
Facets from Gadgets

Adam N. Letchford∗ Anh N. Vu†

To appear in Mathematical Programming Series A

Abstract

We present a new tool for generating cutting planes for NP-hard
combinatorial optimisation problems. It is based on the concept of
gadgets — small subproblems that are “glued” together to form hard
problems — which we borrow from the literature on computational
complexity. Using gadgets, we are able to derive huge (exponentially
large) new families of strong (and sometimes facet-defining) cutting
planes, accompanied by efficient separation algorithms. We illustrate
the power of this approach on the asymmetric traveling salesman, sta-
ble set and clique partitioning problems.1

Keywords: branch-and-cut; gadgets; traveling salesman problem; sta-
ble set problem; clique partitioning problem

1 Introduction

A popular way to solveNP-hard combinatorial optimisation problems (COPs)
to proven (near-)optimality is branch-and-cut [37]. In this approach, the
COP is formulated as an integer linear program (ILP), and the convex hull
of feasible solutions is studied, with the aim of deriving families of strong
valid linear inequalities (called cutting planes or simply cuts). These cuts
are then used to construct strong linear programming relaxations of the
ILP. Algorithms for generating cuts are called separation algorithms, and
the strongest possible cuts are ones that define facets of the convex hull
(see, e.g., [13, 26]).

The purpose of this paper is to present a new tool for generating cuts.
It is based on the concept of gadgets — small subproblems that are “glued”
together to form hard problems — which we borrow from the literature on
computational complexity theory (see, e.g., [19, 38]). Using gadgets, we

∗Corresponding author. Department of Management Science, Lancaster University,
Lancaster LA1 4YX, United Kingdom. E-mail: a.n.letchford@lancaster.ac.uk
†Former PhD student at Lancaster. E-mail: a.vu32@yahoo.com
1This paper is dedicated to the memory of Alberto Caprara (1968–2012).

1

are able to derive huge (exponentially large) new families of cuts. We also
obtain efficient separation algorithms as a by-product of the analysis.

We illustrate the power of the gadget approach on three well-known NP-
hard COPs: the asymmetric traveling salesman problem (ATSP), the stable
set problem (SSP) and the clique partitioning problem (CPP). For all three
problems, some of the cuts that we derive are facet-defining. Interestingly,
some of the cuts that we derive for the CPP also have rank greater than
one, in the sense of Chvátal [12].

The structure of the paper is as follows. In Section 2, we review the
relevant literature. In Section 3, we define gadgets and show how they can
be used both to derive cuts and solve the associated separation problem.
In Section 4, we apply the gadget approach to the three COPs mentioned
above. Finally, in Section 5, we make some concluding remarks.

Throughout the paper, we use the following (standard) graph-theoretic
notation and terminology. G = (V,E) denotes a generic (simple, loopless)
undirected graph with vertex set V and edge set E. Given a node i ∈ V , we
let n(i) denote the neighbours of i in G, i.e., the set of nodes adjacent to i.
A clique (respectively, stable set) is a set of pairwise adjacent (respectively,
non-adjacent) nodes. A cycle is a connected subgraph in which all nodes
have degree two. Given a cycle C, we let V (C) denote its vertex set and
E(C) its edge set. If some of the edges of G are labelled “odd”, then a
cycle containing an odd number of odd edges is itself called “odd”. Given
a positive integer n, we let Kn = (Vn, En) denote the complete graph on
n nodes, where Vn = {1, . . . , n} and En = {e ⊂ Vn : |e| = 2}. Finally, for
directed graphs (digraphs), we write G = (V,A), where A is the set of arcs.
We also let Dn = (Vn, An) denote the complete digraph on n nodes, where
An = {(i, j) : i ∈ Vn, j ∈ Vn \ {i}}.

2 Literature Review

We now review the relevant literature. In Subsection 2.1, we review an
existing scheme for generating cuts, which will turn out to be a special case
of our scheme. For reasons which will become apparent, we describe the
satisfiability problem in Subsection 2.2. We cover gadgets in Subsection 2.3.
Finally, in Subsection 2.4, we recall some basic facts about the ATSP, SSP
and CPP.

2.1
{
0, 1

2

}
-cuts and odd cycles

Our new scheme for generating cuts was inspired by an existing scheme, due
to Caprara & Fischetti [6]. Let S ⊂ Zn be the set of solutions to an ILP,
let P be the convex hull of S, and let Ax ≤ b be an arbitrary collection
of valid linear inequalities for P , with b ∈ Zm and A ∈ Zmn. Caprara and

2

Fischetti call a cutting plane a “
{

0, 12
}

-cut” (w.r.t. the given collection of
inequalities) if it can be written in the form(

λTA
)
x ≤

⌊
λT b

⌋
,

for some λ ∈
{

0, 12
}m

such that λTA ∈ Zn and λT b /∈ Z.
Caprara and Fischetti show that the separation problem for

{
0, 12
}

-cuts
can be solved in polynomial time under certain conditions. In particular, if
every row of A has exactly two odd coefficients, then separation is equiv-
alent to finding a minimum-weight odd cycle in a graph with n nodes and
m edges. This problem in turn can be reduced to a series of n shortest-
path problems [4, 20]. If we use an efficient implementation of Dijkstra’s
method to solve these shortest-path problems (see [18]), we can compute
the minimum-weight odd cycle in O

(
nm+ n2 log n

)
time.

In the remainder of the paper, when we refer to “the Caprara–Fischetti
approach”, we mean the one based on odd cycles. (They also describe
another approach, based on odd cuts.) Some related schemes for generating
cuts can be found in, e.g., [5, 27, 32].

2.2 Satisfiability

The satisfiability problem (SAT) was the first ever problem to be proved NP-
complete [14]. In this problem, we have a collection of Boolean variables,
say x1, . . . , xn, and a collection of logical disjunctions, called clauses, that
they should satisfy. An example of a clause is x1 ∨ x̄2 ∨ x̄3, which should
be read as “x1 is true or x2 is false or x3 is false”. In this context, “or” is
always intended to be inclusive. The task is to check whether there exists an
assignment of truth values to the variables that satisfies all of the clauses.

The special case of SAT in which every clause contains exactly k terms is
called k-SAT. It is well known that 2-SAT can be solved in linear time. One
way to do it as as follows [1]. Replace each clause with two implications.
For example, the clause x1 ∨ x̄2 is replaced with the statements “x̄1 implies
x̄2” and “x2 implies x1”. Construct a digraph with 2n nodes, where the first
n nodes represent x1, . . . , xn and the others represent x̄1, . . . , x̄n. Represent
every implication by a directed arc. For example, the first of the above
implications is represented by an arc from node x̄1 to node x̄2. Compute the
strongly connected components of the digraph. The instance is satisfiable if
and only there does not exist an index i such that both node xi and node
x̄i lie in the same component.

2.3 Gadgets

Gadgets (also sometimes called units or components) are used heavily in
computational complexity theory, in order prove hardness results. For ex-
ample, suppose we wish to prove that 3-SAT is NP-complete. Since we

3

know that SAT is NP-complete, it suffices to show that any clause with
more than 3 terms is equivalent to a small (polynomially bounded) number
of clauses with only 3 terms (possibly with the help of additional variables).
This is indeed the case. For example, suppose we have a clause of the form∨p

i=1 xi, with p ≥ 4. Let q = dp/2e and replace the clause with two shorter
clauses of the form y ∨

∨q
i=1 xi and ȳ ∨

∨p
i=q+1 xi, where y is an additional

Boolean variable. Using this “gadget” repeatedly, if necessary, we eventually
obtain O(p) clauses with only three terms each, using only O(p) additional
variables. Instead of giving more details, we refer the reader to [19, 38].

2.4 The ATSP, SSP and CPP

Finally, we recall some facts about the ATSP, SSP and CPP.
Given an integer n ≥ 2 and a cost ca ∈ Q for each a ∈ An, the ATSP

is the problem of finding a minimum-cost Hamiltonian dicycle in Dn. The
standard ILP formulation of the ATSP is as follows [15]. For each arc
a ∈ A, let xa be a binary variable, taking the value 1 if and only if the arc
a is traversed. Then:

max
∑

a∈A caxa

s.t.
∑

j 6=i xij = 1 (i ∈ Vn) (1)∑
j 6=i xji = 1 (i ∈ Vn) (2)∑

i∈S,j∈S\{i} xij ≤ |S| − 1 (S ⊂ Vn : 2 ≤ |S| ≤ n/2) (3)

xa ∈ {0, 1} (a ∈ An).

The constraints (1) and (2) are called out- and in-degree equations. The
constraints (3) are called subtour elimination constraints (SECs).

Many facet-defining inequalities are known for the ATSP; see, e.g., [3, 33]
for surveys. It is known that the separation problem for the SECs can be
solved in O

(
n3
)

time [34]. Polynomial-time separation algorithms for other
families of inequalities can be found in [6, 7, 17, 27, 28, 36]. One family that
will be of interest to us is the weak odd closed alternating trail (weak odd
CAT) inequalities [2, 6]. These are in fact nothing but the inequalities that
can be derived as

{
0, 12
}

-cuts from inequalities of the form xij + xji ≤ 1,
xij + xik ≤ 1 and xij + xkj ≤ 1. From this it follows that the associated
separation problem can be solved exactly in O

(
n5
)

time [6].
Given an undirected graph G = (V,E), the SSP is the problem of finding

a stable set of maximum cardinality. The standard ILP formulation of the
SSP is as follows [22]. For each i ∈ V , let xi be a binary variable, taking
the value 1 if and only if node i is selected. Then:

max
∑

i∈V xi

s.t. xi + xj ≤ 1 ({i, j} ∈ E) (4)

xi ∈ {0, 1} (i ∈ V).

4

The constraints (4) are called edge inequalities.
Many strong valid inequalities are known for the SSP (see the surveys

in [21, 22]). For example, Padberg [35] introduced the following inequalities
(among others):

• clique inequalities
∑

i∈C xi ≤ 1 for each maximal clique C ⊆ V ;

• odd hole inequalities
∑

i∈H xi ≤
⌊
|H|/2

⌋
for each set of nodes H in-

ducing an odd hole (chordless cycle of odd length) in G;

• odd antihole inequalities
∑

i∈A xi ≤ 2 for each set of nodes A inducing
the complement of an odd hole in G.

Note that the clique inequalities dominate the edge inequalities.
The separation problem for odd hole inequalities can be reduced to a

minimum-weight odd cycle problem [4, 20], and thereby solved efficiently.
In fact, the odd hole inequalities are

{
0, 12
}

-cuts with respect to the edge
inequalities, and the approaches described in Subsection 2.1 include the
algorithm in [4, 20] as a special case. Polynomial-time separation algorithms
for other SSP inequalities are given in [5, 8, 9, 21, 22, 29].

Finally, given an integer n ≥ 2 and a rational weight we for each edge
e ∈ En, the CPP calls for a partition of Vn into subsets (cliques), such that
the sum of the weights of the edges that have both end-nodes in the same
clique is maximised [30]. The standard ILP formulation of the CPP is the
following [24, 30]. For all {i, j} ∈ E, the binary variable xij takes the value
1 if and only if nodes i and j are in the same clique. Then:

max
∑

e∈En
wexe

s.t. xik + xjk − xij ≤ 1 ({i, j} ∈ En, k ∈ Vn \ {i, j}) (5)

xe ∈ {0, 1} (e ∈ En).

The inequalities (5) are called transitivity inequalities.
Grötschel and Wakabayashi [24] showed that the transitivity inequalities

(5) define facets. They also introduced several other families of facet-defining
inequalities. Of those, we will be especially interested in the 2-chorded odd
cycle (2-COC) inequalities. These take the form:∑

e∈E(C)

xe −
∑
e∈H

xe ≤
⌊
|C|/2

⌋
,

where C is a cycle in Kn with |C| ≥ 5 and odd, and H is the set of 2-chords
of C, i.e., the set of edges in En which connect pairs of nodes in V (C) that
have a distance 2 in C.

Chopra and Rao [10] found two additional families of facet-defining in-
equalities for the CPP. Of those, we will be interested in the odd wheel (OW)

5

inequalities. These take the form:∑
v∈V (C)

xvh −
∑

e∈E(C)

xe ≤
⌊
|C|/2

⌋
,

where C is a cycle in Kn with |C| ≥ 3 and odd, and h is any arbitrary node
in Vn \ V (C).

Deza et al. [16] showed that the separation problem for the OW inequal-
ities can be solved in O

(
n4
)

time. The complexity of separation for the
2-COC inequalities is unknown, but it was shown in [6, 31] that there ex-
ists an O

(
n5
)
-time separation algorithm for a family of valid inequalities

that includes all OW and 2-COC inequalities. These inequalities, called odd
closed walk (OCW) inequalities, are derived as

{
0, 12
}

-cuts from weakened
transitivity inequalities of the form xij + xjk − 2xik ≤ 1.

3 Gadgets, Cutting Planes and Separation Algo-
rithms

In this section, we present our new approach. In Subsections 3.1 and 3.2,
we define gadgets and explain how they can be used to derive cuts. In
Subsection 3.3, we present a method for constructing gadgets for 0-1 linear
programs (0-1 LPs). In Subsection 3.4, we show how to use gadgets to derive
efficient separation algorithms for 0-1 LPs. Finally, in Subsection 3.5, we
make some additional remarks.

Throughout this section, we assume that our COP has been formulated
as an ILP with n variables. We also let S ⊂ Zn

+ denote the set of feasible
solutions and let P = conv(S) be the associated polytope.

3.1 Gadgets

We now define our gadgets formally. Let us assume that we can identify some
interesting “properties” that a feasible solution can have. Such properties
could be very simple (e.g., “xj takes the value 0”, “xj takes an even value”),
or more complex (e.g., “the sum of xj and xk is a prime number”, “the
solution corresponds to a forest”). Given a specific feasible solution to the
ILP, we write “hp” when the solution has property p, and “h̄p” when it does
not. We can then write clauses, exactly as in the satisfiability problem. For
example, “hp ∨ h̄q” means “the solution has property p but does not have
property q”.

We will need the following two definitions.

Definition 1 Let αTx ≤ β be any linear inequality that is valid for P . A
point x ∈ S satisfying αTx = β will be called a “root” of the inequality.

6

Definition 2 A valid inequality αTx ≤ β will be called a “gadget” (with
respect to a given ILP and a given collection of properties) if it satisfies the
following conditions:

• it has integral coefficients, i.e. α ∈ Zn and β ∈ Z;

• it has at least one root;

• at least one clause is known that is satisfied by all roots.

For clarity, we give an example.

Example 1 Let S =
{
x ∈ Z3

+ : x1 + x2 + 3x3 = 7
}

. Suppose our proper-
ties are “x1 is odd”, “x2 is odd” and “x3 is odd”. The inequality x1 ≥ 0 is
(trivially) valid for P . The roots of the inequality are (0, 7, 0), (0, 4, 1) and
(0, 1, 2). In all roots, exactly one of the last two variables is odd. So, all
roots satisfy the clauses h2 ∨ h3 and h̄2 ∨ h̄3. Thus, the given inequality is
a gadget. One can check that the valid inequality x3 ≤ 2 is also a gadget,
since all roots satisfy the clauses h1 ∨ h2 and h̄1 ∨ h̄2. �

3.2 Using gadgets to derive cuts

Next, we present a simple way to use gadgets to generate cutting planes.

Lemma 1 Suppose we are given an ILP, a collection of properties, and a
collection R of gadgets, of the form αr ·x ≤ βr for r ∈ R. Let R′ be a subset
of R. We construct an instance of SAT, simply by including all clauses
associated with the gadgets in R′. If the SAT instance is unsatisfiable, then
the inequality ∑

r∈R′
αr · x ≤

∑
r∈R′

βr − 1

is valid for P .

Proof. Given that the SAT instance is unsatisfiable, it is impossible for a
feasible solution to satisfy all of the gadgets in R′ at equality simultaneously.
Thus, at least one of them must have a positive slack. Given that gadgets
have integral coefficients, the sum of the slacks must be at least one. �

Unfortunately, this lemma is too general to be of practical use, given
that SAT is NP-complete in the strong sense. Moreover, in itself, it does
not yield an efficient separation algorithm.

7

3.3 Gadgets for 0-1 LPs

We now focus on gadgets for 0-1 LPs. For simplicity and brevity, we assume
that we have only n properties, of the form “xi = 1” for i = 1, . . . , n. We
also define two special kinds of gadget:

Definition 3 A gadget will be called an “exclusive or” (XOR) gadget if there
exists a pair {i, j} ⊂ {1, . . . , n} such that, in all roots, xi + xj = 1.

Definition 4 A gadget will be called an “equality” (EQ) gadget if there exists
a pair {i, j} ⊂ {1, . . . , n} such that, in all roots, xi = xj.

The following example shows that it is possible for a gadget to be an
XOR gadget and an EQ gadget simultaneously.

Example 2 Suppose that S ∈ {0, 1}5, and that the inequality x1+x2+2x3+
3x4 + 5x5 ≤ 6 is valid for P . All roots of this inequality satisfy x1 + x2 = 1,
x3 = x4, x3 +x5 = 1 and x4 +x5 = 1. Thus, the inequality is an XOR gadget
with respect to {1, 2}, {3, 5} and {4, 5}, but an EQ gadget with respect to
{3, 4}. �

The following lemma presents some simple XOR and EQ gadgets.

Lemma 2 If the inequality xi + xj ≤ 1 or xi + xj ≥ 1 is valid for P , then
it is an XOR gadget. If the inequality xi ≤ xj is valid for P , then it is an EQ

gadget.

Proof. Trivial. �

The following theorem presents a general procedure for generating more
interesting XOR and EQ gadgets.

Theorem 1 Let αTx ≤ β be an arbitrary valid inequality for P that (a)
has integral coefficients and (b) has at least four roots. We say that a pair
{i, j} ⊂ {1, . . . , n} is “compatible” with the given inequality if, for any pair
s, t ∈ {0, 1}, there exists at least one root satisfying xi = s and xj = t.
Assume that {i, j} is compatible. Define:

βst = max
{
αTx : x ∈ S, xi = s, xj = t

}
,

and let ∆ = β10 + β01 − β00 − β11. If ∆ = 1, then the inequality

2αTx +
(
2β00 − 2β10 + 1

)
xi +

(
2β00 − 2β01 + 1

)
xj ≤ 2β00 + 1 (6)

is an XOR gadget. If ∆ ≥ 2, then the inequality

αTx +
(
β00 − β10 + 1

)
xi +

(
β00 − β01 + 1

)
xj ≤ β00 + 1

8

is an XOR gadget. If ∆ ≥ 3, then the inequality

αTx +
(
β01 − β11 − 1

)
xi +

(
β10 − β11 − 1

)
xj ≤ β00 + ∆− 1

is also an XOR gadget. If ∆ = −1, then the inequality

2αTx +
(
2β00 − 2β10 − 1

)
xi +

(
2β00 − 2β01 − 1

)
xj ≤ 2β00

is an EQ gadget. If ∆ = −2, then the inequality

αTx +
(
β00 − β10 − 1

)
xi +

(
β00 − β01 − 1

)
xj ≤ β00

is an EQ gadget. Finally, if ∆ ≤ −3, then the inequalities

αTx +
(
β00 − β10 − 1

)
xi +

(
β10 − β11 + 1

)
xj ≤ β00

αTx +
(
β01 − β11 + 1

)
xi +

(
β00 − β01 − 1

)
xj ≤ β00

are EQ gadgets.

Proof. For brevity, we present the proof only for the inequality (6). (The
proof is similar for the other inequalities, but more tedious.) To show that
(6) is valid for P , we consider four cases:

Case 1: xi = xj = 0. In this case, (6) reduces to 2αTx ≤ 2β00 + 1. Validity
here follows from the definition of β00.

Case 2: xi = xj = 1. Now, (6) reduces to 2αTx ≤ 2(β10 + β01 − β00) =
2β11 + 1. Validity here follows from the definition of β11.

Case 3: xi = 0 and xj = 1. Now, (6) reduces to 2αTx ≤ 2β01. Validity here
follows from the definition of β01.

Case 4: xi = 1 and xj = 0. Now, (6) reduces to 2αTx ≤ 2β10. Validity here
follows from the definition of β10.

Now observe that, in the first two cases, no roots can exist, since all left-
hand side coefficients are even and the right-hand side is odd. Thus, (6) is
an XOR gadget. �

3.4 Cuts and separation for 0-1 problems

Now we use XOR and EQ gadgets to define a broad family of cutting planes
for 0-1 LPs.

Proposition 1 (Odd Gadget Cycle Inequalities) Consider an arbitrary
collection R of XOR and EQ gadgets. Let the gadgets be written in the form
αr · x ≤ βr for r ∈ R. Construct a multigraph, say G+ = (V +, E+), as
follows.

• Set V + to {1, . . . , n}.

9

• For all r ∈ R and {i, j} ⊂ V +, if gadget r is an XOR gadget with respect
to {i, j}, insert an edge into E+ between i and j, and label the edge
“odd”.

• For all r ∈ R and {i, j} ⊂ V +, if gadget r is an EQ gadget with respect
to {i, j}, insert an edge into E+ between i and j, and label the edge
“even”.

Let C be any odd cycle in G+. Let r(1), . . . , r(t) be the gadgets that corre-
spond to the edges in E(C). The “odd gadget cycle” (OGC) inequality

t∑
s=1

αr(s) · x ≤
t∑

s=1

βr(s) − 1 (7)

is valid for P .

Proof. Suppose that a solution x̃ ∈ S is a root of all t gadgets simultane-
ously. If {i, j} ∈ E(C) is an odd edge, then x̃i 6= x̃j . If it is an even edge,
then x̃i = x̃j . Since E(C) contains an odd number of odd edges, we have
x̃i 6= x̃i for all i ∈ V (C). Since this is a contradiction, at least one of the t
gadgets must have a positive slack. �

We will see in the following three sections that, for some COPs and some
simple collections of gadgets, the number of non-dominated OGC inequal-
ities can be exponential in n. Fortunately, the separation problem for the
OGC inequalities can be solved exactly in polynomial time, as we now show.

Proposition 2 (Separation of OGC Inequalities) If R is a collection
of XOR and EQ gadgets whose size is bounded by a polynomial in n, then the
separation problem for the corresponding OGC inequalities can be solved in
polynomial time.

Proof. Let x∗ ∈ [0, 1]n be the point to be separated. If any of the gadgets
themselves are violated, then we immediately have a cutting plane. So
assume that x∗ satisfies all of the given gadgets. Construct the multigraph
G+, and set the weight of each edge to the slack of the associated gadget.
Note that all edges have non-negative weight. By construction, there is
a one-to-one correspondence between violated OGC inequalities and odd
cycles in G+ whose total weight is less than 1. We can find a minimum-
weight odd cycle in polynomial time using the approach in [4, 20]. �

3.5 Additional remarks

To end this section, we make some additional remarks about OGC inequal-
ities.

10

1. Any odd cycle in G+ with weight less than 1 represents a violated
OGC inequality. As a result, the separation algorithm can potentially
find up to n violated inequalities in a single call.

2. It may be that two or more edges in an odd cycle represent the same
gadget. In this case, one can strengthen the OGC inequality (7) by
including just one copy of each distinct gadget in the summation.
We suspect that the separation problem for these strengthened OGC
inequalities is NP-hard. In practice, one can just take each (near-
)violated OGC inequality found by the odd cycle approach, and check
whether it can be strengthened.

3. If G+ has parallel edges between any pair of nodes, we can omit all
apart from two; namely, the odd and even edges with smallest weight.
So we can assume that G+ contains O

(
n2
)

edges. From this it follows
that the minimum-weight odd cycle can be found in O

(
n3
)

time. The
total separation time could be larger or smaller, however, depending
on the number of gadgets and the time taken to compute their slacks.

4. A constraint with two odd left-hand side coefficients is either an XOR

gadget or an EQ gadget, depending on whether the right-hand side is
odd or even. From this it can be shown that any

{
0, 12
}

-cut that can
be obtained with the Caprara–Fischetti approach can also be obtained
by dividing an OGC inequality by two. Thus, the Caprara–Fischetti
approach is a special case of ours. Moreover, our approach is more
general, since we do not impose restrictions on the parities of the
coefficients in the gadgets. (Indeed, the gadget in Example 2 has more
than two odd left-hand side coefficients.)

4 Application to Specific COPs

In this section, we apply the gadget approach to the ATSP, SSP and CPP.

4.1 Application to the ATSP

We begin with the ATSP. The following lemma presents three very simple
XOR gadgets.

Lemma 3 The following inequalities are XOR gadgets for the ATSP:

xij + xji ≤ 1 (i, j ∈ Vn)

xij + xik ≤ 1 (i, j, k ∈ Vn)

xij + xkj ≤ 1 (i, j, k ∈ Vn).

Proof. Trivial. �

11

With the aid of Theorem 1, we have found several more complex gadgets.
Some examples are given in the following two propositions.

Proposition 3 Let (i, j, k) be an ordered subset of Vn. The following in-
equalities are XOR gadgets for the ATSP, with respect to the variables xij
and xjk:

xij + xjk + 2xik + 2xki ≤ 3

xij + xjk + 2xji + 2xki ≤ 3

xij + xjk + 2xki + 2xkj ≤ 3

xij + xjk + xik + xji + xkj + 2xki ≤ 3

xij + xjk + 2xik + xki + xi` + x`k ≤ 3 (` ∈ Vn \ {i, j, k})

xij + xjk + 2
∑

p,q∈{i,k,`}

xpq ≤ 5 (` ∈ Vn \ {i, j, k})

xij + xjk + 2
∑

p∈{i,j,k}

(x`p + xp`) ≤ 5 (` ∈ Vn \ {i, j, k}).

Proof. One can check (e.g., by brute-force enumeration) that (a) these
inequalities are valid and (b) in any root, xij + xjk = 1. �

Proposition 4 Let (i, j, k) be an ordered subset of Vn. The following in-
equalities are EQ gadgets for the ATSP, with respect to the variables xij and
xjk:

xij + xjk + xik + xji + xkj ≤ 2

2xij + 2xjk + 2xik + xji + 2xkj + xi` + x`k ≤ 4 (` ∈ Vn \ {i, j, k})
2xij + 2xjk + 2xik + 2xji + xkj + xi` + x`k ≤ 4 (` ∈ Vn \ {i, j, k})∑

p,q∈{i,j,k,`}

xpq + xkj + xk` − x`i ≤ 4 (` ∈ Vn \ {i, j, k})∑
p,q∈{i,j,k,`}

xpq + xji + x`i − xk` ≤ 4 (` ∈ Vn \ {i, j, k}).

Proof. One can check (e.g., by brute-force enumeration) that (a) these
inequalities are valid and (b) in any root, xij = xjk. �

We remark that two of our XOR gadgets and all five of our EQ gadgets have
more than two odd coefficients on the left-hand side.

One can check that, even if one uses only the XOR gadgets described
in Lemma 3, the OGC inequalities include all weak odd CAT inequalities.
Adding the other gadgets to the collection, one can derive many other in-
teresting OGC inequalities for the ATSP. Here is an example.

12

Example 3 From Proposition 3, the following inequality is an XOR gadget
with respect to x12 and x23:

x12 + x23 + x13 + x21 + x32 + 2x31 ≤ 3.

Moreover, from Lemma 3, the following four inequalities are also XOR gad-
gets: x23 + x43 ≤ 1, x43 + x45 ≤ 1, x45 + x15 ≤ 1 and x15 + x12 ≤ 1. One
can check that these five gadgets correspond to an odd cycle in G+, passing
through the nodes (1, 2), (2, 3), (4, 3), (4, 5) and (1, 5). This yields the OGC
inequality

2
(
x12 + x15 + x23 + x43 + x45

)
+ x13 + x21 + x32 + x31 ≤ 6.

This inequality cuts off fractional points with x31 = 1 and x12 = x23 =
x43 = x45 = x15 = 1/2. One can check that such points cannot be cut off
with SECs or weak odd CAT inequalities. �

Now consider the separation problem associated with the OGC inequal-
ities that can be derived using our gadgets. One can check that the multi-
graph G+ has O

(
n2
)

nodes and O
(
n3
)

edges. From this one can show that
the separation algorithm takes O

(
n5
)

time. A more careful analysis enables
one to reduce the time to O

(
fn2 + f2n

)
, where f is the number of variables

that take a fractional value in the given fractional solution. We omit de-
tails for brevity. One can also show that the algorithm can return up to f
violated inequalities in a single call.

4.2 Application to the SSP

We now apply the gadget approach to the SSP. The following lemma presents
some very simple XOR gadgets.

Lemma 4 Every edge inequality (4) is an XOR gadget for the SSP.

Proof. Trivial. �

With the aid of Theorem 1, we have found several more complex gadgets.
Some examples are given in the following two propositions.

Proposition 5 Let i and j be a pair of non-adjacent nodes in G. If C ⊂
V \ {i, j} is a clique such that (a) each node in C is adjacent to exactly one
of i and j, (b) |C ∩ n(i)| ≥ 2 and (c) |C ∩ n(j)| ≥ 2, then the inequality

xi + xj + 2
∑
k∈C

xk ≤ 3

is an XOR gadget with respect to xi and xj.

13

Proposition 6 Let i and j be a pair of non-adjacent nodes in G. If C be
a maximal subset of n(i)∩ n(j) such that (a) C is a clique and (b) |C| ≥ 2,
then the inequality

xi + xj + 2
∑
k∈C

xk ≤ 2 (8)

is an EQ gadget with respect to xi and xj. Moreover, if A is a subset of
n(i) ∩ n(j) that induces an odd antihole in G, then the inequality

xi + xj +
∑
k∈A

xk ≤ 2 (9)

is an EQ gadget with respect to xi and xj.

We remark that the gadget (9) does not have two odd left-hand side coeffi-
cients.

One can check that, if we use only the edge inequalities (4) as XOR gad-
gets, the OGC inequalities are precisely the odd hole inequalities. Adding
the other gadgets to the collection, one can derive many other interesting
OGC inequalities for the SSP. Here are two examples.

Example 4 Let G be the graph in Fig. 1. Suppose we use the XOR gadget
x1 + x7 ≤ 1 and the following two EQ gadgets of type (8):

x1 + x4 + 2
(
x2 + x3 + x8

)
≤ 2

x4 + x7 + 2
(
x5 + x6 + x8

)
≤ 2.

One can check that these three gadgets correspond to an odd cycle in G+,
passing through nodes 1, 4 and 7. This yields the OGC inequality

2
7∑

i=1

xi + 4x8 ≤ 4.

Dividing this by two, we obtain
∑7

i=1 xi + 2x8 ≤ 2. This can be shown to be
facet-defining by applying Padberg’s “lifting” procedure [35] to the odd hole
inequality x1 + x3 + x4 + x5 + x7 ≤ 2. �

Example 5 Let G be the (unique) graph with 13 nodes and 31 edges such
that:

• {1, . . . , 5} and {6, . . . , 10} induce 5-antiholes (which are also 5-holes);

• node 11 is adjacent to nodes 1, . . . , 10;

• node 12 is adjacent to nodes 1, . . . , 5;

14

1

2

3

4

5

6

7

8

Figure 1: Graph for Example 4.

• node 13 is adjacent to nodes 6, . . . , 10;

• nodes 12 and 13 are adjacent.

(See Fig. 2.) Suppose we use the XOR gadget x12 +x13 ≤ 1 and the following
two EQ gadgets of type (9):

x11 + x12 +

5∑
i=1

xi ≤ 2

x11 + x13 +
10∑
i=6

xi ≤ 2.

One can check that these three gadgets correspond to an odd cycle in G+,
passing through nodes 11, 12 and 13. This yields the OGC inequality

2
(
x11 + x12 + x13

)
+

10∑
i=1

xi ≤ 4.

One can check (either by hand, or with the help of a software package such
as PORTA [11]) that this inequality defines a facet. One can also check that
G does not contain any holes of cardinality 9, which means that the OGC
inequality is not a lifted odd hole inequality. �

Now consider the separation problem associated with the OGC inequal-
ities that can be derived using our gadgets. One can check that:

• If we include all gadgets involving four nodes or fewer, the separation
algorithm takes O

(
|V |3 + |E|2

)
time.

• If we also include all gadgets involving five nodes, the time increases
to O

(
|V | |E|2

)
.

• If we also include all gadgets involving six nodes, the time increases
to O

(
|E|3

)
.

As before, one can obtain improved running times by considering the vari-
ables that take fractional values. We omit details for brevity.

15

11

12 13

{1, . . . , 5} {6, . . . , 10}

Figure 2: Graph for Example 5.

4.3 Application to the CPP

Finally, we apply the gadget approach to the CPP. The following lemmas
describe two simple, yet remarkably powerful, gadgets for the CPP.

Lemma 5 For any {i, j} ∈ En and any k ∈ Vn \ {i, j}, the inequality

xik + xjk − 2xij ≤ 1 (10)

is an XOR gadget for the CPP.

Proof. Validity is trivial. One can check that in all roots, exactly one of
the variables xik and xjk is equal to one. �

Lemma 6 For any {i, j} ∈ En, the inequality

xij ≤ 1 (11)

is an EQ gadget for the CPP. This gadget is associated with n − 2 distinct
pairs of variables.

Proof. Validity is again trivial. If x is a root, then nodes i and j must
lie in the same clique. This implies that, for any node k ∈ V \ {i, j}, the
variables xik and xjk must take the same value. �

The following proposition shows that the XOR gadgets (10) alone are
rather powerful.

Proposition 7 Every OGC inequality derived from the XOR gadgets (10) is
equivalent to an OCW inequality and vice-versa.

Proof. Let G+ be the graph obtained when R consists of the XOR gadgets.
Note that there is one node in G+ for each edge e ∈ En. Consider an
odd cycle in G+, and let c denote the number of edges in the cycle. Let
e(1), . . . , e(c) be the edges in En that correspond to the c nodes in the cycle.

16

Also, for notational simplicity, let e(c+ 1) = e(1). The ith edge in the cycle
then corresponds to the XOR gadget xe(i) +xe(i+1)− 2xf(i) ≤ 1, where f(i) is
the edge having one end-node in common with e(i) and e(i+ 1). The OGC
inequality can therefore be written as

c∑
i=1

(
xe(i) + xe(i+1) − 2xf(i)

)
≤ c− 1.

Now observe that each edge e(i) is counted twice on the left-hand side. Thus,
if we divide the OGC inequality by two, we obtain:

c∑
i=1

xe(i) −
c∑

i=1

xf(i) ≤ bc/2c.

This is an OCW inequality. Similarly, given any OCW inequality, one can
construct an odd cycle in G+ that yields a OGC inequality that is twice the
given OCW inequality. �

It turns out that, if we use the XOR gadgets (10) and the EQ gadgets (11)
in combination, we can obtain facet-defining OGC inequalities that are not
OCW inequalities. Here are two examples.

Example 6 Suppose we use the XOR gadgets

x12 + x13 − 2x23 ≤ 1, x13 + x14 − 2x34 ≤ 1, x14 + x15 − 2x45 ≤ 1;

and the EQ gadget x25 ≤ 1. One can check that these four gadgets correspond
to an odd cycle in G+, passing through the nodes {1, 2}, {1, 3}, {1, 4} and
{1, 5}. This yields the OGC inequality.

x12 + x15 + x25 + 2
(
x13 + x14 − x23 − x34 − x45

)
≤ 3. (12)

This can be shown to define a facet when n = 5. �

Example 7 Suppose we use the XOR gadgets

x17 + x27 − 2x12 ≤ 1, x27 + x37 − 2x23 ≤ 1, x37 + x47 − 2x34 ≤ 1,

x47 + x57 − 2x45 ≤ 1, x57 + x67 − 2x56 ≤ 1,

and the EQ gadget x16 ≤ 1. One can check that these six gadgets correspond
to an odd cycle in G+, passing through the nodes {1, 7}, {2, 7}, {3, 7}, {4, 7},
{5, 7} and {6, 7}. This yields the OGC inequality

x16+x17+x67+2
(
x27+x37+x47+x57−x12−x23−x34−x45−x56

)
≤ 5. (13)

This can be shown to define a facet when n = 7. �

17

Readers who are familiar with the concept of Chvátal rank (see [12]) may
find the following result of interest.

Proposition 8 The OGC inequalities (12) and (13) have Chvátal rank
larger than 1.

Proof. Since the CPP polytope is full-dimensional and the inequalities
in question define facets for n = 5 and n = 7, respectively, we can use
the method in [25]. When n = 5, if we maximise the left-hand side of the
inequality (12) subject to the transitivity and non-negativity inequalities, we
obtain a fractional LP solution with x25 = 1, x12 = x13 = x14 = x15 = 1/2,
and all other variables equal to zero. The profit of this solution is 4. Since
the right-hand side of (12) is 3 < b4c, the inequality must have rank larger
than 1.

Similarly, when n = 7, if we maximise the left-hand side of the inequality
(13) subject to the transitivity and non-negativity inequalities, we obtain a
fractional solution with x16 = 1 and xi7 = 1/2 for i = 1, . . . , 6. The profit
of this solution is 6, whereas the right-hand side of (13) is 5 < b6c. �

In particular, the OGC inequalities (12) and (13) are not implied by
{

0, 12
}

-
cuts.

As for the separation problem for our OGC inequalities, the situation is
similar to that of the ATSP. That is, the separation algorithm takes O

(
n5
)

time, but a more careful analysis enables one to reduce the time to O
(
fn2 +

f2n
)
, where f is the number of fractional variables. We omit details for

brevity.

5 Conclusions

Up to now, gadgets have been used solely to prove hardness results. In this
paper, we have shown that they can also be useful for deriving new families
of cutting planes, with accompanying efficient separation algorithms. The
results that we obtained with the asymmetric traveling salesman, stable
set and clique partitioning problems suggest that this new approach has
considerable potential.

We can think of three interesting topics for future research. The first is
whether the gadget approach can be usefully applied to other NP-hard com-
binatorial optimisation problems. Problems worth consideration include,
e.g., the symmetric TSP, the max-cut problem, the linear ordering problem
[23] and the transitive acyclic subdigraph problem [31]. The second is the
possibility of defining gadgets that impose more complex structural prop-
erties on the roots, rather than merely imposing relationships between the
parities of individual pairs of variables. The third, suggested by an anony-
mous referee, is the possibility of generating gadgets “on-the-fly”, based on

18

the structure of the current fractional point to be separated.

Acknowledgement: The authors would like to thank the anonymous ref-
eree and the associate editor for very helpful suggestions.

References

[1] B. Aspvall, M.F. Plass & R.E. Tarjan (1979) A linear-time algorithm
for testing the truth of certain quantified boolean formulas. Inform.
Proc. Lett., 8, 121–123.

[2] E. Balas (1989) The asymmetric assignment problem and some new
facets of the traveling salesman polytope on a directed graph. SIAM J.
Discr. Math., 2, 425–451.

[3] E. Balas & M. Fischetti (2002) Polyhedral theory for the asymmetric
traveling salesman problem. In G. Gutin & A.P. Punnen (eds.) The
Traveling Salesman Problem and Its Variations, pp. 117–168. Dortrecht:
Kluwer.

[4] F. Barahona & A.R. Mahjoub (1986) On the cut polytope. Math. Pro-
gram., 36, 157–173.

[5] R. Borndörfer & R. Weismantel (2000) Set packing relaxations of inte-
ger programs. Math. Program., 88, 425–450.

[6] A. Caprara & M. Fischetti (1996) {0, 12}-Chvátal-Gomory cuts. Math.
Program., 74, 221–235.

[7] R.D. Carr (1997) Separating clique tree and bipartition inequalities
having a fi

xed number of handles and teeth in polynomial time. Math. Oper. Res.,
22, 257–265.

[8] E. Cheng & W.H. Cunningham (1997) Wheel inequalities for stable set
polytopes. Math. Program., 77, 389–421.

[9] E. Cheng & S. de Vries (2002). Antiweb-wheel inequalities and their
separation problems over the stable set polytopes. Math. Program., 92,
153–175.

[10] S. Chopra & M.R. Rao (1993) The partition problem. Math. Program.,
59, 87–115.

[11] T. Christof & A. Loebl, PORTA (polyhedron representation trans-
formation algorithm). Software package, available for download at
http://www.iwr.uni-heidelberg.de/groups/comopt/software

19

[12] V. Chvátal (1973) Edmonds polytopes and a hierarchy of combinatorial
problems. Discr. Math., 4, 305–337.

[13] M. Conforti, G. Cornuéjols & G. Zambelli (2014) Integer Programming.
Cham, Switzerland: Springer.

[14] S. Cook (1971) The complexity of theorem proving procedures. Proc.
3rd Ann. ACM Symp. Th. Comput. (STOC), pp. 151–158.

[15] G.B. Dantzig, D.R. Fulkerson & S.M. Johnson (1954) Solution of a
large-scale traveling salesman problem. Oper. Res., 2, 363–410.

[16] M. Deza, M. Grötschel & M. Laurent (1992) Clique-web facets for mul-
ticut polytopes. Math. Oper. Res., 17, 981–1000.

[17] L.K. Fleischer, A.N. Letchford & A. Lodi (2006) Polynomial-time sep-
aration of a superclass of simple comb inequalities. Math. Oper. Res.,
31, 696–713.

[18] M.L. Fredman & R.E. Tarjan (1987) Fibonacci heaps and their uses in
improved network optimization algorithms. J. of the ACM, 34, 596–615.

[19] M.R. Garey & D.S. Johnson (1979) Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York: Freeman.

[20] A.H.M. Gerards & A.J. Schrijver (1986) Matrices with the Edmonds–
Johnson property. Combinatorica, 6, 365–379.

[21] M. Giandomenico & A.N. Letchford (2006) Exploring the relationship
between max-cut and stable set relaxations. Math. Program., 106, 159-
175.

[22] M. Grötschel, L. Lovász & A.J. Schrijver (1988) Stable sets in graphs.
Chapter 9 of Geometric Algorithms in Combinatorial Optimization.
New York: Wiley.

[23] M. Grötschel, M. Jünger & G. Reinelt (1985) Facets of the linear or-
dering polytope. Math. Program., 33, 43–60.

[24] M. Grötschel & Y. Wakabayashi (1990) Facets of the clique partitioning
polytope. Math. Program., 47, 367–387.

[25] M. Hartmann, M. Queyranne & Y. Wang (1999) On the Chvátal rank of
certain inequalities. In G. Cornuéjols, R.E. Burkard & G.J. Woeginger
(eds.) Proceedings of IPCO VII, pp. 218–233. Heidelberg: Springer.

[26] M. Jünger et al. (eds.) 50 Years of Integer Programming: 1958-2008.
Berlin: Springer.

20

[27] A.N. Letchford (2001) On disjunctive cuts for combinatorial optimiza-
tion. J. Comb. Optim., 5, 299–315.

[28] A.N. Letchford, G. Reinelt & D.O. Theis (2008) Odd minimum cut-sets
and b-matchings revisited. SIAM J. Discr. Math., 22, 1480–1487.

[29] L. Lovász & A.J. Schrijver (1991) Cones of matrices and set-functions
and 0-1 optimization. SIAM J. Optim., 1, 166–190.

[30] J.F. Marcotorchino (1981) Aggregation of Similarities in Automatic
Classification (in French). Doctoral Thesis, Université Paris VI.

[31] R. Müller (1996) On the partial order polytope of a digraph. Math.
Program., 73, 31–49.

[32] R. Müller & A.S. Schulz (2002) Transitive packing: a unifying concept
in combinatorial optimization. SIAM J. Optim., 13, 335–367.

[33] D. Naddef (2002) Polyhedral theory and branch-and-cut algorithms for
the TSP. In G. Gutin & A.P. Punnen (eds.) The Traveling Salesman
Problem and Its Variations, pp. 29–114. Dortrecht: Kluwer.

[34] H. Nagamochi, T. Ono & T. Ibaraki (1994) Implementing an efficient
minimum capacity cut algorithm. Math. Program. 67, 325–341.

[35] M.W. Padberg (1973) On the facial structure of set packing polyhedra.
Math. Program., 5, 199–215.

[36] M.W. Padberg & M.R. Rao (1982) Odd minimum cut-sets and b-
matchings. Math. Oper. Res., 7, 67–80.

[37] M. Padberg & G. Rinaldi (1991) A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems. SIAM
Rev., 33, 60–100.

[38] L. Trevisan, G.B. Sorkin, M. Sudan & D.P. Williamson (2000) Gadgets,
approximation, and linear programming. SIAM J. Comput., 29, 2074–
2097.

21

