
1

BCON: Blockchain Based Access CONtrol across
Multiple Conflict of Interest Domains

Gauhar Ali, Naveed Ahmad, Yue Cao, Member, IEEE, Qazi Ejaz Ali, Fazal Azim, and Haitham
Cruickshank, Member, IEEE,

Abstract—In today’s on-demand computing and virtual coali-
tion environment, cross-domain services are acquired and pro-
vided. These business domains may belong to either the same or
different conflict of interest system. “Transitive access” can cause
leakage of information between competitors through some other
conflict of interest system’s member. Therefore, a secure access
control mechanism is required to detect and deny “transitive ac-
cess” efficiently with minimal trust in externalist. Existing access
control mechanisms focused on either single or multiple conflict
of interest domains but with no “transitive access”. In addition,
these existing mechanisms are centralized with inherited unfair
access control and are a single point of failure. Blockchain (BC) is
a shared digital ledger encompassing a list of connected blocks
stored on a decentralized distributed network that is secured
through cryptography. We propose a BC based access control
for conflict of interest domains. We have integrated a BC in our
architecture to make access control fair, verifiable and decentral-
ized. Users access histories and “transitive accesses” are stored
on BC ledger. We propose a novel mechanism called “Transitive
Access Checking and Enforcement (TACE)” i.e., “Algorithm.1”.
It makes an authorization decision based on BC endorsement
that “transitive access” will not occur. “Algorithm.2” verifies
and updates users access histories stored at BC before each
request approval. Similarly, “Algorithm.3” detects possible future
“transitive accesses” and updates Transitive Access Set (TAS)
stored at BC after each request approval. The Simple Promela
Interpreter (SPIN) model checker is used to verify the proposed
mechanisms for “transitive access” detection and prevention.
We have identified four conflicting sequences of execution that
can cause “transitive access”. Results show that the proposed
mechanism is safe against “transitive access” by checking all the
four possible conflicting sequences of execution.

Index Terms—Access Control, Formal Verification, Blockchain,
Resource Management and Allocation, Model Checking.

I. INTRODUCTION

In todays ubiquitous and dynamic environment, most of the
devices have the ability to share information and resources.
These devices can be connected in a variety of ways such
as wireless sensor network, cloud computing [1], Internet of
Things (IoT) [2] to enable ubiquitous and on-demand access
to servers, storage, computer networks, computer applications
and services. These dynamic coalitions enable the organiza-
tions to open their data for cross-domain access. For example,

Gauhar Ali and Naveed Ahmad are with the Department of Computer
Science, University of peshawar. Email: gauharstd; n.ahmad@uop.edu.pk.

Yue Cao is with the School of Computing and Communications, Lancaster
University, UK. Email: yue.cao@lancaster.ac.uk.

Qazi Ejaz and Fazal Azim are with the Department of Computer
Science, University of peshawar. Email: qaziejazali@uop.edu.pk; azim-
fazal@gmail.com.

Haitham Cruickshank is with the Institute of Communication Systems,
University of Surrey, GU2 7XH, UK. Email: h.cruickshank@surrey.ac.uk.

commercial organizations take consultancy services such as
audit from financial institutions. Therefore, consultants from a
financial institution need to access the data of the organization.

These dynamic coalitions raise new access control chal-
lenges. The authentication and access control mechanisms
need to be redefined with the least trust for cross-domain
users. The consultant or even financial institution can misuse
the organization data. It can provide the organization data
to other competitors. The situation becomes worse when the
consultant has access to multiple organizations data. In such a
virtual coalition, users i.e., consultants can request and access
resources from different conflict of interest domains/classes.
These cross-domain accesses can cause “transitive access”.

The “transitive access” allows a user to get an unpermit-
ted resource through some legitimate subject and/or object.
Suppose α and β are two conflict of interest classes. Class α
has two competitors, company α1 and company α2. Similarly,
company β1 belongs to conflict of interest class B. The
consultancy firm assigns two consultants Alice and Bob to
β1 for consultancy services and both have read (r) and write
(w) access to β1 dataset. Later on, Alice and Bob can also
generate a request for company α1 and company α2 datasets
with r and w permissions respectively. If access is granted,
then it is highly likely that information of company α1 may
be leaked to company α2 through β1. A secure mechanism is
required to stop “transitive access” that can cause leakage of
information between conflict of interest classes.

In [3], authors have proposed a formal framework for cross-
domain access control. They have considered a use case where
the trust relationship between collaborating organizations is
minimal. They have proposed a trusted third party called
delegation service for cross-domain access control. The trusted
third party is used to protects the privacy of requesting user
and privacy of the resource owner. Both the service requester
and service provider are unknown to each other. In [4], authors
have presented a framework xDAuth, for cross-domain access
and delegation control. A trusted Delegation Service (DS)
makes an authorization for cross-domain access requests. The
DS redirects the user for authentication to his own domain.
After successful authentication, DS makes an authorization
decision based on service provider access policies. Similarly,
a centralized external entity called OAuth based authorization
service (OAS) is proposed in [5]. The service provider redi-
rects all users access request to OAS for authorization.

The coalition partners in the real world outsource cross-
domain authentication and authorization to trusted third party
called identity provider or delegation service [4], [3] and

*Manuscript

gauhar
Highlight

2

[5]. These security companies authorize cross-domain’s users
based on some pre-defined access control policy of the organi-
zation. Moreover, the security companies store user’s creden-
tials and organization’s access control policies. Furthermore,
a single trusted entity controls cross-domain accesses. Here,
if the single trusted entity fails, then cross-domain access will
not occur. These centralized security companies may be biased
while permitting illegal or transitive requests and denying legal
requests. Also, the centralized entity knows the credentials
of both service requester or service provider. It may disclose
credential to other users. Furthermore, the exiting architectures
have targeted multiple conflict of interest domains but with
no “transitive access”. Therefore, a mechanism is required to
develop trust amongst coalition partners, meanwhile without
a single trusted entity. Also, a mechanism is required to allow
the clients i.e., resource owner to verify the allocation of
consultants to their resources.

Our Proposed work suggests BC based access control across
multiple conflict of interest domains. Our proposed TACE
mechanism (Algorithm.1) makes an authorization decision
based on BC validation. Similarly, we propose two transaction
validation algorithms i.e., Algorithm.2 and Algorithm.3. Al-
gorithm.1 executes for every request and checks TAS before
the request is granted. Then, it calls Algorithm.2 to validate
the transaction and adds the new request to the BC block.
Each user permitted accesses are maintained in a directed
graph called Access Flow Graph (AFG) which is stored on
BC in Process Access Set (PAS). New “transitive access” may
occur when a user request is allowed. Therefore, Algorithm.1
checks PAS for possible new “transitive access” after each
request is granted. Then, it calls Algorithm.3 to validate the
new “transitive access” and adds the pair of transitive requests
to the BC block.

Furthermore, the proposed architecture makes unbiased user
authorization decision through BC consensus. Since, the min-
ers validate user request against access control policies stored
at BC. Also, the user can audit BC authorization decision.
Every BC node has a copy of the distributed ledger and
synchronized through replication. Therefore, it eliminates the
case if some of the nodes malfunction in the chain.

Moreover, we use SPIN (Simple Promela INterpreter) [6]
model checker for formal verification of our approach. The
SPIN model checker uses a high-level language called Process
Meta Language (PROMELA). We use PROMELA to develop
a model for our proposed mechanism. The behavior of the
model is described in Linear Temporal Logic (LTL) [7]. The
LTL is used to describe properties that to be verified by the
SPIN model checker. Our contributions are as follows:
• Our proposed TACE mechanism (Algorithm.1) provides

decentralized BC based cross-domain access control ser-
vices. It approves every request when BC guarantee that
it is not in TAS.

• We have proposed two transaction validation algorithms
i.e., Algorithm.2 and Algorithm.3. Algorithm.2 is used
by BC to validate “T.updateP” transaction i.e., no “transi-
tive access” will occur if the request is granted. Similarly,
Algorithm.3 is used by BC to validate “T.updateT”
transaction i.e., the given pairs of requests are transitive.

• To provides unbiased and uninterrupted access control
across multiple conflict of interest domain, the PAS and
TAS are stored on the BC. It alleviates the case if some
of the nodes malfunction in the chain. Also, any user can
verify any others assigned resources while still preserving
user privacy.

• We develop a promela model of our proposed mechanism
by using SPIN model checker. We identify four con-
flicting sequences of execution in cross-domain accesses.
These conflicting sequences of execution cause “transitive
access”. The SPIN model checker verifies our mechanism
against “transitive access” across multiple conflict of
interest domains.

The rest of the paper is organized as follows. In Section II,
we discuss and summarize preliminaries and related works. In
section III, we present our proposed architecture. In section IV,
we discuss the use cases. Section V presents the verification
results. In section VI, conclusions are drawn.

II. PRELIMINARIES AND RELATED WORKS

A. Blockchain (BC)

The BC was invented by Satoshi Nakamoto [8], where cryp-
tocurrecy bitcoin is it first implementation. The cryptography,
BC protocols and peer-to-peer network are the major building
blocks of BC. The following are the main features of BC.

1) Decentralized and distributed ledger: Every transition
is recorded on a shared ledger. Every node maintains a copy
of the ledger. These distributed ledgers are synchronized by
replication.

2) Transparency: Every BC block is tamper-proof and
available to all the parties in the BC for audit [9].

3) consensus: Every block is validated independently via a
consensus mechanism. This mechanism is called mining and
works without the use of central trusted authority.

4) Security: Each block contains the hash value of previous
blocks in the chain. When a block tampers, its hash will
change. Therefore, it makes all following blocks invalid. The
attacker must re-calculate all the following blocks hashes.
Also, it must re-execute the consensus algorithm, like Proof
of Work (PoW) [10] or Proof of Work (PoS) [11], to validate
the blocks.

B. How BC Works

BC is a chain of blocks linked together by cryptographic
hashes. Every block contains a hash of the previous block.
The genesis block is the first block in the chain and does not
contain a hash of any block. Every block contains PoW, a
timestamp, the hash of the previous block, block header and
a number of transactions.

Here, miners are BC network nodes having greater comput-
ing power. Each miner validates the newly created block and
adds to the BC. In bitcoin, approximately every 10 minutes, a
new block is added to the BC [12]. Miners compete by solving
a complex mathematical problem called PoW. The miner with
more computing power has a greater chance of winning the
competition. The newly created block is broadcasted in the BC
network. Every node has a copy of BC and adds the block

gauhar
Highlight

3

after PoW verification. Miners receive a transaction fee for
spending their computing power to find PoW.

The consensus mechanism enables BC nodes to agree on
a one only value. The PoW, PoS are some of the consensus
mechanisms used by BC. PoW generates a value which is
difficult to solve but easy to verify. For example, generate
a hash value having n=4 leading zero. Actually, it is a
mechanism to slow down the creation of new blocks. Miners
use their computational power to find PoW and get the reward.
In PoS, an election process determine a validator for the next
block. PoS has replaced miner with a validator. To become a
validator the node has to deposit a certain amount of money
called stack. The stack size determines a validator for the next
block. The validator mint a block while miner mine the block.

C. Public and Private BC Networks

The BC networks can be divided into three categories i.e.,
public BC, private BC and consortium BC [13].

1) Public BC Network: It is also called permissionless BC.
It is a fully decentralized BC network. Anyone in the world
can send and read from BC. Anyone can participate in the
mining process. The public BC requires a huge amount of
computational power to run a consensus algorithm called PoW.
Some examples of public BC are bitcoin1 and ethereum2.

2) Private BC Network: It is also called permissioned
BC. It is an invitation-only network. Every member requires
permission before reading or writing. Therefore, organization
data is not publicly accessible. So, it lacks the decentralized
feature of blockchains. However, private BC is faster and more
efficient than public BC which require more computational
power to find PoW. The Hyperledger3 is an example of private
BC

3) Consortium BC Network: It is considered partially de-
centralized where the consensus mechanism is executed by a
set of selected nodes. It is a perfect platform for organizational
collaboration. Like private BC, consortium BC can provide
greater efficiency and transaction privacy. The r34 and EWF5

are examples of a consortium network.

D. Access Control through BC

In [14], the authors have proposed a BC based access
management architecture for IoT. The core components of the
proposed architecture are managers, wireless sensor networks,
agent node, BC network, management hub and smart contract.
The IoT devices use “management hub” to access information
from a smart contract at BC. The smart contract has a set
of access policies. It provides the requested information after
successful validation of certain policies. In [15], the authors
have proposed a BC based access control. Every owner defines
access the policy for his resource and publishes on the BC.
The BC allows a user to access a resource after successful
verification of access policies. The proposed framework allows

1[Online]. Available: https://bitcoin.org/
2[Online]. Available: https://www.ethereum.org/
3[Online]. Available: https://www.hyperledger.org
4[Online]. Available: https://www.r3.com/
5[Online]. Available: http://energyweb.org/

a user to transfer access right to another user using the Right
Transfer Transaction (RTT). All the policies and the rights
transfer are visible on the blockchain. Therefore, any user can
verify at any time who can access a particular resource.

The authors in [16] have proposed a BC based “FairAc-
cess” framework. The proposed access control framework is
decentralized and privacy preserving. Each owner defines the
access policy for his protected resource. The owner stores
newly created access policy at the BC using the “GrantAccess”
transaction. The requester can access the resource using the
“GetAccess” transaction. It can further delegates the permis-
sion using “DelegateAccess” transaction.

A BC based lightweight framework has been proposed for
IoT in [17]. The proposed framework consists of cloud storage,
smart home and overlay network. IoT devices have limited
computing power. Therefore, the proposed framework did not
have coin and PoW. The authors believe that still the BC
security and privacy features are maintained. The authors have
further elaborated the core components of their previously
proposed smart home framework in [18]. The authors have
considered a scenario of smart homes connected to each. Each
smart home has a local BC. All the IoT devices installed in
a smart home are assumed trusted. These IoT devices use
shared key authentication. The shared key authentication is
not a strong security measurement.

In [19], the authors have proposed a BC based decentralized
framework called BlendCAC for access control in IoT. A
capability token is defined for cross-domain delegation and
revocation of permission. Each domain owner defines a smart
contract at BC to manage the capability tokens. Similarly, in
[20], the authors have proposed a BC based cross-platform
collaboration framework for IoT called IoT Passport. IoT
Passport consists of local and global trust domains. A global
trust domain contains multiple organizations. Therefore, global
BC is used to share resource/data among organizations of the
global trust domain. Each organization has a local trust domain
which consists of IoT devices. Therefore, local BC is used to
share resource/date among IoT devices in a local trust domain.
Smart contracts i.e., Collaborative Rule Contracts are used to
provide trust between organizations using cross-platform trust
policies.

All the above discussed architectures have targeted access
control in either single or multiple domains. A single domain
did not have a conflict of interest problem. However, cross-
domain access control can suffer from a conflict of interest
problem. These conflict of interest problems produce “tran-
sitive access” which can cause leakage of information. All
the proposed architectures did not consider “transitive access”.
However, our proposed mechanism finds a conflict of interest
problems and denies “transitive access”.

E. Cross-Domain Access Control

In [3], authors have proposed a formal framework for cross-
domain access control. Authors have considered a scenario
where collaborating organizations have less trust relationship.
They proposed a trusted third party called delegation service
for cross-domain access control. A single trusted delegation

4

service is a single point of failure. Also, it can make bias
decisions in the delegation of permission to users.

The authors in [21], have proposed a capability-based access
control for IoT. Initially, the system grants a limited amount of
permissions to the requester. The system delegates additional
permissions to the requester when required. These permissions
are delegated to the requester using capability. The capability
is defined as an object with a set of permissions. Similarly, in
[5] the authors have proposed an authorization framework for
IoT called IoT-OAS. The authors have proposed a centralized
OAuth based authorization service called OAS. OAS is an
external entity that validates user requests on behalf of the
service provider.

All the above discussed architectures have targeted cross-
domain access control. However, they did not consider conflict
of interest problem arises in cross-domain access control.

The authors in [22], have proposed a new access control
model for data mining environment. It is based on the Chinese
Wall Security Policy (CWSP) model [23]. It has re-defined the
definition of “conflict of interest class”. According to CWSP,
all airline companies belong to the same conflict of interest
because they are competitors. However, airline company α1

and petroleum company β1 are not competitors, so they belong
to different conflict of interest classes. According to the author,
if airline company α1 buy shares in petroleum company β1,
then they must be grouped in the same conflict of interest
class because now both have a conflicting interest. The airline
company α1 may withdraw his shares if it knows the negative
growth in petroleum company β1’s cash flow. Similarly, in
our proposed scenario, the conflict of interest of a consultant
changes with his own and other consultants access histories.
Therefore, our framework records every user access in an
AFG. It allows a user request only if it does not cause leakage
of information.

III. TRANSITIVE ACCESS CHECKING AND ENFORCEMENT

Our Proposed architecture provides BC based access control
for conflict of interest domains. Our proposed architecture
consists of BC manager, TACE module, smart contract and
BC network. The high-level architecture is shown in Fig.1.

A. BC Manager

BC manager registers user devices/IoT devices with BC.
Users use BC transaction to access information i.e., PAS and
TAS stored on the BC. The BC manager receives a request
from the TACE module and initiates a BC transaction. BC has
limited storage capacity. Therefore, access control policies are
stored in off-chain storage while their hashes are stored on the
BC. The details tasks of BC manager are shown in Fig.2. The
BC manager performs the following functions.

1) On receiving a request, BC manager generates
“T.register” transaction to register a node at BC.

2) Allow the owner to defines access policies for his
resource using “T.publish” transaction.

3) Generate “T.accessP” and “T.accessT” transactions, to
retrieve user access histories and “transitive accesses”
stored at BC respectively.

Transaction

Company α1

Alice (consultancy
firm Employee)

Alice wants to access Company α1
data sets with read permission

TACE
Module

T.accessT

T.accessP

T.register

Block A

Blockchain

T.accessT

Block C

T.publish

T.updateT

Block B

UCON Architecture

Transactions

BC
Manager

T.accessP T.updateT

T.updateP

Fig. 1. High-level Architecture

4) Generate “T.updateP” and “T.updateT” transactions, to
add a user approved request and new “transitive access”
to the BC block respectively.

Transaction

generator

Store
policiesBlock

chain

Registration/
Policy creation/
Access/Update

request

Block

chain

service

Database

Transaction

Retrieve
policies

Fig. 2. BC Manager

B. BC Network

Our proposed architecture consists of a consortium BC.
Therefore, only members of the coalition organization are
allowed to become a member of the BC network. It allows all
nodes to read but dedicated nodes to write in the distributed
ledge. A pre-defined set of nodes, called validators in the BC
network, approve every transaction and save copies of the BC
current state. Therefore, data stored at BC is decentralized and
tamper resistant. The access control policies and users access

gauhar
Highlight

gauhar
Highlight

5

histories are stored on the BC. The transactions are given in
Table.I with description and transaction format.

TABLE I
BC TRANSACTIONS

Name Transaction
Format Description

T.register si, ~c
To register a node at
the BC.

T.publish si, sj , pk, C To publish an access
policy at the BC.

T.accessP si, C
To retrieve user access
history stored at the BC.

T.accessT si, αp, pk, C
To retrieve “transitive
accesses” stored
at the BC.

T.updateP si, O(βs or αp), pk
To add a user approved
request to the block.

T.updateT {(si,O(βs or αp),pk),
(sj ,O(βs or αp),pk)}

To add new “transitive
access” to the block.

C. TACE Module

Our proposed TACE module is called with every user
request. The operations of TACE module are given in “Al-
gorithm.1”. It uses PAS to detects “transitive access” and
sends it to BC for validation. Each user access histories and
“transitive accesses” are maintained at BC. The PAS stores
users access histories whereas, TAS stores possible future
“transitive accesses”. All the authorization decisions are taken
by the TACE module. These authorization decisions are based
on “transitive access” detected by TACE module. It allows a
request only when BC guarantees that “transitive access” will
not occur.

D. Smart Contract

In our proposed architecture each organization in the coali-
tion has a smart contract. The operations of the smart contract
are defined in “Algorithm.2” and “Algorithm.3”. Our proposed
BC transaction validation algorithms, i.e., “Algorithm.2” and
“Algorithm.3” validate “T.updateP” and “T.updateT” transac-
tions. The “T.updateP” transaction is used to update users
access histories Whereas, “T.updateT” transaction is used to
update “transitive accesses” stored at BC. After successful
validation, a block of transactions is added to the chain. Each
block contains a previous block hash, group of transactions
and block header.

E. Notations

Table.II contains all the notations used in the proposed
research work.

F. Components of Our Model

Our model consists of the following components.
1) Subject Set: si ∈ S, where S is a set of all users in the

system.

TABLE II
NOTATIONS

Notation Description
si ith subject.
oj jth object.
rk kth right.
C Set of all constraints, e.g., Static

Mutually Exclusive Permission
(SMEP).

α, β, γ conflict of interest classes.
α =

⋃n
i∈1O(αi) ∈ α all companies dataset in a conflict of

interest class α.
O(α1) =

⋃n
i∈1 oi(α1) all the objects in company α1 dataset.

∈ O(α1)

∪∞
i,j=0{polsi,sj} all access policies of si for sj .

~c recently calculated hash value of a
user platform.

PAS a super set of all approved user
requests.

TAS a super set of all “transitive accesses”.

2) Object Set: oi ∈ O, where O is a set of all objects in
the system.

3) Rights Set: ri ∈ R, where R is a set of all rights in the
system.

4) Conflict of Interest Class: The conflict of interest class
consists of a group of companies that has common business
interest i.e., competitors. The conflict of interest classes is
denoted By capital letter α, β, γ.

5) Company Dataset: The companies datasets are denoted
by O(α1), O(α2), O(α3) if they belong to conflict of interest
class α. Similarly, companies datasets are denoted by O(β1),
O(β2), O(β3) if they belong to conflict of interest class β.

α =

n⋃
i∈1

O(αi) ∈ α (1)

For example
α = {O(α1), O(α2), O(α3)}, Where

O(α1) =

n⋃
i∈1

oi(α1) ∈ O(α1) (2)

6) legal Access: To get a resource by authorized user is
called legal access. The set of legal access is denoted by L.
li ∈ L, where L is a set of all legal accesses in the system.

7) Illegal Access: To get a resource by an unauthorized
user is called illegal access. The set of illegal access is
denoted by I.
ij ∈ I , where I is a set of all illegal accesses in the system.

8) Transitive Access: To get an unpermitted resource
through some legitimate subject and/or object is called “tran-
sitive access”. “Transitive access” is discussed in detail in
section IV.
T ⊆ I and ti ∈ T , where T is a set of all “transitive accesses”

gauhar
Highlight

gauhar
Highlight

6

in the system.
The “transitive access” is a illegal access because it can cause
leakage of information when allowed.

9) Relationship among Legal, Illegal and Transitive Ac-
cesses: Transitive Access set is a subset of Illegal Access set.
In other words, Illegal Access set is a superset of Transitive
Access set.

T ⊆ I or I ⊇ T (3)

Legal Access set and Transitive Access set are disjoint sets.
Similarly, Legal Access set and Illegal Access set are disjoint
sets.

L ∩ T = ∅ and L ∩ I = ∅ (4)

10) Process Request (PR): Generally, PR consist of subject,
object and rights i.e., (si, ol, ry), where si ∈ S, ol ∈ O, ry ∈
R. Here, ol object may belong to any conflict of interest class.
The PR with company label can be written as (si, O(α1), ry),
where O(α1) is a dataset of company α1.

11) Process Access Set (PAS): It is a relation between
subjects, objects and rights.

PAS ⊆ {S ×O ×R} (5)

When a request (si, O(α1), ry) is approved, PAS is extended
by (si, O(α1), ry).

PAS = PAS ∪ (si, O(α1), ry) (6)

where, si ∈ S, si is a requester belongs to a set of Subject S,
O(α1) denotes dataset of company α1. The ry ∈ R, ry is a
subset of rights belongs to a super set of rights R i.e., (read,
write, execute, print etc).

12) Transitive Access Set (TAS): It is a relation between
the requests in the PAS.

TAS ⊆ {PAS × PAS} (7)

Where PAS is a set of requests that can cause “transitive ac-
cess” i.e., {(si, O(α1), r), (sj , O(α2), r)}. After each request
approval, TAC algorithm traverses AFG to find “transitive
access”. Then, TAS is extended when new transitive requests
are found.

TAS = TAS ∪ {(si, O(α1), r), (sj , O(α2), r)} (8)

13) Policy Set (Pol): Pol contains all the policies in a
system.

Pol ⊇ ∪∞i,j=0{polsi,sj} (9)

14) ObjectAccesssed: It is a function which takes a subject
as input and retrieves a list of objects accessed by that subject.

ObjectAccessed : si → lsi (10)

Where lsi is a set of object accessed by si and either lsi ⊆ O
or lsi=∅.

15) Accessed: It is a function which takes a subject, object
and permission i.e., (si, O(α1), r) as input and generates 0,
1 or 2 values. The output ”0” means subject did not access
the object. The output ”1” means that subject has accessed the
object with permission r. The output ”2” means that subject
has accessed the object with permission w.

Accessed : (si, O(α1), r)→ {0/1/2} (11)

16) Requesting: It is a function which takes a subject,
object and permission as input and generates a request i.e.,
(si, O(α1), r).

Requesting : {subject, object and permission}
→ (si, O(α1), r)

(12)

17) Access Flow Graph: It is a directed graph, where the
node represent subject or object. A directed edge between
subject and object represent that a subject has accessed object
with a right i.e., read, write. AFG is stored in PAS at BC.
AFG is shown in Fig.3.

Si

Ol

Om

Op

Sj

On

Same color Objects belong to single conflict of
interest class i.e. banks

Skw

Fig. 3. Access Flow Graph

18) Axiom 1: A subject i.e., si can be assign to any
company if it is not assigned to any other company before.

ObjectAccessed : si → {} (13)

19) Axiom 2: A subject i.e., si can not be assign to two
companies in same conflict of interest class.

lsi ⊆ O(α1) or lsi ⊆ O(α2) and

lsi * (O(α1) ∪O(α2))
(14)

20) Axiom 3: Two subjects i.e., si and sj can not be assign
to the same company in conflict of interest class if they are
already assigned to different companies in some other conflict

gauhar
Highlight

7

of interest class.

lsi ⊆ O(α1) and lsj ⊆ O(α2) then

(lsi ∩ lsj) * O(β1)
(15)

21) Axiom 4: Two subjects i.e., si and sj can not be assign
to two different companies in same conflict of interest class
if both are already assigned to same company in some other
conflict of interest class.

lsi ⊆ O(β1) and lsj ⊆ O(β1) then

(lsi ∪ lsj) * (O(α1) ∩O(α2))
(16)

G. Transitive Access Checking and Enforcement Algorithm

The Algorithm.1 checks all the four possible conflicting
execution sequences as discussed in section IV. A for every
request (si,O(β1 or α1 or α2),r|w). If the requests are transitive
then they must be denied. All the “transitive accesses” are
stored in TAS on the BC. It uses “T.accessT” transaction to
access TAS. To approve a user request it sends “T.updateT”
transaction to BC for recalculation and validation of “transitive
access”. It generates a BC transaction to extends PAS with a
pair of si and sj requests after a request is approved. It calls
ObjectAccessed function to retrieve a list of objects accessed
by si and all the other subjects in PAS. Then, it compares
user requests in PAS to identify “transitive access”. We have
identified four conflicting sequences of executions, so four
conditions are used. Then, it sends “T.updateT” transaction
to BC for “transitive access” identification and updating of
TAS.

H. Transaction Validation Algorithms

We have proposed two algorithms for BC transactions
validation. Algorithm.2 is used by BC to validate “T.updateP”
transaction whereas, Algorithm.3 is used by BC to validate
“T.updateT” transaction. The Algorithm.2, takes a user re-
quest and PAS as input and verifies that no “transitive access”
will occur if the request is granted. Similarly, the Algorithm.3
verifies that the pair of requests are transitive and add it to BC
block. The computation logic of BCON architecture is shown
in Fig.4.

Transaction

Blockchain

Algorithm 2 Algorithm 3

Algorithm 1

T.updateTT.updateP

Fig. 4. Computation Logic of BCON Architecture

Algorithm 1 Transitive Access Checking and Enforcement Algo-
rithm

1: Input: (si,O(β1 or α1 or α2),r|w), PAS
2: Output: permit(si,O(β1 or α1 or α2),r|w) or deny(si,O(β1

or α1 or α2),r|w)
3: Initialise bool variable isAdded = FALSE;
4: Initialise bool variable isUpdated = FALSE;
5: Initialise bool variable isNottransitive = FALSE;
6: Retrieve TAS from BC using T.accessT transaction
7: if {(si,O(β1),r|w) ∧ (sj ,O(β1),r|w)} ∈ TAS then
8: deny(si,O(β1),r|w)
9: else if {(si,O(α1),r|w) ∧ (sj ,O(α2),r|w) ∈ TAS} then

10: deny(si,O(α1),r|w)
11: else
12: Send T.updateP transaction to BC and call Algo-

rithm.2 at BC to validate the transaction.
13: if (isValidated ≡ TRUE) then
14: ObjectAccessed: si → {lsi}
15: call ObjectAccessed function for every subject in

PAS
16: ObjectAccessed: sj → {lsj}
17: Retrieve PAS from BC using T.accessP transaction
18: for {i=0 to size lsi } do
19: for {j=0 to size lsj } do
20: if {(si,O(α1),r) ∧ (sj ,O(α2),w)} ∈ PAS

OR {(si,O(α1),w) ∧ (sj ,O(α2),r)} ∈ PAS
OR {(si,O(β1),r) ∧ (sj ,O(β1),w)} ∈ PAS OR
{(si,O(β1),w) ∧ (sj ,O(β1),r)} ∈ PAS AND
{O(α1) ∧ O(α2)} ∈ α then

21: Send T.updateT transaction to BC. call Al-
gorithm.3 at BC to validate the transaction.

22: if (isAdded ≡ TRUE) OR (isNottransitive =
TRUE) then

23: permit(si,O(α1),r|w)
24: else
25: deny(si,O(α1),r|w)
26: end if
27: else
28: deny(si,O(α1),r|w)
29: end if
30: end for
31: end for
32: else
33: deny(si,O(α1),r|w)
34: end if
35: end if

IV. USE CASES

Let us consider a consultancy firm, which provides con-
sultancy service to different companies. Firm stores all infor-
mation of the companies in a three level hierarchically filing
system as shown in Fig.5.

• Low-level contains information about individual items
and each belongs to a single corporation.

• Middle-level contains all objects that belong to the same
corporation, which form the company dataset.

8

Algorithm 2 “T.updateP” Transaction Validation Algorithm

1: Input: T.updateP(si,O(β1 or α1 or α2),r|w), PAS
2: Output: bool variable isValidated and PAS = PAS ∪

(si,O(β1 or α1 or α2),r|w)
3: Initialise bool variable isValidated = FALSE
4: if {lsi ⊆ O(α1) OR lsi ⊆ O(α2) AND lsi ⊆ (O(α1)
∪ O(α2)) } then

5: return isValidated = FALSE
6: else if {lsi ⊆ O(α1) AND lsj ⊆ O(α2) AND (lsi ∩
lsj) ⊆ O(β1)} then

7: return isValidated = FALSE
8: else if {lsi ⊆ O(β1) AND lsj ⊆ O(β1) AND (lsi ∪
lsj) ⊆ (O(α1) ∩ O(α2))} then

9: return isValidated = FALSE
10: else
11: PAS = PAS ∪ (si,O(β1 or α1 or α2),r|w) and return

isValidated = TRUE
12: end if

Algorithm 3 “T.updateT” Transaction Validation Algorithm

1: Input: T.updateT {(si,O(β1 or α1 or α2),r|w),(sj ,O(β1 or
α1 or α2),r|w)}, TAS

2: Output: bool variable isAdded
3: Initialise bool variable isAdded = FALSE
4: if {(si,O(α1),r) ∧ (sj ,O(α2),w)} ∈ PAS and {O(α1) ∧

O(α2)} ∈ α then
5: TAS = TAS ∪ (si,O(β1),w),(sj ,O(β1),r) and return

isAdded = TRUE
6: else if {(si,O(α1),w) ∧ (sj ,O(α2),r)} ∈ PAS and {O(α1)
∧ O(α2)} ∈ α then

7: TAS = TAS ∪ {(si,O(β1),r),(sj ,O(β1),w)} and return
isAdded = TRUE

8: else if {(si,O(β1),r) ∧ (sj ,O(β1),w)} ∈ PAS and {O(α1)
∧ O(α2)} ∈ α then

9: TAS = TAS ∪ {(si,O(α1),w),(sj ,O(α2),r)} and return
isAdded = TRUE

10: else if {(si,O(β1),w) ∧ (sj ,O(β1),r)} ∈ PAS and {O(α1)
∧ O(α2)} ∈ α then

11: TAS = TAS ∪ {(si,O(α1),w),(sj ,O(α2),r)} and return
isAdded = TRUE

12: else
13: return isAdded = FALSE
14: end if

• Top-level groups all companies dataset whose corpora-
tions are in competition. We can call each such group as
a conflict of interest class.

Scenario I: Suppose α and β are two conflict of interest
classes. Class α has two competitors, company α1 and com-
pany α2. Similarly, β1 belongs to conflict of interest class β.
Consultancy firm assigns two consultants Alice and Bob to
β1 with read (r) and write (w) permissions respectively. Later
on, Alice and Bob may also generate a request for α1 and α2

datasets with r/w permission respectively as shown in Fig.6.
If access is granted, then it is highly likely that information
of α1 may be leaked to α2. So either the request of Alice or

Banks

α1 and α2

Conflict

of

interest

classes

Consultancy

firm

Cargo

Companies

β1, β2 and β3

Cold Drink

Companies

Ɣ1 and Ɣ2

O(β1) O(β1) O(β1)
Companies

data sets

Individual

objects

Fig. 5. Three level hierarchy of Consultancy Firm information

Bob must be denied to solve the conflict of interest problem.
Scenario II: Now let discuss this problem in a different

scenario such as the concurrent environment. Alice and Bob
have already accessed β1 dataset with “r” and “w” permissions
respectively. Suppose Alice is requesting for α2 dataset with
“w” and at the same time Bob generates a “r” request for α1.
If such concurrent requests are not properly controlled, then
both processes may enter into accessing state. Such concurrent
requests can cause “transitive access”.

company α1

company α1

company β1

r

w

w

r

Alice

Bob

Consultancy

Firm

Leakage of

information

from company

α1 to

company α12

Fig. 6. Illegal Access

A. Conflicting Sequences of Execution

In the above scenarios, there are four conflicting sequences
of execution. To describe these conflicting sequences of exe-
cution, we have used a two-dimensional matrix. The first row
of the matrix consist of three different companies datasets and
first column contains two users Bob and Alice. Two actions
Accessed() and Requesting() are used in the matrix cells. Each
action has a parameter either r or w. The following are the

9

four sequences of execution that cause the conflict of interest
problem in cross-domain accesses.

1) Execution Sequence 1: Suppose Bob has accessed α1

datasets with “r” permission and Alice has accessed α2

datasets with “w” permission as shown in Table.III. Now Bob
and Alice are requesting for β1 with “w” and “r” permissions
respectively. Both the requests are conflicting because infor-
mation of α2 may leak to α1 if both the requests are allowed.
For example Bob can read data from α1 and write to β1. Alice
can read from β1 and write to α2. The leakage of information
from α1 to α2 is shown in Fig.7.

TABLE III
EXECUTION SEQUENCE 1

S/O company α1 company α2 company β1

Bob Accessed(r) Requesting(w)
Alice Accessed(w) Requesting(r)

company α1

company α2

company β1

r

w

w

r

Bob

Alice

Leakage of

information

from company

company α1 to

company

company α2

Fig. 7. Executing Sequence 1

2) Execution Sequence 2: Suppose Bob has accessed com-
pany α1 datasets with “w” permission and Alice has accessed
company α2 datasets with “r” permission as shown in Ta-
ble.IV. Now Bob and Alice are requesting for company β1
with “r” and “w” permissions respectively. The information
of company α2 may leak to company α1 if both the requests
are allowed. The leakage of information from company α2 to
company α1 is shown in Fig.8.

TABLE IV
EXECUTION SEQUENCE 2

S/O company α1 company α2 company β1

Bob Accessed(w) Requesting(r)
Alice Accessed(r) Requesting(w)

3) Execution Sequence 3: Suppose Bob and Alice have
accessed company β1 datasets with “w” and “r” permissions
respectively as shown in Table.V. Now Bob is requesting for
company α2 with “r” and Alice is requesting for company α1

with “w” permission. If both the requests are allowed then,

 company α1

company α2

company β1

w

r

r

w

Bob

Alice

Leakage of

information

from company

α2 to

company α1

Fig. 8. Execution Sequence 2

it can cause leakage of information. For example, Bob can
read data from the company α1 and write to the company β1.
Alice can read from the company β1 and write to the company
α2. The leakage of information from the company α1 to the
company α2 is shown in Fig.9.

TABLE V
EXECUTION SEQUENCE 3

S/O company α1 company α2 company β1

Bob Requesting(r) Accessed(w)
Alice Requesting(w) Accessed(r)

company α1

company α2

company β1

r

w

w

r

Bob

Alice

Leakage of

information

from company

α1 to

company α2

Fig. 9. Execution Sequence 3

4) Execution Sequence 4: Suppose Bob and Alice have
accessed company β1 datasets with “r” and “w” permissions
respectively as shown in Table.VI. Now Bob is requesting for
company α1 with “w” and Alice is requesting for company α2

with “r” permission. Both the requests are conflicting and may
cause leakage of information if both the requests are allowed.
The leakage of information from company α2 to company α1

is shown in Fig.10.

10

TABLE VI
EXECUTION SEQUENCE 4

S/O company α1 company α2 company β1

Bob Requesting(w) Accessed(r)
Alice Requesting(r) Accessed(w)

company α1

company α2

company β1

w

r

r

w

Bob

Alice

Leakage of

information

from company

α2 to

company α1

Fig. 10. Execution Sequence 4

B. Security Analysis

In this section, we discuss the security of the proposed
architecture using Confidentiality, Integrity, Availability, Au-
thorization and Non-repudiation (CIAAN) model. We have
integrated BC technology in UCON architecture to achieved
the CIAAN model security requirements. The analysis of the
security parameters is summarized in Table.VII.

1) Confidentiality: It means to hide information from unau-
thorized user. In our proposed architecture, the communication
between BC manager, TACE module and BC is secure through
public key encryption.

2) Integrity: It ensures that data is not changed in an
unauthorized way. In BCON, BC cryptographic hash function
i.e., SHA-256 is used to provide data integrity. Each BC block
contains the previous block hash value. The block hash value
changes if a transaction in a previous block is rollbacked,
deleted or tempered. Supposed an adversary has changed a
transaction in a certain block in the chain. As a result, all
subsequent blocks become invalid because they contain an old
hash of the tempered block. Therefore, adversary requires huge
computation power to re-execute SHA-256 for all following
blocks.

3) Availability: It ensures that the service or information
is always available to legitimate users. Each node in the BC
network has a copy of the distributed ledger. These copies
are synchronized through replication. Supposed adversary
damages a copy of BC ledger at a certain node. The node
can restore his ledger from their neighbor nodes using BC
replication mechanism.

4) Authentication and Authorization: It ensures that a user
is the individual who claims himself to be. We assume an
authentication mechanism called bubbles-of-trust [24] due
to low power and fast execution requirements. Similarly,

authorization ensures that the user has the right to do a
certain task. In proposed architecture BC performs cross-
domain user authorization. The cross-domain access control
has a conflict of interest problems. These conflict of interest
problems produce “transitive access” which can cause leakage
of information. In our proposed architecture, access control
policies stored at BC are used to deny “transitive access”.

5) Non-repudiation: It ensures that all users can be held
responsible for their activities. Thus, later on, the user cannot
be able to deny his action. BC is an immutable chain of blocks.
The proposed architecture provides non-repudiation to the data
stored at BC using digital signatures.

6) No Single Point Failure: In existing architectures, the
central trusted entity validates all the transactions. Thus,
resulting in performance bottlenecks and a single point of
failure. Our proposed BCON architecture integrates BC and
alleviates the need of a central trusted entity.

7) Denial-of-Service Attack (DoS) and Distributed Denial-
of-Service (DDoS) Attack : In existing architectures, the cen-
tral trusted entity validates all the transactions. The centralized
entity resulting in performance bottlenecks. Such performance
bottlenecks appear with traffic increase because the server
has a finite number of the port to listen to clients request.
Therefore, centralized systems are easy targets of different
attacks like DoS attack and DDoS attack.

Similarly, in existing BC based access control architec-
ture, suppose an attacker got access to a user/IoT device
and installed malicious software. Now, the attacker sends an
access request to the BC using the compromised user/IoT
device. In our proposed architecture, the BC performs user/IoT
device platform verification before authorization. Thus, both
the current and stored hashes will match. Hence, the BC will
deny the attacker access to the protected resource.

8) Efficiency: Public BC has problems with scalability
and efficiency. Companies in a virtual coalition cope with
hundred of transaction per second. Public BC take more time
to process a block i.e., bitcoin takes 10 minutes [25], while
Ethereum takes 14 seconds [26]. The efficiency of BC depends
on consensus algorithm. BCON is built on consortium BC.
Consortium BC has lower latency and higher throughput than
a public BC. However, BCON major consideration is security.

C. Comparisons between Exiting and BCON Architectures

The comparisons among existing related and proposed ar-
chitectures are given in Table.VIII. .

V. MODELING AND VERIFICATION

A. Implementation Details

The process, data object and message channels are the main
building block in a PROMELA implementation [27]. The
core components of our promela model are described in the
following subsections.

gauhar
Highlight

11

TABLE VII
EVALUATION OF SECURITY PARAMETERS

Parameters Description

Confidentiality
The communication between BC manager,
TACE module and BC is secure through
Public key encryption.

Integrity SHA-256 hash function is used to provide
data integrity.

Availability

The available of the system is maintained
through BC ledgers replication. Also, platform
verification is performed before user
authorization to avoid attacks on avilability
likes DoS, DDOS.

Authorization “Transitive access” is identified and denied
using access policies stored at BC.

Non-repudiation Achieved through digital signature. Every
transaction is cryptographically signed.

TABLE VIII
COMPARISONS BETWEEN EXITING AND BCON ARCHITECTURES

Mechanism
/Property

BC based
(No cross
-domain
access)
Framew-
orks
[14], [16]

BC based
(cross
-domain
access)
Framew-
orks
[19] [20]

Central-
ized
(cross
-domain
access)
Framew-
orks
[4] [5]

UCON
BC based
(cross
-domain
access)
Framew-
ork

Conflict
of
Interest

No No No Yes

Transitive
Access No No No Yes

Platform
Verific-
ation

No No No Yes

Decentra-
lized Yes Yes No Yes

Fault
tolerance Higher Higher Lower Higher

Impleme-
ntation

[14] Ether-
eum
[16] Bitcoin

[19] Eth-
ereum
[20] No
Impleme-
ntation

central-
ized
server

Hyper-
ledger

Consensus
mechanism

[14] PoW
[16] proof
of
concept

PoW
No
consens-
us

Practical
Byzantine
fault
tolerance
(PBFT)

Efficiency

[14] closer
to main
ethereum
network
[16]dep-
ended on
bitcoin
network

[19] dep-
ended on
ethereum
network
[20] No
perform-
ance eva-
luation

depended
on
central
entity

Higher
than both
ethereum
and
bitcoin
BC

1) BC Process: In our model, there is one BC process.
The BC process consists of “idle”, “revoked”, “pre-check”,

idle
pre-

check
allowed

end

request permit

reset

reset

a. BC State Transition

requesti

ng

accessi

ng

permit

end

idle
request

b. User process State Transition

revoked

end

denied

reset

deny

reset

done
reset

revoke

denied

deny

Fig. 11. User Process and Blockchain State Transition Diagrams

“allowed”, “denied” and “end” states. The Buchi automaton
[28] of BC process is shown in Fig.11(a). The initial state
is an “idle” state. At “idle” state, the BC process receives
access request and changes the state to “pre-check” state.
In “pre-check” state the BC process executes TAC algorithm
and add conflicting requests to TAS. Then the BC process
moves into “allowed” state and executes TAE algorithm. The
TAE uses TAS and either allow or deny the user process.
The user process moves into “accessing” state if allowed by
TAE. Otherwise, the BC process moves into “denied” state.
At “accessing” state, the user process moves into “revoked”
or “end” state based on “revoke” or “end” event respectively.
Then, the BC process makes a transition into “idle” state on
“reset” event and repeat again for another request.

2) User Process: In our model, there are two user processes
i.e., Alice and Bob. Each process consists of “idle”, “request-
ing”, “end”, “denied” and “accessing” states. Both processes
have similar state transition diagrams. The buchi automaton of
the user process is shown in Fig.11(b). The user process moves

gauhar
Highlight

gauhar
Highlight

12

from “idle” state to “requesting” state to generate an access
request. In “requesting” state, user process generates an access
request i.e., (si, o(a1), ry). At this state, the user process waits
for the BC process to run TAC and TAE algorithms. If the user
request is not in conflict with other users requests, then the
process moves into “accessing” state. Finally, the user process
moves into “end” state when either the permission is revoked
by the BC process or user itself stop accessing the resource.
Finally, the user process moves into “idle” state to repeat this
process for another request. If the user request is in conflict
with other users requests, the process makes a transition into
“denied” state.

3) Adversary Process: In our model, we have defined one
Adversary process. The adversary is a compromised user/IoT
device. Therefore, the Adversary, Alice and Bob processes
have similar state transition diagrams. The Buchi automaton
of the Adversary process is shown in Fig.11(b).

4) Message channels: Our model consists of five channel
variables. The messages are exchanged between processes
using channel variables. We have declared four types of
messages.

5) Data Objects: In our model, we have defined two data
structures i.e., single and two-dimensional arrays. The single
dimensional array stores platform hashes whereas the two-
dimensional array stores access history of the users. The
first row of the two-dimensional array contains company
dataset i.e., object whereas the first column contains users i.e.,
subject as shown in Tables (Table.III, Table.IV, Table.V and
Table.VI).

B. Simulation results

The proposed model simulation result is shown in Fig.12.
We have run three user processes i.e., Alice, Bob and Ad-
versary, and one BC processes concurrently. The Adversary
process is a user process having some malicious software
installed. The process execution path is shown by the vertical
line. The boxes on the vertical lines show the process execution
steps. The message passing between processes is shown by the
cross arrow between boxes. The simulation result shows that
adversary is unable to access the protected resource.

C. Never Claims / LTL formulas Verification

A never claim is used to define system behavior. It consists
of a preposition or boolean expression. It is generated by
SPIN model checker from user-defined LTL formula. The
LTL formula is used to specify properties that must be proved
by the model. We have checked the following LTL formulas
against our model.

Our proposed model performs user platform verification
using platform hashes before authorization. The platform
hashes are stored at BC. Every request contains the current
platform hash value. Hence, BC compares current platform
hash with store hash. When the platform hashes match,
then the user request is checked against the four conflicting
execution sequences for “transitive access”.

Fig. 12. Simulation

Suppose an adversary has installed malicious software on
the user device. Now, the adversary wants to lunch an attack
on other devices in the network. So, it sends an access request
for a resource using the compromised device. The service
provider forwards user request to BC for platform and access
control policies verification. Therefore, in the proposed access

gauhar
Highlight

gauhar
Highlight

gauhar
Highlight

gauhar
Highlight

gauhar
Highlight

13

control mechanism the BC compares received platform hash
with the stored hash. The current hash value is changed
and will not match. Therefore, the adversary is denied to
access the resource. The “platform verification” property
describes that if the platform hashes do not match still
Adversary process is able to move into “accessing state”. The
SPIN model checker generated an error which means that
Adversary process is not able to move into accessing state.
The verification result of the SPIN model checker and “never
claim” of the “platform verification” property is shown in
Table.IX and Fig.13 respectively.

1) Platform Verification Property (C1): {� (p && q) → r}
#define p (j !== hash[3])
#define q (x == 4)
#define r (Adversary@accessing state)

C1

(!((Adversary._p = = accessing_state))

S10

S5

(!((Adversary._p = = accessing_state)))

((!((Adversary._p = = accessing_state)) &&

 ((j!=hash[3]) && (x==4))))

Fig. 13. Automata view of “Platform Verification” property

TABLE IX
SPIN OUTPUT: VERIFICATION OF “PLATFORM VERIFICATION” PROPERTY

pan: ltl formula C1
(Spin Version 6.4.6 – 2 December 2016)
+ Partial Order Reduction
Full statespace search for:

never claim + (C1)
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 184 byte, depth reached 32, errors: 1
16 states, stored
0 states, matched
16 transitions (= stored+matched)
2 atomic steps

hash conflicts: 0 (resolved)

Our model is safe w.r.t “transitive access” because the BC
process successfully detects and denies the four conflicting
execution sequences discussed in section IV(A).

2) Safety Property for Execution Sequence 1: C2: {� p →
!q)}
#define p (a[0].aa[2] ≡ 2)
#define q (Bobstatus ≡ 1)
This property describes the “execution sequence 1” given

in section IV(A). The verification result of the SPIN model
checker and “never claim” of the above property is shown in
Table.X and Fig.14 respectively. Suppose Bob has accessed
company α1 with “w” and Alice has accessed company α2

dataset with “r” i.e., (a[0].aa[0] ≡ 1) and (a[1].aa[1] ≡ 2).
Then, Alice accessed company β1 with “r”. Therefore, Bob
is not allowed to access company β2 because it can cause
leakage of information.

C2

S2

S6

assert(!((!(!((Bobstatus = =

1)))

&& (a[0].aa[2] == 2))))

((a[0].aa[2] == 2))

1

S10

S14

((!(!((Bobstatus = = 1)))

&& (a[0].aa[2] == 2)))

Assert(!((a[0].aa[2] == 2)))

(!(!((Bobstatus = = 1))))

Fig. 14. Automata view of Safety Property for “Execution Sequence
1”

TABLE X
SPIN OUTPUT: VERIFICATION OF SAFETY PROPERTY FOR

“EXECUTION SEQUENCE 1”

pan: ltl formula C2
(Spin Version 6.4.6 – 2 December 2016)
+ Partial Order Reduction
Full statespace search for:

never claim + (C2)
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 156 byte, depth reached 17, errors: 0
60 states, stored
36 states, matched
96 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

3) Safety Property of Execution Sequence 2: C3: {� (p &&
q && r && t)}
#define p (a[0].aa[0] ≡ 2)
#define q (a[1].aa[1] ≡ 1)
#define r (Alicestatus ≡ 1)
#define t (Bob@denial state)
This property describes the “execution sequence 2” given
in section IV(A). The verification result of the SPIN model
checker and “never claim” of the above property is shown in
Table.XI and Fig.15 respectively.

The SPIN model checker result shows that Bob request
is denied. It means that only Alice can access the resource

gauhar
Highlight

14

because both requests are transitive.

C3

S3

(!(((((a[0].aa[0] = = 2) && (a[1].aa[1] = = 1)) &&

Alicestatus ==1)) && (Bob._p == denial_state))))

Fig. 15. Automata view of Safety Property for “Execution Sequence
2”

TABLE XI
SPIN OUTPUT: VERIFICATION OF SAFETY PROPERTY FOR

“EXECUTION SEQUENCE 2”

pan: ltl formula C3
(Spin Version 6.4.6 – 2 December 2016)
+ Partial Order Reduction
Full statespace search for:

never claim + (C3)
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 156 byte, depth reached 29, errors: 1
30 states, stored
1 states, matched
31 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

4) Safety Property of Execution Sequence 3: c4: [](p &&
q)
#define p (Alice@accessing state)
#define q (Bob@accessing state)
In access control, mutual exclusion means that a permission
r cannot be assigned to users Alice and Bob at the same
time, i.e., {(Alice, Bob), r)}. In our proposed scenario both
the user requests are in TAS. Alice has accessed company β1
with “w” and Bob has accessed company β1 dataset with “r”
i.e., (a[0].aa[2] ≡ 2) and (a[1].aa[2] ≡ 1). Therefore, both
“Alice” and “Bob” cannot access the object simultaneously.
The verification result of the SPIN model checker and ‘never
claim” of the above property is shown in Table.XII and Fig.16
respectively.

5) Safety Property of Execution Sequence 4: C5: [](p →
q&& !r)
#define p (a[1].aa[0] ≡ 1)
#define q (Alice@accessing state)
#define r (Bob@accessing state)
Suppose Alice has accessed company β1 with “w” and Bob has
accessed company β1 dataset with “r” i.e., (a[0].aa[2] ≡ 1) and
(a[1].aa[2] ≡ 2). Then, Alice accessed company α1 with “r”.

C4

S2

S6

(!(((Alice._p = =

accessing_state) && (Bob._p ==

accessing_state))))

(!(!(((Alice._p = =

accessing_state) && (Bob._p ==

accessing_state)))))

1

Fig. 16. Automata view of Safety Property for “Execution Sequence
3”

TABLE XII
SPIN OUTPUT: VERIFICATION OF SAFETY PROPERTY FOR

“EXECUTION SEQUENCE 3”

pan: ltl formula C4
(Spin Version 6.4.6 – 2 December 2016)
+ Partial Order Reduction
Full statespace search for:

never claim + (C4)
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 156 byte, depth reached 14, errors: 1
15 states, stored
0 states, matched
15 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

Therefore, Bob is not allowed to access company α2 because
it can cause leakage of information. The verification result
of the SPIN model checker and ‘never claim” of the above
property is shown in Table.XIII and Fig.17 respectively.

C5

S10

S5

((a[1].aa[0] ==1))

((!(((Alice._p = = accessing_state) &&

! ((Bob._p = = accessing _state)))) &&

(a[1].aa[0] ==1))))

Fig. 17. Automata view of Safety Property for “Execution Sequence
4”

15

TABLE XIII
SPIN OUTPUT: VERIFICATION OF SAFETY PROPERTY FOR

“EXECUTION SEQUENCE 4”

pan: ltl formula C5
(Spin Version 6.4.6 – 2 December 2016)
+ Partial Order Reduction
Full statespace search for:

never claim + (C5)
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 156 byte, depth reached 17, errors: 0
60 states, stored
36 states, matched
96 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

VI. CONCLUSION

In this paper, we have presented a BC based access control
architecture for conflict of interest domains. Our proposed
TACE mechanism (Algorithm.1) makes an authorization de-
cision based on BC validation. PAS maintains access histories
of the users whereas, TAS stores possible future “transitive
accesses”. Both PAS and TAS are stored on BC. We have
integrated BC technology in BCON to make access control
unbiased, decentralized and verifiable yet anonymous. We
have proposed two transaction validation algorithms i.e., Algo-
rithm.2 and Algorithm.3 to validate and update users access
histories and “transitive accesses”.

Furthermore, we have modeled our mechanism in
PROMELA. A SPIN model checker is used to analyze our
mechanism for “transitive access” enforcement. We have de-
fined LTL properties for all possible conflicting sequences
of execution. Then, the properties are checked against our
promela model. The SPIN model checker results show that our
promela model is secure against “transitive access”. Currently,
we are working to develop a smart contract for BCON
architecture in hyperledger fabric. In the future, we planned
to work on formal modeling and formal verification of BC.

ACKNOWLEDGMENT

The authors are thankful to Higher Education Commission
(HEC) Pakistan for research funding under “National Center
for Cyber Security” initiative for the project “Provable Security
of Blockchain Technologies”.

REFERENCES

[1] S. Subashini and V. Kavitha, “A survey on security issues in service
delivery models of cloud computing,” Journal of network and computer
applications, vol. 34, no. 1, pp. 1–11, 2011.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[3] Q. Alam, M. Alam, G. Ali, F. Azim, K. H. Khan, T. Ali, M. Ali, and
A. Hayat, “Towards a formal framework for cross domain access con-
trol,” International Information Institute (Tokyo). Information, vol. 15,
no. 10, p. 4303, 2012.

[4] M. Alam, X. Zhang, K. Khan, and G. Ali, “xdauth: a scalable and
lightweight framework for cross domain access control and delegation,”
in Proceedings of the 16th ACM symposium on Access control models
and technologies. ACM, 2011, pp. 31–40.

[5] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and G. Ferrari, “Iot-oas: An
oauth-based authorization service architecture for secure services in iot
scenarios,” IEEE sensors journal, vol. 15, no. 2, pp. 1224–1234, 2014.

[6] G. J. Holzmann, “The model checker spin,” IEEE Transactions on
software engineering, vol. 23, no. 5, pp. 279–295, 1997.

[7] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-fly au-
tomatic verification of linear temporal logic,” in Protocol Specification,
Testing and Verification XV. Springer, 1995, pp. 3–18.

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[9] C. Yang, X. Chen, and Y. Xiang, “Blockchain-based publicly verifiable

data deletion scheme for cloud storage,” Journal of Network and
Computer Applications, vol. 103, pp. 185–193, 2018.

[10] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. ACM, 2016, pp. 3–16.

[11] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” self-published paper, August, vol. 19, 2012.

[12] M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security and
privacy issues of bitcoin,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 4, pp. 3416–3452, 2018.

[13] V. Buterin, “On public and private blockchains,” Ethereum blog, vol. 7,
2015.

[14] O. Novo, “Blockchain meets iot: an architecture for scalable access
management in iot,” IEEE Internet of Things Journal, 2018.

[15] D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access
control,” in IFIP International Conference on Distributed Applications
and Interoperable Systems. Springer, 2017, pp. 206–220.

[16] A. Ouaddah, A. A. Elkalam, and A. A. Ouahman, “Towards a novel
privacy-preserving access control model based on blockchain technology
in iot,” in Europe and MENA Cooperation Advances in Information and
Communication Technologies. Springer, 2017, pp. 523–533.

[17] A. Dorri, S. S. Kanhere, and R. Jurdak, “Blockchain in internet of things:
challenges and solutions,” arXiv preprint arXiv:1608.05187, 2016.

[18] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for
iot security and privacy: The case study of a smart home,” in Pervasive
Computing and Communications Workshops (PerCom Workshops), 2017
IEEE International Conference on. IEEE, 2017, pp. 618–623.

[19] R. Xu, Y. Chen, E. Blasch, and G. Chen, “Blendcac: A blockchain-
enabled decentralized capability-based access control for iots,” in 2018
IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). IEEE, 2018, pp. 1027–1034.

[20] B. Tang, H. Kang, J. Fan, Q. Li, and R. Sandhu, “Iot passport: A
blockchain-based trust framework for collaborative internet-of-things,”
in Proceedings of the 24th ACM Symposium on Access Control Models
and Technologies. ACM, 2019, pp. 83–92.

[21] S. Gusmeroli, S. Piccione, and D. Rotondi, “Iot access control issues: a
capability based approach,” in Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS), 2012 Sixth International Conference
on. IEEE, 2012, pp. 787–792.

[22] M. Loock and J. H. Eloff, “A new access control model based on the
chinese wall security policy model.” in ISSA, 2005, pp. 1–10.

[23] D. F. Brewer and M. J. Nash, “The chinese wall security policy,” in
Security and privacy, 1989. proceedings., 1989 ieee symposium on.
IEEE, 1989, pp. 206–214.

[24] M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of
trust: A decentralized blockchain-based authentication system for iot,”
Computers & Security, vol. 78, pp. 126–142, 2018.

[25] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng:
A scalable blockchain protocol,” in 13th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 16), 2016, pp.
45–59.

[26] K. R. Özyılmaz and A. Yurdakul, “Designing a blockchain-based
iot infrastructure with ethereum, swarm and lora,” arXiv preprint
arXiv:1809.07655, 2018.

[27] G. Holzmann, Spin model checker, the: primer and reference manual.
Addison-Wesley Professional, 2003.

[28] J. R. Büchi, “Weak second-order arithmetic and finite automata,” Math-
ematical Logic Quarterly, vol. 6, no. 1-6, pp. 66–92, 1960.

1.

GAUHAR ALI (gauharstd@uop.edu.pk) received his MS (Computer Science) degree from Institute of

Management Sciences, Peshawar, in 2012. He is a PhD scholar at University of Peshawar. His research

interests include internet of things, access control, block-chain, intelligent transport system, formal

verification, and model checking.

2.

NAVEED AHMAD (n.ahmad@uop.edu.pk) received his BS (Computer Science) degree from University

of Peshawar, Pakistan in 2007 and PhD in Computer Science from University of Surrey, UK in 2013. He

is currently working as an Assistant Professor in Department of Computer Science, University of

Peshawar, Pakistan. His research interests include security and privacy in emerging networks such as

VANETS, DTN, and Internet of Things.

3.

YUE CAO received the Ph.D. degree from the Institute for Communication Systems (ICS), 5G

Innovation Centre, University of Surrey, Guildford, U.K., in 2013. He was a Research Fellow at ICS until

2016, He was a Lecturer with the Department of Computer and Information Sciences, Northumbria

University, Newcastle upon Tyne, U.K., until 2017, where he has been a Senior Lecturer since 2017. His

research interests include intelligent mobility. He is an Associate Editor of the IEEE ACCESS and KSII

Transactions on Internet and Information Systems.

*Author Biography

4.

QAZI EJAZ ALI (qaziejazali@uop.edu.pk , Phone No.: +92-91-9216732) did his MS (Computer

Science) degree in 2008 from IBMS, Agricultural University Peshawar, Pakistan. He is working towards

his Ph.D. Degree in Computer Science from Department of Computer Science, University of Peshawar

and in addition, he is working as an Assistant Professor in Department of Computer Science, University

of Peshawar, Pakistan. His research interests are network security, intelligent transport system security

and privacy, and its efficiency.

5.

FAZAL AZIM (azimfazal@gmail.com) received his MS (Computer Science) degree from Institute of

Management Sciences, Peshawar, in 2012. He is a PhD scholar at University of Peshawar. His research

interests include access control, block-chain, and intelligent transport system.

6.

HAITHAM CRUICKSHANK (h.cruickshank@surrey.ac.uk) worked in ICS (formerly CCSR) since

January 1996 on several European research projects in the ACTS, ESPRIT, Ten-Telecom and IST

programmes. His main research interests are network security, satellite network architectures, VoIP and

IP conferencing over satellites. He is currently working in several FP6 projects such as SATLIFE,

EuroNGI, and SATNEX. He also teaches in the Data and Internet Networking and satellite

communication courses at University of Surrey.

He is a chartered engineer and corporate member of the IEEE in UK. In addition, he is a member of the

Satellite and Space Communications Committee of the IEEE ComSoc. He is active in the ETSI BSM

(Broadband Satellite Multimedia) and the IETF MSEC groups.

In addition, He is Vice Chair of the COST 272 activity, which is part of the European COST research

programme.

mailto:qaziejazali@uop.edu.pk

AUTHOR DECLARATION

We wish to draw the attention of the Editor to the following facts which may be considered as potential

conflicts of interest and to significant financial contributions to this work. [OR] We wish to confirm that

there are no known conflicts of interest associated with this publication and there has been no

significant financial support for this work that could have influenced its outcome.

We confirm that the manuscript has been read and approved by all named authors and that there are

no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the

order of authors listed in the manuscript has been approved by all of us.

We confirm that we have given due consideration to the protection of intellectual property associated

with this work and that there are no impediments to publication, including the timing of publication,

with respect to intellectual property. In so doing we confirm that we have followed the regulations of

our institutions concerning intellectual property.

We understand that the Corresponding Author is the sole contact for the Editorial process (including

Editorial Manager and direct communications with the office). He/she is responsible for communicating

with the other authors about progress, submissions of revisions and final approval of proofs. We confirm

that we have provided a current, correct email address which is accessible by the Corresponding Author

and which has been configured to accept email from yue.cao@lancaster.ac.uk.

Signed by all authors as follows:

Author Name Signature and date

Gauhar Ali

Naveed Ahmed

Yue Cao

Qazi Ejaz Ali

*Conflict of Interest

Fazal Azim

Haitham Cruickshank

