclics and lowest in nectomonads, especially within the population 

from day 5 culture.     

 

L. tarentolae (Figure 41b) shows a high proportion of nectomonad 

promastigotes to have migrated in both days, with 59.0% migration in day 5 and 

45.5% migration in day 3. This is followed by 29.5% migration of leptomonad 

promastigotes in day 5 and 36.4% migration of procyclics in day 3, then a migration 

of 9.8% in procyclic promastigotes day 5 and 13.6% migration of leptomonads in day 

3.  

 

The biggest difference in migration towards a gradient of sucrose between L. 

tarentolae and L. mexicana is the procyclic form with highest attraction being 

nectomonads in L. tarentolae and leptomonads in L. mexicana.   

 

Mannose  

 

L. mexicana (Figure 42a) shows a high proportion of leptomonad 

promastigotes to have migrated in both days, with 61.9% migration in day 5 and 

45.5% migration in day 3. This is followed by procyclic promastigotes with 30.2% 
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migration in day 5 and 40.9% migration in day 3, and nectomonad promastigotes with 

7.9% in day 5 and 13.6% in day 3. The general migration of L. mexicana promastigote 

forms towards a gradient of mannose shows the attraction to be highest in 

leptomonads, procyclics and lowest in nectomonads, especially within the population 

from day 5 culture.     

 

L. tarentolae (Figure 42b) shows a high proportion of nectomonad and 

leptomonad promastigotes to have migrated in both days. However, the promastigote 

with highest migration differs between age of culture used. Day 5 culture shows a 

nectomonad migration of 68.2% being the highest migration whereas day 3 culture 

shows the highest migration to be 50.0% in  leptomonads. This is followed by 31.8% 

leptomonad migration in day 5 culture and 42.9% nectomonad migration in day 3 

culture. There is no other forms of promastigotes that are found to migrate in day 5 

culture however day 3 show a low migration of 7.1% in procyclics.  

 

The biggest difference in migration towards a gradient of mannose is the 

promastigote form with highest attraction being leptomonads in L. mexicana and 

differing between leptomonads in day 3 and nectomonads in day 5 L. tarentolae. The 

is also no found procyclic migration in day 5 tarentolae.  

 

Between sugars there are similarities as well as a few differences. L. mexicana 

shows the highest migration for both day 3 and day 5 from leptomonad promastigotes, 

followed by procyclic promastigotes and later nectomonad promastigotes. There are 

very few migrated metacyclic promastigotes found; sucrose had 5% migration found 

in day 3 and 1.9% found in day 5, mannose had no metacyclics in either days and 

fructose had no metacyclics found in day 3 and 2.4% migration found in day 5.   L. 

tarentolae shows a different migrated promastigote form profile when compared to L. 

mexicana. L. tarentolae from day 5 shows the highest migration from nectomonads, 

followed by leptomonads and then procyclics. However in response to sucrose 

mannose and fructose, none of the procyclics or metacyclics from day 5 culture 

migrate. L. tarentolae from day 3 show more of a variation in the forms that migrate; 

sucrose presents a high migration of  nectomonads, followed by procyclics and lowest 

with leptomonads, mannose presents a high migration of leptomonads, followed by 

nectomonads and lowest with procyclic, whilst fructose presents a high migration of 

nectomonads followed by leptomonad with no migration of procyclics.  
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Figure 40a: The percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. mexicana 
towards potential chemoeffectors of fructose 0.5M. Promastigotes were categorised as P (Procyclic), L 
(Leptomonad), M (Metacyclic), and N (Nectomonad). Raw data in appendix IV. The date collected from culture 
represented by the colour of bars shown in legend. Data presented was from 3 repeated experiments.   
 

Figure 40b:The percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. tarentolae 
towards potential chemoeffectors of fructose 0.5M. Promastigotes were categorised as P (Procyclic), L 
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(Leptomonad), M (Metacyclic), and N (Nectomonad). Raw data in appendix IV. The date collected from culture 
represented by the colour of bars shown in legend. Data presented was from 3 repeated experiments.   

 
 
Figure 41a: The percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. mexicana 
towards potential chemoeffectors of sucrose 0.5M. Promastigotes were categorised as P (Procyclic), L 
(Leptomonad), M (Metacyclic), and N (Nectomonad). Raw data in appendix IV. The date collected from culture 
represented by the colour of bars shown in legend. Data presented was from 3 repeated experiments.   
 

 
 
Figure 41b: The percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. tarentolae 
towards potential chemoeffectors of sucrose 0.5M. Promastigotes were categorised as P (Procyclic), L 
(Leptomonad), M (Metacyclic), and N (Nectomonad). Raw data in appendix IV. The date collected from culture 
represented by the colour of bars shown in legend. Data presented was from 3 repeated experiments.   
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Figure 42a: The percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. mexicana 
towards potential chemoeffectors of mannose 0.5M. Promastigotes were categorised as P (Procyclic), L 
(Leptomonad), M (Metacyclic), and N (Nectomonad). Raw data in appendix IV. The date collected from culture 
represented by the colour of bars shown in legend. Data presented was from 3 repeated experiments.   
.   
 

 
Figure 42b: The percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. tarentolae 
towards potential chemoeffectors of mannose 0.5M. Promastigotes were categorised as P (Procyclic), L 
(Leptomonad), M (Metacyclic), and N (Nectomonad). Raw data in appendix IV. The date collected from culture 
represented by the colour of bars shown in legend. Data presented was from 3 repeated experiments.   
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Urea 
 

Within the specific species, L. tarentolae and L. mexicana showed little 

difference between proportions of promastigote forms that migrated between day 3 

and day 5. However, between species there is a variety of differences in the forms that 

migrate towards urea. 

 

L. mexicana (Figure 44) shows a high proportion of leptomonad promastigotes 

to have migrated in both days, with 52.9% migration in day 5 and 35.7% migration in 

day 3. This is followed by nectomonad promastigotes with 29.4% migration in day 5 

and 28.6% migration in day 3, procyclic promastigotes with 11.8% in day 5 and 

21.4% in day 3 and metacyclic promastigotes with 5.9% in day 5 and 14.3% in day 3. 

The general migration of L. mexicana promastigote forms towards a gradient of urea 

shows the attraction to be highest in leptomonads, followed by nectomonads, 

procyclics and lowest migration in metacyclics.   

 

L. tarentolae (Figure 44) shows a high proportion of leptomonad and 

Nectomonad promastigotes migrated in both days.  Day 5 L. tarentolae shows 

nectomonad promastigote to have the highest migration of 56.5% whilst day 3 shows 

leptomonad promastigote with 60.0% to have the highest migration. This is followed 

by 39.1% migration of leptomonad in day 5 and 33.3% migration of nectomonads in 

day 3 cultures. Procyclics shows a very small migration of 6.6% in day 3 and 4.3 in 

day 5.   

 

The biggest difference in migration towards a gradient of urea between L. 

tarentolae and L. mexicana is the absence of L. tarentolae metacyclic forms in 

migration. However, generally similar forms of promastigotes migrate; leptomonad 

and nectomonads.   
 
Promastigote Secreting Gel (PSG)  
 
Unlike the other chemoeffectors tested, PSG showed the widest variation. 

 

L. mexicana day 3 showed procyclics as the most migrated form of 50.0%, 

followed by leptomonads at 42.9% and nectomonads at 7.14%. L. mexicana day 5 

showed leptomonads as the most migrated form of 56.0%, followed by nectomonads 
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at 24.0%, procyclics at 16.0% and metacyclics at 4.0%.  Generally, L. mexicana had 

procyclics and leptomonads form of promastigotes migrate towards PSG (Figure 45a) 

 

L. tarentolae day 3 showed nectomonads as the most migrated form of 75.0%, 

followed by leptomonads at 18.75% and procyclics at 6.25%. L. tarentolae day 5 

showed leptomonads as the most migrated form of 81.8%, followed by procyclics and 

nectomonads both at 9%. On both days no metacyclics were found to have migrated 

(Figure 45b) 
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Figure 43a: The percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. mexicana 
towards potential chemoeffectors of urea 0.5M. Promastigotes were categorised as P (Procyclic), L (Leptomonad), 
M (Metacyclic), and N (Nectomonad). Raw data in appendix IV. The date collected from culture represented by the 
colour of bars shown in legend. Data presented was from 3 repeated experiments.   
 

 
Figure 44a: The percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. tarentolae 
towards potential chemoeffectors of urea 0.5M. Promastigotes were categorised as P (Procyclic), L (Leptomonad), 
M (Metacyclic), and N (Nectomonad). Raw data in appendix IV. The date collected from culture represented by the 
colour of bars shown in legend. Data presented was from 3 repeated experiments.   
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Figure 45a: The percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. mexicana 
towards potential chemoeffectors of crude PSG Promastigotes were categorised as P (Procyclic), L (Leptomonad), 
M (Metacyclic), and N (Nectomonad). Raw data in appendix IV. The date collected from culture represented by the 
colour of bars shown in legend. Data presented was from 1 experiment.   
 

 
Figure 45b: The percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. tarentolae 
towards potential chemoeffectors of crude PSG Promastigotes were categorised as P (Procyclic), L (Leptomonad), 
M (Metacyclic), and N (Nectomonad). Raw data in appendix IV. The date collected from culture represented by the 
colour of bars shown in legend. Data presented was from 1 experiment.   
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Figure 46: Overall movement of Leishmania tarentolae promastigotes in the presence of chemoeffectors. Graph 
shows the percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. tarentolae towards 
potential chemoeffectors of PSG, glucose 0.5M, fructose 0.5M, urea 0.5M, sorbitol 0.5M, mannose 0.5M and 
sucrose 0.5M. Promastigotes were categorised as P (Procyclic), L (Leptomonad), M (Metacyclic), and N 
(Nectomonad). Raw data in appendix IV. The date collected from culture represented by the colour of bars shown 
in legend. 
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Figure 46 shows the types of L. tarentolae promastigotes that migrate towards 

specific chemoeffectors. Metacyclic promastigotes show the least migration, however 

the number of metacyclic promastigotes found in day 5 and day 3 culture is very low 

in L. tarentolae.  Procyclic promastigotes is the second least migrated form, with less 

than 10% of migrated cells towards chemoeffectors falling in this category. With 3 

day old L. tarentolae, 35% of procyclic promastigotes migrate towards sucrose. 

Leptomonad and nectomonad promastigotes are the most migrated types of L. 

tarentolae. Interestingly when using 5 day old L. tarentolae towards PSG, over 80% 

of migrated cells are leptomonads and under 10% being nectomonads.  This shows 

that L. tarentolae nectomonads and leptomonads (particularly nectomonads) play the 

major role in migration towards chemoeffectors and not metacyclics.  

 

Figure 47 shows the types of L. mexicana promastigotes that migrate towards 

specific chemoeffectors. Similar to L. tarentolae, metacyclic promastigotes show the 

least migration. Nectomonads show the second lowest migration, with high 

nectomonad promastigotes migration between 20% and 30% towards urea and PSG. 

More procyclic promastigotes migrate in L. mexicana compared to L. tarentolae, with 

migration of procyclics being over 10%. The highest migration of procyclic 

promastigotes is towards PSG when using 3 day old promastigotes of 50%, second 

highest is migration towards mannose of 41%. Leptomonad promastigotes are the 

highest migrated form of promastigotes, showing migration towards all 

chemoeffectors. This shows that L. tarentolae procyclics and leptomonads play the 

major role in migration towards chemoeffectors and not metacyclics as suggested in 

literature.  
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Figure 47: Overall movement of Leishmania mexicana promastigotes in the presence of chemoeffectors. Graph 
shows the percentage of migrated categorised promastigotes of day 3 and 5 old culture of L. mexicana towards 
potential chemoeffectors of PSG, glucose 0.5M, fructose 0.5M, urea 0.5M, sorbitol 0.5M, mannose 0.5M and 
sucrose 0.5M. Promastigotes were categorised as P (Procyclic), L (Leptomonad), M (Metacyclic), and N 
(Nectomonad). Raw data in appendix IV. The date collected from culture represented by the colour of bars shown 
in legend. 
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4.4  Microfluidic Chip design 

 

4.4.1 Design and operations of the microdevice 

To explore the various migration of Leishmania to various gradients of 

chemoeffectors in a controlled and stable manner, we developed a microfluidic 

device made up of optically transparent PDMS containing one layer as showed in 

Figure 48 (A,B). The device generated consists of a chip with a diameter of 7 cm. 

The chip has a 12 chambers along the extremity of the chip with channels 

connecting them to the central reservoir chamber for parasite culture. This 

generates a concentration gradient from the chamber at the extremity containing 

test chemoeffector to the central reservoir chamber containing cells collected from 

parasite culture. The chambers had a height of 200μm with connecting channels 

20μm in height. This type of microfluidic gradient generator has a couple of potential 

problems such as cross flow occurring between the sink and source (Paliwal et al, 

2007). This problem was addressed in the design by increasing fluidic resistance 

between the sink and source by decreasing the height of a part of the connecting 

channel from 20μm to 6μm for 250μm of the length of channel Figure 48(C,D).  

 

Before the assay, fluorescent Leishmania parasites obtained from Dr Paul 

Bates and Dr Hector Diaz-Albiter were washed with PBS and resuspended in WIS 

0.004% FBS.  A known volume of parasites was loaded into the central reservoir 

chamber and potential chemoeffectors such as glucose in WIS 0.004% FBS 0.5M 

were used loaded into the chambers at the extremities before they were covered with a 

glass cover slip. Static diffusion based microfluidic gradient generator utilises 

diffusion between the two chambers to generate gradients across the channel in which 

can be detected by the parasites for migration to occur. 

 

A confocal laser scanning microscope was used for live imaging of the 

migrating Leishmania parasites. Following the loading of both chambers, a glass 

coverslip was used to cover the chip, completing the device. Images were taken at a 

regular interval of 30 seconds of the whole device for an hour and was later stitched to 

form a video in which migration can be viewed.  
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  Figure 48 (A,B): Microfluidic device design. Top view of the radial chip, showing 12 chambers along the outer 
edge and a singular central reservoir for the cell culture. The complete design is shown (B) with detailed 
region shown (A) 
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Figure 48(C,D): Microfluidic device design. Schematic illustration of the of the microfluidic chip. From a single 
inlet, four branching channels subject the flow into microchannels (C) with dimensions of channels and wells 
differing in height (D). 
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4.4.2 Initial testing of microfluidic device 

 

Initial testing using Leishmania parasites in a WIS 0.004% FBS solution 

placed in the central chamber and WIS 0.004% FBS in the chambers at the extremities 

showed that the size of the channels and basic design of the device allowed for good 

stable movement of promastigote Leishmania parasites within the channels when 

viewed under an inverted microscope at x40. However, testing under the correct 

conditions for microfluidic studies showed outside influence on the migration and 

fluid diffusion. Placing the cover slip on the loaded chip resulted in some movement 

of liquid and after about 15 minutes the chip began to dry, this affects both diffusion 

and the migration of promastigotes. Due to these problems, the experiment was not 

pursued further.  
 
 
 

4.5  Preliminary study of hypopylarian status of L. 
tarentolae 

 
 4-5 day old Lu. longipalpis and Aedes. aegypti were infected with Leishmania 

parasites and Crithidia fasiculata to study the establishment and development of 

successful infections. This was done by using dissections of the full gut and 

visualisation of the foregut, midgut and hindgut separately to understand the infection.  

 

 Lu. longipalpis was infected separately with L. tarentolae, L. mexicana and C. 

fasiculata infections and monitored throughout by analysing the gut throughout the 

infection. A successful L. mexicana infection was established within the first 

experiment, giving rise to the PSG plug used for the chemotaxis assay. In this initial 

infection, a suprapylarian infection was seen. Unfortunately L. mexicana did not 

establish infection with the second experiment. Successful L. tarentolae infections 

were established in roughly 60% of sandflies. The parasites within these infections 

were contained within the hindgut and posterior midgut with heavy infection 

contained within the hindgut. Attachment to hindgut epithelium was not visualised. A 

loss of infection occurred 5-10 days following the infection, with Leishmania 

parasites seen within the rectum of the sandfly. It can therefore be assumed that L. 

tarentolae establishes a hypopylarian infection in Lu. Longipalpis which is lost 
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through excretion. C. fasiculata infections within the sandfly established similar to L. 

tarentolae in a hypopylarian mode.     

 

A. aegypti mosquito infected with L. tarentolae and C. fasiculata was not the 

main aspect of this study therefore only one preliminary set of experiment was done. 

16% of fed mosquitoes had the presence of parasites in the first day of dissection (day 

3). This establishment of infection was quickly lost after day 3 and the presence of 

parasites were loosely within the midgut and hindgut similar to L. tarentolae infection 

in Lu. Longipalpis.   
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CHAPTER FIVE: DISCUSSION 

 

5.1 Is Leishmania tarentolae hypopylarian? 

 

Leptomonad promastigotes are responsible for the production of promastigote 

secretory gel (PSG) in suprapylarian parasites (Rogers et al, 2002). This 

developmental stage of promastigote is the precursor of metacyclic promastigotes, the 

infective stage of promastigote. PSG is known to have a large role in transmission as 

it is produced at the site of metacyclogenesis. However, this has to date only been 

investigated in suprapylarian Leishmania spp. infections such as L. mexicana. From 

the knowledge of developmental and migration changes of suprapylarian Leishmania 

spp leading to transmission, it is understood that PSG gel plug occurs in the cardia and 

thoracic midgut. The gel contains predominantly leptomonads from which metacyclic 

promastigotes are differentiated from. This accumulation of PSG not only allows for 

metacyclic promastigotes to be produced in an environment promoting transmission 

during the next blood feed but distorts the stomodeal valve for the regurgitation 

process to occur for successful blood meal intake and infection. As reported (Vionette, 

Ginger and Dillon unpublish data) L. tarentolae establishes in a hypopylarian manner 

in Lutzomyia longipalpis, successive developmental stages occur within the posterior 

gut. The reservoir of leptomonads within a successful infection would therefore be 

located in the hindgut  and it was hypothesised that PSG production might occur in 

this location. Any PSG produced in the hindgut might have a role in preventing 

premature loss of parasites in the excreta due to partial blockage of the hindgut lumen 

(Vionette, Ginger and Dillon unpublished). Diaz-Albiter et al, 2018 showed that 

unlike reported by Vionette, Ginger and Dillon (unpublish data), L. tarentolae-GFP 

infected Lu. longipalpis had a distribution that was diffuse with no specific areas of 

binding to the gut (Diaz-Albiter et al, 2018). Due to the differentiation of leptomonad 

promastigotes to metacyclic promastigotes being the last stage in metacyclogenesis 

and the manner in which hypopylarian infection occurs, the discovery of PSG in 

regions of the gut can be used to determine the location of leptomonads and 

metacyclics.  
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A preliminary experiment performed at the end of this study used sectional gut 

dissection of successfully infected Lu. longipalpis to image the morphology of L. 

tarentolae and detect PSG. The intention was to monitor changes that occur in L. 

tarentolae infection and confirm the manner of infection that occurs with L. 

tarentolae. The samples of morphology and PSG were not  able to be  analysed within 

the time frame of this study but visualisation of the full gut and gut sections (foregut, 

midgut and hindgut) from infection showed an hypopylarian infection with 

leptomonad-type morphology of parasites within the posterior midgut and hindgut. 

Based purely on visualisation of the infected gut, it can be confirmed that L. 

tarentolae is a hypopylarian Leishmania species however no visual PSG formation 

was seen. This could be due to continuous removal of produced PSG, a low-density 

infection preventing large amounts of PSG to be produced or alternatively lack of 

PSG formation by these parasites in the hindgut. Unlike in the foregut where the 

cardia stops this from occurring, midgut peristalsis and the muscles around the pylorus 

act to push excreta out for excretion. Further analysis of samples produced would give 

more  insight into the manner of L. tarentolae infection.         

 

5.2 Morphometric analysis and comparison between L. 
mexicana and L. tarentolae 

 

The morphometric analysis follows the development of two species of Leishmania; L. 

mexicana a suprapylarian parasite and L. tarentolae a hypopylarian parasite, with the 

results showing the multiplicative promastigotes within the axenic culture and the 

sequence of morphology changes that occurs in culture. These changes mimic the 

morphological transformations that occurs within the sand fly during the basic process 

of metacyclogenesis. There are many published morphometric analysis of L. mexicana 

parasite (Bates et al, 1994) however although a good model kinetoplastid, 

morphometrics of L. tarentolae has not been explored well enough to be published. 

Comparisons of these two species has provided a morphometric analysis of the 

metacyclogenesis development that occurs in an axenic culture; cell body length, 

width, flagellum length and distance between the kinetoplast and nucleus. However 

using morphology particularly flagellum length to interpret the form of promastigote 

using Bates et al, 1994 does not take into account the fact that the flagellum length is 
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continuously growing throughout numerous cell cycles (Wheeler, Gluenz and Gull 

2010). Therefore many promastigotes that fall within the leptomonad criteria 

according to morphology may actually be procyclics. Only promastigotes within the 

multiplicative promastigote stages were found. This was largely due to the continuous 

passaging and the conditions that the promastigotes were kept in in terms of 

temperature and pH.  

 

5.2.1 Leishmania mexicana  

 

The morphologies associated with L. mexicana promastigotes within the 

sandfly and axenic culture (Rogers et al, 2002) have all been found. The changes in 

morphology could be seen to dramatically change throughout development on a daily 

basis, however using the morphological category stated by Rogers et al, 2002 only the 

four main developmental forms (procyclic, nectomonad, leptomonad and metacyclic 

promastigote) were found in culture. These followed a similar pattern of development 

initiating with high procyclic promastigotes which reduces overtime, an increase of 

leptomonads and nectomonads, and the emergence of metacyclic promastigotes. 

However, monitoring of 5 days did not yield a high percentage  of metacyclic 

promastigotes.  This was surprising as Rogers et al, 1993 showed an exponential 

increase of metacyclic L. mexicana in an axenic culture with 20% of total cells in 

culture being metacyclics at 4 days following passage and roughly 100% of cells in 

culture 6 days following passage being metacyclics. This differed significantly from 

the present data produced, with the only difference in methodology being the pH of 

culture, media used and the passage number of culture. Bates and Tetley, 1993 

reported similar data, explaining that the production of significantly pure cultures of 

metacyclics is due to the change of pH to a more acidic 5.5 compared to cultivation in 

an axenic pH 7 culture used which produced a morphologically mixed population.  

 

Looking at the promastigote morphologies present in the first few days 

(roughly day 3) post infection within a sand fly (Rogers et al, 1993), the population is 

very mixed containing a very low level of procyclic promastigotes, metacyclics and 

amastigotes, with higher numbers of nectomonad and leptomonad promastigotes. This 

made stages of promastigotes found in day 5 representative of day 3 post infection of 
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the sandfly. The promastigotes in this stage are representative of the developmental 

stage of promastigotes in which they begin the escape and taxis towards the foregut to 

be the first found in thoracic midgut (Rogers et al, 1993). Another realisation from 

the data produced was the amount of time in which metacyclics took to develop. 

There is a possibility that with a high number of passages, promastigotes struggle to 

meet their original developmental cycle, taking significantly longer to develop to the 

metacyclic stage and therefore were not seen within the 7 days given.   

 

5.2.2 Leishmania tarentolae 

With the lack understanding of a complete developmental cycle of L. 

tarentolae in an axenic culture, it was important that this Leishmania species was fully 

explored to understand the changes they undergo in culture when compared to L. 

mexicana taxis. 

 

 The first to be explored was the similarity in the parameters between L. 

mexicana and L. tarentolae. These parameters (Body length vs Body Width, Body 

Length vs Flagellum Length, Flagellum Length vs Body Width and Body Length vs 

Distance between Kinetoplast and Nucleus (DKN)) was similar showing that the 

development of L. tarentolae was very similar to L. mexicana in terms of the 

progression of morphometrics (Wheeler, Gluenz and Gull 2010) and the 

developmental forms that can be found in an axenic culture. This was as body length 

increased body width decreased, as body length increased flagellum length increased, 

as body length increased DKN increased, and body width and flagellum length have 

few correlations. These correlations are stronger with the L. tarentolae data due to the 

increase of dataset and following the development over a longer period.    

  

Following morphology criteria set by Rogers et al, 2002, the general 

morphological changes in axenic culture  were similar to that of L. mexicana studied 

in sandfly infection (Rogers et al, 2002). Day 3 and day 5 were good examples of the 

developmental stages found in day 3 and day 4 post-infection in L. mexicana 

respectively. Similar to L. mexicana, these stages represent the stages in which escape 

from the PM and initiation of taxis occurred. Surprisingly two unpublished 

morphologies were found; bulgetomonad and kinetoplast nucleus swapping 

promastigotes.  
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An unpublished report by Dillon and Liu, 2014 set a new criterion for L. 

tarentolae in which the new  potential morphology of L. tarentolae promastigote was 

found. This described bulgetomonad morphology was visually found in the axenic 

culture emerging from about day 4 making up 20% of all analysed cells.  These cells 

have a ‘bulge’ in the cell with the kinetoplast directly adjacent to the flagellum. 

Although, visually fitting the description stated by Dillon and Liu, only 11% fitted this 

in morphology parameters and therefore a revised criterion has been set here of a 

bulge width of roughly 1.88 um, nucleus within the bulge and the DKN of roughly 

2.14um.  

 

Wheeler, Gluenz and Gull 2010 showed DAPI stained promastigotes labelling 

the nucleus and kinetoplast, with the kinetoplast labelled stronger than nucleus. This 

difference in intensity was used to distinguish between the kinetoplast and the 

nucleus. Unlike all other L. mexicana and early development L. tarentolae 

promastigotes, some L. tarentolae showed cells with the less intense DAPI stained 

organelle closest to the flagellum. These cells were seen in the death phase of culture. 

The cell shape was spherical with a longer flagellum to cell width length. This 

suggested that during the death phase, some promastigotes undergo changes that 

causes the kinetoplast and nucleus to exchange locations. These cells labelled 

‘Kinetoplast nucleus swapping promastigotes’ have not been reported as yet. Due to 

the location within the growth stage of the cells, it can be assumed that with L. 

tarentolae promastigote a swapping of the kinetoplast and nucleus or the significant 

shrinkage of nucleus precedes the death of the cell.      

 

 

5.3 Traditional Capillary Chemotaxic Assays 

 

Traditional capillary assays have been used in many forms for the study of 

chemotaxis through the delivery of chemicals that can be detected by cells in a 

controlled gradient manner (Adler, 1973). This technique however has many 

disadvantages in terms of having influences from outside condition such Brownian 
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movement and dissolved oxygen changes within solution.  Brownian movements 

affect the movement of the cells within solution and has an effect on the overall 

migratory potential of the cells. An outside influence that also affects migration within 

a traditional capillary assay is the amount of dissolved oxygen within the solution, this 

was seen in earlier assays tested (results not included) using a modified PP chamber. 

Promastigotes in this assay migrated and accumulated around the channels where the 

dissolved oxygen was high therefore results using this PP chamber assay did not 

reflex chemotaxis. Both forms of chemotaxic assay used do not distinguish between 

osmotaxis and chemotaxis in the proposed assays as there was no salt usage to ensure 

there was no osmosis occurring within the microfluidic device or the capillary tubes.  

 

The use of the traditional capillary assay as used by Oliveira et al and Barros et 

al allowed for comparisons between methods and results. However, there was large 

discrepancy between each. Leslie, Barrett and Burchmore, 2002 used late-log L. 

mexicana, Oliveira et al, 2000 used L. chagasi and L. amazonensis at log phase and 

stationary phase, Barros et al, 2006 used L. amazonensis at day 6 and deYsasa Pozzo 

et al 2009 used L. amazonensis.  As the developmental form of promastigotes was not 

investigated prior to experiment and knowledge of only the non-specific growth stage, 

it is not possible to predict with certainty what morphological forms of promastigotes 

were used in each of these experiments.  

 

To investigate promastigote migration in the hours following PM 

disintegration, it is important to investigate using the chemotaxic capillary or 

microfluidic device using a promastigote population of nectomonad, leptomonad and 

mostly procyclic. Population of these promastigotes was collected for use from both 

L. tarentolae and L. mexicana grown in culture and determined using morphometric 

analysis as stated by Rogers et al, 2002.     

 

An improvement to the methodology carried out in previous promastigote 

chemotaxis assays (Oliveira et al, 2000, deYsasa Pozzo et al, 2009, Leslie, Barrett 

and Burchmore, 2002, Díaz et al, 2011) was the collection of cells following 

migration, and analysing the forms of migratory cells. This not only allowed the 

determination of the chemotaxic agent but also the determination of the 

developmental morphological form of promastigotes that was attracted to it.  
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5.4 Leishmania promastigote taxis  

 

The main part of the method during the experiment was the collection of the 

migratory cells. These samples were used to determine the number and morphology of 

promastigotes that had migrated from the solution into the capillary tubes containing 

the testing chemotaxic agent. From previous chemotaxic assays (Oliveira et al, 2000, 

deYsasa Pozzo et al, 2009, Leslie, Barrett and Burchmore, 2002, Díaz et al, 2011), 

everything tested showed a level of taxis towards the test chemoeffectors, however no 

substance has been used successfully to deter the migration of cells towards it. Copper 

sulphate is known to be lethal to cells at a high dose (Davies, 1978). This was 

therefore used assuming it would be show negative chemotaxis or a negative 

chemotaxis index.   

 

Biochemical gradients have been suggested to be used as a mechanism for 

signalling to Leishmania promastigotes within the sandfly alimentary canal (Killick-

Kendrick, 1978). This mechanism takes advantage of the putative sugar 

concentration that exists from the crop as sugars are released slowly into the midgut 

for digestion. This began the numerous adaptations from Bray’s initial chemotaxic 

assays in 1983 (Bray, 1983) to the more specialised optical tweezers assay by 

deYsasa Pozzo. These have all focussed on sugar concentrations and the movement of 

promastigotes towards a sugar gradient without the presence of a control 

chemoeffector that showed a negative taxis. No presence of a chemical that deters the 

migration insinuates a lack of chemotaxic movement but osmotaxic movement. This 

brings the question, what other chemoeffector are promastigotes attracted to and what 

type of taxis occurs in the sandfly. The experiment designed to answer this was to 

perform a pilot chemical screen using more chemoeffectors and to collect the 

migrated promastigotes to determine which morphological population was attracted to 

each chemical.  

  

 Similar to previous assays, the general movement index of Leishmania 

promastigotes in the presence of potential chemoeffectors all showed a movement 

toward all chemicals of interest (Figure 39) including copper sulphate. The 

promastigotes recovered following migration towards copper sulphate microscopically 
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showed cell lysis, with the cell membrane ruptured. This therefore was not 

quantifiable and was removed from results reported.  

 

Interestingly, based on the counted number of migrated promastigotes L. 

tarentolae showed a negative movement index towards glucose and mannose with the 

L. tarentolae day 3 population and mannose with the L. tarentolae day 5 population 

(Figure 39). However only the negative movement index towards glucose in the L. 

tarentolae day 3 population is significantly relevant. Generally, L. mexicana showed a 

high positive movement index towards PSG, and the sugars tested whereas L. 

tarentolae showed a lower positive with a few negative movement indexes towards 

sugars tested and PSG. Urea showed an opposite outcome when compared to L 

mexicana and L tarentolae movement index with sugars, with a generally low positive 

movement index and high positive movement index respectively. 

 

Using chi-squared test on a contingency table with SPSS containing all the raw 

data from the migration assay, there was showed to be no association between 

promastigote morphology and the chemical cue that migrated towards in L. mexicana 

(Appendix IIIa). This was however the opposite in L. tarentolae (Appendix IIIb) 

where there was a strong association suggesting that specific L. tarentolae 

promastigote forms migrate towards certain chemical cues.    

 

5.4.1 Migration of Leishmania within the sand fly alimentary canal  

 

Sand  flies predominantly feed on plant-derived fluids which are composed of 

sugars. This ‘sugar meal’ is stored in the ventral diverticulum (crop) of the sand fly 

separate from the abdominal midgut which in an infected sand fly will contain the 

‘blood meal’ encapsulated by the PM. Following digestion and the escape of early 

developmental stage promastigotes such as nectomonads and procyclics, nectomonads 

attach to the midgut epithelium which is seen in both L. tarentolae (Dillon and Liu, 

unpublished) and L. mexicana. Therefore migration following this escape and 

attachment dictates transmissibility. Sugars from the crop are slowly released into the 

midgut for carbohydrate digestion, this generates a sugar gradient from the crop, 

cardia, thoracic midgut and finally the abdominal midgut. This gradient has been used 
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continuously to support chemotaxis in Leishmania promastigotes, however the use of 

L. tarentolae in this study and its attraction to all sugars used suggests another source 

of gradient which they might have a higher affinity to.   

 

The malpighian tubules are located posterior to the abdominal midgut, 

excreting their product into the pylorus ready for excretion by the sandfly. The osmo-

regulation function of the tubules leads to the proximal regions to have a high 

concentration similar to the high concentration found in the crop of sugars. The 

nitrogenous waste of uric acid crystals have a high level of urea. This led to our 

hypothesis that there is a gradient generated from the pylorus and malpighian tubules 

towards the abdominal midgut of urea, illustrated in Figure 23 that may be more 

attractive to hypopylaria Leishmania species such as L. tarentolae leading to proximal 

migration. This hypothesis was tested using urea as a chemoeffector within the 

capillary tubes to analyse the migration of both L. mexicana and L. tarentolae. Urea 

showed a movement index of below 1 when using a population of L. mexicana at day 

3 from culture and day 5 from culture as well as a population of L. tarentolae at day 5 

from culture. Compared to the movement index showed when using PSG, glucose, 

fructose and sucrose, this was significantly lower attraction. The day 5 L. tarentolae 

population however showed a movement index of 2.8; the maximum attraction seen 

from L. tarentolae towards any of the tested chemoeffectors. This suggests that 

compared to sugars such as glucose, fructose, sorbitol, mannose and sucrose, L. 

tarentolae is more attracted to urea and therefore could be the reason to why it 

migrated towards the urea gradient and therefore pylorus which contains the highest 

concentration of urea. L. mexicana on the other hand had an attraction towards all 

tested chemoeffectors including the urea. The attraction to sugars however was 

significantly stronger showing the population from 3 days in culture having the 

strongest attraction.  

 

The differential attraction between Leishmania spp. along with the differential 

attraction towards each chemoeffector dependent on Leishmania spp. shows that  

migration of Leishmania spp. within a sand fly was an interplay between osmotaxis 

and chemotaxis. Osmotaxis showed by the migration generally towards any sample 

with higher concentration including copper sulphate which leads to the death of 

promastigotes. Chemotaxis is showed by the differential attraction towards 

chemoeffectors.  
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Looking at the populations of Leishmania used, L. mexicana showed initial 

attraction to sugars such as glucose, fructose and sucrose but later the attraction to 

PSG increases as the promastigotes develop and begin to change to the transmissible 

form of metacyclic promastigotes. L. tarentolae on the other hand begin with the high 

attraction to urea and later the attraction to sucrose is initiated. This could possibly 

suggest the manner in which peripylaria Leishmania spp. migrate within the sandfly 

alimentary canal. The question of attachment comes to play here. LPG’s present on 

the surface of promastigotes, allowing the binding to the midgut epithelium. However 

it is known that procyclic and metacyclic LPG differ, with metacyclics having fewer 

LPGs when compared to procyclics (Soares et al, 2002) with the level of LPG 

decreasing through metacyclogenesis. With the development and migration of 

peripylarian Leishmania spp. possibly reaching the metacyclic developmental stage 

within the hindgut, the attraction to sugars could initiate the migrate to the foregut 

hence why Diaz-Albiter et al, 2018  viewed L. tarentolae-GFP infection as diffuse 

with no specific areas of binding. The action of the midgut peristalsis and excretion 

might deter this forward migration leading to no or few L. tarentolae found in the 

foregut and the loss of infection. 

 

5.4.2 Morphology of migrated promastigotes  

 

 The study is the first to differentiate chemotaxis of Leishmania based on their 

morphology. When looking at migration, understanding the types of morphological 

types of promastigotes migrating towards each chemoeffector is important to further 

understand the sequence in development and migration that occurs in the sandfly. This 

is well explained in suprapylarian Leishmania species such as L. mexicana infections 

(Figure 18) where metacyclogenesis is initiated in the midgut from the transformation 

of amastigotes to procyclics and later nectomonads which attach to the midgut 

epithelium to escape the blood bolus. Nectomonads initiate the migration towards the 

anterior midgut where they transform into leptomonads and haptomonads. As 

Nectomonad promastigotes initiate the migration towards the anterior midgut (Rogers 

et al, 2002), it was hypothesised that this form of promastigotes are the most involved 

in migration.  
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L. mexicana promastigotes (Figure 47) showed leptomonads to be the highest 

morphological population that were collected from the migrated samples in fructose, 

sucrose, mannose, urea and PSG, accounting for 50.6% of all migrated forms 

(Appendix III). The differentiation into the leptomonad form of promastigote occurs 

at the thoracic midgut (Sunter and Gull, 2017). However from infection studies 

(Rogers et al, 2002) leptomonads were found in the anterior and posterior midgut. As 

they do not attach to the midgut epithelium, they are able to migrate. The finding that 

migration of leptomonads is potentially greater than that of nectomonads towards the 

chemoattractants is surprising however shows that metacyclogenesis and development 

might not entirely be limited to a specific compartment within the sandfly alimentary 

canal.  The migration of metacyclics is very limited however this is attributed to the 

low amounts of metacyclics found in the culture at both day 3 and day 5 populations.   

 

The high attraction of L. tarentolae promastigotes to urea suggests that the 

migration of promastigotes is generally towards the gradient of urea from the uric 

crystals stored in the pylorus, the data from the types of migrated promastigotes was 

quite similar to that found in L. mexicana.  L. tarentolae promastigotes (Figure 46) 

showed nectomonads to be the highest morphological population to be collected from 

the migrated samples in the sugars (fructose, sucrose and mannose). The day 3 

population showed a high level of the migrated promastigotes were leptomonads 

whereas in day 5, the highest level of promastigotes that migrated were nectomonads. 

Nectomonads have been suggested to be the morphology of promastigote to initiate 

migration. This is due to the location in which specific morphologies of Leishmania 

are found within the gut during the development of infection, from the abdominal 

midgut to the thoracic midgut. 

 

 Leptomonads are found in both the posterior abdominal midgut and the 

anterior abdominal midgut (Rogers et al, 2002). This morphology of promastigote 

need to migrate to differentiate into metacyclic promastigotes in the thoracic midgut 

and foregut where metacyclics are required. The seen step by step development in 

specific regions of the gut could possibly be driven by the increased attraction of 

promastigotes as they develop to ensure the final infectious metacyclic promastigote is 

in the cardia gut region.  
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 Therefore compared to nectomonad which are seen in higher levels in the 

thoracic midgut, leptomonads have a stronger attraction to the sugar cue from the 

diverticulum for migration to ensure high levels of metacyclic promastigotes are 

found in the cardia. This supports the assumption that nectomonads are the first to 

initiate migration however leptomonads react to the sugar cue stronger (Appendix 

IIIa) to migrate possibly further and faster.   

 

5.5 Understanding the taxis of hypopylarian and 
suprapylarian and parasites.  

 

This study has brought about a lot of new understanding of the less studied 

Leishmania species, L. tarentolae. Previous understanding of sand fly infection has 

mostly been based upon the infection of L. mexicana, a well-studied Leishmania 

species which establishes a suprapylarian infection. This mode of infection leads to 

the migration and development of promastigotes towards the foregut where 

metacyclogenesis ends with the production of metacyclic promastigotes. This form of 

promastigotes produce PSG which aids in their accumulation at the foregut; this build-

up of PSG causes the damage of the cibarial valve. Suprapylarian infection not only 

causes the escape of parasites into the foregut but the need for the infected sandfly to 

regurgitate the parasites prior to feeding.  The main events allowing the establishment 

and successful transmission of infective parasites are : i) the delays of excretion 

(Vaidyanathan, 2005), ii) the escape from the PM (Joshi et al, 2005), iii) the 

migration of Leishmania parasites within the sandfly alimentary canal (Killick-

Kendrick, 1978), and iv) the attachment to the midgut epithelium (Warburg, Tesh 

and McMahon-Pratt, 1989). 

 

The initial activity that occurs from the arrival of the infected blood meal is the 

production of the PM compartmentalising the blood bolus from the midgut lumen. 

Digestion occurs within the PM, which remains intact until digestion finishes. To 

enhance the number of parasites that can escape from the blood bolus, excretion is 

delayed. The delays of excretion occurs through the secretion of myoinhibitory 

neuropeptide. This was shown in L. major to act on the sandfly by slowing down the 

action of midgut peristalsis by relaxing the midgut (Vaidyanathan, 2005). Escaping 
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the PM has to be accomplished by any Leishmania spp. to establish infection within 

the sandfly, unrelated to the location of infection. Chitinases  (Joshi et al, 2005) are 

produced by parasites to encourage early escape from the blood bolus by degrading 

the PM. This allows nectomonads to escape the blood bolus and escape the actions of 

midgut peristalsis and excretion by attachment to the midgut epithelium. 

 

The mode of infection of L. tarentolae parasites has remained unconfirmed 

due to conflicting data, however visualising an L. tarentolae infection within 

Lutzomyia longipalpis has confirmed a hypopylarian infection. The established 

hypopylarian infection does not permit the transmission of parasites during blood feed  

This could be due to many reasons. The decreased number of successfully infected 

sandflies seen with L. tarentolae when compared to L. mexicana in Lu. longipalpis 

confirms that successful development and escape from within the blood bolus is 

challenging for L. tarentolae compared to L. mexicana. Unlike in L. infantum, L. 

panamensis, L. mexicana, L. braziliensis, L. major, L. donovani, L. mexicana and L. 

guyanensis, no chitinase protein has been found in L. tarentolae to encourage the 

breakdown of the PM (Data from UniProt, Appendix I). However due to the 

breakdown of the PM following digestion, a complete loss of all L. tarentolae 

infection does not occur. This along with visualising infections within sandflies 

confirms that establishment of infection is possible within a sandfly.  

 

Unpublished work by Dillon and Liu showed attachment to the hindgut 

epithelium where parasites developed (Image 3). This all shows that some of the 

events required for successful transmission are fulfilled: escaped excretion, escaped 

from the PM enclosing the blood bolus and  attached to the epithelium. As a 

hypopylarian infection, no migration towards the foregut was observed. Therefore this 

brings up questions about the migration of Leishmania parasites within the alimentary 

canal of the sandfly.     
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Image 3: Image shows L. tarentolae promastigotes found in the hindgut on day 10 of infection in Lu. longipalpis. 
Red arrow shows the parasite attached to the cuticular surface of the hindgut. (Dillon and Liu, unpublished) 
 

Capillary assays showed the migration of both L. tarentolae and L. mexicana 

promastigotes which were described as leptomonads by Rogers et al. This confirms 

that migration is part of the events within the alimentary canal of the sandfly. L. 

tarentolae and L. mexicana have different gradient cues which they migrate towards. 

Following escape from the PM and attachment to the epithelium wall; hindgut 

epithelium for L. tarentolae as described by Dillon and Liu and midgut epithelium for 

L. mexicana, migration via the gradient cues determines the location in which 

metacyclogenesis ceases. This location contains metacyclic promastigotes with 

modified LPGs which do not attach to the epithelium. For L. mexicana promastigotes, 

migration towards the cue of sugars results in metacyclogenesis in the anterior midgut 

and foregut. Metacyclic promastigotes therefore accumulate, produce PSG and 

chitinase for the blockage and damage of the cibarial valve, and the loss of epithelium 

attachment due to LPG modifications. This all leads to the  transmission of L. 

mexicana metacyclic promastigotes. For L. tarentolae on the other hand, migration 

towards the cue of urea may result in metacyclogenesis in the hindgut. It can be 

proposed that metacyclic promastigotes are therefore not able to escape excretion as 
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attachment does not occur due to modifications of the LPG resulting in the loss of 

infection and the absence of PSG at high levels in the hindgut.  

 
 

5.6 Development of a microfluidic device for the screening 
of chemoattractants 

 

The main aim of the project was to develop a microfluidic device capable of precise 

chemical gradient control to mimic microenvironment in vitro with the sandfly 

associated with promastigote migration. Promastigotes are reported to migrate 

successfully towards a glucose gradient within the sandfly alimentary canal during 

metacyclogenesis in order to  aggregate at the foregut ready for infection to occur 

during the next blood feed. This influence of glucose is therefore very important, 

however has not been measured well as the methodology was not able to be fully 

developed in the time available. Microfluidic devices allows concentrations to be 

controlled to study migration responses as a function of concentration. This alternative 

methodology to traditional chemotaxis capillary assay is said to be more sensitive, 

therefore to measure this a microfluidic device was developed along with traditional 

chemotaxis assays particularly capillary assays being explored to see how much 

information can be obtained from these avenues of chemotaxic assays.  

 

The design of device had several requirements; there were a number of 

possible chemoeffectors found by the preliminary studies using capillary assays in 

which would be advantageous to test simultaneously. Using a hypopylarian L. 

tarentolae and suprapylarian L. mexicana, being able to use the same chip was 

important for repeatability. A transparent chip which would allow good optical 

transparency for parasite visualisation; therefore using the right material for chip 

fabrication was vital.  PDMS was therefore chosen as it met the criteria of 

transparency, it bonded strongly with glass and had an easier fabrication procedure for 

complicated design. The design developed for the purpose of visualising the migration 

of Leishmania to a chemical gradient is illustrated in Figure 42. This design aimed to 

achieve a device in which the promastigotes within the central reservoir had a 

relatively low shear stress on cell activity and maintain a stable concentration of the 

inputted chemoeffectors.       Here diffusion occurs from one chamber to another via a 
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channel therefore occurs by passive diffusion in static microfluidic gradient 

generators, with each chamber containing potential chemoeffectors to the central 

chamber representing the spatial distribution of a potential biochemical factor of 

interest from source to sink respectively of the device (Lin and Levchenko, 2015). 

Although flow based gradient generators are generally aimed for chemotaxic assays, 

diffusion based microfluidic gradient generators have recently been showed to be 

successful as chemotaxis assays (Skoge et al, 2010, Smith et al, 2015), showing a 

trend towards simple designs in which complex fluid automation is not required (Lin 

and Levchenko, 2015). 

 

This type of diffusion is advantageous in this type of chemotaxic assay as 

Leishmania parasites have a low adhesiveness, are in suspension, not naturally 

exposed to shear force and reside in a flow free environment within the insect; 

therefore using a flow based gradient generator offers a flow rate not experienced by 

parasites within the insect vector as well as introducing a mechanical input which can 

influence cell behaviour in the assay (Walker et al, 2005, Polacheck, Charest and 

Kamm, 2011). Another advantage which aids in the preparation for visualisation is the 

substantial amount of time for a steady gradient to be achieved.  

 

The vast majority of microfluidic design have focused on varying a single 

biochemical cue, however promastigotes in the sandfly alimentary canal constantly 

receive inputs from a variety of sources. Therefore to address this, the design of the 

device allowed for numerous chemical gradients to be created towards one central 

reservoir of Leishmania allowing the parasite to react and migrate according to the 

most attractive chemoeffector similar to within the alimentary canal of the sandfly 

where many chemoeffector cues are present.  

 

The design of device solved the problems which were predicted such as such 

as cross flow by decreasing the height of a part of the connecting channel. It also 

allowed reproducibility and repetition on experiment by using a stable and strong 

material that was easy to fabricate, image through and cheap to produce for future 

work. This device however has further improvements discovered after testing.  The 

design of the device had the correct proportions of channels for the migration of 

Leishmania parasites and the gradient development through passive diffusion as static 
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microfluidic gradient generators towards the central reservoir for an intergrated device 

for high content screening.  

 

However, during the testing of the chip, problems were encountered such as 

the movement of liquid following the placement of a cover slip and the drying out of 

the liquid within the chip. This caused problems for viewing the real chemotaxic 

migration of the promastigotes as these problems would have affected them. A design 

consideration therefore which is highly recommended for the future work is 

redesigning the current design in the fabrication to include ports to form convection 

units and a completely sealed microfluidic chamber where evaporation causing drying 

out might be reduced significantly. Inlet and outlet ports will allow fluids to travel 

from an external source such as a syringe pump into the device whilst maintaining the 

pressure in the device. In this redesign, each of the current ‘inlets’ seen in Figure 25 

will be converted into a convection unit with each unit acting as a source of a given 

solute balancing the pressure between each unit. This redesign will not be able to hold 

a stable gradient over a long period of time, therefore sinks may have to be placed 

between sources. This redesign is based on devices produced for cell-on-a-chip 

technology such as the device designed by Ye et al, 2007 (Figure 50).  
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Figure 50: Schematic of the integrated microfluidic device for cell-based High content screening. (a) The device 
consists of eight uniform structure units and each unit is connected by a common reservoir in the centre of device 
in which contains the cell culture. (b) Magnified section of the single structure unit containing an upstream 
concentration gradient generator (CGG) and downstream parallel cell culture chambers (Ye at al, 2007) 
 
 
 

5.7 Future 

The new understanding that has come from this study can be further developed 

to achieve a better understanding of suprapylarian and hypopylarian migration within 

the alimentary canal of the sandfly. Due to the problems that arose from the 

development of the microfluidic device, chemotaxis capillary assays used in prior 

Leishmania taxis assays was adopted and modified for use.  An improved device has 

now been designed and adapted from the device produced to suit Leishmania 

chemotaxis. With further work, this improved design can be used to produce devices 

minimizing outside influence on the chemotaxis and allow real time visualization of 

the taxis of promastigotes towards chemoeffectors with easier morphology analysis 

using ImageJ. Further work may also focus on PSG analysis following the infection 

and dissection of Lu. longipalpis. PSG has been found to be produced by L. mexicana 

promastigotes in the foregut showing the location of promastigote accumulation and 

end of metacyclogenesis; essentially the main location of infection. Confirmation of  
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PSG production in the hindgut of an L. tarentolae infection would be a highly 

interesting discovery; it would suggest that PSG has different roles for Leishmania 

with different modes of infection. The study so far has taken into account the 

gradients that were predicted to be formed at the hindgut originating from the 

malpighian tubules, and the foregut originating from the crop, however many more 

gradients will be present in the alimentary canal which could act upon the migration 

of promastigotes. Other potential chemoeffectors can be based upon many organs, 

microbial communities etc. therefore for a greater understanding emphasis should be 

put in the study on other potential chemoeffectors.  
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CHAPTER SIX: CONCLUSION 

 
Leishmania parasites cause the diseases leishmaniasis, a neglected tropical 

disease with a wide geographical distribution globally. It is transmitted via the bite of 

an infected sand fly. An important aspect to understanding transmission of infective 

stage promastigotes is understanding what differs between the distinct infection of 

hypopylarian and the forward migrating suprapylarian Leishmania species within a 

sandfly. This work demonstrated a pilot screen of chemoeffectors and the 

development of a novel technique for a Leishmania real time chemotaxis assay to 

detect chemoeffectors that Leishmania promastigotes migrate towards. The 

development of a microfluidic device for better chemotaxic responses and precise 

control of gradient without outside influence needs future input into the device 

redesign. This thesis focused on studying L. tarentolae a hypopylarian and L. 

mexicana a suprapylarian. This gives the ability to compare results and understand the 

differences between each mode of infection and transmission.  

 

Leishmania promastigotes undergo several morphological changes that have 

been well studied in L. mexicana, giving morphological categories according to 

criteria. L. mexicana fitted this criteria very well, however L. tarentolae showed 

challenges as two new morphologies were found. These findings of new morphology 

were named bulgetomonad and kinetoplast nucleus swapping promastigotes. This 

focus on morphometry showed the stage of promastigotes in an axenic culture that 

was required to replicate the stages of promastigotes in which escaped the PM. This 

stage of culture was used for further capillary assay as it represented the stage that 

initiates the migration within the alimentary canal. The migration of promastigotes 

within the alimentary canal has always been associated with the gradient of sugars 

emitted from the crop during the slow release of sugars to the midgut for digestion. 

However this positive taxis did not answer the question of migration of hypopylarian 

Leishmania species as they develop and migrate towards the hindgut. Using capillary 

assays and urea as a potential chemoeffector showed that compared to sugars, L. 

tarentolae had greater attraction to urea hence the hindgut migration and inability to 

be transmitted via the bite of an infected sandfly. Interestingly, analysis of migrated 
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promastigotes showed a higher migration of leptomonad  promastigotes. This 

questions whether or not nectomonads are the primary migratory promastigote 

morphological stage within a sandfly. As a pilot screen of potential chemoeffectors , 

this study brings about a lot of new understanding of the less studied species L. 

tarentolae.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Yasmine Precious Kumordzi 
 

 139 

REFERENCES 

Adler, J. (1966). Chemotaxis in Bacteria. Science, 153(3737), pp.708-716. 

 

Adler, J. (1969). Chemoreceptors in Bacteria. Science, 166(3913), pp.1588-1597. 

 

Adler, J. (1973). A Method for Measuring Chemotaxis and Use of the Method to 

Determine Optimum Conditions for Chemotaxis by Escherichia coli. Journal of 

General Microbiology, 74(1), pp.77-91. 

 

Adler, S. and Theodor, O. (1929). Observations on leishmania ceramodactyli. 

N.SP. Transactions of the Royal Society of Tropical Medicine and Hygiene, 22(4), 

pp.343-356. 

 

Aguiar, E., Olmo, R., Paro, S., Ferreira, F., de Faria, I., Todjro, Y., Lobo, F., Kroon, 

E., Meignin, C., Gatherer, D., Imler, J. and Marques, J. (2015). Sequence-independent 

characterization of viruses based on the pattern of viral small RNAs produced by the 

host. Nucleic Acids Research, 43(13), pp.6191-6206. 

 

Akhoundi, M., Kuhls, K., Cannet, A., Votýpka, J., Marty, P., Delaunay, P. and 

Sereno, D. (2016). A Historical Overview of the Classification, Evolution, and 

Dispersion of Leishmania Parasites and Sandflies. PLOS Neglected Tropical Diseases, 

10(3), p.e0004349. 

 

Alawieh, A., Musharrafieh, U., Jaber, A., Berry, A., Ghosn, N. and Bizri, A. (2014). 

Revisiting leishmaniasis in the time of war: the Syrian conflict and the Lebanese 

outbreak. International Journal of Infectious Diseases, 29, pp.115-119. 

 

Alvar, J., Croft, S., Kaye, P., Khamesipour, A., Sundar, S. and Reed, S. (2013). Case 

study for a vaccine against leishmaniasis. Vaccine, 31, pp.B244-B249. 

 

Alvar, J., Yactayo, S. and Bern, C. (2006). Leishmaniasis and poverty. Trends in 

Parasitology, 22(12), pp.552-557. 

 



Yasmine Precious Kumordzi 
 

 140 

Ambit, A., Woods, K., Cull, B., Coombs, G. and Mottram, J. (2011). Morphological 

Events during the Cell Cycle of Leishmania major. Eukaryotic Cell, 10(11), pp.1429-

1438. 

 

Antoine JC, Prina E, Jouanne C, Bongrand P. Parasitophorous vacuoles of Leishmania 

amazonensis-infected macrophages maintain an acidic pH. Infect Immun. 

1990;58(3):779-87. 

 

Armitage, J. (1992). Bacterial motility and chemotaxis. Sci Prog, 76(301-302 Pt 3-4), 

pp.451-77. 

 

Armitage, J., Josey, D. and Smith, D. (1977). A Simple, Quantitative Method for 

Measuring Chemotaxis and Motility in Bacteria. Journal of General Microbiology, 

102(1), pp.199-202. 

 

Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B., Carrington, M., 

Depledge, D., Fischer, S., Gajria, B., Gao, X., Gardner, M., Gingle, A., Grant, G., 

Harb, O., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., 

Kissinger, J., Kraemer, E., Li, W., Logan, F., Miller, J., Mitra, S., Myler, P., Nayak, 

V., Pennington, C., Phan, I., Pinney, D., Ramasamy, G., Rogers, M., Roos, D., Ross, 

C., Sivam, D., Smith, D., Srinivasamoorthy, G., Stoeckert, C., Subramanian, S., 

Thibodeau, R., Tivey, A., Treatman, C., Velarde, G. and Wang, H. (2009). 

TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids 

Research, 38(suppl_1), pp.D457-D462. 

 

Ayhan, N., Sherifi, K., Taraku, A., Bërxholi, K. and Charrel, R. (2017). High Rates of 

Neutralizing Antibodies to Toscana and Sandfly Fever Sicilian Viruses in Livestock, 

Kosovo. Emerging Infectious Diseases, 23(6), pp.989-992. 

 

Bañuls, A., Bastien, P., Pomares, C., Arevalo, J., Fisa, R. and Hide, M. (2011). 

Clinical pleiomorphism in human leishmaniases, with special mention of 

asymptomatic infection. Clinical Microbiology and Infection, 17(10), pp.1451-1461. 

 

Barros, V., Oliveira, J., Melo, M. and Gontijo, N. (2006). Leishmania amazonensis: 

Chemotaxic and osmotaxic responses in promastigotes and their probable role in 



Yasmine Precious Kumordzi 
 

 141 

development in the phlebotomine gut. Experimental Parasitology, 112(3), pp.152-

157. 

 

Bates, P. (1994). Complete developmental cycle of Leishmania mexicana in axenic 

culture. Parasitology, 108(01), p.1. 

 

Bates, P. and Tetley, L. (1993). Leishmania mexicana: Induction of Metacyclogenesis 

by Cultivation of Promastigotes at Acidic pH. Experimental Parasitology, 76(4), 

pp.412-423. 

 

Beach, R., Leeuwenburg, J. and Kiilu, G. (1985). Modification of Sand Fly Biting 

Behavior by Leishmania Leads to Increased Parasite Transmission. The American 

Journal of Tropical Medicine and Hygiene, 34(2), pp.278-282. 

 

Berg, H. (2004). E. coli in Motion. Biological and Medical Physics, Biomedical 

Engineering. 

 

Besteiro, S., Williams, R., Coombs, G. and Mottram, J. (2007). Protein turnover and 

differentiation in Leishmania. International Journal for Parasitology, 37(10), 

pp.1063-1075. 

 

Borovsky, D. and Schlein, Y. (1987). Trypsin and chymotrypsin-Iike enzymes of the 

sandfly Phlebotomus papatasi infected with Leishmania and their possible role in 

vector competence. Medical and Veterinary Entomology, 1(3), pp.235-242. 

 

Boyden, S. (1962). The chemotactic effect of mixtures of antibodies and antigen on 

polymorphonuclear leucocytes. Journal of Experimental Medicine, 115(3), pp.453-

466. 

 

BRAY, R. (1983). Leishmania: Chemotaxic Responses of Promastigotes and 

Macrophages In Vitro1. The Journal of Protozoology, 30(2), pp.322-329. 

 

Brody, J. and Yager, P. (1997). Diffusion-based extraction in a microfabricated 

device. Sensors and Actuators A: Physical, 58(1), pp.13-18. 

 



Yasmine Precious Kumordzi 
 

 142 

Burchmore, R. and Landfear, S. (1998). Differential Regulation of Multiple Glucose 

Transporter Genes in Leishmania mexicana. Journal of Biological Chemistry, 

273(44), pp.29118-29126. 

 

Burchmore, R., Rodriguez-Contreras, D., McBride, K., Barrett, M., Modi, G., Sacks, 

D. and Landfear, S. (2003). Genetic characterization of glucose transporter function in 

Leishmania mexicana. Proceedings of the National Academy of Sciences, 100(7), 

pp.3901-3906. 

 

Cairns, B., Collard, M. and Landfear, S. (1989). Developmentally regulated gene from 

Leishmania encodes a putative membrane transport protein. Proceedings of the 

National Academy of Sciences, 86(20), pp.7682-7686. 

 

Carter, N., Drew, M., Sanchez, M., Vasudevan, G., Landfear, S. and Ullman, B. 

(2000). Cloning of a Novel Inosine-Guanosine Transporter Gene from Leishmania 

donovani by Functional Rescue of a Transport-deficient Mutant. Journal of Biological 

Chemistry, 275(27), pp.20935-20941. 

 

Carter, N., Yates, P., Gessford, S., Galagan, S., Landfear, S. and Ullman, B. (2010). 

Adaptive responses to purine starvation in Leishmania donovani. Molecular 

Microbiology, p.92-107. 

 

Čiháková, J. and Volf, P. (1997). Development of different Leishmania major strains 

in the vector sandflies Phlebotomus papatasi and P. duboscqi. Annals of Tropical 

Medicine & Parasitology, 91(3), pp.267-279. 

 

Coombs, G., Craft, J. and Hart, D. (1982). A comparative study of Leishmania 

mexicana amastigotes and promastigotes, enzyme activities and subcellular 

locations. Molecular and Biochemical Parasitology, 5(3), pp.199-211. 

Costa, D., Codeço, C., Silva, M. and Werneck, G. (2013). Culling Dogs in Scenarios 

of Imperfect Control: Realistic Impact on the Prevalence of Canine Visceral 

Leishmaniasis. PLoS Neglected Tropical Diseases, 7(8), p.e2355. 

 

Courtenay, O., Quinnell, R., Garcez, L., Shaw, J. and Dye, C. (2002). Infectiousness 

in a Cohort of Brazilian Dogs: Why Culling Fails to Control Visceral Leishmaniasis in 



Yasmine Precious Kumordzi 
 

 143 

Areas of High Transmission. The Journal of Infectious Diseases, 186(9), pp.1314-

1320. 

 

Croft, S. and Olliaro, P. (2011). Leishmaniasis chemotherapy—challenges and 

opportunities. Clinical Microbiology and Infection, 17(10), pp.1478-1483. 

 

Cuvillier, A., Miranda, J., Ambit, A., Barral, A. and Merlin, G. (2003). Abortive 

infection of Lutzomyia longipalpis insect vectors by aflagellated LdARL-3A-Q70L 

overexpressing Leishmania amazonensis parasites. Cellular Microbiology, 5(10), 

pp.717-728. 

 

Davies, A.G. (1978). Pollution studies with marine plankton. II. Heavy metals. Adv. 

Mar. Biol., 15: 381-508. 

 

de Souza, W., and Souto-Padron, T. (1980). The Paraxial Structure of the Flagellum 

of Trypanosomatidae. The Journal of Parasitology, 66(2), p.229.  

 

de Ysasa Pozzo, L., Fontes, A., de Thomaz, A., Barbosa, L., Ayres, D., Giorgio, S. 

and Cesar, C. (2007). Leishmania amazonensis chemotaxis under glucose gradient 

studied by the strength and directionality of forces measured with optical 

tweezers. Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues V. 

 

Depaquit, J., Grandadam, M., Fouque, F., Andry, P. and Peyrefitte, C. (2010). 

Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a 

review. Eurosurveillance, 15(10), pii:19507. 

 

Diaz-Albiter, H., Regnault, C., Alpizar-Sosa, E., McGuinness, D., Barrett, M. and 

Dillon, R. (2018). Non-invasive visualisation and identification of fluorescent 

Leishmania tarentolae in infected sand flies. Wellcome Open Research, 3, p.160. 

 

Díaz, E., Köhidai, L., Ríos, A., Vanegas, O., Ponte-Sucre, A. (2011). Ensayos de 

quimiotaxis in vitro en Leishmania sp. Evaluación de la técnica de los capilares- dos 

cámaras en promastigotes. Rev. Fac. Farm. (UCV) 74, 31–40.  

 



Yasmine Precious Kumordzi 
 

 144 

Díaz, E., Köhidai, L., Ríos, A., Vanegas, O., Silva, A., Szabó, R., Mező, G., Hudecz, 

F. and Ponte-Sucre, A. (2013). Leishmania braziliensis: Cytotoxic, cytostatic and 

chemotactic effects of poly-lysine–methotrexate-conjugates. Experimental 

Parasitology, 135(1), pp.134-141. 

 

Dillon, R. and Lane, P. (1993). Bloodmeal digestion in the midgut of Phlebotomus 

papatasi and Phlebotomus langeroni. Medical and Veterinary Entomology, 7(3), 

pp.225-232. 

 

Dillon, R. and Lane, R. (1993). Influence of Leishmania infection on blood-meal 

digestion in the sandflies Phlebotomus papatasi and P. langeroni. Parasitology 

Research, 79(6), pp.492-496. 

 

Dillon, R., Ivens, A., Churcher, C., Holroyd, N., Quail, M., Rogers, M., Soares, M., 

Bonaldo, M., Casavant, T., Lehane, M. and Bates, P. (2006). Analysis of ESTs from 

Lutzomyia longipalpis sand flies and their contribution toward understanding the 

insect–parasite relationship. Genomics, 88(6), pp.831-840. 

 

Docampo, R., de Souza, W., Miranda, K., Rohloff, P. and Moreno, S. (2005). 

Acidocalcisomes - conserved from bacteria to man. Nature Reviews Microbiology, 

3(3), pp.251-261. 

 

Dougall, A., Alexander, B., Holt, D., Harris, T., Sultan, A., Bates, P., Rose, K. and 

Walton, S. (2011). Evidence incriminating midges (Diptera: Ceratopogonidae) as 

potential vectors of Leishmania in Australia. International Journal for Parasitology, 

41(5), pp.571-579. 

 

Englert, D., Manson, M. and Jayaraman, A. (2009). Flow-Based Microfluidic Device 

for Quantifying Bacterial Chemotaxis in Stable, Competing Gradients. Applied and 

Environmental Microbiology, 75(13), pp.4557-4564. 

 

Ergunay, K., Kasap, O., Orsten, S., Oter, K., Gunay, F., Yoldar, A., Dincer, E., Alten, 

B. and Ozkul, A. (2014). Phlebovirus and Leishmania detection in sandflies from 

eastern Thrace and northern Cyprus. Parasites & Vectors, 7(1), p.575. 

 



Yasmine Precious Kumordzi 
 

 145 

Faucher, B., Piarroux, R., Mary, C., Bichaud, L., Charrel, R., Izri, A. and de 

Lamballerie, X. (2014). Presence of sandflies infected with Leishmania infantum and 

Massilia virus in the Marseille urban area. Clinical Microbiology and Infection, 20(5), 

pp.O340-O343. 

 

Field, M. and Carrington, M. (2009). The trypanosome flagellar pocket. Nature 

Reviews Microbiology, 7(11), pp.775-786. 

 

Figarella, K., Uzcategui, N., Zhou, Y., LeFurgey, A., Ouellette, M., Bhattacharjee, H. 

and Mukhopadhyay, R. (2007). Biochemical characterization of Leishmania major 

aquaglyceroporin LmAQP1: possible role in volume regulation and 

osmotaxis. Molecular Microbiology, 65(4), pp.1006-1017. 

 

Fraihi, W., Fares, W., Perrin, P., Dorkeld, F., Sereno, D., Barhoumi, W., Sbissi, I., 

Cherni, S., Chelbi, I., Durvasula, R., Ramalho-Ortigao, M., Gtari, M. and Zhioua, E. 

(2017). An integrated overview of the midgut bacterial flora composition of 

Phlebotomus perniciosus, a vector of zoonotic visceral leishmaniasis in the Western 

Mediterranean Basin. PLOS Neglected Tropical Diseases, 11(3), p.e0005484. 

 

Fuqua, W., Winans, S. and Greenberg, E. (1994). Quorum sensing in bacteria: the 

LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of 

Bacteriology, 176(2), pp.269-275. 

 

Gillespie, P., Beaumier, C., Strych, U., Hayward, T., Hotez, P. and Bottazzi, M. 

(2016). Status of vaccine research and development of vaccines for 

leishmaniasis. Vaccine, 34(26), pp.2992-2995. 

 

Gomes, B., Purkait, B., Deb, R., Rama, A., Singh, R., Foster, G., Coleman, M., 

Kumar, V., Paine, M., Das, P. and Weetman, D. (2017). Knockdown resistance 

mutations predict DDT resistance and pyrethroid tolerance in the visceral 

leishmaniasis vector Phlebotomus argentipes. PLOS Neglected Tropical Diseases, 

11(4), p.e0005504. 

 

Hammond, D. and Gutteridge, W. (1984). Purine and pyrimidine metabolism in the 

trypanosomatidae. Molecular and Biochemical Parasitology, 13(3), pp.243-261. 



Yasmine Precious Kumordzi 
 

 146 

 

Harmsen, R. (1973). The nature of the establishment barrier for Trypanosoma brucei 

in the gut of Glossina pallidipes. Transactions of the Royal Society of Tropical 

Medicine and Hygiene, 67(3), pp.364-373. 

 

Herrer, A. and Christensen, H. (1975). Implication of Phlebotomus sand flies as 

vectors of bartonellosis and leishmaniasis as early as 1764. Science, 190(4210), 

pp.154-155. 

 

Horn, D. and Duraisingh, M. (2014). Antiparasitic Chemotherapy: From Genomes to 

Mechanisms. Annual Review of Pharmacology and Toxicology, 54(1), pp.71-94. 

 

Inbar, E., Canepa, G., Carrillo, C., Glaser, F., Suter Grotemeyer, M., Rentsch, D., 

Zilberstein, D. and Pereira, C. (2010). Lysine transporters in human trypanosomatid 

pathogens. Amino Acids, 42(1), pp.347-360. 

 

Jeon, N., Dertinger, S., Chiu, D., Choi, I., Stroock, A. and Whitesides, G. (2000). 

Generation of Solution and Surface Gradients Using Microfluidic Systems. Langmuir, 

16(22), pp.8311-8316. 

 

Johnson, W. (1941). Nutrition in the Protozoa. The Quarterly Review of Biology, 

16(3), pp.336-348. 

 

Joshi, M., Rogers, M., Shakarian, A., Yamage, M., Al-Harthi, S., Bates, P. and 

Dwyer, D. (2004). Molecular Characterization, Expression, and in Vivo Analysis of 

LmexCht1. Journal of Biological Chemistry, 280(5), pp.3847-3861. 

 

Kamhawi, S. (2000). Protection Against Cutaneous Leishmaniasis Resulting from 

Bites of Uninfected Sand Flies. Science, 290(5495), pp.1351-1354. 

 

Kamhawi, S. (2006). Phlebotomine sand flies and Leishmania parasites: friends or 

foes?. Trends in Parasitology, 22(9), pp.439-445. 

 

Kaufer, A., Ellis, J., Stark, D. and Barratt, J. (2017). The evolution of trypanosomatid 

taxonomy. Parasites & Vectors, 10(1). 



Yasmine Precious Kumordzi 
 

 147 

 

Kelly, P., Bahr, S., Serafim, T., Ajami, N., Petrosino, J., Meneses, C., Kirby, J., 

Valenzuela, J., Kamhawi, S. and Wilson, M. (2017). The Gut Microbiome of the 

Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. mBio, 

8(1). 

 

Keymer, J., Endres, R., Skoge, M., Meir, Y. and Wingreen, N. (2006). Chemosensing 

in Escherichia coli: Two regimes of two-state receptors. Proceedings of the National 

Academy of Sciences, 103(6), pp.1786-1791. 

 

Killick-Kendrick, R. (1978). Recent advances and outstanding problems in the 

biology of phlebotomine sandflies. A review. Acta Trop, 35(4), pp.297-313. 

 

Killick-Kendrick, R. (1990). Phlebotomine vectors of the leishmaniases: a 

review. Medical and Veterinary Entomology, 4(1), pp.1-24. 

 

Killick-Kendrick, R., Leaney, A., Ready, P. and Molyneux, D. (1977). Leishmania in 

phlebotomid sandflies - IV. The transmission of Leishmania mexicana amazonensis to 

hamsters by the bite of experimentally infected Lutzomyia longipalpis. Proceedings of 

the Royal Society of London. Series B. Biological Sciences, 196(1122), pp.105-115. 

 

Köhidai, L. (1995). Method for determination of chemoattraction in Tetrahymena 

pyriformis. Current Microbiology, 30(4), pp.251-253. 

 

Kwakye-Nuako, G., Mosore, M., Duplessis, C., Bates, M., Puplampu, N., Mensah-

Attipoe, I., Desewu, K., Afegbe, G., Asmah, R., Jamjoom, M., Ayeh-Kumi, P., 

Boakye, D. and Bates, P. (2015). First isolation of a new species of Leishmania 

responsible for human cutaneous leishmaniasis in Ghana and classification in the 

Leishmania enriettii complex. International Journal for Parasitology, 45(11), pp.679-

684. 

 

Lainson, R., Ready, P. and Shaw, J. (1979). Leishmania in phlebotomid sandflies. VII. 

On the taxonomic status of Leishmania peruviana , causative agent of Peruvian ‘uta’, 

as indicated by its development in the sandfly, Lutzomyia longipalpis. Proceedings of 

the Royal Society of London. Series B. Biological Sciences, 206(1164), pp.307-318. 



Yasmine Precious Kumordzi 
 

 148 

 

Landfear, S. (2011). Nutrient Transport and Pathogenesis in Selected Parasitic 

Protozoa. Eukaryotic Cell, 10(4), pp.483-493. 

 

Landfear, S. and Ignatushchenko, M. (2001). The flagellum and flagellar pocket of 

trypanosomatids. Molecular and Biochemical Parasitology, 115(1), pp.1-17. 

 

Langousis, G. and Hill, K. (2014). Motility and more: the flagellum of Trypanosoma 

brucei. Nature Reviews Microbiology, 12(7), pp.505-518. 

 

Lantova, L. and Volf, P. (2014). Mosquito and sand fly gregarines of the genus 

Ascogregarina and Psychodiella (Apicomplexa: Eugregarinorida, Aseptatorina) – 

Overview of their taxonomy, life cycle, host specificity and pathogenicity. Infection, 

Genetics and Evolution, 28, pp.616-627. 

 

Lautenschlaeger, F. (2011). Cell compliance: cytoskeletal origin and importance for 

cellular function. (Doctoral thesis). https://doi.org/10.17863/CAM.16575 

 

Lawyer, P., Githure, J., Roberts, C., Anjili, C., Mebrahtu, Y., Ngumbi, P., Koech, D. 

and Odongo, S. (1990). Development of Leishmania major in Phlebotomus duboscqi 

and Sergentomyia schwetzi (Diptera: Psychodidae). The American Journal of Tropical 

Medicine and Hygiene, 43(1), pp.31-43. 

 

Lehane, M. (1997). Peritrophic matrix structure and function. Annual Review of 

Entomology, 42(1), pp.525-550. 

 

Lehane, M. (2005). The biology of blood-sucking in insects. Cambridge: Cambridge 

University Press, p.96. 

 

Leslie, G., Barrett, M. and Burchmore, R. (2002). Leishmania mexicana: 

promastigotes migrate through osmotic gradients. Experimental Parasitology, 102(2), 

pp.117-120. 

 



Yasmine Precious Kumordzi 
 

 149 

Lestinova, T., Rohousova, I., Sima, M., de Oliveira, C. and Volf, P. (2017). Insights 

into the sand fly saliva: Blood-feeding and immune interactions between sand flies, 

hosts, and Leishmania. PLOS Neglected Tropical Diseases, 11(7), p.e0005600. 

 

Lin, B. and Levchenko, A. (2015). Spatial Manipulation with Microfluidics. Frontiers 

in Bioengineering and Biotechnology, 3. 

 

Lukes, J., Mauricio, I., Schonian, G., Dujardin, J., Soteriadou, K., Dedet, J., Kuhls, K., 

Tintaya, K., Jirku, M., Chocholova, E., Haralambous, C., Pratlong, F., Obornik, M., 

Horak, A., Ayala, F. and Miles, M. (2007). Evolutionary and geographical history of 

the Leishmania donovani complex with a revision of current taxonomy. Proceedings 

of the National Academy of Sciences, 104(22), pp.9375-9380. 

 

Macnab, R. and Koshland, D. (1972). The Gradient-Sensing Mechanism in Bacterial 

Chemotaxis. Proceedings of the National Academy of Sciences, 69(9), pp.2509-2512. 

 

Maia, C. and Depaquit, J. (2016). Can Sergentomyia (Diptera, Psychodidae) play a 

role in the transmission of mammal-infecting Leishmania?. Parasite, 23, p.55. 

 

Manson, P., Cooke, G. and Zumla, A. (2009). Manson's tropical diseases. 

[Edinburgh]: Saunders Elsevier, p.1715. 

 

Maroli, M., Feliciangeli, M., Bichaud, L., Charrel, R. and Gradoni, L. (2012). 

Phlebotomine sandflies and the spreading of leishmaniases and other diseases of 

public health concern. Medical and Veterinary Entomology, 27(2), pp.123-147. 

 

Mauricio, I., Howard, M., Stothard, J. and Miles, M. (1999). Genomic diversity in the 

Leishmania donovani complex. Parasitology, 119(3), pp.237-246. 

 

Mittra, B., Cortez, M., Haydock, A., Ramasamy, G., Myler, P. and Andrews, N. 

(2013). Iron uptake controls the generation of Leishmania infective forms through 

regulation of ROS levels. The Journal of General Physiology, 141(3), pp.17-17. 

 



Yasmine Precious Kumordzi 
 

 150 

Modi G.B. (1997) Care and maintenance of phlebotomine sandfly colonies. In: 

Crampton J.M., Beard C.B., Louis C. (eds) The Molecular Biology of Insect 

Disease Vectors. Springer, Dordrecht 

 

Moloo, S. and Kutuza, S. (1971). Feeding and crop emptying in Glossina brevipalpis 

Newstead. Transactions of the Royal Society of Tropical Medicine and Hygiene, 

65(2), pp.221-222. 

 

Monteiro, C., Villegas, L., Campolina, T., Pires, A., Miranda, J., Pimenta, P. and 

Secundino, N. (2016). Bacterial diversity of the American sand fly Lutzomyia 

intermedia using high-throughput metagenomic sequencing. Parasites & Vectors, 

9(1). 

 

Mukhopadhyay, J., Braig, H., Rowton, E. and Ghosh, K. (2012). Naturally Occurring 

Culturable Aerobic Gut Flora of Adult Phlebotomus papatasi, Vector of Leishmania 

major in the Old World. PLoS ONE, 7(5), p.e35748. 

 

Myler, P. and Fasel, N. (2008). Leishmania: After the Genome. Norfolk: Caister 

academic Press, p.209. 

 

Naula, C., Logan, F., Wong, P., Barrett, M. and Burchmore, R. (2010). A Glucose 

Transporter Can Mediate Ribose Uptake. Journal of Biological Chemistry, 285(39), 

pp.29721-29728. 

 

Oliveira, F., Rowton, E., Aslan, H., Gomes, R., Castrovinci, P., Alvarenga, P., 

Abdeladhim, M., Teixeira, C., Meneses, C., Kleeman, L., Guimarães-Costa, A., 

Rowland, T., Gilmore, D., Doumbia, S., Reed, S., Lawyer, P., Andersen, J., Kamhawi, 

S. and Valenzuela, J. (2015). A sand fly salivary protein vaccine shows efficacy 

against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Science 

Translational Medicine, 7(290), pp.290ra90-290ra90. 

 

Oliveira, J.S., Melo, M.N., Gontijo, N.F. (2000). A sensitive method for assaying 

chemotactic responses of Leishmania promastigotes. Experimental Parasitology 96, 

187–189. 

 



Yasmine Precious Kumordzi 
 

 151 

Oliveira, S., Moraes, B., Gonçalves, C., Giordano-Dias, C., d'Almeida, J., Asensi, M., 

Mello, R. and Brazil, R. (2000). Prevalência da microbiota no trato digestivo de 

fêmeas de Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) 

provenientes do campo. Revista da Sociedade Brasileira de Medicina Tropical, 33(3), 

pp.319-322. 

 

Opperdoes, F. (1987). Compartmentation Of Carbohydrate Metabolism In 

Trypanosomes. Annual Review of Microbiology, 41(1), pp.127-151. 

 

Ortiz, D., Sanchez, M., Koch, H., Larsson, H. and Landfear, S. (2009). An Acid-

activated Nucleobase Transporter from Leishmania major. Journal of Biological 

Chemistry, 284(24), pp.16164-16169. 

 

Paliwal, S., Iglesias, P., Campbell, K., Hilioti, Z., Groisman, A. and Levchenko, A. 

(2007). MAPK-mediated bimodal gene expression and adaptive gradient sensing in 

yeast. Nature, 446(7131), pp.46-51. 

 

Pigott, D. M., Bhatt, S., Golding, N., Duda, K. A., Battle, K. E., Brady, O. J., Messina, 

J. P., Balard, Y., Bastien, P., Pratlong, F., Brownstein, J. S., Freifeld, C. C., Mekaru, 

S. R., Gething, P. W., George, D. B., Myers, M. F., Reithinger, R., Hay, S. I. (2014). 

Global distribution maps of the leishmaniases. eLife, 3, e02851. 

doi:10.7554/eLife.02851 

 

Pires, A., Villegas, L., Campolina, T., Orfanó, A., Pimenta, P. and Secundino, N. 

(2017). Bacterial diversity of wild-caught Lutzomyia longipalpis (a vector of zoonotic 

visceral leishmaniasis in Brazil) under distinct physiological conditions by 

metagenomics analysis. Parasites & Vectors, 10(1). 

 

Pimenta, P., Modi, G., Pereira, S., Shahabuddin, M. and Sacks, D. (1997). A novel 

role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities 

of the sand fly midgut. Parasitology, 115(4), pp.359-369. 

 

Pimenta, P., Turco, S., McConville, M., Lawyer, P., Perkins, P. and Sacks, D. (1992). 

Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science, 

256(5065), pp.1812-1815. 



Yasmine Precious Kumordzi 
 

 152 

 

Pimentel, D., Ramos, R., Santana, M., Maia, C., Carvalho, G., Silva, H. and Alves, L. 

(2015). Prevalence of zoonotic visceral leishmaniasis in dogs in an endemic area of 

Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 48(4), pp.491-493. 

 

Polacheck, W., Charest, J. and Kamm, R. (2011). Interstitial flow influences direction 

of tumor cell migration through competing mechanisms. Proceedings of the National 

Academy of Sciences, 108(27), pp.11115-11120. 

 

Pozzo, L.Y., Fontes, A., de Thomaz, A.A., Santos, B.B., Farias, P., Ayres, D.C., 

Giorgio, S., Cesar, C.L., 2009. Studying taxis in real time using optical tweezers: 

applications for Leishmania amazonensis parasites. Micron 40, 617–620.  

 

Pruzinova, K., Sadlova, J., Seblova, V., Homola, M., Votypka, J. and Volf, P. (2015). 

Comparison of Bloodmeal Digestion and the Peritrophic Matrix in Four Sand Fly 

Species Differing in Susceptibility to Leishmania donovani. PLOS ONE, 10(6), 

p.e0128203. 

 

Pumpuni, C., Kent, M., Davis, J., Beier, J. and Demaio, J. (1996). Bacterial 

Population Dynamics in Three Anopheline Species: The Impact on Plasmodium 

Sporogonic Development. The American Journal of Tropical Medicine and Hygiene, 

54(2), pp.214-218. 

 

Ramalho-Ortigão, J., Kamhawi, S., Joshi, M., Reynoso, D., Lawyer, P., Dwyer, D., 

Sacks, D. and Valenzuela, J. (2005). Characterization of a blood activated chitinolytic 

system in the midgut of the sand fly vectors Lutzomyia longipalpis and Phlebotomus 

papatasi. Insect Molecular Biology, 14(6), pp.703-712. 

 

Ramalho-Ortigao, M. (2010). Sand Fly-Leishmania Interactions: Long Relationships 

are Not Necessarily Easy. The Open Parasitology Journal, 4(1), pp.195-204. 

 

Ramsay, J. (1951). Osmotic Regulation in Mosquito Larvae: The Role of the 

Malpighian Tubules. Journal of Experimental Biology, 28, pp.62-73. 

 



Yasmine Precious Kumordzi 
 

 153 

Ready, P. (1979). Factors Affecting Egg Production of Laboratory-Bred Lutzomyia 

Longipalpis (Diptera: Psychodidae)1. Journal of Medical Entomology, 16(5), pp.413-

423. 

 

Ready, P. (2013). Biology of Phlebotomine Sand Flies as Vectors of Disease 

Agents. Annual Review of Entomology, 58(1), pp.227-250. 

 

Reithinger, R., Coleman, P., Alexander, B., Vieira, E., Assis, G. and Davies, C. 

(2004). Are insecticide-impregnated dog collars a feasible alternative to dog culling as 

a strategy for controlling canine visceral leishmaniasis in Brazil?. International 

Journal for Parasitology, 34(1), pp.55-62. 

 

Reithinger, R., Mohsen, M. and Leslie, T. (2010). Risk Factors for Anthroponotic 

Cutaneous Leishmaniasis at the Household Level in Kabul, Afghanistan. PLoS 

Neglected Tropical Diseases, 4(3), p.e639. 

 

Rezvan, H. and Moafi, M. (2015). An overview on Leishmania vaccines: A narrative 

review article. Veterinary Research Forum, 6(1), pp.1-7. 

 

Rezvan, H., Nourian, A. and Navard, S. (2017). An Overview on Leishmania 

Diagnosis. JoMMID, 5(1 and 21), pp.1-11. 

 

RG Endris et al. 1982 Mosquitos News 42: 400-407 

 

Richards O.W., Davies R.G. (1977) The Alimentary Canal, Nutrition and 

Digestion. In: IMMS’ General Textbook of Entomology. Springer, Dordrecht 

 

Rogers, M. (2012). The Role of Leishmania Proteophosphoglycans in Sand Fly 

Transmission and Infection of the Mammalian Host. Frontiers in Microbiology, 3.  

 

Rogers, M., Chance, M. and Bates, P. (2002). The role of promastigote secretory gel 

in the origin and transmission of the infective stage of Leishmania mexicana by the 

sandfly Lutzomyia longipalpis. Parasitology, 124(05). 

 



Yasmine Precious Kumordzi 
 

 154 

Rogers, M., Hajmová, M., Joshi, M., Sadlova, J., Dwyer, D., Volf, P. and Bates, P. 

(2008). Leishmania chitinase facilitates colonization of sand fly vectors and enhances 

transmission to mice. Cellular Microbiology, 10(6), pp.1363-1372. 

 

Rogers, M., Ilg, T., Nikolaev, A., Ferguson, M. and Bates, P. (2004). Transmission of 

cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature, 

430(6998), pp.463-467. 

 

Rotureau, B., Morales, M., Bastin, P. and Späth, G. (2009). The flagellum-mitogen-

activated protein kinase connection in Trypanosomatids: a key sensory role in parasite 

signalling and development?. Cellular Microbiology, 11(5), pp.710-718. 

 

Rudin, W. and Hecker, H. (1982). Functional morphology of the midgut of a sandfly 

as compared to other hematophagous nematocera. Tissue and Cell, 14(4), pp.751-758. 

 

Sacks, D. and Kamhawi, S. (2001). Molecular Aspects of Parasite-Vector and Vector-

Host Interactions in Leishmaniasis. Annual Review of Microbiology, 55(1), pp.453-

483. 

 

Sádlová, J. and Volf, P. (2009). Peritrophic matrix of Phlebotomus duboscqi and its 

kinetics during Leishmania major development. Cell and Tissue Research, 337(2), 

pp.313-325. 

 

Sales, K., Costa, P., de Morais, R., Otranto, D., Brandão-Filho, S., Cavalcanti, M. and 

Dantas-Torres, F. (2015). Identification of phlebotomine sand fly blood meals by real-

time PCR. Parasites & Vectors, 8(1). 

 

Sanchez, M., Zeoli, D., Klamo, E., Kavanaugh, M. and Landfear, S. (1995). A Family 

of Putative Receptor-Adenylate Cyclases from Leishmania donovani. Journal of 

Biological Chemistry, 270(29), pp.17551-17558. 

 

Santos, V., Araujo, R., Machado, L., Pereira, M. and Gontijo, N. (2008). The 

physiology of the midgut of Lutzomyia longipalpis (Lutz and Neiva 1912): pH in 

different physiological conditions and mechanisms involved in its control. Journal of 

Experimental Biology, 211(17), pp.2792-2798. 



Yasmine Precious Kumordzi 
 

 155 

 

Santos, V., Vale, V., Silva, S., Nascimento, A., Saab, N., Soares, R., Michalick, M., 

Araujo, R., Pereira, M., Fujiwara, R. and Gontijo, N. (2014). Host Modulation by a 

Parasite: How Leishmania infantum Modifies the Intestinal Environment of 

Lutzomyia longipalpis to Favor Its Development. PLoS ONE, 9(11), p.e111241. 

 

Satir, P. (1968). STUDIES ON CILIA: III. Further Studies on the Cilium Tip and a 

"Sliding Filament" Model of Ciliary Motility. The Journal of Cell Biology, 39(1), 

pp.77-94. 

 

Satir, P. and Christensen, S. (2008). Structure and function of mammalian 

cilia. Histochemistry and Cell Biology, 129(6), pp.687-693. 

 

Schlein, Y. (1986). Sandfly diet and Leishmania. Parasitology Today, 2(6), pp.175-

177. 

 

Schlein, Y. and Jacobson, R. (1999). Sugar meals and longevity of the sandfly 

Phlebotomus papatasi in an arid focus of Leishmania major in the Jordan 

Valley. Medical and Veterinary Entomology, 13(1), pp.65-71. 

 

Schlein, Y., Jacobson, R. and Messer, G. (1992). Leishmania infections damage the 

feeding mechanism of the sandfly vector and implement parasite transmission by 

bite. Proceedings of the National Academy of Sciences, 89(20), pp.9944-9948. 

 

Secundino, N., Eger-Mangrich, I., Braga, E., Santoro, M. and Pimenta, P. (2005). 

Lutzomyia longipalpis Peritrophic Matrix: Formation, Structure, and Chemical 

Composition. Journal of Medical Entomology, 42(6), pp.928–938. 

 

Sevá, A., Ovallos, F., Amaku, M., Carrillo, E., Moreno, J., Galati, E., Lopes, E., 

Soares, R. and Ferreira, F. (2016). Correction: Canine-Based Strategies for Prevention 

and Control of Visceral Leishmaniasis in Brazil. PLOS ONE, 11(9), p.e0162854. 

 

Seymour, J., Ahmed, T., Marcos and Stocker, R. (2008). A microfluidic chemotaxis 

assay to study microbial behavior in diffusing nutrient patches. Limnology and 

Oceanography: Methods, 6(9), pp.477-488. 



Yasmine Precious Kumordzi 
 

 156 

 

Shaked-Mishan, P., Suter-Grotemeyer, M., Yoel-Almagor, T., Holland, N., 

Zilberstein, D. and Rentsch, D. (2006). A novel high-affinity arginine transporter from 

the human parasitic protozoan Leishmania donovani. Molecular Microbiology, 60(1), 

pp.30-38. 

 

Sharifi, I., Fekri, A., Aflatonian, M., Khamesipour, A., Nadim, A., Mousavi, M., 

Momeni, A., Dowlati, Y., Godal, T., Zicker, F., Smith, P. and Modabber, F. (1998). 

Randomised vaccine trial of single dose of killed Leishmania major plus BCG against 

anthroponotic cutaneous leishmaniasis in Bam, Iran. The Lancet, 351(9115), pp.1540-

1543. 

 

Silflow, C. and Lefebvre, P. (2001). Assembly and Motility of Eukaryotic Cilia and 

Flagella. Lessons from Chlamydomonas reinhardtii. PLANT PHYSIOLOGY, 127(4), 

pp.1500-1507. 

 

Silverman, M. and Leroux, M. (2009). Intraflagellar transport and the generation of 

dynamic, structurally and functionally diverse cilia. Trends in Cell Biology, 19(7), 

pp.306-316. 

 

Simpson, L. (1968). Effect of acriflavine on the kinetoplast of Leishmania tarentolae: 

Mode of Action and Physiological Correlates of the Loss of Kinetoplast DNA. The 

Journal of Cell Biology, 37(3), pp.660-682. 

 

Singla, V. and Reiter, J. (2006). The Primary Cilium as the Cell's Antenna: Signaling 

at a Sensory Organelle. Science, 313(5787), pp.629-633. 

 

Skoge, M., Adler, M., Groisman, A., Levine, H., Loomis, W. and Rappel, W. (2010). 

Gradient sensing in defined chemotactic fields. Integrative Biology, 2(11-12), p.659. 

 

Smith, C., Chaichana, K., Lee, Y., Lin, B., Stanko, K., O'Donnell, T., Gupta, S., Shah, 

S., Wang, J., Wijesekera, O., Delannoy, M., Levchenko, A. and Quiñones-Hinojosa, 

A. (2015). Pre-Exposure of Human Adipose Mesenchymal Stem Cells to Soluble 

Factors Enhances Their Homing to Brain Cancer. STEM CELLS Translational 

Medicine, 4(3), pp.239-251. 



Yasmine Precious Kumordzi 
 

 157 

 

Smith, D. and Littau, V. (1960). CELLULAR SPECIALIZATION IN THE 

EXCRETORY EPITHELIA OF AN INSECT, Macrosteles fascifrons STAL 

(HOMOPTERA). The Journal of Cell Biology, 8(1), pp.103-133. 

 

Snapp, E. and Landfear, S. (1999). Characterization of a Targeting Motif for a 

Flagellar Membrane Protein in Leishmania enriettii. Journal of Biological Chemistry, 

274(41), pp.29543-29548. 

 

Soares, R. and Turco, S. (2003). Erratum to ''Lutzomyia longipalpis (Diptera: 

Psychodidae: Phlebotominae): a review''. Anais da Academia Brasileira de Ciências, 

75(4), pp.441-441. 

 

Soares, R., Cardoso, T., Barron, T., Araújo, M., Pimenta, P. and Turco, S. (2005). 

Leishmania braziliensis: a novel mechanism in the lipophosphoglycan regulation 

during metacyclogenesis. International Journal for Parasitology, 35(3), pp.245-253. 

 

Soares, R., Macedo, M., Ropert, C., Gontijo, N., Almeida, I., Gazzinelli, R., Pimenta, 

P. and Turco, S. (2002). Leishmania chagasi: lipophosphoglycan characterization and 

binding to the midgut of the sand fly vector Lutzomyia longipalpis. Molecular and 

Biochemical Parasitology, 121(2), pp.213-224. 

 

Spotin, A., Rouhani, S., Ghaemmaghami, P., Haghighi, A., Zolfaghari, M., 

Amirkhani, A., Farahmand, M., Bordbar, A. and Parvizi, P. (2015). Different 

Morphologies of Leishmania major Amastigotes with No Molecular Diversity in a 

Neglected Endemic Area of Zoonotic Cutaneous Leishmaniasis in Iran. Iranian 

Biomedical Journal, 19(3), pp.149–159. 

 

Stierhof, Y., Bates, P., Jacobson, R., Rogers, M., Schlein, Y., Handman, E. and Ilg, T. 

(1999). Filamentous proteophosphoglycan secreted by Leishmania promastigotes 

forms gel-like three-dimensional networks that obstruct the digestive tract of infected 

sandfly vectors. European Journal of Cell Biology, 78(10), pp.675-689. 

 

Stoffolano, J. and Haselton, A. (2013). The Adult Dipteran Crop: A Unique and 

Overlooked Organ. Annual Review of Entomology, 58(1), pp.205-225. 



Yasmine Precious Kumordzi 
 

 158 

 

Stuart, K., Brun, R., Croft, S., Fairlamb, A., Gürtler, R., McKerrow, J., Reed, S. and 

Tarleton, R. (2008). Kinetoplastids: related protozoan pathogens, different 

diseases. Journal of Clinical Investigation, 118(4), pp.1301-1310. 

 

Sunter, J. and Gull, K. (2019). Shape, form, function and Leishmania pathogenicity: 

from textbook descriptions to biological understanding. Open Biol, 7(9)pii: 170165  

 

Talmi-Frank, D., King, R., Warburg, A., Peleg, O., Nasereddin, A., Svobodova, M., 

Jaffe, C. and Baneth, G. (2010). Leishmania tropica in Rock Hyraxes (Procavia 

capensis) in a Focus of Human Cutaneous Leishmaniasis. The American Journal of 

Tropical Medicine and Hygiene, 82(5), pp.814-818. 

 

TANG, Y. and WARD, R. (1998). Sugar feeding and fluid destination control in the 

phlebotomine sandfly Lutzomyia longipalpis (Diptera: Psychodidae). Medical and 

Veterinary Entomology, 12(1), pp.13-19. 

 

Telleria, E., Araújo, A., Secundino, N., d'Avila-Levy, C. and Traub-Csekö, Y. (2010). 

Trypsin-Like Serine Proteases in Lutzomyia longipalpis – Expression, Activity and 

Possible Modulation by Leishmania infantum chagasi. PLoS ONE, 5(5), p.e10697. 

 

Telleria, E., Martins-da-Silva, A., Tempone, A. and Traub-Csekö, Y. (2018). 

Leishmania, microbiota and sand fly immunity. Parasitology, 145(10), pp.1336-1353. 

 

Thomson, A. (1975). Synchronization of function in the foregut of the blowfly 

phormia regina (Dipteris: Calliphoridae) during the crop-emptying process. The 

Canadian Entomologist, 107(11), pp.1193-1198. 

 

Trager, W. (1965). The Kinetoplast and Differentiation in Certain Parasitic 

Protozoa. The American Naturalist, 99(907), pp.255-266. 

 

Turco, S. and Sacks, D. (2003). Control of Leishmania–Sand Fly Interactions by 

Polymorphisms in Lipophosphoglycan Structure. Recognition of Carbohydrates in 

Biological Systems, Part B: Specific Applications, pp.377-381. 

 



Yasmine Precious Kumordzi 
 

 159 

Uppaluri, S., Heddergott, N., Stellamanns, E., Herminghaus, S., Zöttl, A., Stark, H., 

Engstler, M. and Pfohl, T. (2012). Flow Loading Induces Oscillatory Trajectories in a 

Bloodstream Parasite. Biophysical Journal, 103(6), pp.1162-1169. 

 

Vaidyanathan, R. (2004). Leishmania parasites (Kinetoplastida: Trypanosomatidae) 

reversibly inhibit visceral muscle contractions in hemimetabolous and holometabolous 

insects. Journal of Invertebrate Pathology, 87(2-3), pp.123-128. 

 

Vaidyanathan, R. (2005). Isolation of a Myoinhibitory Peptide from Leishmania 

major (Kinetoplastida: Trypanosomatidae) and Its Function in the Vector Sand 

FlyPhlebotomus papatasi(Diptera: Psychodidae). Journal of Medical Entomology, 

42(2), pp.142-152. 

 

Vargas-Parada, L. (2010) Kinetoplastids and Their Networks of Interlocked 

DNA. Nature Education 3(9):63 

 

Vasudevan, G., Carter, N., Drew, M., Beverley, S., Sanchez, M., Seyfang, A., Ullman, 

B. and Landfear, S. (1998). Cloning of Leishmania nucleoside transporter genes by 

rescue of a transport-deficient mutant. Proceedings of the National Academy of 

Sciences, 95(17), pp.9873-9878. 

 

Vivero, R., Jaramillo, N., Cadavid-Restrepo, G., Soto, S. and Herrera, C. (2016). 

Structural differences in gut bacteria communities in developmental stages of natural 

populations of Lutzomyia evansi from Colombia's Caribbean coast. Parasites & 

Vectors, 9(1). 

 

Volf, P., Kiewegova, A. and Nemec, A. (2002). Bacterial colonisation in the gut of 

Phlebotomus duboscqi (Diptera: Psychodidae): transtadial passage and the role of 

female diet. Folia Parasitologica, 49(1), pp.73-77. 

 

Walker, G., Sai, J., Richmond, A., Stremler, M., Chung, C. and Wikswo, J. (2005). 

Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient 

generator. Lab on a Chip, 5(6), p.611. 

 



Yasmine Precious Kumordzi 
 

 160 

Warburg, A. (2008). The structure of the female sand fly (Phlebotomus papatasi) 

alimentary canal. Transactions of the Royal Society of Tropical Medicine and 

Hygiene, 102(2), pp.161-166. 

 

Warburg, A. and Ostrovska, K. (1987). Cytoplasmic Polyhedrosis Viruses in 

Phlebotomus papatasi Inhibit Development of Leishmania major. The Journal of 

Parasitology, 73(3), p.578. 

 

Warburg, A., Tesh, R. and McMahon-Pratt, D. (1989). Studies on the Attachment of 

Leishmania Flagella to Sand Fly Midgut Epithelium. The Journal of Protozoology, 

36(6), pp.613-617. 

 

Wheeler, R., Gluenz, E. and Gull, K. (2010). The cell cycle of Leishmania: 

morphogenetic events and their implications for parasite biology. Molecular 

Microbiology, 79(3), pp.647-662. 

 

Wheeler, R., Gluenz, E. and Gull, K. (2015). Basal body multipotency and axonemal 

remodelling are two pathways to a 9+0 flagellum. Nature Communications, 6(1). 

 

Whitesides, G., Ostuni, E., Takayama, S., Jiang, X. and Ingber, D. (2001). Soft 

Lithography in Biology and Biochemistry. Annual Review of Biomedical Engineering, 

3(1), pp.335-373. 

 

Wilson V.C.L.C., Southgate B.A. Lizard Leishmania. In: Lumsden W.H.R., Evans 

D.A., editors. vol. 2. Academic Press; London: 1979. pp. 241–268. 

 

Wilson, M. E., Vorhies, R. W., Andersen, K. A., & Britigan, B. E. (1994). Acquisition 

of iron from transferrin and lactoferrin by the protozoan Leishmania 

chagasi. Infection and immunity, 62(8), 3262-9. 

 

Wilson, M., Lewis, T., Miller, M., McCormick, M. and Britigan, B. (2002). 

Leishmania chagasi: uptake of iron bound to lactoferrin or transferrin requires an iron 

reductase. Experimental Parasitology, 100(3), pp.196-207. 

 



Yasmine Precious Kumordzi 
 

 161 

Witman, G. (2003). Cell Motility: Deaf Drosophila Keep the Beat. Current Biology, 

13(20), pp.R796-R798. 

 

Ye, N., Qin, J., Shi, W., Liu, X. and Lin, B. (2007). Cell-based high content screening 

using an integrated microfluidic device. Lab on a Chip, 7(12), p.1696. 

 

Zeyrek, F., Korkmaz, M. and Ozbel, Y. (2007). Serodiagnosis of Anthroponotic 

Cutaneous Leishmaniasis (ACL) Caused by Leishmania tropica in Sanliurfa Province, 

Turkey, Where ACL Is Highly Endemic. Clinical and Vaccine Immunology, 14(11), 

pp.1409-1415. 

 

Zhioua, E., Kaabi, B. and Chelbi, I. (2007). Entomological investigations following 

the spread of visceral leishmaniasis in Tunisia. Journal of Vector Ecology, 32(2), 

pp.371-375. 

 

 

 

 

 

 

 

 

 

 

APPENDICES 



Yasmine Precious Kumordzi 
 

 162 

Appendix I: Table showing the chitinases found in all Leishmania species. Data from 

UniProt  

 
Appendix II 
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Null hypothesis- there is no significant difference between the two migrated 
populations (group 1 and group 2). 
 
Appendix II (a):  
L. tarentolae day 3 Urea (group 1) and L. tarentolae day 5 Urea (group 2) migration 
assay used for the Mann Whitney U-test. 
 
For 5% two-tailed level, Critical value of U (from tables) is 15. 
 
As calculated U < U critical, we reject the Null Hypothesis therefore the result is 
significant. 
 
z critical (5%, two-tailed) is 1.959964. 
 
p value is 0.000532. 
 
 
 
Appendix II (b):  
 
L. mexicana day 3 Glucose (group 1) and L. mexicana day 5 Glucose (group 2) 
migration assay used for the Mann Whitney U-test 
 
For 5% two-tailed level, Critical value of U (from tables) is 20 
 
As calculated U < U critical, we reject the Null Hypothesis therefore the result is 
significant. 
 
z critical (5%, two-tailed) is 1.959964. 
 
p value is 0.006233. 
 
 
 
Appendix III 
 

Ho: The data shows an association between promastigote form and the chemical cue it 
is migrating towards. 

Ha: The data shows NO association between promastigote form and the chemical cue 
it is migrating towards. 

The significance level is 0.05. A P-value measures the strength of evidence in support 
of a Ho. If the P-value is less than the significant level, we reject the null hypothesis. 
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Appendix III (a): L. mexicana chi-squared test on a contingency table with SPSS 

Due to over 20% having expected count less than 5, therefore the expection has been 
violated. Therefore instead of using the Pearson Chi-Square, the likelihood ratio is to 
be used. Results show 23.546 statistic, 16 degrees of freedom (df) and the significance 
value of 0.1. 0.1 > Level of significance 0.05, therefore accept the the null hypothesis 
that there is no association between the type of promastigote morphology and the 
specific chemical cue migrated towards.     
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Appendix III (b): L. tarentolae chi-squared test on a contingency table with SPSS 
 

Due to over 20% having expected count less than 5, therefore the expection has been 
violated. Therefore instead of using the Pearson Chi-Square, the likelihood ratio is to 
be used. Results show 38.956 statistic, 16 degrees of freedom (df) and the significance 
value of 0.001. 0.1 > Level of significance 0.05, therefore reject the null hypothesis 
that there is no association between the type of promastigote morphology and the 
specific chemical cue migrated towards.     
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Appendix IV: Raw data used for growth curve, promastigote migration, 
morphological classification and SPSS in CD labelled (MRES RAW RESULTS CD) 


