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Scalable quantum technologies such as quantum computers will require very large num-7

bers of quantum devices to be characterised and tuned. As the number of devices on chip8

increases, this task becomes ever more time-consuming, and will be intractable on a large9

scale without efficient automation. We present measurements on a quantum dot device per-10

formed by a machine learning algorithm in real time. The algorithm selects the most infor-11

mative measurements to perform next by combining information theory with a probabilis-12

tic deep-generative model that can generate full-resolution reconstructions from scattered13

partial measurements. We demonstrate, for two different current map configurations that14

the algorithm outperforms standard grid scan techniques, reducing the number of measure-15

ments required by up to 4 times and the measurement time by 3.7 times. Our contribution16

goes beyond the use of machine learning for data search and analysis, and instead demon-17

strates the use of algorithms to automate measurements. This works lays the foundation for18

†Both authors contributed equally and are displayed in alphabetical order



learning-based automated measurement of quantum devices.19

Introduction20

Semiconductor quantum devices hold great promise for scalable quantum computation. In par-21

ticular, individual electron spins in quantum dot devices have already shown long spin coherence22

times with respect to typical gate operation times, high fidelities, all-electrical control, and good23

prospects for scalability and integration with classical electronics 1.24

A crucial challenge of scaling spin qubits in quantum dots is that electrostatic confinement25

potentials vary strongly between devices and even in time, due to randomly fluctuating charge traps26

in the host material. Characterising such devices, which requires measurements of current or con-27

ductance at different applied biases and gate voltages, can be very time consuming. It is normally28

carried out following simple scripts such as grid scans, which are sequential measurements taken29

from a 2D grid for a pair of voltages. We call a set of voltages that defines the state of a quantum30

dot a configuration. Measurement of some configurations is more informative for characterising a31

quantum dot than the other configurations; measuring uncertain signals is more informative than32

measuring predictable signals. However, grid scans do not prioritise measurement of informative33

signals, instead just acquiring measurements according to simple rules (e.g. following a raster pat-34

tern). Current efforts in the field of automation of quantum dot are focused on tuning 2–9, a large35

portion of these relying on grid scanning techniques for measurement. An optimised measurement36

method that can prioritise and select important configurations is thus key for fast characterisation37

and automatic tuning. Our method is thus complementary to automating tuning of quantum devices38
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and holds the potential to increase the efficiency of these approaches when combined.39

In this paper, we present an algorithm that performs efficient real-time data acquisition for40

a quantum dot device (Fig. 1a). It starts from a low-resolution uniform grid of measurements,41

creates a set of full-resolution reconstructions, calculates the predicted information gain (i.e. the42

acquisition map), selects the most informative measurements to perform next, and repeats this43

process until the information gain from new measurements is marginal.44

In order to select measurements based on information theory, we require a corresponding45

uncertainty measure (of random variables)10–12, and hence a probabilistic model of unobserved46

variables. One typical approach is to use a Gaussian process13. Here, we use a conditional vari-47

ational auto-encoder (CVAE) 14, which is capable of generating high-resolution reconstructions48

given partial information and is fast enough for real-time decisions. Deep generative models such49

as adversarial networks (GAN)15, the variational auto-encoder (VAE)16 and its extensions, such50

as CVAE, have shown great success in multi-modal distributions and complex non-stationary pat-51

terns of data17, 18, similar to those of observed in quantum device measurements. These are the52

main advantages of CVAE over a basic Gaussian process. Also, CVAE is more computationally53

efficient at generating multiple full-resolution reconstructions. Although progress has been made54

addressing the limitations of Gaussian processes, deep generative models are overall a better fit to55

the requirements for efficient quantum device measurements. Deep generative models have been56

used for: speech synthesis19; generating images of digits and human faces20, 21; transferring image57

style22, 23; and inpainting missing regions of images24. Recently, VAE models have been used in58
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scientific research to optimise molecular structures25–28. In spite of their suitability, these models59

have not previously been applied to efficient data acquisition. An advantage of deep generative60

models over simple interpolation techniques, such as nearest-neighbour and bilinear interpolation,61

is that deep generative models can learn likely patterns from training data and incorporate them62

into its reconstructions. Our method, as it is data-driven, it is generalizable to different transport63

regimes, measurement configurations, and more complex device architectures if an appropriate64

training set is available.65

Results66

The device Our device is a laterally defined quantum dot fabricated by patterning Ti/Au gates67

over a GaAs/AlGaAs heterostructure containing a two-dimensional electron gas (Fig. 1b). In this68

device, electrons are subject to the confinement potential created electrostatically by gate voltages.69

Gate voltages V1 to V4 tune the tunneling rates while VG mainly shifts the electrical potential inside70

the quantum dot. The current through the device is determined both by these gate voltages and by71

the bias voltage Vbias. Measurements were performed at 30 mK.72

The quantum dot is characterised by acquiring maps of the electrical current as a function of a73

pair of varied voltages, which we call a current map configuration. We first focus on varying VG and74

Vbias for fixed values of V1 to V4. Figure 1c) shows a typical example. Diamond-shaped regions or75

‘Coulomb diamonds’ indicate Coulomb blockade, where electron tunnelling is suppressed29. Most76

current maps have large areas in which the current is almost constant, and consequently measure-77
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ments in these regions slow down informative data acquisition. Our algorithm must therefore give78

measurement priority to the informative regions of the map. An overview of an algorithm-assisted79

measurement of a current map is shown in Fig. 1d.80

Training the reconstruction model The role of the reconstruction model is to characterise likely81

patterns in a training data set, given by a mixture of measured and simulated current maps. We can82

utilise these likely patterns to predict the unmeasured signals from partial measurements.83

Deep generative models represent this pattern characterisation in a low-dimensional real-84

valued latent vector z, which can be decoded to produce a full-resolution reconstruction. The85

latent space representation and the decoding are learned during training. Our CVAE consists of86

two convolutional neural networks, an encoder and a decoder. The encoder is trained to map full-87

resolution training examples of current maps Y to the latent space representation z. The encoder88

also enforces that the distribution p(z) of training examples in latent space is Gaussian.89

The decoder is trained to reconstruct Y , from the representation z combined with an 8 × 890

subsample of Y . As a result, z attempts to represent all the information that is missing from the91

subsampled data. In a plain VAE, the input of a decoder is only z. If a decoder takes additional92

input except z, then it is called CVAE, and we found that CVAE generates better reconstructions93

than VAE for the considered measurements. The chosen loss function, which the CVAE tries to94

minimise, is a measure of the difference between the training data and the corresponding recon-95

struction. To avoid blurry reconstructions, we define a contextual loss function that incorporates96

both pixel-by-pixel and higher-order differences like edges, corners, and shapes. Detailed descrip-97
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Figure 1: Overview of the algorithm and the quantum dot device. a, Schematic of the al-

gorithm’s operation. Low-resolution measurements (i) are used to produce reconstructions (ii),

which are used to infer the predicted information gain acquisition map (iii). Based on this map,

the algorithm chooses the location of the next measurement (iv). The process is repeated until a

stopping criterion is met. b, Schematic of the device. A bias voltage Vbias is applied between ohmic

contacts to the two-dimensional electron gas. We apply gate voltages labelled V1 to V4 and VG. c, A

measured current map as a function of Vbias and VG. The Coulomb diamonds are the white regions

where electron transport is suppressed, and most of the information necessary to characterise a

device is contained just outside these diamonds. d, Sequential decision algorithm in a illustrated

with an example of a specific current map. In panel (iv), unmeasured pixels are plotted in black;

however, initial measurements (i) are represented so as to fill the entire panel (that is, the sparse

grid of measurements is represented as a low-resolution image).
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tion of these networks and their training can be found in the Supplementary sections Training and98

loss function, and Network specification.99

The model is trained using both simulated and measured current maps. We choose to work100

with current maps of resolution 128×128. The simulation is based on a constant-interaction model101

(see Methods). To measure the current maps for training, we set the bias and gate voltage ranges102

randomly from a uniform distribution. The training data set consists of 25,000 simulations and103

25,000 real examples generated by randomly cropping 750 measured current maps. The current104

maps were subjected to random offsets, rescaling, and added noise to increase the variability of the105

training set.106

Generating reconstructions from partial data After training, only the trained decoder network107

is used in the algorithm of Fig. 1a to reconstruct full-resolution current maps from partial data.108

At each stage, the known partial current map is denoted Yn, where n ≤ 1282 = 16, 384 is the109

number of pixels to be measured. To generate a reconstruction, the decoder takes as input the110

initial 8 × 8 grid scan Y64, together with a latent vector z sampled from the posterior distribution111

p(z|Yn) (see Methods for detail equations and Fig. S1 for the decoder diagram). Note that the pos-112

terior density is calculated by the prior density p(z) and a likelihood function, which is comparing113

reconstructions and the partial data. Multiple posterior samples are drawn from p(z|Yn) by the114

Metropolis-Hastings (MH) method to approximate p(z|Yn). From these multiple samples zm, cor-115

responding reconstructions are then generated, denoted Ŷm. In this paper we set m = 1, . . . , 100.116

The continuous posterior p(z|Yn) is then approximated by a discrete posterior of samples Pn(m),117
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which denotes how probable Ŷm is. We refer to Pn(m) as the posterior distribution of reconstruc-118

tions.119

Making measurement decisions With each iteration of the decision algorithm, an acquisition120

map is computed from the accumulated partial measurements and the resulting reconstructions.121

This acquisition map assigns to each potential measurement location (i.e. to each pixel location122

in the current map) an information value for the posterior distribution of reconstructions (Fig. 2).123

The (n+ 1)th measurement, whose result is yn+1, is one pixel taken from the true current map and124

changes our posterior distribution from Pn(m) to Pn+1(m), rendering different reconstructions125

more or less probable.126

The acquisition map is the expected information gain IG(x) at each potential measurement127

location x. Our algorithm calculates it by a weighted sum over reconstructions:128

IG(x) ≡
∑
m

Pn(m)× IGm

(
x
)

, (1)

where IGm(x) is the Kullback-Leibler divergence between the distributions Pn and Pn+1, calcu-129

lated such that yn+1 at location x is taken from reconstruction Ŷm. The most informative point is130

x∗n+1 ≡ argmaxxIG(x). This criterion is equivalent both to minimising the expected information131

entropy of the posterior distribution and to Bayesian active learning by disagreement (BALD10,132

see Methods). The difference of the proposed method and BALD is that the proposed method uses133

random reconstructions of data, which can be multi-modal, whereas BALD assumes that data is134

normally distributed.135
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Figure 2: Computing the acquisition map. a, Partial current map. To illustrate the first step in

the computation of the acquisition map, we consider a trace (green) through an unmeasured region

of the map. b, For the unmeasured trace in a, reconstructions provide 100 different predictions.

Blue and yellow traces highlight two of these predictions. The objective is to determine the most

informative measurement location. At x2, all predictions are similar, so measuring here will have

little impact on the posterior distribution of reconstructions. At x1, predictions are dissimilar and

therefore x1 is a more informative measurement location, with a larger effect on the posterior

distribution of reconstructions. c, Information gain computed for the unmeasured trace in a. d,

Acquisition map of information gain computed from the partial measurements in a, and plotted

over the entire current map range.
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We devised two methods to make decisions based on the acquisition map; a pixel-wise136

method, and a batch method. The pixel-wise method selects the single best location in the ac-137

quisition map. In practice, this is often not optimal in terms of measurement time, because it138

does not take account of the time needed to ramp the gate voltage between measurement locations139

(which is limited by details of the measurement electronics and the device settling time). To take140

account of this limitation, we also devised a batch method, which selects multiple locations from141

the acquisition map, and then acquires measurements by taking a fast route between them. This142

reduces the measurement time compared with the pixel-wise method.143

Experiments To test the algorithm, it was used to acquire a series of current maps in real time.144

First, the device was thermally cycled, to randomise the charge traps and therefore present the145

algorithm with a configuration not represented in its training data. Gate voltages V1-V4 were set146

to a combination of values, and the algorithm was tasked to measure the corresponding current147

map using both the batch and the pixel-wise methods. This step was repeated for ten different148

combinations of bias and gate voltages. Fig. 3 presents data acquired by the algorithm at selected149

acquisition stages, together with selected reconstructions. As expected, reconstructions become150

less diverse as more measurements are acquired. The reconstructions do not necessarily replicate151

the measured current map for large n. This is because reconstructions have a limited variability152

given by the training data. Decisions are made based on the learned patterns from the training153

data, which implies that this training data should contain at least general patterns which are to be154

characterised but does not need to include all possible features in a current map.155
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Figure 3: Updating reconstructions using information from new measurements. In each

row, the first column shows the algorithm-assisted measurements, using the batch method, for a

given n. The remaining three columns contain example reconstructions given the corresponding n

measurements. As n increases, the diversity of the reconstructions is reduced and their accuracy

increased. As expected, the uncertainty is almost eliminated in the last row. The residual remaining

variance is because slightly different reconstructions are nearly equally consistent with the data.
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As seen, the algorithm gives high priority to regions of the map where the current is rapidly156

varying, and avoids regions of nearly constant current, such as the interiors of Coulomb diamonds.157

This strategy is an emergent property of the algorithm and is wise; little information about the158

device characteristics can be found in low-current gradient regions of the current map. This pref-159

erence derives from the comparison between reconstructions, which exhibit the greatest disagree-160

ment outside Coulomb diamonds. This is also seen in Fig. 4a, which shows two representative161

measurement sequences using the batch method. The batch method collects grouped measure-162

ments while the pixel-wise method distributes measurements more uniformly, given that in this163

case, the acquisition map is more frequently updated to take account for recently acquired infor-164

mation. Results for other current maps, including for the pixel-wise method, are shown in the165

Supplementary Figures 2 to 6.166

We compared the performance of the algorithm with an alternating grid scan method. This167

type of grid scan starts with 8×8 measurements and alternately increases the vertical and the hori-168

zontal grid size by 2 (i.e. 16×8, 16×16, 32×16, etc.), without performing the same measurement169

twice. Over the ten different current maps, the average time for full-resolution data acquisition170

with the alternating grid scan method is 554 seconds. This time is limited by our bias and gate171

voltage ramp rate and chosen settling time. The batch method can be implemented with any batch172

size however for direct comparison with the alternating grid scan we selected increasing batches173

of 32×2b, where b is the batch number starting from 1.174

Two types of computation are required to make a measurement decision: sampling recon-175
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structions using the MH method, and constructing the acquisition map. One MH sampling iteration176

takes 63 ms. For experiments, multiple sampling iterations are performed after each batch decision177

and measurement while acquisition is suspended. Since sampling can be performed simultaneously178

with measurement acquisition, from now on our measurement times exclude the time for sampling.179

To compute a single acquisition map takes approximately 50 ms using a NVIDIA GTX 1080 Ti180

graphics card and Tensorflow30 implementation. The acquisition map must be computed for every181

batch or every pixel measurement, except for the initial 8 × 8 grid scan and the final acquisition182

step (which has no choice of which pixel(s) to measure). To acquire a full resolution current map183

thus requires 7 computations (350 ms) for the batch method, and 16,319 computations (816 s) for184

the pixel-wise method. For the batch method, the computation time is negligible compared to the185

measurement time, but for the pixel-wise method it is a limiting factor in the measurement rate.186

To quantify the algorithm’s performance, we have devised a measure based on the observa-187

tion that the most informative regions of the current map are those where the current varies strongly188

with VG and Vbias. We therefore define the local gradient of the current map at each location x as189

v(x) ≡ ‖∇Y (x)‖2 =

√(
∂I(x)

∂VG

)2

+

(
∂I(x)

∂Vbias

)2

, (2)

where I(x) is current measurement at x, and the derivatives are calculated numerically. The error190

measure r(n) of a partial current map is the fraction of the total gradient that remains uncaptured,191

i.e.192

r(n) ≡ 1− V (n)

V (N)
(3)

where V (n) ≡
∑n

i=1 v(xi) is the total acquired gradient and xi is the location of the ith measure-193

13



n=512 n=1,024 n=4,096 n=8,192n=2,048n=256a

Grid
Optimal
Batch
Batch (est)

cb

V
b

ia
s

VG

ed

0v(x)0 0.0021 0.0007v(x)

0.0

1.0

r(
n
)

Measurement number n
4,096 16,3848,19264

0.0

1.0

r(
n
)

4,096 16,3848,19264
(a.u.)(a.u.) Measurement number n

Figure 4: Measurements of Coulomb diamonds performed by the algorithm. a, Sequential

batch measurement in two different experiments. Each row displays algorithm assisted measure-

ments of the current map as a function of Vbias and VG for different values of n. The last plot in

each row is the full-resolution current map. b, d, Current gradient map (defined by Eq. (2)) for

each example in a. c, e, Measure of the algorithm’s performance r(n), real-time estimate of r(n)

across reconstructions (with 90% credible interval shaded), and optimal r(n) for both examples in

a. The black line is the value of r(n) corresponding to the alternating grid scan method. The ver-

tical orange line indicates the value of n determined by the stopping criterion. The corresponding

current map in a is highlighted in orange.
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ment. This error can only be calculated after all measurements have been performed. However,194

we can utilise the mth reconstruction to generate an estimate r̃m(n) in real time by replacing195

‖∇Y (x)‖2 with ‖∇Ŷm(x)‖2. The estimates from multiple reconstructions yield a credibility inter-196

val for r(n). For an optimal algorithm, the error would be r̄(n) = 1.0− V ∗(n)
V (N)

, where V ∗(n) is the197

sum of the largest n values of v(x). This would be achieved if each measurement location were198

chosen knowing the full-resolution current map, and thus the location of the the highest unmea-199

sured current gradient. No decision method can exceed this bound. For the real time estimates of200

r(n), we have increased the number of reconstructions to 3,000 by adding different noise patterns201

that are present in typical measured current maps (see Supplementary section Noisy reconstruc-202

tion). This increase in the variability of the reconstructions is needed to avoid an overconfident203

estimation of r(n).204

Performances for two experiments are shown in Fig. 4c, e. Grid scans reduce r(n) linearly205

with increasing n. The decision algorithm outperforms a simple grid scan and is nearly optimal.206

When most of the current gradient is localised, the grid scan is far from optimal and even the207

decision algorithm has room for improvement. In this case, the performance of the algorithm is208

determined by how representative the training data is. Quantitative analysis of all 10 experiments209

is in Supplementary Figures 5 and 6.210

We propose a simple stopping criterion that uses the estimated reduction of the error r(n) to211

determine when to stop measuring a given current map, in a scenario where more experiments are212

waiting to be conducted. For a given current map containing n measured pixels, the error after the213
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next measurement batch is estimated for reconstruction m to be r̃m(n+ ∆), where ∆ is the size of214

the batch. Thus the estimated rate at which the error decreases is βm ≡
∣∣r̃m(n + ∆)− r̃m(n)|/∆.215

In the worst case among the candidate reconstructions, this rate is β ≡ minm βm. However, if216

the algorithm begins to measure a new map, for which no reconstructions yet exist, the error of217

that map will decrease at a rate of at least α ≡ 1/N ; this is the slope achieved by a grid scan218

and the worst case of the decision algorithm (black lines in Fig. 4c, e). Hence when β < α, it is219

beneficial to halt measurement and move onto a new current map that is awaiting measurement.220

Since α and β are the worst-case estimates for each case, the criterion is conservative. The stopping221

points by this criterion are shown in Fig. 4c, e, with orange dashed lines. The total average time222

(measurement time plus decision time) to reach the stopping criterion was 237 s, compared with223

554 s to measure the complete current map by grid scan, reducing the time needed by a factor224

between 1.84 and 3.70 across all 10 test cases. A more sophisticated stopping criterion utilising225

the number of remaining unmeasured current maps and a total measurement budget is presented in226

Methods.227

Generalising the algorithm The algorithm described here does not require assumptions about228

the physics of the acquired data, such as requiring that it show Coulomb diamonds. Provided that229

training data are available, it should also work for other kinds of measurements. To test this, we230

applied it to a different current map configuration also encountered in quantum dot tuning. In this231

case the current flowing through the device is measured as a function of two gate voltages (V1232

and V2), while keeping other voltages fixed (VG, Vbias, V3 and V4). In these current maps, Coulomb233

blockade leads to large areas where the current scarcely changes, with diagonal features of allowed234
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current. For the training set, we measured 382 current maps with a resolution of 251× 251 which235

we randomly cropped to a resolution of 128 × 128 and subjected to simple image augmentation236

techniques (as for the previous training set).237

We tested the performance of the algorithm in this new scenario by taking two different238

combinations of VG, Vbias, V3 and V4 and measuring the corresponding current maps in real time239

(Fig. 5). The device was thermally cycled after the training set was acquired and also between the240

acquisition of the two current maps in Fig. 5. The algorithm focuses on measuring regions of high241

current gradient, the corner edges and, in particular, the Coulomb peaks close to these.242

In the top row of Fig. 5a, n = 4, 096 was chosen by the stopping criterion. In the bottom row,243

the corners edges extended further in the current map and the stopping criterion chose n = 8, 192.244

This reduced the time needed to measure the current maps by 3.36 and 1.50, respectively, for the245

two test cases when compared with the alternating grid scans.246

Discussion247

The proposed measurement algorithm makes real-time informed decisions on which measurements248

to perform next on a single quantum dot device. Decisions are based on the disagreement of249

competing reconstructions built from sparse measurements. The algorithm outperforms grid scan250

in all cases, and in the majority of cases shows nearly optimum performance. The algorithm251

reduced the time required to observe the regions of finite current gradient by factors ranging from252

1.5 to 3.7 times. Optimisation of batch sizes or a variable scan resolution might reduce this time253
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Figure 5: Measuring a different current map. a, Sequential batch measurement. Each row

displays the algorithm-assisted measurements of a current map as a function of V1 and V2 for

different values of n. The last plot in each row is the full-resolution current map. b, d, Current

gradient map for both examples in a. c, e, Measure of the algorithm’s performance r(n), average

real-time estimate of r(n) with 90% credible interval, and optimal r(n) for both current maps in a.

The black line is the value of r(n) corresponding to the alternating grid scan method. The dashed

orange line indicates the value of n determined by the stopping criterion. The corresponding

current map in a is highlighted in orange. The alternating grid scan took 2,267 s and 2,333 s to

acquire all measurements in the two cases. The batch method took 673 s and 1,552 s to reach the

stopping criterion.
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further, however, the performance gain is limited by the spread of the information gain over the254

scan range. This is evidenced in both Figs 4c,e and Fig 5c,e, where we show that even an optimal255

algorithm does not significantly outperform the algorithm.256

Our algorithm with no modifications can be re-trained to measure different current maps. It257

simply requires a diverse data set of training examples from which to learn. The decision algorithm258

performed well even when trained on a small data set of only 382 current maps (at a resolution of259

251×251), implying that it is robust to limited training data sets. Our algorithm focused on observ-260

ing all informative regions present in the current map, making it generalisable to different types261

of measurements and devices. The acquisition function can still be specifically designed to focus262

on specific transport features such as Coulomb peaks or Coulomb diamond edges. In additional263

experiments we demonstrate how this can be achieved by applying additional transformations to264

the reconstructions (see Supplementary Section Context-aware decision for stability diagrams).265

We believe that our algorithm represents a significant first step in automating what to measure266

next in quantum devices. For a single quantum dot it provides a means of accelerating what can267

currently be achieved by human experimenters and other automation methods. When provided268

with an appropriate training data set our algorithm can be applied to a large variety of experiments.269

In particular, in any conventional qubit tuning method for which time-consuming grid scans are270

performed, our algorithm would allow for an improvement in measurement efficiency. It will not271

be long before this kind of approach enables experiments to be performed, and technology to be272

developed, that would not be feasible otherwise.273
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Methods274

Distribution of reconstructions and sampling Since it is known that deep generative models275

work well when the data range is from -1 to 1, all measurements are rescaled so that the maximum276

value of the absolute value of the initial measurement is 1. Let Y be a random vector containing277

all pixel values. Observation Yn, where n ≥ 1, is the set of pairs of location xj and measurement278

yj: Yn = {(xj, yj) | j = 1, . . . , n}. Also, a subset of measurements is defined: Yn:n′ = {(xj, yj) |279

j = n, . . . , n′}. The likelihood of observations given Y is defined by280

p(Yn | Y ) ∝ exp
(
−λΣ(x,y)∈Yn|y − Y (x)|

)
, (4)

where Y (x) is the pixel value of Y at x, and λ is a free parameter that determines the sensitivity281

to the distance metric and is set to 1.0 for all experiments in this paper. The posterior probability282

distribution is defined by Bayes’ rule:283

p(Y | Yn) ∝ p(Yn | Y ) p(Y ) . (5)

Likewise, we can find the posterior distribution of z given measurements instead of Y . Let z′284

denote another input of the decoder, which is set to Y64 in the experiments. Then the posterior285

distribution of z can be expressed with z′ when n ≥ 64:286

p(z | Yn, z′) ∝ p(z | z′) p(Yn | p(z, z′)

∝ p(z)

∫
Y

p(Yn | Y ) p(Y | p(z, z′) dY

∝ p(z) p(Yn | Y = Ŷz) ,

where Ŷz is the reconstruction produced by the decoder given z and z′. Since all inputs of the287

decoder are given, p(Y | z, z′) is the Dirac delta function centered at Ŷz. Also, p(z | z′) = p(z)288
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as z and z′ are assumed independent. Proposal distribution for MH is set to a multivariate normal289

distribution having centered mean and a covariance matrix equal to one quarter of the identity290

matrix. For the experiments in this paper, 400 iterations of MCMC steps are conducted when291

n = 32 × 2b, where b is any integer larger than or equal to 1. We found that 400 iterations result292

in good posterior samples. If (xn+1, yn+1) is newly observed, then the posterior can be updated293

incrementally:294

p(z | Yn+1, z
′) =

p(xn+1, yy+1 | z, z′)
p(xn+1, yn+1 | Yn, z′)

p(z | Yn, z′)

=
p(xn+1, yy+1 | Ŷz)

p(xn+1, yn+1 | Yn, z′)
p(z | Yn, z′) ,

because each term in (4) can be separated.295

Decision algorithm In this section, we derive a computationally simple form of the information296

gain and the fact that maximising the information gain is equal to minimising the entropy. Let297

pn(·) = p(·|Yn, z′), and any probabilistic quantity of yn+1 has the condition xn+1, but omitted for298

brevity.299

The continuous version of the information gain equation is

Eyn+1

[
KL
(
pn(z | yn+1)‖pn(z)

)]
=

∫
yn+1

pn(yn+1)KL
(
pn(z | yn+1)‖pn(z)

)
dyn+1

=

∫
yn+1

pn(yn+1)

∫
z

pn(z | yn+1) log
pn(z | yn+1)

pn(z)
dzdyn+1 (6)

=

∫
yn+1

∫ ′
z

pn(z, yn+1) log
pn(z, yn+1)

pn(z)pn(yn+1)
dzdyn+1

= I(z | Yn ; yn+1 | Yn) ,
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where KL is Kullback-Leibler divergence, I(·; ·) is mutual information. Since I(z | Yn ; yn+1 |300

Yn) = H(z | Yn) − H(z | Yn, yn+1), maximising the expected KL divergence is equivalent to301

minimising H(z | Yn, yn+1), which is the entropy of z after observing yn+1.302

Since this integral is hard to compute, we approximate probability density functions (PDFs)303

with samples and substitute them into (6). Let ns denote the number of measurements that are used304

for sampling reconstructions ẑ1, . . . , ẑM (the samples are converted to Ŷ1, . . . , ŶM ). Then pns(z) ≈305

1
M

∑
m δẑm(z), or with the sample index m, Pns(m) = 1/M . For any n ≥ ns, the probability is306

updated with the new measurements after ns: Pn(m;ns) = p(Yns+1:n|Ŷm)

Σmp(Yns+1:n|Ŷm)
, which can be derived307

from importance sampling. For brevity, the sampling distribution information ns is omitted for308

the remaining section. Likewise, pn(yn+1) =
∫
z
pn(yn+1 | z) pn(z) ≈

∑
m Pn(m) pn(yn+1 | zm).309

Lastly, we use the value of Ŷm at xn+1 for a sample of pn(yn+1 | zm) for simple and efficient310

computation. As a result, the information gain is approximated by:311

Eyn+1

[
KL
(
pn(z | yn+1) ‖ pn(z)

)]
≈
∑
m

Pn(m) KL(Pn+1 ‖Pn) .

Simulator for Training data To aid the training of the model simulated training data was used to312

prevent over-fitting. Simulated data produced via a simple implementation of the constant inter-313

action model29 was used along with basic data augmentation techniques. These techniques were314

not intended to be physically accurate but instead to produce quickly a diverse set of examples that315

contain features that mimic real data.316

The constant interaction model makes the assumptions that all interactions felt by a confined317
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electrons within the dot can be captured by a simple constant capacitance CΣ which is given by318

CΣ = CS + CD + CG where CS, CD and CG are capacitances to the source, drain and gate re-319

spectively. Making this assumption the total energy of the dot U(N) where N is the number of320

electrons occupying the dot, is U(N) = (−|e|(N−N0)+CSVS+CDVD+CGVG)2

2CΣ
+

N∑
n=1

En whereN0 compen-321

sates for the background charge and En is a term that represents occupied single electron energy322

levels that is characterised by the confinement potential.323

Using this we derive the electrochemical potential µ(N) = U(N) − U(N − 1) = e2

CΣ
(N −324

N0 − 1
2
)− |e|

CΣ
(VSCS + VDCD + VGCG) + En.325

To produce a training example random values are generated for CS, CD and CG. The energy326

levels within a randomly generated gate voltage window and source drain bias window are then327

counted. To aid generalisation to real data we randomly generated energy level transitions (which328

are also counted) as well as slightly linearly scaled CΣ, CS, CD, and CG withN . This linear scaling329

was also randomly generated and results in produced diamonds that vary in size with respect to VG.330

Examples of the training data produced by this simulator can be seen in Supplementary Figure 1.331

Stopping criterion Utility, denoted by u, is the ratio of total measured gradient to the total gra-332

dient of a stability diagram: u(n) = 1.0 − r(n). Here, we assume that we have K more stability333

diagrams to be measured. The location of each diagram is defined by a different voltage range, and334

k = 0, . . . , K is the index of the diagrams, where k = 0 is the index of the diagram that we are335

currently measuring.336

Let T denote the total measurement budget for the current and remaining stability diagram.337
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In this paper we assume that a unit budget for measuring one pixel is 1.0. The total utility is338

utot =
K∑
k=0

uk(tk)

= u0(t0) + unxt(T − t0) ,

where uk(·) is the utility from measuring kth diagram, tk is the planned budget for kth diagram339

satisfying
∑K

k=0 tk = T , and unxt(T − t0) =
∑K

k=1 uk(tk).340

Let t denote the already spent budget on the current diagram, t ≤ t0. If we stop the measure-341

ment then t0 = t, or t0 = t+ ∆ if we decide to continue the measurement, where ∆ is a predefined342

batch size. For the decision, the utilities of two cases are compared: when t0 = t,343

utot = u0(t) + unxt(T − t) . (7)

Otherwise, t0 = t+ ∆ and344

utot = u0(t+ ∆) + unxt
(
T − (t+ ∆)

)
. (8)

If (8)< (7), it is better to stop and move to the next voltage range. Rearranging the inequality leads345

to346

u0(t+ ∆)− u0(t) < unxt(T − t)− unxt
(
T − (t+ ∆)

)
. (9)

The left-hand-side (lhs) of (9) means the difference of utility if we invest ∆ budget more on the347

current diagram, and the right-hand-side the difference when ∆ more budget is used for remaining348

diagrams. As we discussed in Results section, we can calculate multiple slope estimates βm for349

spending ∆ to the current diagram: u0(t+ ∆)− u0(t) ≈ βm∆.350
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The right-hand-side (rhs) of (9) can be approximated by α∆ ifK =∞, where α = 1/16, 384351

is the slope of grid scan measuring a new stability diagram. Note that α can be considered as the352

empirical worst case performance of the decision algorithm measuring a new diagram as it holds353

for all the experiments we have conducted. If ∆ = N , this approximation is the exact quantity for354

any algorithms as all algorithms satisfy r(0) = 1.0 and r(N) = 0.0. Since α can be interpreted as355

the worst case estimate, we also approximate lhs of (9) with the worst case estimate β = minm βm.356

If K <∞, and the remaining budget T − t is more than the budget to measure all of remain-357

ing diagrams, there is no utility after all measurements are finished. Hence, the approximation is358

capped:359

unxt(T − t) = αmin(T − t, N ×K) , (10)

where K is the number of remaining diagrams to be measured.360

As a result, the stopping criterion when K =∞ is361

β < α . (11)

The stopping criterion when K <∞ is362

β <
α(min(T − t, N ×K)−min(T − (t+ ∆), N ×K))

∆
. (12)

The rhs of (12) is always less than or equal to α, and more total budget T makes it low, which leads363

to late stopping or no stopping.364

Code Availability A documented implementation of the algorithm in a github repository is avail-365

able at https://doi.org/10.5281/zenodo.2537934.366
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sponding author upon reasonable request.368
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