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Abstract 14 

Accurate crop yield estimates are important for governments, farmers, scientists and agribusiness. 15 

This paper provides a novel demonstration of the use of freely available Sentinel-2 data to estimate within-16 

field wheat yield variability in a single year. The impact of data resolution and availability on yield 17 

estimation is explored using different combinations of input data. This was achieved by combining Sentinel-18 

2 with environmental data (e.g. meteorological, topographical, soil moisture) for different periods 19 

throughout the growing season. Yield was estimated using Random Forest (RF) regression models. They 20 

were trained and validated using a dataset containing over 8000 points collected by combine harvester 21 

yield monitors from 39 wheat fields in the UK. The results demonstrate that it is possible to produce 22 

accurate maps of within-field yield variation at 10m resolution using Sentinel-2 data (RMSE 0.66 23 

tonnes/ha). When combined with environmental data further improvements in accuracy can be obtained 24 

(RMSE 0.61 tonnes/ha). We demonstrate that with knowledge of crop-type distribution it is possible to use 25 

these models, trained with data from a few fields, to estimate within-field yield variability on a landscape 26 

scale. Applying this method gives us a range of crop yield across the landscape of 4.09 to 12.22 tonnes/ha, 27 

with a total crop production of approx. 289000 tonnes.  28 
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1. Introduction 31 

Crop yield is a key agricultural variable. Accurate crop yield estimates serve a range of important 32 

purposes helping to make agriculture more productive and more resilient. Reliable yield estimates can be 33 

used to identify yield-limiting factors to guide development of site-specific management strategies (Diker et 34 

al., 2004; Jin et al., 2017b). Building a time-series of yield estimates allows producers and consultants to 35 

understand how management strategies affect crop productivity, guiding future practices (Birrell et al., 36 

1996; Grisso et al., 2002; Lobell, 2013). Accurate estimates also provide valuable information about mean 37 

yields and variability of yields at the field-scale, which are required for insurance and land market decisions 38 

(Lobell et al., 2015). Despite its importance, crop yield information is currently patchy within and between 39 

countries, in part due to commercial sensitivities. Various organisations are rapidly addressing this issue for 40 

present day yield estimates. Activities such as GEOGLAM (GEO, 2018; Whitcraft et al., 2015) are assessing 41 

crop condition on a country/global-scale, while commercial companies are offering predictive services at a 42 

field/farm-scale. However, as these organisations typically focus on assessing current conditions rather 43 

than retrospective estimation, there is currently no facility to build up a long-term time series of field-scale 44 

crop yields. There are also a lack of estimates of within-field yield variability at the landscape-scale, which is 45 

of most concern to scientists assessing the sustainability of agriculture and its impact on the environment. 46 

Agricultural monitoring has been a key focus of Earth Observation (EO) activity since the first 47 

terrestrial satellites were launched (Anuta and MacDonald, 1971; Draeger and Benson, 1972; Horton and 48 

Heilman, 1973). However, the potential of EO has been limited by image costs and limited repeat 49 

frequency, which combined with cloud means that key phases in crop growth are missed. This is all 50 

changing with the opening of the Landsat archive (Wulder et al., 2012), the launch of the Sentinel satellites 51 

(Drusch et al., 2012; Torres et al., 2012) and readily accessible cloud-computing platforms like Google Earth 52 

Engine (Gorelick et al., 2017). EO systems are increasingly able to support the operational production of 53 

data products, however, it is still important to choose the most appropriate data set and method for 54 
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mapping a particular variable. This is particularly true for agricultural monitoring, where key validation 55 

data, specifically crop yield, is held by individual farmers. Such data is often deemed commercially sensitive, 56 

making it difficult to collate large data sets to enable development and validation of EO-based methods. 57 

The EO work to date has therefore been constrained by the type and scale of validation data available.  58 

Various studies have explored the possibility of using EO data to map yield at the field-level, with 59 

particular focus on yield variability within smallholdings (Burke and Lobell, 2017; Jain et al., 2016; Jin et al., 60 

2017a). While results of these studies have been promising, many of them rely on commercial EO data 61 

(Burke and Lobell, 2017) or a combination of commercial and freely available EO data (Jin et al., 2017a). 62 

Costs of very high resolution (<5m) commercial satellite data are decreasing, particularly with the increase 63 

in the number of “cubesat” companies (Burke and Lobell, 2017). However, the fact that there is still a cost 64 

associated with obtaining the data means that it will not be universally accessible, particularly in developing 65 

countries. If similar accuracies can be achieved using slightly lower resolution freely available data, as 66 

provided by Sentinel-2, then this provides a more practical option for yield mapping. Previous studies have 67 

highlighted the potential of Sentinel-2 to play a key role in estimating crop yield (Battude et al., 2016; 68 

Lambert et al., 2017; Skakun et al., 2017), but so far the potential for mapping within-field variability in 69 

yield has yet to be fully explored.  70 

Lack of high resolution yield data for training and validation is a common problem for EO-based 71 

studies seeking to map yield at high resolution. Yield data are often collected in the field through crop cuts 72 

on sample plots and farm surveys. Lack of accurate location data and concerns over yield data accuracy 73 

mean this data is typically aggregated to the field level (Burke and Lobell, 2017; Lambert et al., 2017) or to 74 

the district level (Jin et al., 2017a). Various studies have demonstrated the relatively high yield estimation 75 

accuracy obtainable using high resolution satellite images for aggregated spatial units, and high resolution 76 

maps have been produced (e.g. 1m: Burke and Lobell, 2017). However, due to the common practice of 77 

aggregating crop yield data past studies have typically been unable to verify the accuracy of within-field 78 

variability shown.  79 

In recent years, there have been a number of innovations in farming technology to allow farmers to 80 

observe, measure and respond to spatial and temporal variation in crops. Such “precision farming” 81 
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approaches aim to ensure accurate targeting of agricultural interventions and reduce waste and 82 

detrimental impacts. A key component of precision farming has been the incorporation of high-accuracy 83 

GPS technology into farm machinery, including combine harvesters. Coupled with on-board yield monitors, 84 

this offers the potential for accurate, fine-resolution mapping of within-field variation in crop yields. High 85 

resolution data collected by yield monitors on-board combine harvesters has been used to assess the  86 

capability of EO to estimate crop yield, with positive results (Kayad et al., 2016; Yang et al., 2009). So far, 87 

however, high resolution yield data has not been combined with Sentinel-2 data to estimate yield, beyond 88 

the initial exploration of the correlation between Sentinel-2 NDVI and spring barley yield data by Jurecka et 89 

al. (2016). As such, the present study seeks to explore the ability of Sentinel-2 data to estimate within-field 90 

yield variability using combine harvester data for training and validation.  91 

 In this study, the capability of Sentinel-2 to estimate within-field wheat yield variability was 92 

assessed. The aim was to produce an empirical model calibrated with combine harvester data to estimate 93 

yield. A method was developed that can be applied for a given year at high spatial resolution at the 94 

landscape scale, when suitable training data are available. Random Forest (RF) models were trained and 95 

validated using data from yield monitors on-board combine harvesters. The combine harvester dataset 96 

contained over 8000 points collected in 39 wheat fields within the UK. The analysis was structured around 5 97 

key questions designed to explore how different combinations of data, in terms of both type and temporal 98 

coverage, impact the accuracy of wheat yield estimation. 99 

• Question 1: How does Sentinel-2 spatial resolution affect the accuracy of yield estimation?  100 

• Question 2: Does calculating separate vegetation indices (VIs) contribute any extra information to 101 

the estimation model? 102 

• Question 3: How do different combinations of Sentinel-2 data and environmental data affect 103 

estimation accuracy? 104 

• Question 4: Which single-date Sentinel-2 image provides the most accurate estimation? 105 

• Question 5: How does estimation accuracy vary with accumulation of data throughout the growing 106 

season for Sentinel-2 data only (Qu 5a), Sentinel-2 and environmental data combined (Qu 5b), and 107 

environmental data only (Qu 5c)? 108 
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The paper concludes by applying the optimal RF model to estimate within-field yield variability on a 109 

landscape scale.  110 

2. Field Sites 111 

This study was conducted using data from 39 conventionally farmed wheat fields in the UK. The 112 

data were spread over two different regions, with 28 fields in Lincolnshire and 11 fields in Oxfordshire 113 

covering a total of 438.2ha and 224.2ha respectively (figure 1). Lincolnshire is relatively flat and, at 75% 114 

arable, is the most intensively farmed county in the UK, whereas Oxfordshire is less flat, with more of a mix 115 

of arable (52%) and grassland (32%) (Rowland et al., 2017).  The average annual rainfall in Lincolnshire, 116 

from 1981-2010, was 614mm and for Oxfordshire 659mm. Annual average temperatures ranged from 6.3 117 

to 13.5°C and 6.9 to 14.6°C for Lincolnshire and Oxfordshire respectively  (Met Office, 2018). In 2016 the 118 

average wheat yield at the Lincolnshire sites was 10.27 tonnes/ha, and at the Oxfordshire sites 9.79 119 

tonnes/ha (based on cleaned and interpolated combine harvester yield data at 10m resolution).  120 

 121 

Figure 1: Location of study sites. 122 
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3. Data and Methods 123 

Figure 2 provides an overview of the method used in this study, outlining how the combine harvester data, 124 

satellite data and environmental data were processed and combined to estimate yield. The specific details 125 

of the data and data processing techniques are outlined in sections 3.1-3.3, and the analysis techniques are 126 

outlined in sections 3.4-3.6. 127 

 128 

 129 

Figure 2: Overview of the method used to estimate yield at high resolution on a landscape scale. 130 

 131 

3.1 Wheat Yield Data  132 

High resolution wheat yield data was downloaded from CLAAS telematics, a web-based vehicle 133 

fleet management data analysis system (CLAAS, 2018). The wheat yield data were acquired during the 2016 134 
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harvest period between 6th August and 9th September using combine harvesters equipped with a GPS and 135 

optical yield monitor. Wheat was chosen as the crop of interest for this study due to its high prevalence 136 

within the available dataset. In the UK, winter wheat crops are typically planted in October and harvested 137 

in August (AHDB, 2018). The raw data were cleaned to remove inaccurate grain yield measurements 138 

arising, for example, from the harvesting dynamics of the combine harvester and the accuracy of 139 

positioning information (AHDB, 2016; Lyle et al., 2014). Simple cleaning steps included removing data 140 

points for which no latitude/longitude were recorded and points where the yield monitor or front 141 

attachment were not switched on. Additionally, a check was applied to ensure each field was harvested by 142 

a single combine harvester, as different combines will have differently calibrated yield monitors. A series of 143 

threshold-based cleaning steps were then applied to remove values recorded while the combine harvester 144 

was turning (turning angle > 0.6 radians for time step < 30s), accelerating or decelerating (accel. > 0.05 ms-145 

2), or when the speed fell outside the optimum limits to accurately measure the yield (ground speed <2 146 

kmh-1 or >8 kmh-1). Finally, data were cleaned on a per field basis removing yield values which fell outside 147 

the global mean ± 2.5 sd or the local mean ± 2.5 sd (based on the closest 3 points). A summary of the 148 

criteria for data cleaning can be found in figure 3. 149 

 150 

Figure 3: Summary of the criteria for data cleaning.  151 

 152 

To avoid any mixed pixels in the satellite data, a 20m buffer around the inward edge of the field 153 

was applied to the cleaned data. Further to this, additional areas were manually masked out to remove 154 

large gaps arising in the dataset as a result of the data collection and cleaning process. These gaps typically 155 

occurred at the edge of the fields and in areas where the combine harvester turned. Figure 4 shows an 156 
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example of the data gaps in one field and the stages in the buffering process used to remove them. Post-157 

buffering the data covered an area of 252.2ha (c.f. 438.2ha) in Lincolnshire and 100.4ha (cf. 224.2ha) in 158 

Oxfordshire.  159 

 160 

161 
Figure 4: Example yield data points for one field showing a) gaps in the data arising from the data collection 162 

and cleaning process and b-c) the stages in the buffering process used to remove these gaps. 163 

 164 

The cleaned and buffered yield data were resampled to resolutions of 10m and 20m using an 165 

Inverse Distance Weighting function. Yield was mapped at these resolutions to align with the Sentinel-2 166 

data used within this study, and to allow an assessment of the optimum resolution for yield estimation to 167 

be made. The appropriateness of mapping at these resolutions was supported by the relative uniformity of 168 

points (figure 5) and the mean nearest neighbour distance of 11m for the yield points. Additionally, when 169 

considering yield data, a major factor limiting the spatial resolution is the width of the cutting head on the 170 

combine harvester, which will determine the minimum acceptable resolution. The cutting widths for the 171 

combine harvesters used in this study ranged from 4.95m to 12.27m, thus providing further justification for 172 

mapping yield at 10m and 20m resolution. Sample points were generated in the centre of each interpolated 173 

raster cell. To reduce the impact of correlation between pixels only alternate pixels were used, producing a 174 

sample dataset containing 8794 values. The sample data was then randomly split into training (70%) and 175 

validation (30%) datasets. 176 
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177 
Figure 5: Example of the distribution of yield data points relative to a) 10m and b) 20m resolution 178 

interpolated yield data 179 

 180 

3.2 Sentinel-2 Data 181 

3.2.1 Sentinel-2 Image Processing  182 

Predominantly cloud-free Sentinel-2 images (Level 1C Top-of-Atmosphere reflectance products; see 183 

Claverie et al., 2018; Drusch et al., 2012) for tiles 30UXC and 30UXD were downloaded from the Copernicus 184 

Open Access Hub (ESA, 2018); only bands at 10 or 20m resolution were used in this study. Details of the 185 

bands used within this study can be found in table 1. Relatively cloud-free images were available over the 186 

growing season for the 29th December 2015, 20th April 2016, 6th June 2016 and 19th July 2016 (table 2). The 187 

four suitable images available from Sentinel-2 compare favourably to Landsat-8, which would have 188 

provided only one suitable cloud-free image for the 2016 growing season. All bands were atmospherically 189 

corrected using the Sen2Cor processor and bands at 20m resolution were rescaled to 10m before the bands 190 

were stacked. Cloud was then manually masked out of the April and December images, because the current 191 

Sentinel-2 cloud masking is not completely accurate (Coluzzi et al., 2018).   192 

 193 

 194 
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Table 1: Central wavelength and spatial resolution for the Sentinel-2 bands used in this study (Drusch et al., 195 

2012). 196 

Spectral Band Central Wavelength (nm) Spatial Resolution (m) 

Band 2 Blue 490 10 
Band 3 Green 560 10 
Band 4 Red 665 10 
Band 5 Vegetation red edge 705 20 
Band 6 Vegetation red edge 740 20 
Band 7 Vegetation red edge 783 20 
Band 8 NIR 842 10 
Band 8a Narrow NIR 865 20 
Band 11 SWIR 1610 20 
Band 12 SWIR 2190 20 

 197 

 198 

Table 2: Explanatory variables used in random forest regression analysis.  199 

Variable type Dataset Pixel size Temporal coverage 

Sentinel-2 Sentinel-2 Level 1C bands: 
2, 3, 4, 5*, 6*, 7*, 8, 8a*, 11*, 12* 

10m 
(*20m rescaled to 
10m) 

29th Dec 2015     20th 
April 2016 
6th June 2016      19th 
July 2016 Vegetation indices GCVI, GNDVI, NDVI, SR and WDRVI 

calculated from Sentinel-2 data 
10m 

Environmental Precipitation UKCP09 gridded observation dataset 
– Total precipitation amount over 
the calendar month (mm) 

5km Dec 2015 – July 2016  

Temperature UKCP09 gridded observation dataset 
– Average of daily mean air 
temperature over the calendar 
month (°C) 

5km 

SWI Monthly average Soil Water Index 
calculated using SCAT-SAR SWI T01 
data 

500m 

DTM NEXTMap Digital Terrain Model  10m Created using data 
collected in 2002 & 
2003 

Aspect Calculated using the NEXTMap DTM  10m 

Slope 10m 

 200 

 201 

3.2.2 Vegetation Indices Calculation  202 

Five vegetation indices (VIs) that have been used in previous yield estimation studies (e.g. Jin et al., 203 

2017a; Shanahan et al., 2001; Yang et al., 2009, 2000; Yang and Everitt, 2002) were calculated from the 204 

Sentinel-2 imagery, specifically GCVI, GNDVI, NDVI, SR and WDRVI (see table 3 for equations).   205 

 206 

 207 
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Table 3: Vegetation indices calculated using Sentinel-2 imagery, where R is Red (B4), G is green (B3) and NIR 208 

is near-infrared (B8a) 209 

VI Abbreviation Equation Reference 

Green Chlorophyll 
Vegetation Index 

GCVI 
𝐺𝐶𝑉𝐼 = (

𝑁𝐼𝑅

𝐺
) − 1 

Gitelson et al., 2003 

Green Normalised 
Difference Vegetation 
Index 

GNDVI 
𝐺𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 

Gitelson et al., 1996 

Normalised Difference 
Vegetation Index 

NDVI 
𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Rouse et al., 1973 
 

Simple Ratio SR 
𝑆𝑅 =

𝑁𝐼𝑅

𝑅
 

Jordan, 1969 
 

Wide Dynamic Range 
Vegetation Index 

WDRVI 
𝑊𝐷𝑅𝑉𝐼 =

0.2 ∗ 𝑁𝐼𝑅 − 𝑅

0.2 ∗ 𝑁𝐼𝑅 + 𝑅
 

Gitelson, 2004 
 

    210 

3.3 Environmental Data 211 

3.3.1 Precipitation and Temperature  212 

Monthly 5km gridded UKCP09 data sets of total rainfall (mm) and mean air temperature (°C) were 213 

downloaded from the UK Met Office (Met Office, 2017). Monthly data was downloaded for December 2015 214 

to July 2016 to match the period covered by the Sentinel-2 images (table 2). 5km is coarse and ideally 215 

higher resolution data would have been utilised. Unfortunately such data were not available for the study 216 

sites at the required dates. However, given the spatial distribution of the fields across the study areas of 217 

Lincolnshire and Oxfordshire data from 54 of the 5km squares was used. This distribution allowed spatial 218 

variation in precipitation and temperature across the study area to be detected despite the coarse 219 

resolution of the data.  220 

3.3.2 Soil Water Index 221 

The Soil Water Index (SWI), first proposed by Wagner et al. (1999), is an indicator of the soil 222 

moisture profile. SWI values for December 2015 to July 2016 were obtained from the SCAT-SAR SWI T01 223 

dataset (Scatterometer – Synthetic-Aperture-Radar Soil Water Index) created by the TU Wien Department 224 

of Geodesy and Geoinformation (table 2). This data is derived from radar data observed by the MetOp-A/B 225 

ASCAT and Sentinel-1 SAR satellite sensors. SWI images have a pixel spacing of 500m which correspond to a 226 

resolution of 1km. Monthly mean values were calculated from the SWI giving a percentage ranging from 227 

completely dry soil (0%) to completely saturated soil (100%).  228 



12 
 

3.3.3 Topographic Variables 229 

 A 10m resolution digital terrain model (DTM) was obtained from NEXTMap Britain (table 2). The 230 

DTM was created by Intermap Technologies Inc based on airborne radar data collected during 2002 and 231 

2003 (Intermap Technologies, 2009). This data was used to calculate aspect and slope variables at 10m 232 

resolution.  233 

3.4 Random Forest Regression  234 

Random Forest was trained and applied to estimate wheat yields over the satellite image extent. 235 

Random Forest (RF; Breiman, 2001) is a machine learning algorithm that can be used to estimate a 236 

continuous response variable using regression analysis. The RF algorithm first creates a pre-defined number 237 

of new training sets with random sampling and then builds a different tree for each of these bootstrapped 238 

datasets. In each tree, a random subset of explanatory variables is used to recursively split the data at each 239 

node into more homogenous units (Breiman, 2001; Everingham et al., 2016; Prasad et al., 2006). The trees 240 

are fully grown and the mean fitted response from all the individual trees provides the estimated value of a 241 

continuous response (Everingham et al., 2016). Previous studies have used RF to estimate yields for a 242 

variety of crops including sugarcane (Everingham et al., 2016), corn (Kim and Lee, 2016), wheat, maize and 243 

potato tuber (Jeong et al., 2016).  244 

In this study RF analysis was carried out using a modified version of the 245 

“randomForestPercentCover” script produced by Horning (2018), which uses the R “randomForest” 246 

package developed by Liaw and Wiener (2002). The original script was designed to explore continuous 247 

vegetation cover, so modification was required to provide mean yield per pixel as opposed to percentage 248 

vegetation cover. The default settings of the randomForest package were used: one third of all available 249 

explanatory variables were used to split the data at each node and the number of trees was 500 (Liaw and 250 

Wiener, 2002).  251 

The RF model was trained to estimate crop yield using the variables outlined in table 2 as 252 

explanatory variables. The impact of different data combinations and different temporal coverages on 253 

estimation accuracy were explored using the layer combinations shown in table 4.  254 
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Table 4: Data combinations tested in Random Forest analysis. All Sentinel-2 data is at 10m resolution 255 

(except for the S2_20 combination). All environmental data were resampled to 10m. For individual layer 256 

details see table 2.  257 

Combination Data layers 

Question 1 

S2 Sentinel-2 data 
S2_20 Sentinel-2 data resampled to 20m 

Question 2 

S2 Sentinel-2 
S2_VI Sentinel-2, VIs 
VI VIs 

Question 3 

S2 Sentinel-2 
S2_Met Sentinel-2, Precipitation, Temperature  
S2_SWI Sentinel-2, SWI  
S2_Topo Sentinel-2, DTM, Aspect, Slope  
S2_Env Sentinel-2, Precipitation, Temperature, SWI, DTM, Aspect, Slope 

Question 4 

D Sentinel-2 data December only  
A Sentinel-2 data April only 
Jn Sentinel-2 data June only 
J Sentinel-2 data July only 

Question 5a 

D Sentinel-2 data December only 
DA Sentinel-2 data December and April 
DAJ Sentinel-2 data December, April and June 
DAJJ (S2) Sentinel-2 data December, April, June and July 

Question 5b 

D-S2_Env Sentinel-2 and Environmental data December only 
DA-S2_Env Sentinel-2 data December and April 

Environmental data up to end of April 
DAJ-S2_Env Sentinel-2 data December, April and June 

Environmental data up to end of June 
DAJJ-S2_Env (S2_Env) Sentinel-2 data December, April, June and July 

Environmental data up to end of July 

Question 5c 

D-Env Environmental data December only 
DA-Env Environmental data up to end of April 
DAJ-Env Environmental data up to end of June 
DAJJ-Env Environmental data up to end of July 

 258 

 259 

3.5 Accuracy assessment  260 

The performance of the models built from each layer combination were compared using the 261 

coefficient of determination (R2) and the root mean squared error (RMSE, eq. 6). 262 

𝑅𝑀𝑆𝐸 =  √∑ (𝐸𝑖−𝑂𝑖)2𝑁
𝑖=1

𝑛
   [6] 263 



14 
 

Where O represents the observations in the test data sets, E the estimated yield, and n is the 264 

number of samples. These accuracy measures (RMSE & R2) were calculated using two different datasets: (i) 265 

ten-fold cross-validation and (ii) an independent validation dataset not used to train the RF models. In 10-266 

fold cross-validation, the data is divided into 10 nearly equally sized subsets. Ten iterations of training and 267 

validation are performed such that within each iteration a different subset of the data is withheld for 268 

validation, while the remaining 9 subsets are used to train the model. The RMSE and R2 values for each 269 

iteration are then averaged to provide an overall estimate of model accuracy (Refaeilzadeh et al., 2009). 270 

The standard deviation in accuracy measures over the ten iterations were used to produce error bars to aid 271 

comparison of models. The accuracy measures were calculated for the cross-validation and independent 272 

validation datasets to ensure that the models were not overfitting the training data. Model accuracy was 273 

considered to be dependably different if accuracy error bars did not overlap.  274 

3.6 Establishing a baseline 275 

 To set this study within the wider context of yield estimation methodologies, a baseline was 276 

established against which to compare the models created. As yield has often been estimated using simple 277 

(linear) regression applied to a variety of VIs, this method was used to provide the baseline. Linear and 278 

random forest (RF) regression were applied to a variety of single-date VIs derived from the available 279 

Sentinel-2 imagery. As well as using single-date VIs, previous studies have also used multi-date VI data 280 

accumulated throughout the growing season. The variation in accuracy with accumulation of VI data was 281 

therefore assessed, using RF regression and the NDVI as an example.  282 

4. Results 283 

4.1 Baseline data 284 

From the baseline data analysis, linear regression produced RMSE values between 1.68 to 2.00 285 

tonnes/ha (R2 0.01 to 0.29), while RMSE values from RF ranged from 1.54 and 2.01 tonnes/ha (R2 0.12 to 286 

0.44) (table 5). Of the combinations of month and VI assessed the NDVI and WDRVI for July offered the 287 

highest accuracy (RMSE 1.54 tonnes/ha). Compared to this baseline, all further models created in this study 288 

displayed improved yield estimation accuracy (table 7; figure 6). The baseline results also suggest that the 289 
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accuracy of yield estimation improves throughout the growing season, with reductions in RMSE as NDVI 290 

data accumulates from December to July (table 6).  291 

Table 5: RMSE and R-squared values calculated from the validation dataset for linear and random 292 

forest regressions using vegetation indices calculated for each month. 293 

Month VI 

Linear Regression Random Forest Regression 

RMSE  RSQ  RMSE  RSQ  
December GCVI 1.86 0.12 1.87 0.20 

 GNDVI 1.87 0.12 1.90 0.19 

 NDVI 1.87 0.12 1.87 0.20 

 SR 1.82 0.16 1.85 0.21 

 WDRVI 1.84 0.14 1.86 0.21 

April GCVI 2.00 0.01 1.93 0.18 

 GNDVI 1.99 0.02 1.90 0.19 

 NDVI 1.97 0.04 2.01 0.12 

 SR 1.99 0.03 2.01 0.12 

 WDRVI 1.98 0.03 2.01 0.13 

June GCVI 1.68 0.28 1.82 0.24 

 GNDVI 1.70 0.27 1.79 0.25 

 NDVI 1.79 0.19 1.91 0.15 

 SR 1.78 0.20 1.98 0.13 

 WDRVI 1.79 0.19 1.96 0.13 

July GCVI 1.74 0.25 1.59 0.41 

 GNDVI 1.70 0.28 1.59 0.41 

 NDVI 1.69 0.29 1.54 0.44 

 SR 1.78 0.22 1.55 0.44 

 WDRVI 1.71 0.28 1.54 0.44 

 294 

Table 6: RMSE and R-squared values calculated from the validation dataset for random forest 295 
regressions using NDVI data accumulated over the growing season. 296 

NDVI  RMSE RSQ 

December 
 

1.86 0.23 

December + April 
 

1.37 0.54 

December + April + June 
 

1.24 0.62 

December + April + June + July 0.96 0.77 

 297 

4.2 Random Forest Model Comparison 298 

Validation of the RF models was conducted in two ways, using the 10-fold validation from RF and 299 

also in a separate validation using a small data set that was not used for training. In general, the validation 300 

RMSEs fall within the error bars for the training RMSEs (table 7; figure 6). This suggests the accuracy 301 

reported using the training data is relatively reliable and RF is not overfitting the data. Where this is not the 302 

case (S2_20, S2_SWI, DA-Env, DAJ-Env), the validation RMSE is only 0.01 tonnes/ha outside the error bar, 303 
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suggesting only minimal discrepancy. This difference may be due to the relatively small size of the 304 

validation dataset. 305 

  Table 7: Results of random forest analysis.  306 

Combination RMSE (training 
data – 10-fold 
cross 
validation) 

RMSE 
(validation 
data) 

R2 (training 
data – 10-fold 
cross 
validation ) 

R2 
(validation 
data) 

S2 (DAJJ) 0.64 0.66 0.90 0.89 

S2_20 0.78 0.70 0.85 0.88 

S2_VI 0.64 0.66 0.90 0.89 

VI 0.88 0.87 0.81 0.81 

S2_Met 0.63 0.65 0.90 0.89 

S2_SWI 0.58 0.62 0.91 0.91 

S2_Topo 0.60 0.63 0.91 0.90 

(DAJJ-) S2_Env 0.59 0.61 0.92 0.91 

D 1.01 1.01 0.74 0.74 

A 0.94 0.96 0.78 0.77 

Jn 0.88 0.88 0.80 0.81 

J 0.89 0.90 0.80 0.80 

DA 0.78 0.78 0.85 0.85 

DAJ 0.70 0.69 0.88 0.88 

D-S2_Env 0.64 0.67 0.89 0.89 

DA-S2_Env 0.60 0.63 0.91 0.90 

DAJ-S2_Env 0.60 0.62 0.91 0.91 

D-Env 0.69 0.71 0.88 0.87 

DA-Env 0.66 0.69 0.89 0.88 

DAJ-Env 0.65 0.69 0.89 0.88 

DAJJ-Env 0.67 0.69 0.89 0.88 

 307 

 308 

 309 

 310 

 311 

 312 
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 313 

Figure 6: Ten-fold RMSE values from Random Forest analysis calculated using the training dataset and 314 

RMSE values from the validation dataset. Error bars produced using the standard deviation in ten-fold RMSE 315 

iterations.  Specific data values can be found in table 7. For question 5, S2 is the Sentinel-2 only data, S2_Env 316 

is the Sentinel-2 and environmental datasets, whilst Env is just the environmental data sets (see table 4 for 317 

more details).  318 

 319 

This study centred on 5 key questions designed to investigate how inclusion of different datasets 320 

affects the accuracy of yield estimation. The results of the RF analysis are outlined in the following sections.   321 

 322 

Question 1: How does resampling the spatial resolution of Sentinel-2 data affect the accuracy of yield 323 

estimation? 324 

As Sentinel-2 has bands with differing resolutions (10m, 20m), the data will typically be resampled 325 

to either 10m or 20m for analysis. Comparison of RF using 10m (S2) and 20m resolution (S2_20) Sentinel-2 326 

data demonstrates that yield estimation is more accurate for the 10m model (figure 6).  327 
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Question 2: Does calculating separate VIs contribute any extra information to the estimation model? 328 

The RMSE is very similar between the S2 and S2_VI models, although the uncertainty increases for 329 

S2_VI, while using the VI data on its own produces lower accuracy (figure 6). This shows that adding VIs to 330 

the basic Sentinel-2 data does not improve the accuracy of yield estimation.  331 

 332 

Question 3: How do different combinations of Sentinel-2 data and environmental data affect estimation 333 

accuracy? 334 

The model results demonstrate that yield estimation can be improved by the introduction of 335 

environmental data to the Sentinel-2-based RF model. However, the results differ depending on the type of 336 

data added, i.e. meteorological, topographical, soil moisture or a combination of all three. Compared to the 337 

S2 combination, S2_SWI and S2_Env produce higher accuracy estimations, while S2_Met and S2_Topo do 338 

not offer any definite improvement (figure 6). This suggests that adding either soil moisture data or a 339 

combination of all available environmental data to Sentinel-2 data can improve yield estimations. 340 

 341 

Question 4: Which single-date Sentinel-2 image provides the most accurate estimation? 342 

The availability of spectral data varies between years and locations. In places particularly prone to 343 

cloud cover, such as the UK, only 1 or 2 cloud-free images may be available over the growing season. How 344 

the accuracy of yield estimation from single-date images varies throughout the year is therefore an 345 

important question. Comparison of the available Sentinel-2 images demonstrates that estimation accuracy 346 

increases substantially from December to June (figure 6). From June onwards however there is no clear 347 

difference in accuracy.  348 

 349 

Question 5: How does estimation accuracy vary with accumulation of data throughout the growing season 350 

for Sentinel-2 data only (Qu 5a), Sentinel-2 and environmental data combined (Qu 5b), and 351 

environmental data only (Qu 5c)? 352 
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5a: Sentinel-2 data 353 

The accumulation of Sentinel-2 data over the year improves estimation accuracy throughout the 354 

growing season. Clear decreases in RMSE are observed as successive Sentinel-2 images are added to the 355 

estimation model (figure 6). The biggest improvement occurs from December to April. 356 

 5b: Sentinel-2 plus environmental data 357 

The addition of environmental data to Sentinel-2 data improves estimation accuracy across all date 358 

combinations compared to the Sentinel-2 only combinations (Qu 5a) (figure 6). Combining Sentinel-2 data 359 

and environmental data from December alone (D-S2_Env) provides similar accuracy to the full Sentinel-2 360 

data set combined (DAJJ S2). RMSE does not vary substantially as successive data are added to the S2_Env 361 

combinations. This suggests little improvement with accumulation of data over the growing season.  362 

 5c: Environmental data  363 

Environmental data for December alone provides a yield estimation accuracy comparable to the 364 

DAJ Sentinel-2 data combination (Qu 5a) (figure 6). Accumulation of environmental data over the growing 365 

season has little impact on estimation accuracy.  366 

The environmental data contains two types of data: those which are static over the growing season 367 

(topography), and those which are dynamic (precipitation, temperature, SWI). Considering these 368 

separately, the topographic data appear contribute more to the estimation accuracy (RMSE 1.18 ± 0.05 369 

tonnes/ha) than the other environmental variables (RMSE 1.32-1.34 ± 0.02-0.05 tonnes/ha depending on 370 

temporal coverage). However, the topographic data alone does not match the high accuracy achieved 371 

when the two types of environmental data are combined (regardless of temporal coverage).  372 

In general, most of the combinations containing only environmental data provide less accurate 373 

estimates than having a combination of Sentinel-2 data and environmental data.  374 

4.3 Mapping within-field wheat yield variability 375 

The results from the 5 questions demonstrate that within-field yield variability can be estimated 376 

relatively accurately, with an RMSE between 0.61 and 1.01 tonnes/ha, depending on the data combination. 377 
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This accuracy is reflected when comparing the observed and estimated yields, which show that the 378 

estimated yields reflect the general patterns of yield variability within individual fields (figure 7).  379 

 380 

 381 

Figure 7: Observed yield interpolated from the combine harvester data (left) and estimated yield from the 382 

S2_Env RF model (right) for a selection of fields within the training area. 383 

  384 

Comparing frequency distributions of observed and estimated yield for each field suggests that the 385 

ability of the RF models to detect within-field variability varies between fields (figure 8 shows the frequency 386 

distributions for the best RF model: S2_Env). The shape of the yield distribution varies between fields, with 387 

some exhibiting simple unimodal distributions (e.g. field 15 (figure 8)) and others more complex bimodal 388 

distributions (e.g. field 21 (figure 8)). Comparing the two distributions for both individual fields and all fields 389 

combined there appears to be a tendency for overestimation of the frequency of modal values, and 390 

underestimation of the highest and lowest values. Despite these tendencies, the model appears to provide 391 

relatively accurate estimates of within-field yield variability for individual fields with RMSE values between 392 

0.24 and 1.94 tonnes/ha (table 8). Additionally, the regression graph confirms the trends shown in the 393 

frequency distributions (figure 9).  394 

 395 
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 396 

Figure 8: Frequency distributions for observed and estimated yields using the validation data set for the 397 

S2_Env model for all fields and a sample of individual fields. Individual fields chosen were those with the two 398 

highest (fields 15 and 14), two middle (fields 13 and 31), and two lowest (fields 21 and 17) RMSE values to 399 

provide a representative selection.  400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 
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Table 8: RMSE values for individual fields using the validation data set for the S2_Env model. NB: this model 411 

was run using data from 34 fields, rather than the full 39, due to missing data values for some satellite 412 

images.   413 

Field number RMSE Field number RMSE Field number  RMSE  

1 0.45 13 0.47 25 0.56 

2 0.37 14 0.27 26 0.72 

3 0.61 15 0.24 27 0.59 

4 0.7 16 0.43 28 0.65 

5 0.4 17 1.94 29 0.29 

6 0.29 18 0.45 30 0.63 

7 0.32 19 0.58 31 0.48 

8 0.61 20 0.49 32 0.3 

9 0.41 21 1.36 33 0.46 

10 0.47 22 0.87 34 0.37 

11 0.28 23 0.77   

12 0.89 24 0.79   

 414 

 415 

 416 

Figure 9: Linear regression between observed and estimated yield for the validation data set from the 417 

S2_Env model.  418 

 419 

 420 

 4.4 Mapping within-field wheat yield variation at Landscape-scale. 421 

Satellite data enables scaling-up of yield estimation across the wider landscape area using data 422 

from a few fields. To demonstrate this potential, the S2_Env RF model was used to estimate yield for the 423 

area covered by the Sentinel-2 image (figure 10 shows a portion of this map). Fields containing wheat were 424 
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identified using the 2016 Land Cover Plus®: Crops map. To remove mixed boundary pixels from the dataset, 425 

field boundaries in the crop map were buffered in by 20m. In this study, the yields estimated in all fields 426 

across the entire area fell within the range of values in the training data, increasing the likelihood of the 427 

yield estimations being accurate. Extrapolation outside the input data range would be less reliable. 428 

High resolution yield maps make it is possible to look at within-field and between-field yield 429 

differences, and identify wider landscape patterns. For example, in the area covered in this study yield 430 

ranges from 4.09 to 12.22 tonnes/ha, with a mean value of 9.02 tonnes/ha (mean per field 5.83 to 11.21 431 

tonnes/ha) and a total yield production of approx. 289000 tonnes. Using such maps it is possible, among 432 

other things, to identify clusters of higher or lower yielding fields within the same climate region. For 433 

example, in figure 10 there is a cluster of higher yielding fields in the northwest corner of the map and a 434 

cluster of lower yielding fields in the east of the image. Knowledge of such clusters facilitates further 435 

investigation into the causes of yield variation within the landscape, such as differences in crop 436 

management practices and environmental conditions. Furthermore, using information on yield variability it 437 

is possible to identify different management zones and yield-limiting factors to improve the efficiency of 438 

farming practices in different areas (Diker et al., 2004). 439 

 440 

 441 

 442 

 443 



24 
 

 444 

Figure 10: Landscape-scale wheat yield estimation based on S2_Env RF model. 445 

 446 

5. Discussion 447 

5.1 Benefits of Random Forest 448 

All the multi-variable RF regression models developed in this study outperformed the single-date 449 

VI-based linear regression and RF models used as a baseline. This demonstrates the superior ability of RF 450 

and multi-variable models in general. While RF is now widely used for image classification, its use for yield 451 

estimation is not so common with studies generally relying on traditional regression models. However, RF 452 

has a number of key advantages over traditional regression models for yield estimation, some of which are 453 

demonstrated by the results of this study. Firstly, using RF may increase the amount of data available for 454 

training. RF randomly selects a subset of the calibration dataset that it reserves for assessing model 455 

accuracy rather than model training (Jeong et al., 2016). In this study, the additional step was taken of also 456 

splitting the data into training and validation datasets outside of RF to provide a means of checking 457 
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whether the model was overfitting the data. The results suggest overfitting was not an issue in this study. If 458 

holding back some data for validation is less important for RF than for traditional regression models, this 459 

would increase the volume of data available to train the model, which will likely improve its estimative 460 

capability. 461 

Secondly, it appears RF is able to utilise relationships between explanatory variables to control for 462 

confounding factors. Of the data combinations explored in this study, the integration of environmental data 463 

with Sentinel-2 data provided the most accurate yield estimation. Environmental data has been used 464 

alongside satellite data to support crop yield estimation in numerous studies, commonly through the use of 465 

crop simulation models (Azzari et al., 2017; Doraiswamy et al., 2005; Jin et al., 2017b; Lobell et al., 2015; 466 

Moriondo et al., 2007). Despite the clear advantages of including environmental data such as the SWI in the 467 

RF model, linear regression reveals no obvious relationship between SWI and crop yield (R2 of 0.004-0.11 468 

depending on the month). It therefore appears that the improvement in accuracy arises not from a direct 469 

relationship between soil moisture and yield, but from an underlying relationship between SWI and 470 

spectral reflectance. It may be that the inclusion of SWI data enables RF to control for the impact on 471 

spectral reflectance of soil moisture variability between Sentinel-2 images. RF appears to be able to identify 472 

and unpick relationships between explanatory variables and to use these to account for confounding 473 

factors, which could reduce accuracy. The ability of RF to cope with multi-variate relationships between 474 

data of different types and resolutions is a key advantage over methods such as linear regression, which 475 

can only address uni-variate relationships.  476 

Further to this, the apparent ability of RF to detect underlying relationships can also reduce the 477 

number of explanatory variables required to provide an accurate estimation. Previous studies have 478 

commonly utilised a variety of VIs to estimate yield by inferring relationships between VIs and yield (Liaqat 479 

et al., 2017; Lopresti et al., 2015; Ren et al., 2008), or to derive relationships with surface parameters such 480 

as LAI and fAPAR, which can be used to estimate yield (Boschetti et al., 2014; Nigam et al., 2017). In this 481 

study, using VIs and the original Sentinel-2 data together provided no improvement in accuracy. This may 482 

indicate that RF is able to infer the relevant information for yield estimation normally provided by VIs from 483 

the individual Sentinel-2 bands themselves. Whether this is the case or not, the fact that RF does not 484 
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require separate VIs could have significant benefits. By removing the need to calculate separate indices, RF 485 

may simplify processing and reduce processing time.  486 

5.2 Optimum processing resolution 487 

This study demonstrates that Sentinel-2 data has the potential to provide relatively accurate 488 

estimates of within-field yield variability in the UK. In this study, yield estimation is more accurate at 10m 489 

resolution than 20m resolution. Conversely, Yang et al. (2009) found accuracy increased as resolution 490 

decreased; SPOT 5 pixels rescaled to 30m resolution explained 15% more of the yield variability than the 491 

original 10m pixels. The reason for this disagreement may be found in the nature of the different datasets 492 

used in each study. Pre-rectification, SPOT 5 images have a locational accuracy of 30m (Yang et al., 2009), 493 

while Sentinel-2 images have a locational accuracy of 20m (Drusch et al., 2012). Such differences in spatial 494 

precision could partly account for the discrepancy in the image resolution-yield accuracy relationship seen 495 

in these two studies.  496 

In addition, the accuracy of the yield data used within different studies will vary as data will be 497 

collected at different times, for different crops and using different yield monitors and combine harvesters. 498 

Yield monitors are susceptible to a number of potential errors including time delays, calibration errors and 499 

combine operational errors (Grisso et al., 2002). The exact yield monitor used and the way in which these 500 

errors are assessed and adjusted for will affect the final accuracy of the yield data. While various studies 501 

have been conducted into the different options for data correction (Lyle et al., 2014), there is currently no 502 

universally accepted procedure. It is therefore likely that the corrections applied and the thresholds used 503 

will differ between studies, affecting the relative accuracy of the training data.  504 

Our findings showed higher yield estimation accuracy at 10m than 20m. This may be because 505 

advances in satellite sensor design and data processing, alongside improved processing methods for 506 

combine harvester data, provide higher quality image data and reference data that enable accurate yield 507 

estimation at high resolution. This suggests that it is important to optimise the resolution and the match 508 

between the satellite data and the reference data. Testing a number of different resolutions may be the 509 
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best way of identifying the optimum resolution as it may not be obvious from the point density and 510 

resolution of the satellite data.  511 

The high frequency of cloud cover within the UK restricts the number of optical satellite images 512 

available for crop yield estimation (Armitage et al., 2013). Satellites with a lower spatial resolution and 513 

higher temporal resolution, such as MODIS, have the potential to provide a greater number of cloud-free 514 

images throughout the growing season. The availability of more cloud-free images would allow crop growth 515 

dynamics to be tracked more accurately over the growing season. This might allow more generic solutions 516 

for using satellite data to estimate within-field yield variability. However, the typically small field-sizes 517 

(approx. 2ha to 175ha for wheat) and high within-field variability within the UK mean that using lower 518 

resolution images would not be suitable, with large numbers of mixed pixels being produced. Assessment 519 

of within-field variability within the UK therefore requires satellite data with a higher spatial resolution, 520 

even if it means allowances have to be made for image frequency and availability of cloud-free images.  521 

 While this study uses Sentinel-2 data, it is important to remember that higher resolution data is 522 

available from various commercial sources (e.g. RapidEye, Planet Labs). Such higher resolution data could 523 

potentially allow more detailed assessment of within-field variability. However, previous work highlights 524 

the limits to the spatial precision of the combine harvester data, because of the way the sensors and 525 

combine harvesters work (Lyle et al., 2014). The yield spatial resolution and precision is system dependent, 526 

as it is a function of the monitoring equipment, the cutting head and the software. For example Lyle et al. 527 

(2014) found a spatial resolution of about 20-25m appropriate for the system they investigated. This 528 

suggests that the key constraints on the highest spatial resolution that yield can be mapped and validated 529 

at may be determined by the combine systems rather than the satellite data. As such, whether there is any 530 

benefit to using higher resolution commercial satellite data for the spatial resolution it offers will depend 531 

on the exact nature of the sensor used. There may, however, be a benefit from the high repeat frequency 532 

that could capture key periods of the growing season, even if the data cannot be used to estimate yield at 533 

higher resolutions than Sentinel-2. Since the precision and spatial ‘footprint’ of yield monitor data is 534 

determined largely by header width, future advances may be driven by research purposes that require 535 

more spatially precise data, through for example, use of plot combine harvesters with smaller header 536 
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widths than commercial combine harvesters (Marchant et al., 2019). However, similar advances are 537 

unlikely for commercial yield monitors due to the impact smaller header widths would have on harvesting 538 

times and efficiency.   539 

Despite the difference in spatial resolution between the Sentinel-2 data (10m) and the temperature 540 

and precipitation data (5km), the results suggest that inclusion of these environmental variables did in fact 541 

increase the accuracy of the results. This is likely due to the fact that the 39 fields used for training the RF 542 

models were widely dispersed over the Oxfordshire and Lincolnshire study areas. This meant that data from 543 

54 of the 5km squares was used to build the RF model, despite the relatively small area covered by the 544 

fields themselves (476 ha), allowing some variation across the study area to be detected. It is likely that the 545 

inclusion of higher resolution data would increase the accuracy further by allowing better detection on 546 

finer scale variations in temperature and precipitation across the study area. Future work could look at 547 

methods for downscaling the data to make it more suitable for field-scale yield assessment.  548 

5.3 Variability in accuracy through the season  549 

The accuracy of yield estimation based on single-date Sentinel-2 images generally improves 550 

throughout the growing season. The biggest improvement occurs between the December and April images, 551 

with a further, smaller increase by June. There are a few possible explanations for this. Firstly, the signal-to-552 

noise ratio will vary throughout the growing season, with differences in sun angle and incoming radiation 553 

intensity, which will affect the estimation accuracy. Secondly, towards the beginning of the growing season 554 

(e.g. December) the canopy may not have developed enough to give a good characterisation of the spatial 555 

variability in growth. Later in the growing season (e.g. April), the canopy will be more fully developed 556 

allowing more accurate detection of spatial variability. Visual interpretation of the Sentinel-2 images (figure 557 

11) suggests the lack of improvement from June to July may be due to the crops ripening, or beginning to 558 

ripen, over this period. This will likely affect the accuracy of yield interpretation from Sentinel-2 data alone. 559 

 560 

 561 
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 562 

Figure 11: Evidence of crops ripening between successive Sentinel-2 images for June (left) and July (right). 563 

 564 

5.4 Future developments 565 

Future work should explore the contribution Sentinel-2 can make to crop models used to estimate 566 

yield. Crop models are widely used to estimate and predict crop yields and are known to provide relatively 567 

accurate results for specific crops. Previous crop model studies have commonly relied on freely available 568 

data from satellites such as Landsat (Lobell et al., 2015; Xie et al., 2017), MODIS (Doraiswamy et al., 2005; 569 

Ines et al., 2013) and AVHRR (Moriondo et al., 2007). The low to moderate resolution of such data has 570 

limited the ability to assess within-field yield variability, with yield estimation studies mostly focusing on 571 

farm- (Sehgal et al., 2005), regional- (Huang et al., 2015; Padilla et al., 2012) and county-scales (Ju et al., 572 

2010). The ability to detect within-field yield variability using Sentinel-2 demonstrated by this study 573 

suggests future work should explore the benefit of incorporating Sentinel-2 data into current crop models. 574 

Battude et al. (2016) demonstrated the theoretical potential using SPOT4-Take5 data, which was designed 575 

to simulate the spatial and temporal sampling of Sentinel-2, within the Simple Algorithm For Yield 576 

estimates (SAFY) crop model to estimate maize yields. Further work is needed to ascertain whether this 577 

potential can be realised with actual Sentinel-2 data, and whether this translates to other crop models.  578 
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Additionally, an exploration of the key Sentinel-2 bands for yield estimation could prove useful. 579 

Knowledge of which bands are most valuable for predicting yield could allow models to be streamlined, 580 

removing the bands which contribute the least to yield estimation. Such work would require consideration 581 

of study sites in a variety of countries with a range of environmental conditions to ensure that any patterns 582 

of band importance apply generally and are not limited to specific sites. Building on this, future work could 583 

also compare the ability of Landsat and Sentinel wavebands to estimate yield. Such a comparison could 584 

provide valuable information on the requirements of satellite sensors for yield estimation, and, for 585 

example, whether the inclusion of the Sentinel-2 vegetation red edge bands contributes any useful 586 

information. Understanding band importance for different applications is valuable for the remote sensing 587 

community as it can inform the development of future satellites. 588 

In this study, no attempt was made to extrapolate beyond the available data, so yield estimation 589 

was constrained by three factors: firstly, by the upper and lower limits of the yield data, with all estimated 590 

yield values falling within the range of the training dataset; secondly, by the geographical location of the 591 

study sites, which marked the north-eastern and south-western-most extent of the landscape-scale yield 592 

estimations; finally, by focussing on wheat fields only. Future work should test the transferability of the 593 

method used in this study (figure 2) to other areas, environmental conditions and crop types.  594 

 595 

6. Conclusion 596 

This study demonstrates that Sentinel-2 data is capable of providing relatively accurate estimates 597 

of within-field yield variability (RMSE 0.66 tonnes/ha) when combine harvester data are available to 598 

calibrate against. Combining Sentinel-2 with environmental data provides more accurate estimates than 599 

using Sentinel-2 data or environmental data individually (RMSE 0.61 tonnes/ha). Furthermore, RF appears 600 

to provide higher yield estimation accuracy than commonly used simple VI-based linear regression. This 601 

study has also proposed a method that can be adapted to other crops and locations, when suitable training 602 

data are available. The method is applied to estimate yield at the landscape scale and produce a landscape-603 

level estimate of crop yield.  604 
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