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Key Points: 13 

 We have reached a paradigm shift, where any self-respecting space weather model of the 14 

upper atmosphere now needs to have some representation of the lower atmosphere. 15 

 Further model developments are required in several key areas, including dynamical cores 16 

and the improved representation of gravity waves. 17 

 A roadmap of future actions is presented to ensure good progress continues to be made. 18 

This includes the development of a multi-model verification strategy. 19 

  20 
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Abstract 21 

Coupled Sun-to-Earth models represent a key part of the future development of space weather 22 

forecasting. With respect to predicting the state of the thermosphere and ionosphere, there has 23 

been a recent paradigm shift; it is now clear that any self-respecting model of this region needs to 24 

include some representation of forcing from the lower atmosphere, as well as solar and 25 

geomagnetic forcing.  Here we assess existing modeling capability and set out a roadmap for the 26 

important next steps needed to ensure further advances. These steps include a model verification 27 

strategy, analysis of the impact of non-hydrostatic dynamical cores, and a cost-benefit analysis of 28 

model chemistry for weather and climate applications. 29 

Plain Language Summary 30 

Numerical models that comprehensively simulate the region between the Sun and the Earth 31 

represent a key part of the future development of space weather forecasting. With respect to 32 

predicting the Earth’s upper atmosphere, there has been a recent paradigm shift; it is now clear 33 

that any self-respecting model of this region needs to include some representation of impacts 34 

from below (the lower atmosphere) as well as from above (solar variability and the effects of 35 

solar wind fluctuations).  Here we assess existing modeling capability and set out a roadmap for 36 

the important next steps needed to ensure further advances. These steps include a strategy for 37 

checking the accuracy of the models, an analysis of the impact of methods chosen to represent 38 

upper atmosphere dynamics, and an assessment of the relative benefits of comprehensive (but 39 

expensive) and simplified (but inexpensive) model representations of upper atmosphere 40 

chemistry. 41 

 42 

1. Introduction 43 

 44 

We are at the stage in the development of operational space weather forecasts where individual 45 

models of components of the Sun-to-Earth domain (including the ionosphere and the 46 

thermosphere) are beginning to be coupled together. Such a coupled modelling system, 47 

constrained by assimilation of near real time observations, has the potential to provide 48 

considerably better forecasts than currently available. It is clear that representing the impact of, 49 

for example, a Coronal Mass Ejection, across the whole Sun-to-Earth domain can potentially 50 

improve forecasts in the ionosphere. The potential for improved forecasts has already been 51 

demonstrated for parts of the Sun to Earth system. For example, coupling a global 52 

magnetosphere model with an inner magnetosphere drift physics model considerably improves 53 

forecasts of geomagnetic storms (Liemohn et al., 2018), and improved representation of the 54 

thermosphere leads to improved ionospheric evolution (e.g. Chartier et al., 2013). In addition, 55 

there is a strong connection between the lower atmosphere state and the ionosphere that was 56 

highlighted initially by Immel et al. (2006) and demonstrated in later modelling studies (eg 57 

Pedatella et al., 2016). Furthermore, data assimilation schemes are already used for operational 58 

ionosphere models (e.g. Schunk et al., 2016) and experimental systems show that assimilation 59 

can improve model initial conditions in the thermosphere (e.g. Murray et al.,2015), the 60 

magnetosphere (e.g. Merkin et al., 2016) and the heliosphere (e.g. Lang et al., 2019).   61 

 62 

However, it is also becoming increasingly apparent that, in addition to correctly specifying this 63 

space weather forcing, thermosphere and ionosphere forecasts can also benefit from an accurate 64 
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representation of coupling from within and below. The motivation for a whole atmosphere model 65 

(i.e., a model that extends from the ground up to the exobase) is thus two-fold: 66 

 67 

 Recent research (e.g., Chartier et al., 2013, 2016, Hsu et al., 2014) has shown that, no 68 

matter how accurately one represents the current ionospheric state, the quality of the 69 

subsequent ionospheric forecasts crucially depends on the ability to also represent the 70 

thermosphere and its evolution.  71 

 Both the ionosphere and thermosphere are sensitive to forcing from the lower 72 

atmosphere. The seminal paper by Immel et al. (2006) indicated connections between 73 

tidal patterns in the lower thermosphere and the F-region ionosphere, and noted that the 74 

tidal structure was linked to patterns of convection in the equatorial troposphere. 75 

Furthermore, numerous papers  (e.g. Liu and Roble, 2002, Goncharenko et al., 2010a, 76 

2010b, McDonald et al., 2018, Pedatella et al., 2012) have shown how planetary wave 77 

forcing, specifically via stratospheric sudden warmings (SSWs), can affect lower 78 

thermospheric tides and thus the ionosphere. 79 

 80 

Akmaev (2011) reviewed whole atmosphere models at a time when these models were quite new 81 

and our understanding of the links between the lower and upper atmosphere was developing. A 82 

Whole Atmosphere Modelling Workshop  was held in Tres Cantos, Spain in June 2018 and a 83 

strong consensus emerged:  the need to have some representation of the lower atmosphere in 84 

space weather models of the upper atmosphere. This is highly significant for the continued 85 

development of whole atmosphere models. In this commentary we review existing models, how 86 

their building blocks can be further developed, and how we can use observations (via data 87 

assimilation and verification) to confront the model simulations and potentially produce 88 

improved forecasts. 89 

 90 

2.  Existing Models 91 

 92 

There are three current whole atmosphere space weather models:   93 

 94 

 The Whole Atmosphere Model (WAM) (Akmaev et al., 2008, Fuller-Rowell et al., 2008) 95 

is based on the US National Weather Service Numerical Weather prediction model and 96 

extends from the surface to around 600 km. It is being combined with a separate 97 

ionosphere model Ionosphere Plasmasphere Electrodynamics (IPE; Maruyama et al., 98 

2015) to produce a coupled model of the ionosphere and neutral atmosphere. WAM 99 

represents both the mean state and tides in the thermosphere well (e.g Lieberman et al., 100 

2013 show good agreement with diurnal and time mean Challenging Mini Satellite 101 

Payload (CHAMP) winds). The pattern of changes seen in ionospheric vertical plasma 102 

drift and Total Electron Content (TEC) (that occur in response to SSW forcing from 103 

below) agrees well with observations (e.g. Wang et al., 2014). 104 

 105 

 The Whole Atmosphere Community Climate Model with thermosphere and ionosphere 106 

extension (WACCM-X (Liu et al., 2010, Liu et al., 2018) is focused primarily on climate 107 

timescales (in contrast to WAM, which is focused on weather forecast timescales). With 108 
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a comparable altitude range to WAM, it has a much more detailed representation of 109 

neutral and ion chemistry. Liu et al (2018) report that in WACCM-X the amplitudes and 110 

seasonal variations of atmospheric tides in the mesosphere and lower thermosphere 111 

(MLT), equatorial ionosphere anomaly structures and storm-time ionospheric behavior 112 

are all in good agreement with observations.   113 

 114 

 The Ground to topside model of the Atmosphere and Ionosphere for Aeronomy (GAIA) 115 

combines neutral atmosphere, ionospheric and electrodynamic models. The neutral model 116 

covers the entire atmosphere from the Earth’s surface up to the top of the thermosphere 117 

and contains a comprehensive range of physical parametrizations (e.g. Fujiwara and 118 

Miyoshi, 2010). Jin et al. (2012) show the ability of GAIA to model the impact of an 119 

SSW on migrating tides and the associated ionospheric response, with in general good 120 

agreement shown with Sounding of the Atmosphere using Broadband Emission (SABER) 121 

and Constellation Observing System for Meteorology, Ionosphere, and Climate 122 

(COSMIC) observations.  123 

 124 

[For clarification: weather models focus on short forecast timescales (often less than 10 days), 125 

and use as fine a resolution as possible in order to represent meteorological features such as 126 

weather fronts. Since forecast quality will depend on initial conditions, weather models must be 127 

initialized using data assimilation. Coupling to other models (such as an ocean model) is usually 128 

not required on forecast timescales, and the need to run quickly in near real time precludes the 129 

use of such coupled models and it is necessary to use fast, less complex representations of 130 

physics and chemistry. Climate models are run for long forecast timescales such as annual or 131 

multi-decadal periods, and so generally have coarser resolutions than weather models. Coupling 132 

to comprehensive models of the Earth system (chiefly ocean and atmospheric chemistry models) 133 

is required to represent long term variability and climate change. For the specific case of whole 134 

atmosphere models, WAM and WACCM do not completely meet the description given above 135 

(for example, WACCM can run at a finer horizontal resolution than WAM), but the WAM 136 

chemistry scheme is simple and designed for fast weather forecasts, whereas the WACCM 137 

chemistry scheme is considerably more complex, and it can be coupled to an ocean model. This 138 

enables WACCM to be used in activities like the Coupled Model Intercomparison Project 5 139 

(CMIP5), studying, for example, climate change from 1850 (Marsh et al., 2013) and climate 140 

impacts associated with long term ozone change (Eyring et al., 2013).] 141 

 142 

3 Building Blocks for better models  143 

 144 

3.1 Dynamics – gravity waves and dynamical formulation 145 

 146 

The representation of gravity waves is very important for accurate modelling of the 147 

thermosphere. They are the prime driver of the middle atmosphere circulation and affect tidal 148 

amplitudes, and thus can influence the mechanisms connecting the lower atmosphere with the 149 

thermosphere and ionosphere (see e.g. Yiğit et al., 2016). Furthermore, accurate simulation of 150 

medium and small-scale travelling ionospheric disturbances (MSTIDs), and associated 151 

ionospheric plasma bubbles which impact precision application of Global Navigation Satellite 152 
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System (GNSS) data, require the ability to represent sub grid-scale gravity waves in whole 153 

atmosphere models. This information on MSTIDs could be input into existing tools for 154 

estimating GNSS positioning error from TIDs (e.g. Lejeune et al., 2012). Gravity waves also 155 

play an important role in the transport of chemical constituents, which is discussed in more detail 156 

later. 157 

Liu et al. (2014) ran a fine resolution (0.25
o
 x 0.25

o
 horizontal, 0.1 scale height vertical) version 158 

of WACCM to demonstrate the simulation and impact of gravity waves up to around 100 km. 159 

However, it is not clear whether such resolutions are needed at higher levels in the thermosphere. 160 

Miyoshi et al. (2018) showed that a GAIA simulation with a resolution of 1
o
 x 1

o
 produces 161 

fluctuations in electron density with length scales less than around 1000 km and periods of less 162 

than around 2 hours, which are in good agreement with observations and which are not seen in a 163 

coarser resolution (2.5
o
 x 2.5

o
) simulation. The fluctuations reported by Miyoshi et al. are 164 

attributed to TIDs that are excited by secondary gravity waves. These waves typically have 165 

horizontal wavelengths of around 100 km to several 1000s of km (Vadas and Crowley, 2010). 166 

This also appears consistent with Gardner and Schunk (2011), who indicated observed gravity 167 

waves in the thermosphere typically have horizontal scales of around 100-500 km. Furthermore, 168 

at altitudes above around 110 km molecular viscosity and thermal conduction strongly influence 169 

gravity wave filtering and dissipation, as opposed to winds and wave breaking lower in the 170 

atmosphere (see e.g. Vadas and Fritts, 2005). Accordingly, lower atmosphere gravity wave 171 

parametrization schemes may not be appropriate in the thermosphere.  Schemes that specifically 172 

focus on parameterizing gravity waves in the thermosphere (e.g.Yiğit et al., 2008) could be 173 

adopted for coarse horizontal resolution whole atmosphere model simulations. 174 

Presently, WAM, WACCM-X and GAIA use hydrostatic dynamical cores. The dynamical core 175 

solves the governing fluid and thermodynamic equations in the model on resolved scales, while 176 

parametrizations represent sub-grid-scale processes and other processes not included in the 177 

dynamical core such as radiative transfer (Thuburn, 2008). Certainly for some applications, such 178 

as satellite drag, the hydrostatic approximation appears adequate (see e.g Bruinsma et al., 2018), 179 

but there is still a need to identify the impact on model results that may arise from non-180 

hydrostatic processes. For some applications that require accurate representation of the wave 181 

fluctuations (such as radio wave propagation in the bottom-side F region for HF applications), 182 

the hydrostatic approximation may be inappropriate in the thermosphere, and adoption of non-183 

hydrostatic (non-H) dynamical cores appears to be a logical next step. The hydrostatic 184 

approximation breaks in the presence of large vertical accelerations (e.g Curry and Webster, 185 

1998), and using a non-H dynamical core may affect the modelled gravity wave spectrum, 186 

particularly when applied at fine horizontal resolution. High frequency waves with horizontal 187 

wavelength less than 4πH (where H is scale height) should be treated non-hydrostatically 188 

(Akmaev, 2011). For example, Eckermann et al. (2016) showed observations of gravity waves 189 

that had propagated from the surface to the lower thermosphere with vertical velocities of several 190 

tens of  ms
-1

. They concluded that these waves must be non-hydrostatic, since if they were 191 

hydrostatic they would have broken in the troposphere or lower stratosphere rather than 192 

propagating higher. Therefore, selection of a non-H dynamical core can affect the modelled 193 

gravity wave spectrum in the MLT, and thus the simulation of MSTIDs. A fine horizontal 194 

resolution is required to represent such waves in the first place, and, given that whole atmosphere 195 

models currently have resolutions of ~100 km to 200 km, the case for using non-H cores at such 196 
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resolutions is not yet well made. Three new whole atmosphere models are being developed 197 

which use non-H cores: the Navy Global Environmental Model (NAVGEM; e.g. McCormack et 198 

al., 2017), the Met Office Extended Unified Model (UM) and WAM, where the current 199 

dynamical core is being replaced with the Geophysics Fluid Dynamics Laboratory Finite-200 

Volume on a Cubed-Sphere (FV3) non-H core (Ullrich et al., 2017). In addition, Borchert et al. 201 

(2018) report on work to extend the ICOsahedral Non-hydrostatic (ICON) general circulation 202 

model up to 150 km altitude.  NAVGEM and the UM have the option to switch between 203 

hydrostatic and non-H formulations, and both these models could play key roles in evaluating the 204 

importance of non-H cores in whole atmospheric models. 205 

There can also be issues with the robustness of non-H dynamical cores in the thermosphere. 206 

Griffin and Thuburn (2018) showed that the UM required the addition of molecular viscosity and 207 

diffusion in order to realistically stabilize artificial wave growth, as this viscosity has a 208 

significant damping effect in the thermosphere. Another challenge arises above the turbopause 209 

(around 105 km) where diffusive separation means that air parcels are no longer turbulently 210 

mixed and the molecular weight of a species determines its dynamical evolution. Therefore, 211 

ideally each species should have its own set of dynamical equations that need to be solved. The 212 

molecular diffusion is also affected by variable gravity which in turn modifies atmospheric scale 213 

heights. Thus, there is a need to reformulate the dynamical core to properly model the individual 214 

species, as well as a need to add a correction to the thermal equation.  215 

 216 

3.2 Radiation and chemistry  217 

 218 

Accurate radiation and chemistry schemes are needed throughout the whole atmosphere model 219 

domain, most obviously in the MLT where the radiation scheme calculates the absorption of 220 

solar radiation that drive the large rise in temperature with height there.  This means that 221 

radiation schemes need to include the far ultraviolet (FUV), extreme ultraviolet (EUV) and soft 222 

x-ray spectral ranges that are usually ignored in lower atmosphere models. In the MLT, heating 223 

from exothermic reactions becomes important (especially during polar night) and must be 224 

accounted for to correctly simulate the thermal structure. Quenching of O(
1
D) is a large source of 225 

heating throughout the MLT, above 100 km ion reactions and reactions involving atomic 226 

nitrogen are significant sources of heat, and below 100 km Ox and HOx reactions are the 227 

dominant producers of chemical heating (Marsh et al., 2007). In addition, above the mid-228 

mesosphere, local thermodynamic equilibrium (LTE) schemes need to be replaced by non-LTE 229 

formulations, since both Near Infrared heating and Infrared cooling are over-estimated by the 230 

LTE schemes. The Fomichev non-LTE parametrization (Fomichev et al., 2005, 2008; Ogibalov 231 

and Fomichev, 2003), is the only scheme currently available for Earth GCMs. Its formulation is 232 

based on recent atmospheric conditions and it lacks the adaptability to be used for climate 233 

change experiments. The UM’s radiation scheme is being extended to include FUV and EUV 234 

wavelengths. The scheme is highly flexible, with the option of being run using different spectral 235 

resolutions. In future it could be further modified to include a more comprehensive 236 

representation of non-LTE heating, possibly based on a scheme developed for Mars (López-237 

Valverde and López-Puertas, 1994), which potentially represents a considerable improvement on 238 

the Fomichev scheme. Since the scheme is also publically available it could be a highly 239 

important community resource for future collaborative whole atmosphere model development.  240 

 241 
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While only relatively few major chemical reactions are sufficient to adequately represent the 242 

large rise in temperature in the MLT (Marsh et al., 2007), other challenges remain. Below 85 km 243 

the atmospheric chemistry is dominated by compounds, and above 100 km by ion chemistry.  244 

Particularly interesting chemistry exists in between, where atoms including highly reactive 245 

hydrogen and oxygen atoms are in abundance, with maximum mixing ratios observed at around 246 

85 km and 90-95 km, respectively (Plane et al., 2015). WACCM simulations of metal layers 247 

originating from the ablation of meteoroids in the MLT give good model agreement with data at 248 

mid latitudes, but show worse agreement at high latitudes. For example, for Fe chemistry Feng et 249 

al. (2013) shows that the model significantly overestimates winter Fe and underestimates 250 

summer Fe compared to observations from three Antarctic ground-based lidars. This implies that 251 

the model vertical transport of chemical species may be significantly underestimated. A possible 252 

issue is that global models cannot capture transport associated with small scale gravity waves, 253 

and adding diffusion terms to account for this does help with reducing the large bias. 254 

Observations of MLT chemistry are sparse, and thus there is great scope for new observations to 255 

significantly improve our knowledge of the interaction between chemistry and transport. For 256 

example, recent observations made by the Atmospheric Chemistry Experiment (ACE) indicate 257 

nitrous oxide (N2O) is being produced in the MLT (Sheese et al., 2016).  N2O is a precursor of 258 

odd nitrogen (NOx) which destroys stratospheric ozone. A new chemical source of N2O has been 259 

successfully added to WACCM by Kelly et al. (2018). Model simulations were able to capture 260 

the observed N2O layer and well replicate seasonal variations near the poles. Recent studies have 261 

also highlighted the importance of radiation and chemistry schemes working together to produce 262 

the strong NO cooling which is observed in the immediate aftermath of geomagnetic storm-time 263 

thermospheric heating (e.g. Knipp et al., 2017) . 264 

3.3 Ionosphere and electrodynamics  265 

 266 

The coupling between the thermosphere and ionosphere is important, as mentioned above, in 267 

ensuring a more accurate evolution of the ionospheric state. Fang et al. (2013) performed an 268 

intercomparison of a range of ionospheric models. It is clear that the thermosphere / ionosphere 269 

coupling was modelled better when the models employed a fully consistent representation of the 270 

electrodynamics. This led to the development of the IPE model, which includes the following 271 

requirements:  it represents the ionosphere globally with similar resolution to the neutral 272 

atmospheric model (WAM) it is coupled to; it uses self-consistent electrodynamics for quiet and 273 

storm-time dynamo processes; it uses a coupling infrastructure. 274 

 275 

Also important is an accurate representation of the electric field and its variation. There are 276 

limitations with current empirical electric field models, such as those developed by Heelis (1982) 277 

and Weimer (2005). These are climatological in nature, but more observations are required to 278 

capture the electric field variability. The introduction of Super Dual Auroral Radar Network 279 

(SuperDARN) data crucially adds extra observations polewards of 40
o
 geomagnetic latitude (as 280 

well as providing observations at lower latitudes), and the deviation of SuperDARN high latitude 281 

electric fields from the average ionospheric state shows the importance of accounting for the 282 

prior evolution of the ionospheric state. M.-T. Walach (presentation available at 283 

http://www.research.lancs.ac.uk/portal/en/activities/characterising-and-understanding-temporal-284 

variability-in-ionospheric-flows-using-superdarn-data(21f8f287-e085-4418-8a1c-285 

387d597ef2f0).html) used SuperDARN data to show that greater solar wind corresponds to 286 

greater variability in convection, and is currently investigating the drivers of this variability in 287 
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more detail. Use of SuperDARN observations in the Canadian Ionosphere and Atmosphere 288 

Model (Martynenko et al., 2014) allows detailed features in the plasma density distribution to be 289 

reproduced, especially in the topside ionosphere at high latitudes. Data from the Assimilative 290 

Mapping of Ionospheric Electrodynamics (AMIE) can be used to assimilate multiple data 291 

sources (SuperDARN) for testing in whole atmosphere models. The electric field model chosen 292 

also influences modelled Joule heating, and it is important to continue to confront empirical 293 

model-based estimates with observations (e.g., Billett et al., 2018).   294 

 295 

3.4 Observations for Data Assimilation and model verification 296 

 297 

Data Assimilation (DA) is important in attempting to ensure the model state is constrained to be 298 

close to the true atmospheric state, and has been applied extensively in WACCM-X, WAM and 299 

NAVGEM. DA in WACCM-X is done using an ensemble Kalman filter while the NAVGEM 300 

DA system is a hybrid of 4D-Var and an ensemble Kalman Filter. The ensemble Kalman Filter 301 

(Evensen, 1994) is a combination of a Kalman Filter (which evolves the state and estimate 302 

covariance as new observations arrive) and Monte Carlo estimation methods (the full estimate 303 

covariance matrix is explicitly evolved using an ensemble (sample of evolved states)). The 304 

NAVGEM system has been shown to add a lot of value in the thermosphere. As an example, in 305 

Figure 1 the observed wavenumber 4 structure in TEC is best reproduced when the NAVGEM 306 

model thermosphere is forced by 3-hourly analyses; forcing by 6-hourly analyses is less  307 

accurate.  A major challenge is that the models cover a large altitude range, so waves can grow 308 

exponentially, and to maintain model stability with DA, more damping is often added to deal 309 

with spurious small scale waves. A consequence of this approach is that while model dynamics 310 

and chemical transport are improved it is at the cost of the tidal amplitudes being too weak. To 311 

add to the challenge in the upper atmosphere, data are sparse and processes act on shorter time 312 

scales than in the lower atmosphere. Provision of considerably more near real time observations 313 

of the upper atmosphere, particularly of the thermosphere, is vital if we are to exploit DA in 314 

order to produce improved model forecasts. 315 
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 316 
Figure 1.  317 

 (a) JPL global ionospheric map of TEC on 12 January 2010 shown at constant local time of 318 

13:00 LT. (b) /NOGAPS-ALPHA simulation of TEC. (c) NAVGEM simulation of TEC. The 319 

simulated TEC is scaled by a factor of 0.7 (from McDonald et al., 2018) 320 
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 321 

To compound the lack of observations, the instruments that produce many of the upper 322 

atmosphere observations used in the DA schemes (e.g. SABER, and MLS, the Microwave Limb 323 

Sounder) are well past their nominal mission lifetimes and no follow-on programmes are 324 

planned. Furthermore, these instruments only observe up to the lower thermosphere and 325 

observations higher in the thermosphere are extremely sparse. The QB50 Cubesat project (e.g 326 

Gill et al., 2013) focused on the building and launching of instruments to measure thermospheric 327 

neutral density, but with little or no attention given to coordination and reception of data. 328 

However the constellation of Cubesats used could be a pathfinder for a future operational 329 

observations system, with the critical proviso that this constellation would need to be 330 

underpinned by associated systems for near real time data reception and cross-calibration of data. 331 

In addition, new data from the Global-scale Observations of the Limb and Disk (GOLD) mission 332 

will help address the paucity of thermospheric data. The planned assimilation of GOLD O/N2 333 

observations into WAM could test the assumption that temperature is a key variable for the 334 

initialization of upper atmosphere models. Since O/N2 plays a key role as a diagnostic of 335 

thermospheric transport, it is possible that future DA schemes could instead use O/N2 as a 336 

primary control variable.  337 

 338 

Model verification using existing data has proved invaluable. However, there is a need for a 339 

consistent model verification strategy, and in particular community-wide agreement on which 340 

metrics to compare – this could include basic seasonal variability, tide amplitudes and 341 

variability, total electron content and the magnitude of the solar semidiurnal migrating tide. An 342 

important consideration is to understand which observations are trusted and therefore should be 343 

used to validate model output, and there are benefits in an Intergovernmental Panel on Climate 344 

Change (IPCC) style model intercomparison, and a cooperative approach. An example is CMIP5 345 

(Taylor et al., 2012) , in which an agreed set of experiments addressing major gaps in 346 

understanding was run using multiple models, and output data were formatted in a common way 347 

and made freely available via data portals. Empirical models may not be ideal for use as a level 348 

of comparison and we suggest the employment of a more general model comparison system, e.g., 349 

as implemented in the International Land Model Benchmarking Project (ILAMB, Collier et al., 350 

2018).  351 

 352 

4. Future research directions and activities 353 

 354 

Based on the discussions throughout the workshop, the following roadmap for future 355 

collaboration was agreed:  356 

 357 

 Compare existing hydrostatic models to understand impacts of dynamical formulation 358 

(also interactions with chemistry, the ionosphere, and radiation) 359 

 Comparison of non-H and hydrostatic dynamical cores to assess impact of non-H cores 360 

(and whether non-H is even needed at coarser resolution) 361 

 Assess numerical cost / benefit of comprehensive chemistry schemes designed for  362 

climate applications (e.g. WACCM) against simpler schemes designed for near-real time 363 

operational use (e.g. as used in WAM) 364 
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 Development of a verification strategy and methodology which is required to underpin 365 

the above three actions. Clearly, it makes sense to make links with other activities to 366 

guide our future actions. These include the Committee on Space Research International 367 

Space Weather Action Team and the Community Coordinated Modeling Center (CCMC) 368 

Space Weather Modeling Capabilities Assessment (Scherliess et al., 2019)).  369 

Of course, other issues that were discussed at the workshop (such as near real time availability of 370 

observations and DA) are very important, but the first focus here is on assessment and 371 

developing the whole atmosphere models themselves. 372 

 373 

There was a further suggestion that the joint development of parametrizations would be  374 

incredibly useful in unifying parametrization strategy across multiple models. The International 375 

Space Science Institute has a good setup for accomplishing verification with data, and this 376 

setting would be helpful for deciding a verification strategy.  To monitor progress, it was also 377 

agreed to organize a follow up workshop in mid 2020.  378 

 379 
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