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Abstract: Landslides hazard mapping (LHM) is essential in delineating hazard prone areas and 

optimizing low cost mitigation measures. This study applied the Geographic Information System 

(GIS) and statistical index (SI) method in landslides hazard mapping in Rwanda. Field surveys 

identified 336 points which were employed to construct a landslides inventory map. Ten 

landslides predicting factors: normalized difference vegetation index, elevation, slope, aspects, 

lithology, soil texture, distance to rivers, distance to roads, rainfall, and land use were analyzed. 

The factor variables were converted into categorized variables according to the percentile 

divisions of seed cells. Then values of each factor’s class weight were calculated and summed to 

create landslides hazard map. The estimated hazard map was split into five hazard classes (very 

low, low, moderate, high and very high). The results indicated that the northern, western and 

southern provinces are largely exposed to landslides hazard. The major landslides hazard 

influencing factors are elevation, slope, rainfall and poor land management. Overall, this 

landslides hazard mapping would help policy makers to recognize each area’s hazard extent, key 

triggering factors and the required hazard mitigation measures. These measures include planting 

trees to enhance vegetation cover and reduce the runoff, and construction of buildings on low 

steep slope areas to reduce people’s hazard exposure; while agroforestry and bench terraces 

would reduce sediments which take out the exposed soil (erosion) and pollute water quality. 
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1. Introduction 

Landslides are among the global widespread geological hazards responsible for considerable 

human injury and death, natural resources degradation, infrastructure damage, and loss of 

cultural and natural heritage (Lian et al. 2014; Riedel et al. 2010).The term landslide describes a 

wide range of processes responsible for downward and outward movement of slope forming 

material composed of rock, soil, artificial fills or a combination of all these down a slope (Fey et 

al. 2015; Fan et al. 2018; Lee et al. 2015; Capitani et al. 2013). Landslides occurrence depends 

on intrinsic and extrinsic variables. Intrinsic variables include soil depth and soil type, slope 

aspects and slope curvature, elevation, vegetation cover and other anthropogenic activities such 

as deforestation, road construction and cultivation on steep slope which change the land cover 

and land use patterns then inversely impact on mass movement process. The extrinsic variables 

include extreme rainfall, earthquake and volcanic activities (Yiping et al. 2014; Zhu et al. 2007; 

Kelman 2017; Kannan et al. 2013; Van Westen et al. 2008).  

Hazard is the probability of occurrence of a particular damaging phenomenon, within a specified 

period of time and a given area due to different existing or predicted conditions (Kim et al. 2018; 

Riedel et al. 2010). The unprotected land increases the slope instability which causes soil 

erosion, mudslides and landslides, and pollutes water quality by the loaded wastes (Xu et al. 

2018). Thus, landslides hazard mapping can help to identify the hazard level and areas that are 

susceptible to soil loss and water quality pollution. The process also indicates safe zones for 

human constructions and other social, economic and environmental activities, and strengthens 

the mitigation and adaptation to future occurrence (Naidu et al. 2017; Reis et al. 2009; Jaafari et 

al. 2015). Hazard mapping can be broadly divided into: (1) direct hazard mapping, where the 

degree of hazard is determined by the knowledge of the terrain conditions and (2) indirect hazard 

mapping in which either statistical or deterministic models are used to predict landslides prone 

areas based on triggering factors. The latter is the most commonly applied due to its advantage of 

describing the functional relationship between factors, and the past, present and the predicted 

distribution of slope failures (Dou et al. 2015; Di et al. 2017; Lei et al. 2014; Bobrowsky and 

Highland 2013; Tian et al. 2017; Frodella et al. 2018; Micheletti et al. 2014; Fey et al. 2015). 



Different indirect approaches including not limited to bivariate and multivariate method, fuzzy 

logic and artificial neural networks, analytical hierarchy process, evidential belief function, 

support vector machine, random forest and logistic regression have been used for landslides 

hazard mapping (Nichol et al. 2006; Shi-Biao et al. 2009; Kazakis et al. 2015; Hong et al. 2016; 

Kim et al. 2010; Banerjee et al. 2018; Sharma et al. 2014; Lian et al. 2014). In Rwanda, previous 

disaster related studies (Nahayo et al. 2017; Piller 2016; MIDIMAR 2014; Nduwayezu et al. 

2015) were general combining different hazards like flood and landslides, drought and flood, 

without specific attention attributed to one hazard. These studies have only considered the 

hazards already occurred by using descriptive, secondary data sources and social approaches, and 

were limited to case studies like districts and provinces. This expresses lack of a thorough 

analysis to indicate the root causes of the considered hazard for the adaption and exposure 

reduction countrywide. Thus, this study considers the whole Rwandan territory and applies GIS-

based statistical index method in landslides hazard mapping. 

The bivariate statistical index method is selected among others due to its advantage that in case 

landslides inventories are available, hazard assessment integrates knowledge from the overlap of 

observed incidents and maps of different triggering factors (Van Westen et al. 1997). Also, its 

validation proves its performance effectiveness as it bases on the fitness between the produced 

landslides hazard and observed landslides. This as a result, gives extensive knowledge of the 

location and landslides causal factors, extent of community hazard exposure, future occurrence 

likelihood, and potential exposure hotspots for sustainable planning and prevention of future 

losses (Van Westen et al. 2008; Van Westen et al. 1997). As a new attempt in landslides hazard 

mapping countrywide, the authors chose to use the bivariate statistical index method to test its 

performance in landslides hazard mapping regardless of the strengths and/or weaknesses of other 

approaches mentioned above. In the future, authors plan to test the effectiveness of other 

landslides hazard mapping approaches in this area. 

2. Materials and Methods 

2.1 Study Area 

Rwanda is a poor and densely populated East African country with a green and mountainous 

landscape. The country (Fig.1 (a)) is bordered by the Democratic Republic of Congo in the west, 



Uganda in the north, Burundi in the south and Tanzania in the east. The country records rainfall 

between March and May and from late September to early December. The average monthly 

rainfall is about 110-200 mm. The dry season occurs from late December to the end of February, 

and between June and early September. The average temperature ranges between 19 to 27ºC 

(Nsengiyumva et al. 2018). In this area, high annual rainfall intensity and population pressure on 

land expose the hilly topographic nature to runoff risks. This causes severe environmental 

disasters and encroachment on fragile ecosystems. Among which landslides and floods are the 

frequently recorded (Piller 2016; Nduwayezu et al. 2015; Nsengiyumva et al. 2018). 

 

Figure 1 Geographical location of (a) Rwanda in Africa and (b) its landslides inventory 

2.2 Datasets 

2.2.1 Landslides inventory 

Landslides inventory map, also known as landslides map, landslides inventory or inventory map 

records the location, date of occurrence and types of movements that have left noticeable traces 

in the area (Guzzetti et al. 2012). This can be prepared by different techniques and the selection 

of the techniques to employ relies on the purpose of the inventory, scale of the base maps and 



extent of the study area, and available resources (Alvioli et al. 2018; Van Westen et al. 2008). For 

landslides hazard assessment, the report of Van Westen et al., (2008) suggested to take into 

account the fact that, the conditions that led to past landslides in the area of study if reoccurred 

may result from the same causative factors. Hence, authors recognized the assumption and for 

this study, a total of 336 landslides were identified by using the Global Positioning Systems 

(GPS) during field surveys facilitated by local residents who helped to localize last landslides 

events in their living areas. The produced landslides inventory map (Fig.1 (b)) considered 

landslides occurrence and frequency based on the affected people (killed, injured and homeless), 

cropland damaged, destroyed infrastructures and livestock lost between 2000 and 2017 in 

Rwanda. 

2.2.2 Landslides hazard triggering factors 

The authors selected landslides hazard influencing factors in Rwanda based on the review of the 

literature and field observation (Fig.1 (b)). Also, national disaster risk management policy, and 

contingency plan for flood and landslides in Rwanda (MIDIMAR 2014) along with the 

landslides hazard and risk assessment of the United Nations International Strategy for Disaster 

Reduction (UNISDR, 2017) were used as experts’ opinions. The terrain attributes like slope, 

slope aspects, curvature and elevation which represent spatial variation of elevation (i.e., altitude 

or height) are the most substantial causes of landslides. Their higher values express high 

likelihood of landslides occurrence (Jaafari et al. 2015; Frodella et al. 2018; Riedel et al. 2010). 

For this study, the employed elevation, slope and aspects (Fig.2) were derived from Digital 

Elevation Model (DEM) of 30 m resolution acquired from the United States Geological Survey 

Earth Explorer (USGS 2018).  



 

Figure 2. Selected landslides hazard conditioning factors in Rwanda: (a) elevation, (b) slope, (c) aspects and 

(d) rainfall 

Rainfall-induced landslides are highly recorded within mountainous regions (Alvioli et al. 2018). 

Similarly, more than 70% of landslides recorded in Rwanda are rainfall-induced (MIDIMAR 

2014). Authors recognized this fact, and then added rainfall among the employed datasets. The 

mean monthly rainfall data (Fig.2 (d)) were interpolated using 27 years (1990-2017) rainfall data 

acquired from meteorological stations located in Rwanda. The used rainfall data were provided 

by the Rwanda Meteorology Agency (RMA 2018). Each rock and soil class influences the type 

and intensity of landslides. Therefore, their classification would help to demonstrate each class’s 

contribution (Mertens et al. 2018). The lithological and geological features employed by this 

study (Fig.3) were derived from the geological, mining and soil map databases of Rwanda 

(Rushemuka et al. 2014). The distance to roads were added among the datasets (Fig.3) of the 

current study due to the fact that, cutting of slopes for roads construction or road widening in 

hilly regions can cause slope failures and lead to landslides losses among the exposed nearby 

populations (Dou et al. 2015). The distance to rivers was used (Fig.3) based on the fact that the 

proximity to rivers increases the likelihood of landslides occurrence because the slopes on the 

banks of the river often suffer river erosion. Thus, at a closer distance to rivers, the probability of 

landslides occurrence is high due to strong erosion (Cao et al. 2016; Fan et al. 2017). The 



shapefiles of rivers and roads were acquired from an online database (http://www.diva-

gis.org/gdata), and both were produced by creating Euclidean distance in ArcMap-Spatial 

Analyst extension. 

 
Figure 3. Selected landslides hazard conditioning factors in Rwanda:  (a) lithology and (b) soil texture classes, 

and (c) distance to roads and (d) distance to rivers 

Rwanda’s update land use and land cover map of July 2018 was produced form multispectral 

Landsat-8 Operational Land Imager (OLI) images. These images were acquired from the United 

States Geological Survey Earth Explorer (USGS 2018). The land use/cover map was classified 

with the supervised maximum classification method based on the East African Classification of 

the Regional Center for Mapping of Resources for Development (RCMRD 2018). Then five land 

use and land cover classes (Fig.4 (a)) were produced. The normalized difference vegetation 

index (NDVI) reveals the presence or absence of vegetation in a given area. Thus, the removal of 

vegetation leaves a slope much more exposed to surficial landslides due to the loss of the 

stabilizing root systems (Ibrahim et al. 2015; Xu et al. 2018). For this study, the used NDVI 

(Fig.4 (b)) was acquired from Moderate Resolution Imaging Spectroradiometer (MODIS, 250M 

resolution) downloaded from an online database (ladsweb.nasacom.nasa.gov/data/html). The 

NDVI values were calculation based on the following equation: 

http://www.diva-gis.org/gdata
http://www.diva-gis.org/gdata


NDVI =
𝐼𝐼𝐼𝐼 − 𝐼𝐼
𝐼𝐼𝐼𝐼 + 𝐼𝐼

                                                                                                                                                       (1) 

Where IR is the infrared portion of electromagnetic spectrum and R value is the red portion of 

electromagnetic spectrum. 

 
Figure 4. Selected landslides hazard conditioning factors in Rwanda: (a) land use and land cover classes and 

coverage in percentage and (b) Normalized Difference Vegetation index values 

2.3 Methodology 

2.3.1 Modeling approach 

Authors applied the Statistical Index (SI) model accepted as bivariate statistical method (Van 

Westen et al. 1997). The model has a basis requiring calibration from correlation between known 

incidents. In the model, the weighting value for each conditioning factor class is defined as the 

natural logarithm of the landslides density in a class divided by landslides density in the entire 

map (Van Westen et al. 1997).  The statistical index (SI) is calculated as follows: 
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Where Wij is the weight for class j within the triggering factor map i, DensClasij is density of 

landslides in class j within the triggering factor map i, DensMap is the density of landslides in 

the entire map, Npix (Sij) is the number of pixels in class j within the triggering factor map i and 

Npix (Nij) is the number of pixels in class j within the triggering factor map i. Thereafter, 

landslides hazard map was produced by using the following equation. 

𝐿𝐿𝐿𝐿𝐼𝐼𝐷𝐷𝑊𝑊 = 𝑊𝑊𝐷𝐷𝑊𝑊 (𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑒𝑒𝑊𝑊𝑒𝑒𝐼𝐼) + 𝑊𝑊𝐷𝐷𝑊𝑊 (𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷 𝐷𝐷𝐼𝐼𝑎𝑎𝐷𝐷𝐷𝐷) + 𝑊𝑊𝐷𝐷𝑊𝑊 (𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝑒𝑒𝐷𝐷𝑒𝑒𝑐𝑐𝑐𝑐𝐷𝐷) + 𝑊𝑊𝐷𝐷𝑊𝑊 (𝑐𝑐𝐷𝐷𝑊𝑊𝐼𝐼𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷)
+ 𝑊𝑊𝐷𝐷𝑊𝑊 (𝐷𝐷𝑊𝑊𝑒𝑒ℎ𝑒𝑒𝐷𝐷𝑒𝑒𝑎𝑎𝑜𝑜) + 𝑊𝑊𝐷𝐷𝑊𝑊 (𝐷𝐷𝑒𝑒𝑊𝑊𝐷𝐷 𝑒𝑒𝐷𝐷𝑝𝑝𝑒𝑒𝑐𝑐𝑐𝑐𝐷𝐷) + 𝑊𝑊𝐷𝐷𝑊𝑊 (𝑑𝑑𝑊𝑊𝐷𝐷𝑒𝑒𝐷𝐷𝐼𝐼𝑐𝑐𝐷𝐷 𝑒𝑒𝑒𝑒 𝑐𝑐𝑒𝑒𝐷𝐷𝑑𝑑𝐷𝐷)
+ 𝑊𝑊𝐷𝐷𝑊𝑊 (𝑑𝑑𝑊𝑊𝐷𝐷𝑒𝑒𝐷𝐷𝐼𝐼𝑐𝑐𝐷𝐷 𝑒𝑒𝑒𝑒 𝑐𝑐𝑊𝑊𝑒𝑒𝐷𝐷𝑐𝑐𝐷𝐷) + 𝑊𝑊𝐷𝐷𝑊𝑊 (𝐿𝐿𝐷𝐷𝐼𝐼𝑑𝑑 𝑈𝑈𝐷𝐷𝐷𝐷) +𝑊𝑊𝐷𝐷𝑊𝑊 (𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼)                              (3) 

The obtained landslides hazard map was reclassified into five landslides hazard classes, namely: 

very low (2-3.18), low (3.18-3.77), moderate (3.77-4.5), high (4.5-5.7) and very high (5.7-8.8) 

based on the review of literature, experts’ opinions and field observation. 

3. Results 

3.1 Spatial distribution of landslides hazard in Rwanda 

The results on the spatial relationship between landslides hazard and its influencing factors, as 

estimated by the statistical index model (Table 1) indicated that for elevation, the higher and 

positive SI values of 1.82 and 0.42 were generated by the elevation ranges of 2194-2804 m and 

1833-2194 m, respectively. For the relationship between landslides hazard and slope angles, the 

results in Table 1 showed that slope angles’ range of 28-450 generated a high SI value (0.36). The 

findings also revealed that the west-facing slope (0.64) and northwest-facing slope (0.49) have 

positive high SI values. For the rainfall, the results in Table 1 revealed that the range of 72-88 

mm and 109-152 mm have the highest positive values of SI; 0.84 and 0.78, respectively. In 

addition, as illustrated in Table 1, the schist is the main lithological dominating class with highest 

positive SI value (0.71) and granite class represented the lowest negative SI value at -2.13. The 

clay (0.37) and clay loam (0.12) soil texture classes revealed high SI value. Moreover, land use 

and land cover classes revealed that grassland possess the highest SI value (0.62) along with 

forest (0.68). The obtained relationship between NDVI and landslides hazard (Table 1) revealed 



that the NDVI range of 0.53-0.65 has a highest and positive SI value of 0.89. Furthermore, the 

distance to rivers mainly, the ranges of 0-150 m and 150-300 m have high SI values: 0.59 and 

0.04, respectively. Finally, the results in Table 1 showed that for the distance to roads, the range 

of 250-500 m possess high positive SI value of 0.01. Hence, the closer to roads and rivers, the 

greater is the landslide occurrence probability and hazard exposure. 

Table 1 Spatial relationship between landslides hazard and triggering factors by SI model 

Factors Classes Class 
domain (%) 

No.of 
landslides 

Landslides 
density (%) 

landslides 
pixels 

SI 

Elevation 2804-4486   0.7     2 2.09 3036 0.32 
 2194-2804   8.8 192 63.3 3499 1.82 
 1833-2194 12   87 32.7 3168  0.42 
 1541-1833 31.2   64    1.6 1596 -0.67 
 915-1541 22.3   21    0.31 1372 -0.02 
Slope  >60   0.2     1   1.1 3369 -0.26 
 45-60  49.4 202 59.7 4427  0.21 
 28-45 19.4   98 24.9 3791  0.36 
 12-28 16   54 12 2548  0.23 
 0-12 26   11   2.3 1978 -0.82 
Rainfall  109-152 18.2   97 13 2614  0.78 
 88-109 10.2   69 17.3 3320  0.29 
 72-88   7 144 64.8 2719  0.84 
 57-72 62.3   22   3.6 2201  0.32 
 32-57   2.3     9   1.3 1123  0.47 
Lithology Volcanic ash   0.6   22   9.3 2408  0.74 
 Basic igneous 

rock 
 4.4   44   4 2647 -1.21 

 Schist 89.02 196 74.2 4642  0.71 
 Quartzite   0.05   36   8.4 3496  0.29 
 Granite   0.03   19   2 2458 -2.13 
 Colluvial   0.02     0   0      23 - 0.79 
 Fluvial   0.2     0   0    630  -0.52 
 Organic   0.2     0   0      29  0.39 
 Water   4.9     0   0       0  0.04 
 Basalt   0.4     9   2.1 1325 - 0.46 
Soil texture Loamy    0.9     9 18.4 2039 -0.26 
 Sandy clay 

loamy 
   2.1     4   7.7 1651 -1.24 

 Clay loamy  68 154 32 3419  0.12 
 Sand clay    0.6     0   0.6 1242  0 
 Clay  28.4 169 51.3 4984  0.37 
LULC  Built-up land   3.2     6   4.3 1237 -1.29 
 Cropland 60.4 247 59.7 4828 -1.13 
 Grassland 14.2   31 11.4 1101  0.62 
 Forest 16.1   52 24.6 1971  0.86 
 Water Bodies   6.1     0   0 1003  -0.31 
NDVI 0.65-0.99 19.6   63 26.5 2759 -0.55 
 0.53-0.65  42   31   9.1 1621  0.24 
 0.40-0.53 33.8 157 36.9 3827  0.89 
 0.16- 0.40   4.4   23   8.2 1086 -0.8 
 -0.2-0.16   0.2   62 19.3 1083  0-19 
Distance to 
rivers 

650-800   0.4     0   0 1011 -0.67 

 450-600   3.6   18   4 1023  -0.89 
 300-450 12   44 29 2109  -0.01 
 150-300 31   31 20 3262  0.04 
     0-150 54 243 47 3807  0.59 
Distance to 
roads  

1,000-1,250   4.2      8   0.7 1018  -0.32 

 750-1,000   8    52   2.1 1214 -0.69 



 500-750 16    31 16 2313 - 0.05 
 250-500 28.2    58 33 2548  0.01 
 0-250 43.6 187  48.2 3807 -1.21 
Aspects Flat   0.6     0   0   450 -0.03 
 Northeast   8.3     4   4.9 1356 -0.18 
 East   2.3     0   1.3 1719 -0.08 
 Southeast   2     0   0.1 2008 -0.46 
 South 10   26 10.3 2148  0.18 
 Southwest 13.3   38 17.6 2981  0.23 
 West 12.4 145 31.1 3198  0.64 
 Northwest 39.2    96 20.3 2349  0.49 
 North 11.2   27 12.4 2027  0.21 
 

 
Figure 5. Spatial landslides hazard distribution over Rwanda 

Table 2 Landslides hazard’s population exposure per province in Rwanda 

 Hazard classes Area (%) Population (%) 
 Very low 22.3 20.7 
 Low 48.5 40.3 
Southern Moderate 10.2 17.9 
 High 19 21.1 
 Very high   0   0 
 Very low   0.9   2.3 
 Low   9.1 19.6 
Northern Moderate 34 30.8 
 High 52 36 
 Very high   4 11.3 
 Very low    1.2   3.9 
 Low 12 20.2 
Western Moderate 30 31.6 



 High 52.1 38.1 
 Very high   4.7   6.2 
 Very low 64.5 44.4 
 Low 29.2 37.5 
Kigali Moderate    6.3 18.1 
 High    0    0 
 Very high    0    0 
 Very low 67.3 58.6 
 Low 32.4 38 
Eastern Moderate    0.38 3.4 
 High    0     0 
 Very high    0     0 
 

 

Figure 6. Estimated causal factor’s contribution to landslides hazard per province 

3.2 Validation of landslides hazard map 

There are different ways of testing the validity of the model. The basic assumption underlying 

the goodness of fit test is that future landslides will occur in the same places as the past or 

existing movements in the study area. In case a hazard map coincides well with the inventory 

then maps are considered satisfactory (Guzzetti et al. 2012; Van Westen et al. 2008). For this 

study, landslides inventory databases (Fig.1 (b)) were used to test the goodness of the classified 

landslides hazard. Then, cumulative percentages of hazard classes corresponding to cumulative 

percentage of observed landslides were presented. The validation results in Fig.7 and Table 3 

revealed that the statistical index model employed by this study generated good results because it 

confirmed that the constructed landslides hazard map coincided with past events. The results 



showed that a high number of past landslides (216 of 336) was observed within high landslides 

hazard zone which occupies 42.7% of the total landslides hazard in Rwanda. 

 
Figure 7. Prediction of future landslides occurrence likelihood based on previously observed events and its current 

spatial distribution in Rwanda 

Table 3 Validation of the observed landslides per estimated hazard classes 

Hazard class Hazard area (%) No. landslides Landslides area (%) 

Very low   2.3    5   3.1 

Low 12.6  43 21.9 

Moderate 39.1   68 32.2 

High 42.7 216 36.6 

Very high   3.3     4   6.2 

Total 100 336 100 

 

4. Discussion 



Landslides hazard mapping is an important step in landslides investigation and landslides risk 

management. The process divides and ranks the land surface according to the degree of actual 

potential hazard from landslides (Di et al. 2017; Frodella et al. 2018; Ambrosi et al. 2018). 

Landslides inventories and databases are critical to support investigations of where and when 

landslides have happened and may occur in the future (Huang et al. 2013). In Rwanda, landslides 

severely impact on community and environmental safety. However, lack of precise knowledge of 

the key conditioning factors and historical database are among the challenges in hazard risk 

reduction (MIDIMAR 2014). The authors recognized this fact and employed ten landslides 

conditioning factors (Fig.2, 3 and 4) in order to produce a landslides hazard map (Fig.5), show 

the extent of each area’s hazard exposure (Table 2) and the major triggering factors by hazard 

zone (Fig.6). 

It is reported that within mountainous areas, high elevation and slope easily facilitate the runoff 

during intense rainfall then cause landslides (Petley 2012; Tian et al. 2017). This is congruent to 

Rwanda, dubbed: “a country of thousand hills” due to its mountainous landscape (MIDIMAR 

2014). Accordingly, the results of this study (Fig.5) indicated that in Rwanda, moderate and high 

hazard zones record high precipitation, altitude and slope. Thus, for hazard risk reduction, it is 

good to expand areas under forest and promote the bench terraces and agroforestry practices 

along with rainfall harvest to minimize the runoff facilitated by its high elevation and slope. 

Hazard risk reduction requires a community-based approach through its direct participation in 

decision making, regular hazard-related meetings and timely information sharing, trainings and 

education delivery (Devkota et al. 2013; Tong et al. 2012). Such approaches enhance people’s 

understanding on the types of hazard under record in their living areas, main causes and the kind 

of behaviour to adopt for the risk management. This can be applied in Rwanda with particular 

focus on the landslides hazard highly exposed areas (Fig. 5 and Table 2) in order to enable the 

residents to either settle in low hazard zones or ensure practices which minimize their landslides 

hazard exposure. 

The occurrence of landslides does not only cause loss of human life, but also destroys natural 

habitat and causes species extinction, and destruction of other ecological services and natural 

heritage (Yalcin 2007; Kelman 2017; Capitani et al. 2013). In most cases, human activities are 

the key factors which exacerbate the impact of landslides. For example, the results in Fig.5 



classified Kigali city between low and moderate landslides hazard zones (Fig.5). This is due to 

the reason that the area records expanded built-ups, low vegetation cover, and is close to rivers 

and roads (Fig.3 and 4) which result from anthropogenic activities. This consequently, destroys 

infrastructures and causes water and soil pollution because during landslides occurrence, the 

exposed upper soil layers and other sediments are easily transported downslope then pollute the 

quality of water and soil as well (Nahayo et al. 2018). Hence, the prepared landslides hazard map 

(Fig.5) can indicate to the environmental and construction engineers the hazard level (from very 

low to very high). And this enhances the awareness on the safe places to install buildings and 

ways of minimizing the wastes that can be loaded into water during landslides, and the required 

water and soil pollution control and natural environment management policies. 

The knowledge on the fact that past landslides occurrence expresses the future likelihood helps 

to predict and prepare for the future (Urlaub et al. 2013). As illustrated in Fig.7, landslides 

hazard map validated with previous landslides revealed that 284 of 336 landslides are localized 

within the moderate and high hazard zones which occupy 78.8% of the total landslides hazard. 

Thus, if landslides reoccur in Rwanda, people and their belongings, and natural resources located 

in moderate and high hazard zones may record greater losses and damages. For such areas, soft 

engineering, known as biotechnical slope stabilization technique, if applied, can help to stabilize 

the slope due to its advantage of combining both the use of vegetation and man-made structural 

elements (Popescu and Sasahara 2009). In addition, residents from high landslides hazard areas 

(Fig.5) can be transferred to safe hazard zones like eastern province (Table 2) with low values of 

triggering factors (Fig.6). This saves people’s life and ensures proper land use and management.  

5. Conclusion 

The aim of this study was to produce a landslides hazard map of Rwanda. Authors applied GIS-

based statistical index model to analyze ten landslides causal factors. And the identified 336 

points were used to produce a landslides inventory and validate the prepared landslides hazard 

map. The produced hazard map was divided into five hazard classes, i.e., very low, low, 

moderate, high and very high in order to differentiate landslides hazard, and enhance the 

knowledge on the hazard magnitude and major drivers across Rwanda. The results showed that 

the northern, southern and western provinces are highly exposed to landslides hazard due to high 



elevation, slope, rainfall and poor land management. The proposed method revealed reasonable 

results because 284 of 336 previous landslides events are observed within moderate and high 

landslides hazard classes which occupy 78.8 percent of total hazard. It is concluded that for 

reducing landslides hazard in Rwanda, it is good to envisage strong population growth control, 

and set up appropriate building and environmental/natural resources management strategies. 

These include not limited to (a) avoiding to emplace new constructions on steep slope or to 

stabilize the slope before starting new constructions, (b) directing surface and ground water away 

from landslides hazard prone areas, (c) minimizing the irrigation of surface soil, (d) removing 

mass from the top of slope so that its weight may not force the layer to slide, and (e) ensuring 

that bank rivers are protected to minimize runoff during landslides occurrence in order to 

enhance water quality and reduce soil loss. Further assessment on the effectiveness of the hazard 

risk reduction policies under execution is suggested. 
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