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Abstract 

 

Along with many other species, the Scotch argus (Erebia aethiops) has suffered a 

decline in range, particularly in England, with some populations experiencing long-

term isolation. This thesis studied the genetic structure of the species in Britain on a 

national scale and at the metapopulation level with the aim of advising future 

management of the species and potential reintroductions across its former range in 

England. 

AFLP analysis carried out on populations from England, Scotland and the western 

Scottish islands found that there was no significant difference in genetic diversity 

between the regions. None of the study populations showed clear signs of inbreeding, 

suggesting inbreeding depression (a reduction in fitness due to inbreeding) is not a 

concern. Even those populations in England which were probably isolated for a long 

time (e.g. Arnside Knott) showed genetic diversity levels that were relatively high. 

However, populations were genetically differentiated with significant differences 

observed among both regions and populations. Genetic differences among populations 

were significantly related to geographic distance.  

On a local scale, the Smardale Gill metapopulation was found to be genetically robust 

with gene flow occurring between all patches. This was confirmed with a mark-

release-recapture study which show that males are able to move long distances and the 

total population estimate for the whole area was high (over 7000 individuals). 

However, females moved only small distances, and none were reported to move 

between patches, suggesting that gene flow between patches is only maintained by 

males and colonisation of empty patches is limited. 

The results of this study provide support for several management recommendations 

for the conservation of the species. The struggling Arnside Knott population at the 

most southern range margin was found not to be suffering from inbreeding, so it is 

recommended that no supplementary translocations be made until the cause of the 

decline is determined. As populations were genetically differentiated, a geographically 

close population is recommended as a source to increase the chance of success of any 

future reintroduction. In this respect the Smardale Gill metapopulation appears the 

most suitable source for future reintroduction attempts across the species’ former 

range in England. 
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1. Introduction 

 

1.1 Biodiversity loss and extinctions 

Many animal and plant species have experienced a dramatic decline in recent decades 

(Pimm et al. 1995; Baillie et al. 2004; Stuart et al. 2004), leading some scientists to 

suggest we are entering a sixth mass extinction event (Ceballos et al. 2010; Barnosky 

et al. 2011), the largest in 65 million years (Lawton & May 1995). Current extinction 

rates are estimated to be around 1000 times higher than the background rate observed 

in fossil records (Cushman 2006). 

Climate change is a major factor in biodiversity loss (Thomas et al. 2004), with 

anthropogenic global warming increasing the rate of change more rapidly than can be 

compensated for by evolutionary adaptation (Mayhew et al. 2008). The last century 

has seen a global temperature increase of 0.85°C (IPCC 2014). As climatic isotherms 

move upwards in altitude and towards the poles , there is evidence that many taxa will 

follow suit (Parmesan 2006; Thomas et al. 2006), including Lepidoptera (Parmesan et 

al. 1999). 

 

Habitat destruction and fragmentation due to changes in land use are also major 

contributors to biodiversity loss and range reduction (Brooks et al. 2002; Dobson et al. 

2006). As well as maintaining connectivity across a fragmented landscape (Hanski & 

Gaggiotti 2004), ensuring the quality of the remaining habitat patches is also essential 

to species’ survival (Thomas et al. 2004, Ellis et al. 2012). The combination of both 

climate change and habitat loss creates a greater impact than either individual threat 

(Mantyka‐Pringle et al. 2012). 

Vertebrates receive the most attention in the literature covering extinctions and 

declines (Wake & Vredenburg 2008; l 2015; Ceballos et al. 2017), while invertebrates 

are sometimes overlooked. Dunn (2005) estimates that <1% of all insect extinctions 

have been documented. Additionally, it has been suggested that some insect species 

may go extinct without notice, due to the lack of monitoring and identification prior to 

extinction (Eisenhauer et al. 2019) 

Butterflies are slightly better represented in the scientific literature than other insects 

and their decline has been the subject of recent study (Fox et al. 2007; van Swaay et 

al. 2008; 2015; Warren 1997). This may be a result of their popularity as an indicator 

species (Sawchik 2005; van Swaay & van Strien 2008), partly due to their sensitivity 

to environmental changes (Kremen 1992; Warren et al. 2001). 

The use of insects as model species is common (Roy & Wajnberg 2008). Butterfly 

population assessment has been employed as a method of determining habitat quality 

(Kremen 1992), a predictor of species richness (Fleishman et al. 2005) and as an 

indicator of the impacts of climate change (Vickery 2008). Butterfly richness has also 
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been found to correlate with the abundance of threatened or endangered species from 

higher taxa (Bonebrake et al. 2010). 

The literature shows that some species of Lepidoptera are still declining in the UK 

(Thomas et al. 2004; Ellis et al. 2012; Fox et al. 2015) despite a recent increase in 

conservation efforts (Fox et al. 2015). Habitat specialists have suffered the most 

(Krauss et al. 2003) but generalists have also experienced an overall reduction in 

numbers and range (Fox et al. 2007).  

 

1.2 Fragmentation and isolation 

Habitat destruction and degradation can lead to isolated patches of suitable habitat 

within an otherwise heterogenous landscape. Habitat loss and fragmentation affects 

species on all trophic levels (Rahel et al. 1996; Young et al. 1996; Tian et al. 2014), 

and most strongly impacts species with low dispersal capabilities (Cushman 2006). 

Although populations may naturally become fragmented or isolated due to 

environmental pressures (Stevens & Hogg 2003) or adaptation (Svensson et al. 2006), 

isolation via habitat fragmentation/destruction can also be caused by anthropogenic 

influences such as changes in land use (Fahrig 2003).  

Some species can persist in a fragmented landscape by forming a metapopulation; a 

set of smaller populations of the same species which are geographically separate but 

linked via dispersal (Hanski & Gaggiotti 2004). If the patches are sufficiently 

connected, a declining patch may experience a ‘rescue effect’, whereby individuals 

from a thriving patch disperse to supplement or recolonise it, stabilising the 

metapopulation as a whole (Gonzalez et al 1998). In this way, a metapopulation can 

also increase its size (Hanski 1999) and genetic diversity (Saccheri et al. 1998). 

 

The effects of fragmentation are not always immediately apparent. Populations may 

survive for long periods before going extinct (Brook et al. 2008; Krauss et al. 2010), 

creating an extinction debt, whereby a species survives fragmentation but goes extinct 

later without additional changes. This can lead to the underestimation of the threat 

facing a species. (Kuussaari et al. 2009). This effect can also allow a ‘grace’ period 

during which connectivity can be restored before extinction occurs, providing the 

threat is recognised in time (Krauss et al. 2010). 

Functional connectivity may be facilitated by artificially created corridors or stepping 

stones within the fragmented environment, providing they are tailored to the target 

species, to allow permanent dispersal (Bennett 1990) or temporary mating excursions 

(Aars 1999). For species which can traverse a corridor in a single generation, such as 

butterflies, the corridor may be of significantly lower quality than the patch habitat 

while still increasing gene flow and dispersal throughout the metapopulation 

(Lehtinen et al. 1999; Haddad & Tewksbury 2005).  
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As well as understanding a target species’ habitat requirements, successful 

conservation and management also requires an understanding of behaviour. If a 

species can travel freely through fragmented landscapes, no corridors or stepping 

stones are necessary as the patches are already functionally connected (With 1997). 

Additionally, differences between male and female behaviour may influence rates of 

dispersal and corridor use (Pusey 1987), such as male-biased dispersal for patrolling 

or mating (Trochet at al. 2013) and female-biased dispersal due to male harassment at 

high densities (Baguette et al 1998). Such differences should be considered when 

assessing the functional connectivity for the species. 

 

1.3 Genetic diversity and differentiation 

Long term isolation or restricted connectivity can reduce or eliminate gene exchange 

and prevent the addition of new genetic material to the population, increasing the risk 

of inbreeding depression (Andersen et al. 2004); a major cause of fitness reduction 

which is especially damaging to small populations (Frankham 1995). Inbreeding 

depression occurs when closely related individuals mate to produce offspring and is 

dependant on natural selection, genetic drift and past mutations (Hedrick & Garcia-

Dorado 2016.). However, inbreeding does not always lead to inbreeding depression. 

While some species naturally regulate their mating behaviour to avoid inbreeding - 

(Stow & Sunnucks 2004), inbreeding has been shown to reduce fitness in Lepidoptera 

(Saccheri 1996) and negatively impacts survival and longevity at all life stages 

(Saccheri 1998). Determining whether inbreeding levels are relative to population size 

allows conclusions to be made regarding mating behaviour of the species. 

Restricted connectivity and gene flow also makes the population more susceptible to 

deleterious alleles persisting in the homozygous form (Zachos et al. 2007). However, 

the opposite can also be seen, whereby isolated population are protected from purged 

deleterious alleles which would otherwise have been reintroduced via immigration 

(Keller & Waller 2002), highlighting the importance of connectivity restoration only 

after assessment of all potentially connecting populations. 

The Founder Effect can result from isolation if only a small number of individuals are 

present in the population at the time of separation (Provine 2004). As well as 

promoting inbreeding, this effect has been suggested to cause rapid speciation, 

particularly in short-lived species such as insects (Templeton 1980), although some 

insect species have proven resistant to founder-led speciation (Moya et al. 1995).  

Speciation due to isolation can also occur when the environmental conditions differ 

between the isolated areas and the groups adapt to exploit different niches (Rice 

1987). Differences in behaviour or physiology may mean that populations are no 

longer able to breed, even if connectivity is re-established. It also means that 

translocated individuals must be taken from a sufficiently similar population if they 

are to be used to supplement the gene pool of another. 
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Potentially, isolation could lead to beneficial adaptations. A small population may 

adapt more quickly to pressures such as climate change (Keller & Seehausen 2012) 

and become fitter as a result; able to survive in a changing environment and possibly 

serve as a source for future reintroduction. Genetic differentiation is a possible 

indicator of such adaptations and can also serve as an indicator of progressive 

speciation (Ayala et al. 1974).  

 

1.4 Reintroduction and translocation for conservation 

The goal of reintroduction or assisted translocation is the establishment of a self-

sustaining population of the extirpated species within its previous range, or movement 

of individuals to supplement an existing population. This may be as part of a 

conservation effort (Griffith et al. 1989), ecological management (Linnell et al. 1997) 

or to supplement hunting stock (Fischer & Lindenmayer 2000). 

Reintroduction biology is a relatively new field with one of the earliest documented 

reintroductions being that of the American bison in 1907 (Kleiman 1989). The 

awareness of reintroduction as a viable conservation tool has increased and success 

rates are improving. In the 1970s and 1980s the majority of documented 

reintroduction attempts did not succeed past the first several years (Griffith et al. 

1989; Wolf et al. 1996; Seddon et al. 2007) and this prompted the IUCN’s creation of 

the Reintroduction Specialist Group and a set of guidelines for reintroductions and 

other conservation translocation (IUCN/SSC 1998). The updated guidelines (IUCN 

2013) emphasise the need for feasibility assessments and extensive background 

knowledge before any form of translocation is attempted, followed by comprehensive 

monitoring and documentation.  

Reintroduction attempts typically favour endangered species (Allen 1994; Short et al. 

1994; Pearce & Lindenmayer 1998) or those which provide an ecological service 

(Miller et al. 1999; Hedrick & Fredrickson 2008) with founding or additional 

individuals taken from the wild (Armstrong et al. 199) or bred in captivity (Bremner-

Harrison et al. 2004). 

Mammal reintroductions such as the black-footed ferret (Miller et al. 1994) and the 

Yellowstone wolves (Fritts et al. 1997) are well documented and capture the public 

interest (Bath 1989). However, insect reintroductions are becoming more common as 

their importance to the overall health of an ecosystem is better understood 

(Greenwood 1987; Corbet et al. 1991; Losey & Vaughan 2006). 

One of the most well-documented UK insect reintroductions is the large blue 

(Maculinea arion) butterfly, which went extinct in the UK in 1979 and was 

reintroduced using a Swedish source population. Andersen et al. (2014) found that 

there was no reduction in genetic diversity among the reintroduced populations in 

2011, however there was already evidence of genetic differentiation indicated by the 

presence of several private alleles not found in the Swedish populations. 
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Another UK butterfly reintroduction success story is the Marsh fritillary (Euphydryas 

aurinia) project, which mixed native Cumbrian individuals with those taken from 

Scottish populations for captive breeding. This was done partly due to the extremely 

low English numbers; only 95 caterpillars were recovered from the last remaining 

Cumbrian colony (Porter & Ellis 2011). The Scottish individuals were also added to 

boost the genetic diversity of the English E. aurinia population and were able to mate 

successfully with the English individuals (Smee 2011). Mixing source populations has 

the potential to lead to outbreeding depression in the hybrid offspring (Huff et al. 

2011) but has generally worked well in butterfly reintroductions. 

Reintroduction and translocation attempts are not always successful and the reasons 

can vary. Insufficient habitat restoration and/or management can lead to dispersal and 

survival failure (Bennett et al. 2013) as can predation from invasive (Moseby et al. 

2011) or feral (Hardman et al. 2016) species already present at the release site or 

native predators in sufficient numbers (Grey-Ross et al. 2009). Overall, the evidence 

suggests that reintroduction attempts are becoming more successful but failure is still 

a more likely outcome, partly dependant on robust planning and surveying prior to the 

release. 

 

1.5 Scotch argus (Erebia aethiops) status 

The Erebia genus is comprised of >90 species (Tennent 2008), most of which inhabit 

boreal or alpine environments (Slamova et al. 2010). However, along with E. medusa, 

E, aethiops can be found in warmer lowland regions of grassland or sparse woodland 

which tend to be more heterogenous than the mountainous range of congeners (Asher 

et al. 2001).  

Part of the Nymphalidae butterfly family, E. aethiops is a northerly distributed species 

with a retracting southern range (Franco et al. 2006). It is found on limestone 

grassland and young woodland and is easily identified by dark wings with a 

distinctive orange band and brown spots. Males and females look similar but are 

distinguishable by lighter, dusty brown wings in the female along with a fatter body 

(Figure 1.1). They also display slight behavioural differences with the males emerging 

earlier and flying higher (Kirkland 2012). 
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Figure 1.1. Mating pair of Erebia aethiops taken at Smardale Gill Nature Reserve. 

Male is on the right, female on the left (photo source: Tom Dunbar). 

 

Despite the name, the Scotch argus is also found in England along with parts of 

Europe and Asia. E. aethiops, along with most other UK butterfly species, has 

experienced a range contraction in the last century (Fox et al. 2007), and the English 

distribution is limited to two major populations (Asher et al. 2001). There are also two 

smaller English populations, Crosby Garrett and Bastow Wood but it is uncertain 

whether these are genuine populations which have survived the retraction or whether 

they are unauthorised reintroductions. 

 

E. aethiops’ range retraction may be a result of habitat fragmentation and degradation 

(Slamova et al. 2013) and/or climate change (Hill et al. 2001; Franco et al. 2006; 

Menéndez et al. 2007) or a combination of both. The species, which was once 

common in Cumbria, Yorkshire, Lancashire, and Durham (Lucas 1893; South 1928) is 

now only found in significant numbers at two English sites (Fox et al. 2015), Arnside 

Knott and Smardale Gill in Cumbria, although it is still abundant throughout Scotland 

(Figure 1.2). 
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Figure 1.2. Distribution and subspecies separation of Erebia aethiops in the UK. The 

aethiops subspecies is in red and the caledonia is in green (Butterfly-conservation.org 

16/11/18). 

 

Although overall UK abundance of E. aethiops has increased in the last few years, 

occurrences have decreased (Fox et al 2007; 2015), meaning that colonies/populations 

are still being lost. With only two major populations in England, loss of either would 

have a huge impact, especially if those populations are found to be unique in 

behaviour or taxonomy. 

With this in mind, landscape-scale conservation efforts are important to preserve the 

species by ensuring connectivity (Hanski & Gaggiotti 2004) and habitat quality 

(Slamova et al. 2013). Attention should be paid to the requirements of the English 

populations, which are known to use a different larval food plant than their Scottish 

counterparts; Sesleria caerulea (Oates 1995) rather than Molinia caerulea (Kinnear & 

Kirkland 2000). 
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It is generally accepted that the E. aethiops is divided into two separate subspecies; E. 

aethiops aethops and E. athiops caledonia (Figure 1.2). This is largely due to 

observations of morphological differences documented in 1777 by Esper and more 

fully described by Verity in 1922. The aethiops subspecies is described as being 

restricted to England and north-east Scotland, while the caledonia ssp covers the rest 

of Scotland. It is thought to be smaller with a narrower body and less distinct 

underwing markings (Thompson 1980) 

Research has historically assumed the subspecies level distinction when studying the 

butterfly (Warren 1937; Blackie 1948; Thomson 1980; Newland 2012), although it 

has come under scrutiny in the last decade (Kirkland 2012) due to lack of evidence. 

Genetic analysis also found no indication of subspecies variation in the proposed 

locations (Gunson 2016; Iversen 2013). 

 

1.6 Study aims 

This study aims to advise future management and translocation efforts of E. aethiops 

in England by determining the genetic state and structure of the remaining English 

populations and comparing the connected mainland Scottish and isolated Scottish 

island populations. This study also investigates the flight capabilities and dispersal 

behaviour of E. aethiops as an additional indicator of gene flow between patches 

while also generating an up-to date population estimate at the Smardale Gill site. 

 

The specific aims of the study were as follows:  

1- To assess the level of genetic diversity in English and Scottish populations. This 

will allow identification of potential inbreeding in isolated populations, indicated by 

low heterozygosity, thereby marking those areas as priorities for management. This 

will also indicate historic bottleneck or founder events and will allow any future 

translocations to select highly diverse populations for individual removal.  

2- To investigate the level of genetic differentiation between populations across 

Britain to give an historic view of their separation. Understanding if populations are 

significantly differentiated will allow the selection of a less differentiated source for 

the supplementation of a struggling population to increase breeding compatibility. If 

the English populations are differentiated from the Scottish, it may also mean that they 

have evolved to become warm-adapted and would be identified as the only option for 

southern reintroductions. In addition, this analysis will allow to establish whether the 

small populations at Crosby Garrett and Bastow Wood are true populations which 

have survived the range retraction or are unauthorised reintroductions and, if so, the 

source of the translocated individuals.  
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3- To measure, at a local scale, the genetic relatedness among individuals from 

different habitat patches and alongside with a mark-recapture study, to determine the 

level of connectivity within the Smardale Gill metapopulation. The study also aims to 

provide an overview of movement and gene flow within the reserve.  

4- Finally, this project aims to develop a repeatable methodology for extracting 

useable DNA from a single leg. Previous studies have all used larger amounts of 

tissue which required the removal and euthanisation of individuals (Harper 2011; 

Iversen 2013; Gunson 2016) and the creation of a non-lethal procedure would allow 

much smaller populations to be sampled without decreasing numbers. It may also be 

beneficial for future genetic analysis on other butterfly species where only a very 

small amount of tissue is available or where non-lethal methods are preferable. 
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2. Methods 

 

2.1. Study species 

E. aethiops is one of the UK’s latest emerging butterflies, spending the majority of its 

life as a caterpillar, then emerging in late July and flying until early September (Figure 

2.1).  The species is univoltine and will mate shortly after emerging. 

 

 

Figure 2.1. Life cycle of Erebia aethiops in Britain (Butterfly-conservation.org 

11/11/18). 

 

As a specialist northern species, a main threat to E. aethiops is potentially climate 

change. The species is limited by high temperatures and spends the hottest part of the 

day in the shade (Slamova et al. 2011), meaning that habitat destruction is also a 

threat.  

E. aethiops favours limestone grassland and woodland edges or clearings (Asher et al. 

2001). The adults use a wide range of nectar sources, but the larval food plant is 

limited to purple moor grass (Molinia caerulea) in Scotland and blue moor grass 

(Sesleria caerulea) in England (Fox et al. 2006). 

 

 

2.2. Study sites 

Specimens for genetic analysis were collected from populations across the UK 

distribution of the species (Table 2.1, Figure 2.3). In England, only two natural 

populations of E. aethiops have persisted to the present day; the remainder of what 

was likely a continuous range following the last ice age and a more fragmented range 

from the early to mid-20th century (Thomas 2010). The two natural populations are 

located at Smardale Gill and Arnside Knott nature reserves, both in Cumbria (Figure 

2.2).  

A small population has been reported in recent years on a roadside verge (Patch 8 in 

Figure 2.5) and has been included in the Smardale Gill site for genetic analysis at a 

geographic scale due to the proximity to that site (<2km). In addition, specimens were 
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collected from a small population at Crosby Garrett in Cumbria of unknown origin 

and another small population believed to be the result of unauthorised release at 

Bastow Wood in Yorkshire (Figure 2.2). The Scottish specimens were collected two 

years previously from populations on the mainland and the Isles of Skye, Mull and 

Arran (see Gunson 2016 for details and Figure 2.2 for locations) 

Table 2.1. Erebia aethiops sample collection sites, date of collection and number of 

individuals collected. 

Site Region Grid ref. Year Sample size  

Insh Marshes Scottish Mainland NH771003 2015 5 

Craigower Scottish Mainland NN927605 2015 5 

Tomnavoulin Scottish Mainland NJ211261 2015 5 

Skye Islands NG414384 2015 5 

Mull Islands NM728363 2015 5 

Arran Islands NR950363 2015 5 

Smardale Gill England NY726068 2017 42 

Arnside Knott England SD456774 2017 6 

Crosby Garrett England NY728094 2017 5 

Bastow Wood England SD991657 2017 7 

 

5 was selected as a minimum sample size due to permission restrictions from 

landowners and management organisations and is comparable to minimum sizes used 

in AFLP analysis in previous studies investigating differentiation (Coart et al. 2002; 

Kingston & Rosel 2004). 
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Figure 2.2. Erebia aethiops collection sites for samples included in this study. 

Created with Google Maps. 

For the genetic analysis at local scale, specimens were collected from different habitat 

patches (six patches) within the largest English site, Smardale Gill. Patches 

correspond with those used for the mark-release-recapture study (see Figure 2.2 and 

specific details for each patch in Mark-Release-Recapture section). 

Number of collected individuals from each site (or patch for Smardale Gill site) varied 

depending on the population size at the site and the observed individuals during the 

collection period with, a minimum of 5 individuals from the smallest populations 

(Table 2.1). All collected individuals were allocated a code based on their origin 

(Appendix 1). 

5 was chosen as the minimum sample number to match the numbers taken from 

Scotland in previous years (Gunson 2016) and after consulting the literature. AFLP 

analysis has been successfuly performed to give a standard error of 10% of the 

population diversity (Singh et al. 2006). 
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2.3. Specimen collection procedure 

Permission to remove individuals from the sites was obtained from landowners and 

reserve management. As Arnside Knott and Smardale Gill are SSSIs, permission was 

also obtained from Natural England. 

Adult E. aethiops fly from late July to early September (Asher et al. 2001), so no 

collection was done before late August. Males in very poor condition were targeted 

wherever possible to avoid removing egg-carrying females and impacting the effective 

population. Individuals which were found already dead were collected regardless of 

sex and condition. 

In Arnside Knott, Crosby Garret and Bastow Wood, there were not enough males to 

remove the required number (at least 5) without damaging the population. In these 

cases, a leg was removed from a female (Appendix 1).  

Capture and in-field euthanisation followed protocols recommended by Feinstein 

(2004) and Prendini (2002), which also match the methods used to collect the Scottish 

samples (Gunson 2016). Capture was performed with a net and euthanisation was via 

a quick pinch to the abdomen. Other methods were considered but were unsuitable. 

Euthanisation and storage in ethyl acetate is an accepted method but it has been found 

to reduce DNA yield (Iversen 2013; Feinstein 2004). Freezing, while a recommended 

euthanisation method which has been shown to effectively preserve DNA (Prendini 

2002) was discounted due to in-field restrictions. 

All samples were stored separately in their own paper packets or test tubes and hands 

were cleaned or gloves changed between collections to avoid cross-contamination. 

Samples were refrigerated on the day of collection and were frozen at -20 for long-

term storage within several days. 

 

2.4 Molecular technology in conservation 

A popular method of genetic analysis is Amplified Fragment Length Polymorphism 

(AFLP); a PCR based process developed which uses primers to selectively target 

restriction fragments for amplification (Zabeau & Vos 2000). Data resulting from 

AFLP-PCR are actually scored as presence/absence polymorphisms rather than length 

polymorphisms as the name suggests (Vos et al. 1995). 

Unlike microsatellite analysis, AFLP-PCR requires no prior genetic knowledge about 

the target species. The technique has increased in popularity due to their ease of use 

and high replicability (Vuylsteke et al. 2007). 

AFLP is commonly used in population genetics in general (Mueller & Wolfenbarger 

1999) and in butterfly studies specifically (Jiggins et al. 2005; Brattström et al. 2010), 

where it has been shown to give concordant results to microsatellite analysis (Smee et 
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al. 2013). It has also picked up species-level differentiation where mitochondrial 

analysis of a single locus did not (Gompert et al. 2006), highlighting the advantages of 

multi-locus techniques in conservation genetics. 

The protocol is relatively easy to modify compared to other multi-locus sampling 

techniques (Bensch & Åkesson 2005) and AFLP optimisation has already been done 

for the study species, Erebia aethiops by Harper (2011). The existence of a previous 

protocol facilitated the lab work and also allowed comparison of results presented in 

this thesis with those reported by Harper (2011). 

Another major benefit of AFLP is that it has been shown to work on relatively low 

DNA concentration yields (Janssen et al. 1996; Harper 2011) meaning very small 

amounts of tissue could potentially be used.  

Previous studies of E. aethiops have used the thorax to successfully extract required 

amounts of DNA for MtDNA barcoding (Gunson 2016; Iversen 2013) and AFLP-

PCR (Harper 2011) but this is a lethal sampling method which requires the permanent 

removal of individuals from the population. Genetic studies on large insects have used 

leg DNA in AFLP analysis (Zhang et al. 1995; Kethidi et al. 2003) or wing 

(Keyghobadi et al. 2009; Crawford et al. 2011). 

Non-lethal sampling includes removal of an entire leg or part of a wing and has been 

shown to have no significant effect on a butterfly’s behaviour, longevity or survival 

(Hamm et al. 2010; Marschalek et al. 2013) making it an option for protected or 

scarce species. 

 

 

2.5. DNA extraction and AFLP-PCR 

 

2.4.1. DNA extraction 

For individuals which were euthanised and collected whole, DNA was extracted from 

half the thorax with the other half being retained in case of failure. Extraction was 

performed using a QIAGEN DNeasy Blood and Tissue kit and followed the suggested 

protocols (Appendix 2) with some modifications (Iversen 2013; Gunson 2016). 

Incubation temperature was increased from 56°C to 57°C and incubation time from 1 

hour to >5 hours to account for the slower rate of cellular breakdown in insect tissue. 

Further modifications were needed to successfully extract DNA from a single leg in 

the required concentration for AFLP-PCR (10ng DNA per μl suspension buffer). Tests 

were performed, and a working methodology was generated. This followed the thorax 

extraction protocol with some modifications: 
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• The leg was processed while still frozen to make the tissue more brittle and 

facilitate cellular breakdown. 

• Rather than cutting, tissue was ground in a pestle and mortar with 100 μl ATL 

buffer, with a further 100 μl added to ‘rinse’ the mortar to ensure all tissue was 

collected via pipette. 

• A second vortexing stage was added approximately half way through 

incubation, with a minimum of 5 hours incubation beforehand. 

• Incubation time was increased to >8 hours, ideally overnight. 

• All remaining tissue precipitate was added to the spin column prior to 

centrifuging. 

• Final elution volume of AE buffer was reduced by ¾ from 200 μl to 50 μl. 

Higher volumes were tested but 50 μl is the maximum volume to reliably 

achieve the required concentration. 

All extractions were tested via electrophoresis through agarose gels (Figure 2.3). Leg 

DNA did not consistently show up following UV gel imaging due to lower 

concentrations (an average of 11ng/μl compared to >300ng/μl from the thorax) so the 

success of the extraction was confirmed using a nanodrop spectrophotometer. Thorax 

DNA was also assessed, and all concentrations were noted for pre-AFLP dilution. 

 

 

Figure 2.3. Agarose gel following electrophoresis to assess the success of DNA 

extraction. Smears indicate DNA presence. Columns with no smear are leg extractions 

which were later found to be successful using a nanodrop spectrophotometer. 
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2.5.2. AFLP-PCR 

All samples were diluted to 10ng/µl prior to amplification except those which were at 

a lower concentration (6 total). The base protocol was modified from Paun & 

Schonswetter (2012) (Appendix 3) with restriction and ligation phases combined. The 

DNA/H2O dilution step was omitted for lower yield DNA (<10ng/µl) prior to 

combination with the restriction-ligation master mix and incubation to give a total of 

55ng DNA per sample for amplification. Only the required amount of DNA was 

diluted with the remainder retained at the original concentration and frozen at -20°C 

for future use. 

EcoRI and MseI restriction endonucleases were used along with corresponding 

forward and reverse adapters, which were mixed and heated to 95oC for 5 minutes and 

cooled prior to use to allow annealing of the sequences: 

EcoRI (A1) CTCGTAGACTGCGTACC & EcoRI (A2) 

AATTGGTACGCAGTCTAC; 

MseI (A1) GACGATGAGTCCTGAG & MseI (A2) TACTCAGGACTCAT 

Alterations were made to reagent volumes depending on base concentration and the 

thermal cycle was set to 37°C for two hours and 17°C overnight for a minimum of 8 

hours. 

Immediately following incubation, 190 µl H2O was added to halt the reaction. For 

<10ng/µl samples, dilution was reduced to increase concentration, with the lowest mix 

being a 3.8 ng/µl solution with 70µl H2O added. These dilutions were used in the pre-

selective stage. 

Each sample underwent pre-selection twice with two different pairs of pre-selective 

PCR primers:  

EcoRI primer (A) GACTGCGTACCAATTCT & MseI primer 

GATGAGTCCTGAGTAAC;  

EcoRI primer (B) GACTGCGTACCAATTCA & MseI primer 

GATGAGTCCTGAGTAAC  

2µl of restriction-ligation reaction product was used for each pre-selective pair and 

were cycled at: 

One cycle of 72°C – 2 min 

20 cycles of: 

94°C – 20 s 

56°C – 30 s 

72°C – 1 min 

One cycle of 60°C – 15 min 
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To generate E. aethiops AFLP markers during selective PCR, each sample underwent 

selection 3 times with different primer pairs added to their corresponding pre-selection 

product: 

EcoRI-TCT & MseI-CAA 

EcoRI-TGA & MseI-CTG 

EcoRI-ATC & MseI-CTG 

Fluorescent dyes were added to each pair (HEX, FAM, ATTO) as labels for future 

fingerprinting via capillary electrophoresis and each sample was cycled at: 

One cycle of 94°C – 2 min 

9 cycles of: 

94°C – 30 s 

65°C -1°C /cycle – 30 s 

72°C – 2 min 

23 cycles of: 

94°C – 30 s 

56°C – 30 s 

72°C – 2 min 

One cycle of 72°C – 10 min 

AFLP products were sent in 96-well plates to DBS Genomics for fragment analysis 

using an Applied Biosystems 3730 DNA Analyser with a DS-30 filter set ROX500 

size standard and with ATTO dye replacing the usual NED due to supplier 

availability. All 3 products for each sample were multiplexed in a single well to 

achieve higher throughput. To test in-house accuracy, 20 samples were amplified 

twice on separate occasions and the results were checked to ensure they corresponded.  

Following AFLP-PCR, tests were performed to determine the optimal 

ATTO:HEX:FAM multiplexing ratio and PCR product:H2O dilutions for 

fingerprinting with negative controls included for each combination. Simple 1:1:1 

ratios and undiluted product were selected and the fragment detection was recorded as 

peak heights in .fsa files for analysis.  

 

2.6. Population size and dispersal at a local scale 

2.6.1. Study site 

Smardale Gill Nature Reserve is located in Cumbria, near the town of Kirby-Stephen 

and is bisected by Scandal Beck, which flows to the River Eden. A disused viaduct 

makes up part of a footpath and crosses the river (Figure 2.4). There is also a disused 

lime kiln which is built into a slate-topped hill. 

The 49-hectare site is made up of unimproved limestone grassland and woodland, 

with cattle grazing in contained areas. The terrain is steeply sloped, with rocky 
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outcrops and wooded patches. The primary vegetation is mixed grasses and 

herbaceous plants with several notable species such as bloody cranesbill, fragrant and 

greater butterfly orchids, rock rose and horseshoe vetch.  

Blue moor grass (Sesleria caerulea), E. aethiops’ larval food plant, is common 

throughout the reserve, with the largest patch present on the East side of the viaduct 

(Figure 2.4). Other potential suitable habitat patches were identified based on records 

of the species from transect surveys (UKBMS) and consultation with Butterfly 

Conservation and Smardale Gill Wildlife Trust staff. These were narrowed down to 

areas containing the larval food plant with a visible barrier (such as a road, a wider 

band of tall trees or a grazed field) separating them (Figure 2.5).  One additional patch 

was added during the MRR study (Patch 5 in Figure 2.5) due to sightings of 

individuals in an area with no visible larval food plant. 

 

Figure 2.4. Picture of Smardale Gill Nature reserve (photo source: Rosa Menendez). 
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Figure 2.5. Location of habitat patches occupied by Erebia aethiops in Smardale Gill 

and used in the mark-release-recapture study (photo source: Google Earth). 
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Figure 2.6.a. Smardale Gill reserve - north. Bold line marks reserve boundary. 

Shaded area indicates areas walked/surveyed to determine presence of potential 

habitat. Filled grey area indicates areas which were inaccessible due to vegetation or 

slope gradient. 
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Figure 2.6.b. Smardale Gill reserve - south. Bold line marks reserve boundary. 

Shaded area indicates areas walked/surveyed to determine presence of potential 

habitat. 

 

2.6.2. Mark, Release and Recapture study 

A mark, release and recapture (MRR) study was undertaken in Smardale Gill Nature 

Reserve to determine the population size and dispersal ability of E. aethiops. 

Patches are defined as areas containing suitable E. aethiops habitat, separated by a 

boundary, such as unsuitable habitat or structures. Initially, surveying was restricted 

only to areas which contained the larval food plant but an additional patch was 

included during the first MRR visit after butterflies were seen in Patch 5. 

MRR was carried out from 25th of July to 6th of September 2017 for a total of 20 days 

surveyed. E. aethiops is active during warm, sunny periods (Slamova at al. 2011), so 

only days with favourable weather were included. Each study patch was visited on a 

rotational basis at varying times of day with an equal amount of time spent at each 

patch with adjustments being made for patch size. For example, a patch which was 

twice the size of another was allocated twice the survey time. Each patch was visited 

at least once every two days by one of two researchers and the same route was taken 

along all safely accessible areas. 

Every unmarked butterfly encountered (after in-hand examination) was marked on the 

underside of the second pair of wings with a number, using an indelible fine-line 

marker pen (Figure 2.7) before being released in its original capture location. Tens 
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and singles digits were marked on the left wing while hundreds and thousands were 

marked on the right wing. This was selected as the most appropriate method after in-

lab testing using similarly size and colour pattern species (Maniola jurtina and 

Aphantopus hyperantus). 

 

 

 

Figure 2.7. Mating male (number 997) and female (number 1823) of Erebia Aethiops 

(photo source: Rosa Menendez). 

 

Following capture, a note was made of the butterfly’s number (if previously marked), 

previous capture (Y/N), time, date, patch, GPS coordinates, sex, condition (based on 

wing wear on a scale of 0-2 with 2 being perfect condition) and behaviour. Recapture 

events were counted if they were three hours apart or were in a different patch than 

the previous capture. 

 

2.7. Data analysis 

2.7.1. AFLP-PCR 

Files containing fragment analyses (.fsa) were loaded into PeakScanner (Applied 

Biosystems 2006) for visualisation. Custom parameters were used to create light 
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smoothing of the electropherogram where background noise may have generated false 

secondary peaks.  The upper fluorescence threshold was set to the mid-upper limit of 

technical noise at 50 Relative Fluorescent Units (RFU), with the intention of filtering 

out missed false-presences during binning. 

A table of peak locations and size was created and exported as a text-tabulated file. 

Red dye peaks from the ROX500 size standard were not included.  

 

The table was converted to a presence/absence binary matrix using the RawGeno 

automated scoring R package (Arrigo et al. 2012) with primer pairs converted 

separately, then merged. 

Parameters were set to calculate 1%-99% quantiles of detected AFLP peaks and retain 

only individuals which fell within those bounds for all 3 primer combinations. Three 

samples were removed at this stage (CG2, C3, E1; Appendix 1) along with negative 

controls.  

To allow very minor bp location differences to be disregarded and avoid over splitting 

peaks according to recommendations made by Holland et al. (2008), a maximal bin 

width of 2 bp was set. A minimal bin width of 1 bp was specified to avoid technical 

homoplasy (false assignment of multiple peaks from an individual into the same bin). 

In total, 655 loci were retained in a binary matrix. 

The binary matrix was entered into AFLP-SURV (Vekemans et al 2002) to estimate 

genetic diversity. Assuming Hardy-Weinberg genotypic proportions, a Bayesian 

method with non-uniform prior distribution of allele frequencies was selected to 

calculate allelic distribution for each population separately (Zhivotovsky 1999). This 

generated estimates for: Proportion of polymorphic loci at the 5% level, expected 

heterozygosity (He.), individual to individual relatedness coefficients (Rab) and 

Wright’s fixation index (Fst) with 500 permutations. 

 

2.7.2. Regional analysis 

An ANOVA test was performed on the expected heterozygosity (He.) of the three 

geographic regions (England, Scottish mainland and Scottish islands) to determine 

whether there were significant differences in genetic diversity levels between regions.  

Pairwise Fst estimates between all sites were used to infer interbreeding history and to 

test for significant differentiation between the populations. An AMOVA test with 999 

permutations was conducted to determine levels of genetic differentiation among 

regions, among sites and within sites. The relationship between genetic distance and 

geographic distance was tested with a Mantel test using the GenAlEx software 

(Peakall and Smouse 2006, 2012). To visualise overall genetic structure among the 
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study E. aethiops populations, a principal component analysis (PCA) was conducted 

using the Adegenet package in R (Jombart 2008).  

Relatedness between sites was calculated as the average Rab for individuals in a site-

site pairwise comparison. This allowed to estimate the most likely point of origin for 

the Bastow Wood and Crosby Garett populations. 

 

2.7.3 Local analysis 

Pairwise Fst estimates between patches within the Smardale Gill site were used to 

infer interbreeding history, separation history and gene flow between patches. A 

Mantel test, conducted in GenALEx was used to assess correlation between genetic 

distance and geographic distance for all patches. Observed Fst was also used to 

determine whether there was significant differentiation between the patches.  

 

2.7.4. MRR analysis 

Estimates of population size were generated using the RCapture package in R 

(Baillargeon et al. 2007) for both overall and patch-specific estimates. 

Estimates were generated at intervals of 2 survey days to show number of individuals 

present in the population at specific times as well as identifying the peak of the flight 

season. 

Log-linear models assuming equal and unconstrained capture probabilities for open 

populations were fitted and the Akaike’s Information Criterion (AIC) values were 

used to identify the best model (the one with a higher AIC, with a difference of >2 

was discarded). The model with equal capture probability was the best model for all 

individual patches. For the overall reserve estimate, however, both models had similar 

AIC values and the equal probability model was used as it produced lower standard 

errors and for consistency with the estimates for individual patches. 

To assess dispersal, the maximum distance moved by an individual between 

recaptures was calculated for all recaptured individuals (rounded down to the nearest 

10m to compensate for GPS inaccuracy).  

A Mann-Whitney U test was used to determine significance difference in the distances 

moved by males and females. 
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3. Results 

 

3.1 Genetic analysis 

A total of 86 individuals from 10 populations were genotyped and were represented 

by 655 loci with 633 (96.6%) segregating fragments which ranged in size from 50-485 

base pairs. 

3.1.1 Genetic diversity and differentiation across Britain 

Expected heterozygosity (He) of E. aethiops populations across Britain (Table 3.1) 

ranged from 0.146 to 0.219 (mean = 0.190, S.E.= 0.007), with a polymorphic loci 

proportion range of 55.6-37.4% (mean = 46.99%, S.E.= 1.94). 

Diversity levels differ slightly between the three sampled regions, particularly 

England and Scotland (Figure 3.1), however an ANOVA test showed marginally no 

significant difference (F = 3.589, d.f.= 2, p=0.085). Among the English populations 

Crosby Garrett showed the highest genetic diversity (He), while Smardale Gill showed 

the lowest, with no overlapping standard errors. For the Scottish populations the 

Island of Mull showed the highest genetic diversity while Insh Marshes showed the 

lowest of any population (Table 3.1).  

Table 3.1. Genetic diversity (He. and proportion of polymorphic loci) of Erebia 

aethiops populations across Britain. Samples from English (E), Scottish mainland (S) 

and Scottish island (I) populations. 

Population N Polymorphic loci 

            (%) 

Expected Heterozygosity 

                  (He) 

S.E. (He) 

Smardale Gill (E) 42 55.6 0.182 0.008 

Crosby Garrett (E) 4 48.4 0.219 0.008 

Arnside Knott (E) 6 55.1 0.212 0.007 

Bastow Wood (E)  7 51.6 0.201 0.008 

Insh Marshes (S) 5 37.4 0.146 0.007 

Craigower (S) 5 46.1 0.186 0.007 

Tomnvoulin (S) 4 39.5 0.175 0.008 

Skye (I) 4 42.0 0.180 0.007 

Mull (I) 4 48.1 0.210 0.008 

Arran (I) 5 46.1 0.189 0.008 
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Figure 3.1. Expected Heterozygosity (He) in English, Scottish mainland and Scottish 

island populations of Erebia aethiops. Boxplots displaying the median, the first and 

third quartile and the maximum and minimum values. 

 

Table 3.2 shows Fst pairwise values between populations as a measure of genetic 

distance due to interbreeding. Discounting like/like comparisons, the most genetically 

connected populations are the Scottish mainland populations, with the islands showing 

the highest levels of isolation. Differentiation levels are assessed using Hartl & 

Clark’s (1997) scale: 

0 = No differentiation 

<0.05 = Little differentiation 

0.05 – 0.15 = Moderate differentiation 

0.15 – 0.25 = Great differentiation 

The overall observed Fst value, obtained via 500 permutations and tested against 

random permuting of individuals within-population was 0.085 (S.E. 0.018). This value 

is much higher that the higher and lower 95% limits (0.020 and 0.013 Fst value under 

the null hypothesis of no differentiation, respectively), meaning the populations are 

more genetically differentiated than a random assemblage. This result is also 

supported by a calculated p value of less than 0.001 which is used to assess the 

likelihood of rejecting the null hypothesis of a random assemblage. 

Moreover, there were significant differences in genetic divergence among regions and 

populations (Table 3.3). Differences among regions significantly explained 10% of the 

genetic variation with an additional 6 % of variation explained by differences among 
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populations, the remained variation (84%) was explained by differences between 

individuals within populations.   



37 
 

Table 3.2. Pairwise Fst values between all sampled populations in Britain. A value of 

0 indicates total panmixis, while higher values indicate reduced mixing. * indicates 

moderate or higher differentiation, X indicates no or little differentiation. Bold values 

indicate great differentiation. 
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Table 3.3. AMOVA results (based on 999 permutations) for genetic differentiation of 

Erebia aethiops individuals with variation sources nested among regions, among 

populations within regions, and within populations. 

Variation source Explained variation (%) F-value d.f. p-value 

Among regions 10 0.101 2 <0.001 

Among populations  6 0.062 7 <0.001 

Within populations 84 0.157 76 <0.001 

 

The Principle Component Analysis organised individuals into clusters based on 

genetic similarity (Figure 3.2) to allow visualisation of separation and overlap 

between populations. The first two PCA components explained 11.8 % and 6.8 % of 

the variation in genetic composition among populations.  All sampled populations 

showed some overlap with at least one other, with clustering evident between the 

English and Scottish populations, but separation from the islands, particularly Arran. 

 

 

Figure 3.2. Principal Component analysis (PCA) for Erebia aethiops individuals from 

different populations across Britain (data from AFLP-PCR of presence/absence of 655 

loci). The PCA was implemented in Adegenet package in R. PC1 is presented in x-

axis and PC2 in y-axis, inertia ellipses are presented for each population. 
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Relatedness (rab) as an average of the relatedness coefficients between all individuals 

(Table 3.4) is an historic measure of genetic relationship. A higher relatedness value = 

lower genetic distance (1-rab) and a more recent divergence from a common ancestor 

and/or geographic separation.  

Relatedness is a primarily comparative measure, so relatedness of a population to 

itself gives a baseline for comparison. The highest levels of relatedness, excluding 

like/like comparisons, are found between Smardale Gill and Bastow wood (0.281). 

This also shows that the most likely origin of Bastow Wood population, the one 

presumably resulting from an unauthorised reintroduction, is Smardale Gill. The 

lowest value/greatest genetic distance is found between Arnside Knott and the Isle of 

Skye (-0.014). Scottish mainland populations were combined in this calculation as 

there is panmixis between them, meaning they should be treated as a single possible 

point of origin. 

 

Table 3.4. Historic pairwise relatedness between British Erebia aethiops populations. 

 
Smardale 

Gill 

Crosby 

Garrett 

Arnside 

Knott 

Bastow 

Wood 

Skye Mull Arran Scottish 

Mainland 

Smardale 

Gill 

0.251 
       

Crosby 

Garrett 

0.145 0.149 
      

Arnside 

Knott 

0.181 0.067 0.265 
     

Bastow 

Wood 

0.281 0.164 0.244 0.346 
    

Skye 0.088 0.026 -0.014 0.102 0.159 
   

Mull 0.124 0.092 0.075 0.158 0.079 0.269 
  

Arran 0.102 0.081 0.039 0.123 0.043 0.160 0.292 
 

Scottish 

Mainland  

0.220 0.147 0.131 0.243 0.216 0.221 0.162 N/A 

 

A Mantel test of 999 permutations comparing pair-wise genetic distance (Fst) to 

geographic distance among populations, showed a slight positive significant 

correlation between the two variables (Figure 3.3, r = 0.284, p = 0.033).  

 



40 
 

 

Figure 3.3. Relationship between pairwise genetic (Fst) and geographic distance of 

British Erebia aethiops populations.  

 

 

3.1.2 Genetic diversity and differentiation in Smardale Gill Nature Reserve 

Expected heterozygosity (He) of E. aethiops in Smardale Gill ranged from 0.151 and 

0.214 (mean = 0.184, S.E. = 0.007) with a polymorphic loci proportion range of 

36.5%-58% (mean = 46.88%, S.E. = 3.3) (Table 3.5). 

 

Table 3.5. Genetic diversity of Erebia aethiops populations (He. and proportion of 

polymorphic loci) from six individual habitat patches within Smardale Gill Nature 

Reserve.  

Patch N Polymorphic loci 

            (%) 

Expected Heterozygosity 

                   (He) 

S.E. (He) 

Patch 1 5 36.5 0.151 0.007 

Patch 2 5 39.1 0.155 0.007 

Patch 3 15 58.0 0.214 0.007 

Patch 4 5 48.5 0.201 0.007 

Patch 7 6 52.5 0.203 0.007 

Patch 8 6 46.7 0.177 0.007 
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Table 3.6 shows pairwise Fst values between patches as a measure of genetic distance 

due to interbreeding. Discounting like/like comparisons, the most genetically 

connected patches are 4 and 7, but every patch shows a measure of connectivity to at 

least one other, with patch 3 showing the lowest level of mixing.  

The observed Fst value for Smardale Gill only (comparing populations in different 

habitat patches) was 0.044 (SE. 0.002), which is higher than the lower and upper 95% 

limits (-0.021 and 0.014, respectively) and had a high-P value less than 0.001. This 

means that, although the differentiation is less than that between geographically 

separated populations (Fst = 0.085 among populations), there is some degree of 

genetic differentiation among patches that is significantly different than expected by 

chance. 

 

Table 3.6. Pairwise Fst values between populations from six individual habitat 

patches within Smardale Gill Nature Reserve. A value of 0 indicates total panmixis, 

while higher values indicate reduced mixing. * indicates moderate or higher 

differentiation, X indicates no or little differentiation. No great differentiation 

observed. 

 
Patch 1 Patch 2 Patch 3 Patch4 Patch 7 Patch 8 

Patch 1 0  X  * X * X 

Patch 2 0.016 0 * X * * 

Patch 3 0.129 0.103 0 X X * 

Patch 4 0.006 0.027 0.032 0 X X 

Patch 7 0.081 0.054 0 0.002 0 X 

Patch 8 0.045 0.064 0.055 0.005 0.029 0 

 

 

3.2. Mark, release and -recapture at Smardale Gill Nature Reserve 

A total of 1,697 individuals (1178 males and 519 females) were caught and marked, 

with 193 recaptured (153 males and 40 females) at least once for a total of 1,868 

capture events. 

3.2.1. Population estimates 

The population of E. aethiops at Smardale Gill Nature reserve was estimated to be 

7,869 individuals (± 688 S.E.) for the area as a whole. Population estimates for 

individual habitat patches vary from 24 individuals at the smaller patch to 9,747 

individuals at largest patch, slightly higher than for the area as a whole, but the 

standard error for this estimate was very high (Table 3.7).  
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Table 3.7. Number of marked individuals, recapture events and population estimates 

for Erebia aethiops at Smardale Gill Nature Reserve. Population estimates, and S.E. 

are given for the entire flight period (2nd August – 6th September) for the area as a 

whole (Overall) and for each individual habitat patch (see Figure 3.5 for the location 

of each path). N/A indicates insufficient recaptures to generate a reliable patch-

specific estimate. 

Patch Marked Recapture events Total events Population 

estimate 

S.E. 

Patch 1 50 3 53 N/A N/A 

Patch 2 191 13 204 1367.6 432.9 

Patch 3 1251 80 1331 9747.5 1292.5 

Patch 4 78 22 100 179.5 33.2 

Patch 5 14 6 20 24 7.3 

Patch 6 13 1 14 N/A N/A 

Patch 7 61 13 74 176.1 47.4 

Patch 8 39 33 72 56.5 8.6 

Overall 1697 171 1868 7868.9 688.3 

 

Figure 3.4 shows the changes in population size throughout the flight period at 2-day 

intervals for the whole nature reserve. The first individuals were seen on 2nd August, 

followed by a sharp increase to a peak in population size in mid-August and a 

progressive decline until the 6th September when the MRR ended. MRR results 

assume that there is an equal probability of capture each day and that populations are 

open to emigration/immigration and loss by death. 
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Figure 3.4. Changes in population estimates (±S.E.) of Erebia aethiops in Smardale 

Gill Nature Reserve throughout the 2017 flight period at 2-day intervals. 

 

3.2.2 Movement 

Of the 1,697 marked individuals, 232 movements (recaptures) in different days were 

recorded for 193 individuals. Of these, 13 were inter-patch movements, all completed 

by males (Figure 3.5). Most movement occurred between the largest central patch 

(patch 3) of the metapopulation and the surrounding patches and no movements were 

observed from and to the most isolated patches (patches 7 and 8). 

 

 

Figure 3.5. Movement between Smardale Gill patches. Lines indicate movement 

between patches and arrows indicate movement direction. Numbers above arrows 

indicate number of individuals that completed the movement. 

 

The highest total distance travelled was 80m for females and 1,560m for males, with 4 

males travelling ≥ 1,000m (Figure 3.5). However, most individuals moved short 

distances with 78% of males and 100% of females moving less than 100m. The mean 

distance travelled by females was 21.25m (± 3.97) and 110.5m (± 20.53) for males. A 

Mann-Whitney U test showed a significant difference between sexes (w = 2030, 

p<0.001). 
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Figure 3.6 Flight distance moved by males and females of Erebia aethiops based on 

mark-release-recapture study at Smardale Gill Nature Reserve. 
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4. Discussion 

 

4.1 British population genetics 

 

The present study found that there is not clear evidence of reduced genetic diversity in 

populations of Erebia aethiops across Britain. Mean He was 0.190 (± 0.007), which is 

comparable with others of the Erebia genus. A mean He of 0.156 (± 0.029) was found 

for the mountain species Erebia euryale (Schmitt & Haubrich 2008) and a mean of 

0.154 ± 0.024 for populations of Erebia epiphron in Pyrenees and Alps (Schmitt et al. 

2006). However, levels of genetic diversity in the present study were slightly higher 

than those observed for the other lowland species Erebia medusa in the continent 

(mean He: 0.151 ± 0.004, Schmitt & Muller 2007) and for the Czech populations of 

the subspecies Erebia epiphron silensiana (mean He: 0.098 ± 2.6, Scmitt et al. 2005).a 

There were also not significant differences among regions within Britain, consistent 

with previous studies by Harper (2011), who found not significant differences 

between core and south margin population of Erebia aethiops in mainland Scotland 

(mean He: 0.200 ± 0.005 and 0.187 ± 0.012, for core and margin populations 

respectively). 

For a wider understanding of British E. aethiops diversity, the results can be compared 

to previous studies on other species to give an idea of the general range.  AFLP 

analysis of non-inbred Italian goats (Capra hircus) showed an HE range of 0.21 – 0.24 

(Ajmone‐Marsan et al. 2001) and 0.10 – 0.19 in semi-isolated Herring Gull (Larus 

argentatus) populations (de Knijff et al. 2001). He can also be compared despite 

methodological differences so comparison is not limited to AFLP studies. 

Microsatellite analysis in toads showed a He range of 0.189 – 0.336 (Rowe et al. 

1999). E aethiops He falls within these ranges, suggesting that it is comparable to 

other species in terms of genetic diversity. 

A species known to sometimes form an inbreeding structure, the Pacific oyster 

(Crassostrea gigas) showed widely ranging He levels ranging from 0 – 0.415 and 

demonstrated that lower He resulted in lower fitness (Fujio 1982). In comparison, E. 

aethiops has a much narrower range and shows similar results throughout the country. 

The results suggest that smaller, more isolated populations are not necessarily at risk 

of inbreeding. In fact, the English region showed the highest He, despite the dramatic 

decline in distribution over the last century (Fox et al. 2007; Fox et al. 2015). This 

adds to the uncertainty that small butterfly populations are automatically susceptible 

to extinction due to inbreeding (Schmitt et al. 2005; Harper 2011) and suggests that 

local extinctions may be the result of other factors, such as climate change and habitat 

degradation. For example, Arnside Knott showed relatively high diversity but has still 
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experienced a dramatic decline in recent years, with numbers recoded as part of the 

UK Butterfly Monitoring Scheme (UKBMS) of over 1000 individuals ten years ago to 

less than 200 individuals in the last 5 years. 

 

Inbreeding can lead to reduced fitness in butterflies (Saccheri et al. 1996; Saccheri et 

al. 1998; Keller & Waller 2002), but this study’s results suggest that E. aethiops is 

currently unaffected by diversity loss. However, the results only cover a single 

generation and diversity reduction could potentially occur in the smallest populations, 

such as Bastow Wood and Arnside Knott, in future generations (Porter & Ellis 2011). 

There is also the possibility that the high levels of diversity observed in the English 

populations is a cause rather than an effect. It is currently uncertain why any E. 

aethiops populations survived the retraction of the southern range, but their survival 

following isolation could be due to a high level of initial genetic fitness; the 

populations may have originally been part of a much larger continuous population and 

survived because of their high diversity, leaving only diverse populations to include in 

analysis. Meanwhile, the Scottish populations may be smaller but closer together, 

allowing the rescue of deserted habitats by a small number of founders. However, this 

would require analysis and comparison of historic samples to confirm. 

Differences in sample size should also be considered. Higher diversity has previously 

been predicted in larger sample sizes (Petit et al. 1998) when using observed 

heterozygosity, in this case the % of polymorphic loci, as a measure. However, an 

unbiased method such as expected heterozygosity (He), which assesses allelic 

distribution as well as frequency, has been found to be more accurate measure when 

dealing with uneven sample sizes (Yan & Zhang 2004; Pruett & Winker 2008). The 

inconsistency of the measures can be seen in Table 3.1, with Smardale Gill, the site 

with the largest sample size, showing the highest proportion of polymorphic loci but 

not the highest He of all the study populations. For this reason, polymorphic loci % 

cannot be considered a reliable measure of genetic diversity and only He should be 

accepted. 

Any future study using these results should bear the uneven sample size in mind and 

build only on the expected heterozygosity values. Additionally, management 

recommendations arising from these results should not be influenced by the observed 

polymorphism without further analysis compensating for the uneven samples size, 

such as repeated random sampling of the Smardale Gill individuals using 5 samples 

per permutation to check the accuracy of the final measure. 

Historic separation can be inferred by the degree of genetic separation between the 

sampled populations (Tables 3.2). The more genetically distant and differentiated 

populations are, the longer they have been unconnected. 

Island populations have the highest degree of separation, with each island showing 

some connection to the Scottish mainland, but not to each other, probably due to the 
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length of time they have been separated. Skye shows the closest relationship to the 

mainland (Figure 3.2), which may be due to a more recent separation or may also be a 

result of butterflies crossing via the linking Skye Bridge. Alternatively, they may be 

crossing the water as the shortest distance between the mainland and Skye is 780m, 

well within the observed flight capabilities of males (Figure 3.6). If the small island of 

Eilean Bàn is being used as a stepping stone, the minimum required flight distance is 

reduced to 335m. 

Relatedness values (Table 3.5) and pairwise Fst (Table 3.2) leave little doubt that 

Bastow Wood was repopulated with individuals from Smardale Gill. As well as 

showing a high level of relatedness, the Fst value of 0.005 is comparable to the results 

seen between connected patches in the Smardale Gill metapopulation. With a 

separating distance of approximately 50km, well beyond the species’ flight 

capabilities, there is no possibility of any natural gene exchange between the two sites. 

The Fst pattern may be explained by dispersal capabilities as the more geographically 

separate populations tend towards higher Fst (lower mixing). Additionally, postglacial 

colonisation may explain some of the separation as differences in isolation time and 

connectivity re-opening is known to influence dispersal and diversity (Hewitt 1999). 

Differentiation was seen at both regional and population level. This could be due to 

post-glacial recolonization (Hewitt 2000) as well as human encroachment and changes 

in land use and retraction due to climate change (Hampe & Petit 2005). The 

conservation of genetically distinct populations is a particular area of concern in an 

era of rapid biodiversity loss (MEA 2005) and, although the species is not a current 

conservation priority in the UK (Fox et al. 2015), lack of action could see the loss of 

small, genetically unique populations. 

From a regional perspective, it is possible that the differentiation contributed to the 

English E. aethiops’ survival. If the populations are uniquely warm-adapted it may 

have allowed them to persist despite the warming effect which has driven most of the 

species north (Franco et al. 2006). If this is the case, the potential sources for southern 

reintroductions are dramatically reduced with only the English populations being 

suitable. However, the possibility of a warm-adapted English E. aethiops is purely 

speculative and would require further study. 

Population-level differentiation means that supplementing a struggling population 

may be problematic as the individuals may not be able to mix. In fact, some evidence 

of subspecies-level differentiation in the island populations has been previously 

observed (Gunson 2016). As genetic distance increases with geographic distance 

(Figure 3.3), closer populations would be more compatible if supplementation is to be 

attempted. 

Differentiation has also been recorded between border and margin populations of 

Scottish E. aethiops by Harper (2011). The study suggested that continued retractions 

could lead to the loss of genetically distinct populations unless action is taken to 

conserve them.   
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It should be mentioned that including Bastow Wood in the analysis may have reduced 

the overall observed level of differentiation. Bastow Wood was repopulated by an 

undocumented reintroduction in the 70s or 80s after the natural population went 

extinct in 1955 (Thomas & Lewington 2011). The original colony was 

morphologically distinct, so may have also been genetically distinct, whereas the 

reintroduced population is genetically similar to Smardale Gill (Table 3.4), 

highlighting one of the problems caused by unauthorised translocations. 

 

4.2. Metapopulation genetics 

Smardale Gill shows the high level of genetic diversity expected in such a large 

population. Saccheri et al (1998) and Hanski (2011) found that isolated populations of 

Melitaea cinxia which suffered from inbreeding (determined by % polymorphic loci) 

were more prone to extinction. However, in both studies, the effect was most 

pronounced in small populations, suggesting that the size of the Smardale population 

may be compensating for any negative impacts of long-term isolation. 

Vandewoestijne et al. (2008) looked at expected heterozygosity in a fragmented, but 

well-connected Polyommatus coridon metapopulation in southern Belgium and found 

a mean He of 0.321 (± 0.056), which is slightly higher than Smardale’s He (mean = 

0.184, S.E. = 0.007), but not by a high amount. 

The highest level of diversity seen in the largest patch, Patch 3, around the disused 

viaduct (Table 3.5). This suggests that there is no inbreeding depression and that the 

population has not experienced an historic bottleneck. Combined with the large 

numbers observed (Table 3.7), this indicates that Smardale Gill could be a potential 

source of individuals for future translocations. 

The individual patches are slightly differentiated but well below the level seen in 

separated populations (Tables 3.3, 3.6), indicating that Smardale is a true 

metapopulation with connectivity between all patches. As well as genetic indications 

of free dispersal, mark-recapture results show that all patches are within the maximum 

observed male flight distance (1.5km) of at least one other patch. Additionally, there 

was no correlation between genetic and geographic distance, indicating that distance 

between patches is not a factor which significantly influences gene flow. 

A total of 13 inter-patch movements were recorded from 193 recaptured individuals 

(6.7%). If we assume that these are representative of the whole population and 6.7% 

of individuals will emigrate each generation, then we can estimate that there were 

approximately 527 inter-patch movements from the 7869 estimated resident 

individuals (Table 3.7).  

All inter-patch movements were performed by males. This is supported by Slamova et 

al (2013), who found that males are more likely to leave their natal patch. However, 

they also found that females are capable of longer flights (2.1km) than males (1.9km), 
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which is the opposite of this study’s findings. Slamova et al (2006) study looked at 

Czech Republic E. aethiops populations, which suggests that there may be some 

behavioural and, potentially, genetic differentiation between countries as well as 

regions. Genetic analysis which includes other European populations would be 

beneficial to understand the global structure of the species.  

It should be considered that the male-bias in capture and recapture rates may influence 

the results. Males are known to emerge earlier than females and are also more mobile 

due to patrolling behaviour. For this reason, it is possible that long-distance female 

movement did occur during the study period but was not recorded. 

It was expected, due to the disproportionally large number of individuals recorded at 

Patch 3 (although bias may be present due to patch size), that the Smardale Gill 

metapopulation would function as a mainland-island metapopulation (Hanski & 

Simberloff, 1997), In which Patch 3 would act as a source of individuals for the 

surrounding smaller patches, which would be acting as island/sink populations. 

However, this was not the case and Patch 3 showed the highest Fst of all patches, 

although its Fst values are still very low (Table 3.6). Moreover, individuals were 

recorded moving from and to Patch 3 during the mark-release-recapture study, 

indicating that this patch acts both as a source and receiver of individuals from the 

other patches. A possible reason is that male butterflies are less likely to leave a patch 

with high female density (Baguette et al. 1998), so emigration may be lower overall. 

Another possibility is that Patch 3 was isolated for a longer period than the 

surrounding patches, leading to a lower level of historic mixing. However, this is 

unlikely given the central position occupied by Patch 3 in the metapopulation (Figure 

3.5) and the very short distances to the surrounding patches, suggesting it represented 

the centre of the historical continuous population. Moreover, the population in Patch 

8, the most isolated from the others, was only discovered in 2015 (Tom Dunbar 

personal communication), despite being on the roadside verge of a well transited road. 

It is likely that this population is a relatively recent colonisation from individuals 

potentially coming from Patch 4 (Fst=0.005), although Patch 7 is the closed in 

distance, it is slightly more differentiate (Fst=0.029). 

Overall, the results show that E. aethiops are moving freely throughout the 

metapopulation and that connectivity is sufficient for dispersal. Even Patch 8, which is 

a roadside verge outside the reserve shows genetic connection to the other patches and 

should therefore be considered part of the Smardale Gill metapopulation for future 

management and conservation efforts. 

For a more in-depth analysis of individual movement between patches, microsatellite 

analysis could be beneficial as the technique looks at far fewer loci, but is more 

sensitive, making it useful for studying individuals rather than entire populations 

(Varshney et al. 2005; Selkoe & Toonen 2006). Microsatellites are widely used in 

heredity studies as parentage or ancestry can be inferred from the results (Dakin & 

Avise 2004). Linking individuals directly to ancestors and close relatives may show 
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exactly when an individual dispersed from one patch to another and could be 

compared to factors such as yearly climate and disturbances. 

 

4.3. Recommendations for future management 

The British population of Scotch argus shows a high level of genetic diversity and is 

not in immediate danger from inbreeding. Therefore, conservation efforts should focus 

on other reasons for the species’ decline in some areas, such as habitat degradation 

and climate change. However, inbreeding should not be ruled out as a future threat for 

the species if populations continue to shrink and remain small for many generations. 

The potential loss of genetically differentiated populations should be a point of 

concern, particularly in England where they may have become warm-adapted. The 

loss of individuals with the ability to withstand the rising global temperature would 

permanently remove the possibility of any southern reintroduction.  

Translocation of individuals to supplement the population at Arnside Knott is not 

recommended. The addition of new genetic material would only be helpful if the 

resident population showed signs of inbreeding, which is not the case. The cause of 

the species’ decline at that site is currently unknown and should be determined before 

more butterflies are released there. If translocation were to go ahead in future, a 

geographically and genetically close source would be beneficial. Additional diversity 

is not needed, so more closely related individuals could be used to increase the 

likelihood of successful breeding. Smardale Gill would be the obvious choice due to 

its large numbers, but Crosby Garrett may be suitable depending on a population 

estimate. 

The reintroduction of E. aethiops across parts of its former range in England is a 

possibility. Site suitability would depend on habitat quality, connectivity and 

management. To have the greatest chance of success, relocated individuals should be 

able to withstand the warmer English temperatures. Until it is determined otherwise, 

English individuals should be assumed to have a higher tolerance for heat and should 

be used as a source. Again, Smardale Gill would be the most suitable site. 

If Smardale Gill is used as a source for future translocations or reintroductions, a 

single patch need not be targeted. As all patches show free mixing, individuals could 

be taken from any part of the reserve depending on numbers and ease of capture. If 

adults are removed, doing so prior to peak flight time would be advisable, to allow 

females to successfully mate and lay in the new location.  

For any E. aethiops reintroduction, the lazy behaviour of females should be taken into 

account. Results show that they do not move from their natal patch, with a maximum 

flight distance of 80m (Figure 3.6). Unless patches are very close together, the 

creation of a fully connected metapopulation will require females to be released in 

every patch. Males are more mobile and will disperse naturally, but female 

sedentariness should be a focal point of any reintroduction planning. 



51 
 

The population at Smardale Gill is faring well and current management practices 

appear sufficient. Crosby Garrett is genetically robust, but a population estimate 

would be useful to assess the state of the colony and its suitability as a potential source 

in future. Bastow Wood would also benefit from a population count and additional 

monitoring for inbreeding in future as a founder effect may still become apparent. 

Arnside Knott is genetically healthy, but the numbers are dropping dramatically. This 

site should be a conservation priority as its loss would also mean the loss of a 

genetically distinct population. Further genetic analysis in the future would be useful 

to determine whether a bottleneck is currently occurring at this population and the 

effect it may have in its long-term persistence. 

As the extraction of DNA from a single leg proved successful, it is recommended that 

future genetic studies employ this method to avoid removing individuals from the 

population. This is particularly important when sampling small populations such as 

Arnside Knott, or when sampling females. 

A generalised conclusion would be that small, fragmented populations do not always 

lead to inbreeding and that other factors may be responsible for decline. Additionally, 

a genetically robust population is not necessarily safer than one with lower diversity, 

as demonstrated by the Arnside Knott decline.  

Reintroduction and translocation should not only be considered when an entire species 

is at risk, but when separate populations with potentially beneficial adaptations are 

threatened. As climate change continues to drive the species north, the best hope for 

its future survival may lay with the surviving southern populations. However, as many 

reintroductions fail, understanding the species abilities and requirements is essential. It 

may be more practicable to use management to mitigate the negative impacts at the 

current location, especially when a population is small and diverse, so is unlikely to 

suffer from inbreeding as it grows. 
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Appendices 

 

 

Appendix 1. DNA sample table 

 

 

Sample 

# 

Site Date 

Collected 

Leg/Whol

e 

Sex Successfully Analyzed? 

A1 Insh Marshes 26/08/2015 Whole Male Yes 

A2 Insh Marshes 26/08/2015 Whole Male Yes 

A3 Insh Marshes 26/08/2015 Whole Male Yes 

A4 Insh Marshes 26/08/2015 Whole Male Yes 

A5 Insh Marshes 26/08/2015 Whole Male Yes 

B1 Craigower 26/08/2015 Whole Male Yes 

B2 Craigower 26/08/2015 Whole Male Yes 

B3 Craigower 26/08/2015 Whole Male Yes 

B4 Craigower 26/08/2015 Whole Male Yes 

B5 Craigower 26/08/2015 Whole Male Yes 

C1 Tomnavoulin 27/08/2015 Whole Male Yes 

C2 Tomnavoulin 27/08/2015 Whole Male Yes 

C3 Tomnavoulin 27/08/2015 Whole Male No 

C4 Tomnavoulin 27/08/2015 Whole Male Yes 

C5 Tomnavoulin 27/08/2015 Whole Male Yes 

D1 Skye 20/08/2015 Whole Male Yes 

D2 Skye 20/08/2015 Whole Male Yes 

D3 Skye 20/08/2015 Whole Male Yes 

D4 Skye 20/08/2015 Whole Male Yes 

D5 Skye 20/08/2015 Whole Male Yes 

E1 Mull 22/08/2015 Whole Male No 

E2 Mull 22/08/2015 Whole Male Yes 

E3 Mull 22/08/2015 Whole Male Yes 

E4 Mull 22/08/2015 Whole Male Yes 

E5 Mull 22/08/2015 Whole Male Yes 

F1 Arran 23/08/2015 Whole Male Yes 

F2 Arran 23/08/2015 Whole Male Yes 

F3 Arran 23/08/2015 Whole Male Yes 

F4 Arran 23/08/2015 Whole Male Yes 

F5 Arran 23/08/2015 Whole Male Yes 

CG1 Crosby 

Garrett 

22/08/2017 Whole Male Yes 

CG2 Crosby 

Garrett 

22/08/2017 Leg Female Yes 
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CG3 Crosby 

Garrett 

22/08/2017 Leg Female No 

CG4 Crosby 

Garrett 

22/08/2017 Leg Female Yes 

CG5 Crosby 

Garrett 

22/08/2017 Leg Female Yes 

AK1 Arnside Knott 20/08/2017 Whole Male Yes 

AK2 Arnside Knott 20/08/2017 Whole Male Yes 

AK3 Arnside Knott 24/08/2017 Leg Female Yes 

AK4 Arnside Knott 24/08/2017 Leg Female Yes 

AK5 Arnside Knott 24/08/2017 Leg Female Yes 

AK6 Arnside Knott 24/08/2017 Leg Female Yes 

BW1 Bastow Wood 25/08/2017 Whole Male Yes 

BW2 Bastow Wood 25/08/2017 Whole Male Yes 

BW3 Bastow Wood 25/08/2017 Whole Male Yes 

BW4 Bastow Wood 25/08/2017 Leg Female Yes 

BW5 Bastow Wood 25/08/2017 Leg Female Yes 

BW6 Bastow Wood 25/08/2017 Leg Female Yes 

BW7 Bastow Wood 25/08/2017 Leg Female Yes 

MR1 Smardale Gill 22/08/2017 Whole Male Yes 

MR2 Smardale Gill 22/08/2017 Whole Male Yes 

MR3 Smardale Gill 23/08/2017 Whole Male Yes 

MR4 Smardale Gill 27/08/2017 Leg Female Yes 

MR5 Smardale Gill 23/08/2017 Leg Female Yes 

MR6 Smardale Gill 01/09/2017 Leg Female Yes 

RS1 Smardale Gill 22/08/2017 Whole Male Yes 

RS2 Smardale Gill 22/08/2017 Whole Male Yes 

RS3 Smardale Gill 22/08/2017 Whole Male Yes 

RS4 Smardale Gill 22/08/2017 Whole Male Yes 

RS5 Smardale Gill 22/08/2017 Whole Male Yes 

BS1 Smardale Gill 21/08/2017 Whole Male Yes 

BS2 Smardale Gill 21/08/2017 Whole Male Yes 

BS3 Smardale Gill 21/08/2017 Whole Male Yes 

BS4 Smardale Gill 21/08/2017 Whole Male Yes 

BS5 Smardale Gill 21/08/2017 Whole Male Yes 

BS6 Smardale Gill 21/08/2017 Whole Male Yes 

AP1 Smardale Gill 01/09/2017 Whole Male Yes 

AP2 Smardale Gill 01/09/2017 Whole Male Yes 

AP3 Smardale Gill 01/09/2017 Whole Male Yes 

AP4 Smardale Gill 01/09/2017 Whole Male Yes 

AP5 Smardale Gill 30/08/2017 Whole Male Yes 

HK1 Smardale Gill 27/08/2017 Whole Male Yes 

HK2 Smardale Gill 27/08/2017 Whole Male Yes 
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HK3 Smardale Gill 27/08/2017 Whole Male Yes 

HK4 Smardale Gill 22/08/2017 Whole Male Yes 

HK5 Smardale Gill 22/08/2017 Whole Male Yes 

V1 Smardale Gill 22/08/2017 Whole Male Yes 

V2 Smardale Gill 22/08/2017 Whole Male Yes 

V3 Smardale Gill 21/08/2017 Whole Male Yes 

V4 Smardale Gill 21/08/2017 Whole Male Yes 

V5 Smardale Gill 21/08/2017 Whole Male Yes 

V6 Smardale Gill 21/08/2017 Whole Male Yes 

V7 Smardale Gill 21/08/2017 Whole Male Yes 

V8 Smardale Gill 21/08/2017 Whole Male Yes 

V9 Smardale Gill 23/08/2017 Whole Male Yes 

V10 Smardale Gill 07/08/2017 Whole Male Yes 

V11 Smardale Gill 09/08/2017 Whole Male Yes 

V12 Smardale Gill 13/08/2017 Whole Male Yes 

V13 Smardale Gill 09/08/2017 Whole Male Yes 

V14 Smardale Gill 23/08/2017 Whole Male Yes 

V15 Smardale Gill 21/08/2017 Whole Male Yes 

 

 

Appendix 2. DNA extraction base protocol from DNeasy 96 Blood and Tissue kit  

 

The DNeasy 96 Blood & Tissue Kit (cat. nos. 69581 and 69582) can be stored at room 

temperature (15–25°C) for up to 1 year if not otherwise stated on label. 

Further information 

 DNeasy Blood & Tissue Handbook: www.qiagen.com/HB-2061 

 Safety Data Sheets: www.qiagen.com/safety 

 Technical assistance: support.qiagen.com 

Notes before starting 

 Perform all centrifugation steps at room temperature (15–25°C). 

 If necessary, redissolve any precipitates in Buffer AL and Buffer ATL. 

 Add ethanol to Buffer AW1 and Buffer AW2 concentrates. 

 If using tissue, add ethanol to Buffer AL before use. 

 If using animal blood, refer to the handbook. 

 Equilibrate frozen tissue samples to room temperature. 
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 Preheat an incubator to 56°C. 

1. Cut ≤20 mg tissue into small pieces, and place into a collection microtube. For 

rodent 

tails, use 1 (rat) or 2 (mouse) 0.4–0.6 cm lengths of tail. Use a 96-Well-Plate Register 

for 

sample position. 

2. Prepare a working solution containing 20 µl proteinase K stock solution and 180 µl 

Buffer ATL per sample, and mix by vortexing. Immediately pipet 200 µl working 

solution 

into each collection microtube. Tightly seal the microtubes using the caps provided. 

3. Place the clear cover over each rack, and mix by inverting. Centrifuge to collect any 

solution from the caps. The samples must be completely submerged in the 

proteinase K–Buffer ATL solution after centrifugation. 

 

4. Incubate at 56°C overnight or until the samples are completely lysed. Place a 

weight on top 

of the caps during the incubation. Mix occasionally during incubation to disperse the 

sample. 

5. Ensure that the microtubes are properly sealed. Cover the racks and vigorously 

shake up 

and down for 15 s. Centrifuge to collect any solution from the caps. Ensure that 

samples 

are completely lysed to avoid clogging wells of the DNeasy 96 plate. 

6. Carefully remove the caps and add 410 µl Buffer AL–ethanol mixture to each 

sample, 

and tightly reseal using new caps. 

7. Place a clear cover over each rack and shake the racks vigorously up and down for 

15 s. Centrifuge to collect any solution from the caps. 

8. Place 2 DNeasy 96 plates on top of S-Blocks. Mark the DNeasy 96 plates for later 

sample identification. 

9. Carefully remove microtube caps and transfer the lysate (maximum 900 µl) of each 

sample to each well of the DNeasy 96 plates. 



76 
 

10.Seal each plate with an AirPore Tape Sheet. Centrifuge for 10 min at 3800 x g 

(6000 rpm). 

11.Remove the tape. Add 500 µl Buffer AW1 to each sample. 

12.Seal with a new AirPore Tape Sheet. Centrifuge for 5 min at 3800 x g. 

13.Add 500 µl Buffer AW2 to each sample. 

14.Centrifuge for 15 min at 3800 x g (do not seal the plate with tape). 

15.Place each DNeasy 96 plate on a new rack of Elution Microtubes RS. 

16.Add 200 µl Buffer AE to each sample, and seal with new AirPore Tape Sheets. 

Incubate 

for 1 min at room temperature (15–25°C). Centrifuge for 2 min at 3800 x g. 

Optional: repeat this step for increased DNA yields. 

17.Seal the Elution Microtubes RS with new caps to store the eluted DNA. 

 

 

Appendix 3. AFLP protocol 

 

AFLP Reactions – MRR lab protocol 

 

Reagents: 

EcoRI  –  NEB Cat# R0101S 10,000 U @ 20 U/µl 

MseI  –  NEB Cat# R0525S 500 U @ 10 U/µl 

T4 DNA ligase  –  NEB Cat# M0202S 

Taq DNA 

polymerase  
–  NEB Cat# M0320L 2000 U @ 5 U/ µl 

dNTP stocks  –  NEB Cat# N0447S 4 x 0.2 ml @ 10 mM each dNTP 

 

Preparation of adapters 

Prepare adapters freshly each time. 

Heat the required amount of adapters to 95°C for 5 min, and allow to cool gradually to 

room temp. 

For 5 µM EcoRI adapter: 

1:1:18 ratio of 100 µM EcoRI A1: 100 µM EcoRI A2:ddH2O 
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For 50 µM MseI adapter: 

1:1 ratio of 100 µM - MseI A1 and 100 µM MseI A2 

 

Restriction-Ligation step 

Create a master-mix for the number of reactions required based on the volumes per 

reaction below: 

Reagent 
Volume - 

µl 

10x T4 DNA ligase buffer 1.1 

0.5 M NaCl 1.1 

1 mg/ml BSA 0.55 

5 µM EcoRI adapter 1.0 

50 µM MseI adapter 1.0 

MseI (10U/µl) 0.1 

EcoRI (20U/µl) 0.25 

T4 DNA ligase (NEB; 400U/µl) 0.6 

 

Mix thoroughly and collect by a brief centrifugation. 

Aliquot 5.5 µl master mix per sample into tubes and add 5.5 µl DNA sample at 10 

ng/µl. 

Mix and centrifuge briefly. 

 

Incubate for 37°C for 2 hours and then 17°C overnight. 

Use either a thermal cycler with heated lid, else add a drop of mineral oil on top of the 

reaction to prevent evaporation. 

On completion, add 190 µl ddH2O. 

 

Pre-selective amplification 

Create a master-mix for the number of PCR reactions required based on the volumes 

per reaction below: 

Reagent Volume - µl 

ddH2O 12.0 

10x PCR buffer 2.0 

25 mM MgCl2 1.2 
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5 µM Preselective MseI primer 1.1 

5 µM Preselective EcoRI A or B primer 1.1 

10 mM dNTP mix 0.4 

Taq DNA polymerase (NEB 5 U/µl) 0.2 

 

Add 18 µl PCR master-mix to 2 µl restriction-ligation reaction products. 

Mix and collect by a brief centrifugation. 

 

Run in thermal cycler as follows: 

One cycle of 72°C – 2 min 

20 cycles of: 

94°C – 20 s 

56°C – 30 s 

72°C – 1 min 

One cycle of 60°C – 15 min 

 

 

After PCR, dilute 1:20 with dH2O 

 

Selective amplification 

 

Primer stocks: 

Fluorescently-labelled EcoRI primers 

at 1 µM 

‘Selective EcoRI-TCT FAM’ 

‘Selective EcoRI-TGA HEX’ 

‘Selective EcoRI-ATC ATTO’ 

 

Selective MseI primers at 5 µM 

‘Selective MseI-CAA’ 

‘Selective MseI-CTG’ 
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Primer pairs used at York to generate AFLP markers for E. aethiops : 

 EcoRI-TCT and MseI-CAA 

 EcoRI-TGA and MseI-CTG 

 EcoRI-ATC and MseI-CTG 

 

Create a master-mix for each of the three primer combinations containing enough 

reagents for the number of pre-selective PCR samples to amplify, as follows: 

Reagent Volume - µl 

ddH2O 5.2 

10x PCR buffer 1.0 

25 mM MgCl2 0.6 

5 µM Selective MseI primer 0.5 

1 µM Selective EcoRI primer 0.5 

10 mM dNTP mix 0.2 

Taq DNA polymerase (NEB 5 U/µl) 0.05 

 

Add 8 µl PCR master-mix to 2 µl of diluted pre-selective PCR reaction products. 

Mix and collect by a brief centrifugation. 

 

Run in thermal cycler as follows: 

One cycle of 94°C – 2 min 

9 cycles of: 

94°C – 30 s 

65°C -1°C /cycle – 30 s 

72°C – 2 min 

23 cycles of: 

94°C – 30 s 

56°C – 30 s 

72°C – 2 min 

One cycle of 72°C – 10 min 

 


